Lecture 08: Computational Indistinguishability

Definition of Indistinguishability

- Let X and Y be probability distributions over the sample space Ω

Definition (Indistinguishability)

The distributions X and Y are ε-indistinguishable, represented by $X \approx_{\varepsilon} Y$, if for every adversary $\mathcal{A}: \Omega \rightarrow\{0,1\}$ the following holds:

$$
|\operatorname{Pr}[\mathcal{A}(X)=1]-\operatorname{Pr}[\mathcal{A}(Y)=1]| \leqslant \varepsilon
$$

Indistinguishability and Statistical Distance

Claim
$X \approx_{\varepsilon} Y \quad \Longrightarrow \quad \operatorname{SD}(X, Y) \leqslant \varepsilon$.
Proof is left is an exercise. Try using various equivalent definitions of statistical distance as introduced in the previous lectures.

Computational Indistinguishability

- An algorithm \mathcal{A} is efficient if its running time is bounded by a polynomial in its input-length

Definition (Computational Indistinguishability)

The distributions X and Y are ε-computationally indistinguishability, represented by $X \approx_{\varepsilon}^{(c)} Y$, if for every efficient $\mathcal{A}: \Omega \rightarrow\{0,1\}$ the following holds:

$$
|\operatorname{Pr}[\mathcal{A}(X)=1]-\operatorname{Pr}[\mathcal{A}(Y)=1]| \leqslant \varepsilon
$$

Data Processing Inequality

Claim

For any efficient $f: \Omega \rightarrow \Omega^{\prime}$,

$$
X \approx_{\varepsilon}^{(c)} Y \Longrightarrow f(X) \approx_{\varepsilon}^{(c)} f(Y)
$$

- We will prove the contrapositive, i.e. $\neg\left(f(X) \approx_{\varepsilon}^{(c)} f(Y)\right)$ implies $\neg\left(X \approx_{\varepsilon}^{(c)} Y\right)$
- The statement $\neg\left(f(X) \approx_{\varepsilon}^{(c)} f(Y)\right)$ implies that there exists an efficient $\mathcal{A}: \Omega^{\prime} \rightarrow\{0,1\}$ such that

$$
|\operatorname{Pr}[\mathcal{A}(f(X))=1]-\operatorname{Pr}[\mathcal{A}(f(Y))=1]|>\varepsilon
$$

- Let $\widetilde{\mathcal{A}}: \Omega \rightarrow\{0,1\}$ be the function defined as followed: $\widetilde{\mathcal{A}}(s)=\mathcal{A}(f(s))$
- Note that $\widetilde{\mathcal{A}}$ is efficient because \mathcal{A} and f are both efficient
- Note that $\widetilde{\mathcal{A}}(X) \equiv \mathcal{A}(f(X))$ and $\widetilde{\mathcal{A}}(Y) \equiv \mathcal{A}(f(Y))$
- Then we have demonstrated that there exists an adversary $\widetilde{\mathcal{A}}$ such that:

$$
|\operatorname{Pr}[\widetilde{\mathcal{A}}(X)=1]-\operatorname{Pr}[\widetilde{\mathcal{A}}(Y)=1]|>\varepsilon
$$

- This shows $\neg\left(X \approx_{\varepsilon}^{(c)} Y\right)$

Claim

$$
X^{(0)} \approx_{\varepsilon_{1}}^{(c)} X^{(1)} \approx_{\varepsilon_{2}}^{(c)} X^{(2)} \Longrightarrow X^{(0)} \approx_{\varepsilon_{1}+\varepsilon_{2}}^{(c)} X^{(2)}
$$

- We will prove the contrapositive
- Assume that there exists an efficient \mathcal{A} such that:

$$
\mid \operatorname{Pr}\left[\mathcal{A}\left(X^{(0)}\right)=1\right]-\operatorname{Pr}\left[\operatorname{Pr}\left[\mathcal{A}\left(X^{(2)}\right)=1\right] \mid>\varepsilon_{1}+\varepsilon_{2}\right.
$$

- We want to construct two adversaries $\widetilde{\mathcal{A}}$ and $\widetilde{\mathcal{B}}$ such that: At least one of the following statements holds

$$
\begin{aligned}
& \left|\operatorname{Pr}\left[\widetilde{\mathcal{A}}\left(X^{(0)}\right)=1\right]-\operatorname{Pr}\left[\widetilde{\mathcal{A}}\left(X^{(1)}\right)=1\right]\right|>\varepsilon_{1} \\
& \left|\operatorname{Pr}\left[\widetilde{\mathcal{B}}\left(X^{(1)}\right)=1\right]-\operatorname{Pr}\left[\widetilde{\mathcal{B}}\left(X^{(2)}\right)=1\right]\right|>\varepsilon_{2}
\end{aligned}
$$

- Proof is left as an exercise. Hint: Use $\widetilde{\mathcal{A}}=\widetilde{\mathcal{B}}=\mathcal{A}$.

