Lecture 06: Probability Basics

Probability Distributions

- Ω is the sample space (i.e., the set of elements to be sampled)
- A is a probability distribution with sample space Ω
- $A(i)$ represents the probability $\operatorname{Pr}[A=i]$, i.e. the probability of sampling $i \in \Omega$ according to the distribution A

Suppose Ω is a finite size sample space

Definition (Statistical Distance)

$$
\mathrm{SD}(A, B):=\frac{1}{2} \sum_{i \in \Omega}|A(i)-B(i)|
$$

Intuition: $\mathrm{SD}(A, B)$ represents (half) the area between the curves A and B. If two curves have small region between them then the two curves look similar. So, $\mathrm{SD}(A, B)$ being small implies that the probability distributions A and B are similar.

Some Properties

- Note: If $A(i)=B(i)$ then the i-th summand in the statistical distance definition has no contribution
- Let Ω_{A} be the set of all i such that $A(i) \geqslant B(i)$. Formally written as: $\Omega_{A}=\{i: i \in \Omega, A(i) \geqslant B(i)\}$
- Let Ω_{B} be the set of all i such that $A(i)<B(i)$. Formally written as: $\Omega_{B}=\{i: i \in \Omega, A(i)<B(i)\}$
- Note that: Ω_{A} and Ω_{B} partition Ω
- Think:

Claim

$$
\sum_{i \in \Omega_{A}} A(i)-B(i)=\sum_{i \in \Omega_{B}} B(i)-A(i)=\operatorname{SD}(A, B)
$$

Alternate Equivalent Definition

- An event E is a subset of Ω
- The probability of E according to probability distribution A is represented by $A(E)$ and is equal to $\sum_{i \in E} A(i)$

Definition (Statistical Distance)

$$
\max _{E \subseteq \Omega} A(E)-B(E)
$$

Equivalence

Claim

$$
\frac{1}{2} \sum_{i \in \Omega}|A(i)-B(i)|=\max _{E \subseteq \Omega} A(E)-B(E)
$$

- Let E^{*} be an event that achieves the maximum valuemax $E \subseteq \Omega A(E)-B(E)$
- First observation: E^{*} cannot contain $i \in \Omega_{B}$. Proof: Suppose $i \in \Omega_{B}$ and $i \in E^{*}$. Note that $A(i)-B(i)$ is negative. Let E^{\prime} be the event $E^{*} \backslash\{i\}$. Note that $A\left(E^{\prime}\right)-B\left(E^{\prime}\right)$ is greater than $A\left(E^{*}\right)-B\left(E^{*}\right)$. This contradicts the maximality of $A\left(E^{*}\right)-B\left(E^{*}\right)$.
- Think: Why should E^{*} contain all $i \in \Omega$ such that $A(i)>B(i)$?
- Without loss of generality, we can assume that $E^{*}=\Omega_{A}$
- For this choice, it is easy to see that both definitions are equal

Claim (Triangle Inequality)

$$
\mathrm{SD}(A, B) \leqslant \mathrm{SD}(A, C)+\mathrm{SD}(C, B)
$$

- Follows from the following manipulation

$$
\begin{aligned}
\mathrm{SD}(A, B) & =\frac{1}{2} \sum_{i \in \Omega}|A(i)-B(i)| \\
& =\frac{1}{2} \sum_{i \in \Omega}|A(i)-C(i)+C(i)-B(i)| \\
& \leqslant \frac{1}{2} \sum_{i \in \Omega}|A(i)-C(i)|+|C(i)-B(i)| \\
& =\operatorname{SD}(A, C)+\operatorname{SD}(C, B)
\end{aligned}
$$

- Think: Equality holds if and only if $C(i)$ is between $A(i)$ and $B(i)$, for all $i \in \Omega$

Distribution of a Function Output

- Let $f: \Omega \rightarrow \Omega^{\prime}$ be a function
- The output distribution $f(x)$ where x is sampled according to the distribution A is represented by $f(A)$
- The probability of $f(A)$ outputting y is represented by $(f(A))(y)$
- Suppose $y \in \Omega^{\prime}$
- Let $f^{-1}(y)$ be the set of all $x \in \Omega$ such that $f(x)=y$
- The probability of outputting y is given by the probability of sampling an element in $f^{-1}(y)$ according to the distribution A, i.e., $A\left(f^{-1}(y)\right)$ or equivalently $\sum_{x \in f^{-1}(y)} A(x)$
- Note that the sets $f^{-1}(y)$, for $y \in \Omega^{\prime}$, partition Ω

Data-processing Inequality

Claim (Data-processing Inequality)

For any function f, the following holds:

$$
\mathrm{SD}(f(A), f(B)) \leqslant \mathrm{SD}(A, B)
$$

- Consider the following manipulation:

$$
\begin{aligned}
\mathrm{SD}(f(A), f(B)) & =\frac{1}{2} \sum_{y \in \Omega^{\prime}}|(f(A))(y)-(f(B))(y)| \\
& =\frac{1}{2} \sum_{y \in \Omega^{\prime}}\left|A\left(f^{-1}(y)\right)-B\left(f^{-1}(y)\right)\right| \\
& =\frac{1}{2} \sum_{y \in \Omega^{\prime}}\left|\left(\sum_{x \in f^{-1}(y)} A(x)\right)-\left(\sum_{x \in f^{-1}(y)} B(x)\right)\right|
\end{aligned}
$$

- Continuing the manipulation:

$$
\begin{aligned}
\operatorname{SD}(f(A), f(B)) & =\frac{1}{2} \sum_{y \in \Omega^{\prime}}\left|\left(\sum_{x \in f^{-1}(y)} A(x)\right)-\left(\sum_{x \in f^{-1}(y)} B(x)\right)\right| \\
& \leqslant \frac{1}{2} \sum_{y \in \Omega^{\prime}} \sum_{x \in f^{-1}(y)}|A(x)-B(x)| \\
& =\frac{1}{2} \sum_{x \in \Omega}|A(x)-B(x)|=\operatorname{SD}(A, B)
\end{aligned}
$$

- Think: When does equality hold?

Distinguishing Experiment

For two distribution $A^{(0)}$ and $A^{(1)}$ consider the following experiment between an honest challenge \mathcal{H} and an adversary \mathcal{A} :

- The honest challenger samples $b \stackrel{\S}{\leftarrow}\{0,1\}$, samples $s{ }_{\leftarrow}^{\varsigma} A^{(b)}$ and sends s to the adversary \mathcal{A}
- The adversary \mathcal{A} returns \widetilde{b}
- The honest adversary outputs $z=1$ if and only if $b=\widetilde{b}$

Intuition: The adversary is trying to guess the hidden bit b. If the distributions $A^{(0)}$ and $A^{(1)}$ are dissimilar, then it should be easy for (some) \mathcal{A} to distinguish them. If the distributions $A^{(0)}$ and $A^{(1)}$ are similar, then (any) \mathcal{A} should not be able to distinguish them. Note that (as we had seen earlier) it is easy to achieve $\operatorname{Pr}[z=1]=1 / 2$. The advantage of the adversary \mathcal{A} is the probability of $\operatorname{Pr}[z=1]$ beyond $1 / 2$, i.e. $|\operatorname{Pr}[z=1]-1 / 2|$

Examples

- Suppose $A^{(0)}$ and $A^{(1)}$ are identical distributions. Then $\mathrm{SD}\left(A^{(0)}, A^{(1)}\right)=0$ and the advantage of any adversary is 0
- Suppose $A^{(0)}$ and $A^{(1)}$ are mutually disjoint probabilities, i.e. $\mathrm{SD}\left(A^{(0)}, A^{(1)}\right)=1$. In this case, there exists an adversary who can ensure $\operatorname{Pr}[z=1]=1$, i.e. advantage $1 / 2$

Relation of Advantage to SD

Claim

The advantage of an adversary is at most $\mathrm{SD}\left(A^{(0)}, A^{(1)}\right) / 2$.

- Suppose the adversary sees sample s. Then the best strategy of the adversary is:
- Output $\widetilde{b}=0$ if $A^{(0)}(s)>A^{(1)}(s)$
- Output $\widetilde{b}=1$ if $A^{(1)}(s)>A^{(0)}(s)$
- Output any \widetilde{b} if $A^{(0)}(s)=A^{(1)}(s)$

The probability of $z=1$ and the sample is s for this algorithm is: $\operatorname{Pr}[b=\widetilde{b}] \cdot \operatorname{Pr}\left[A^{(\widetilde{b})}(s)\right]=\max \left\{A^{(0)}(s), A^{(1)}(S)\right\} / 2$.

- Overall $\operatorname{Pr}[z=1]$ is

$$
\sum_{i \in \Omega} \max \left\{A^{(0)}(i), A^{(1)}(i)\right\} / 2=\left(1+\operatorname{SD}\left(A^{(0)}, A^{(1)}\right)\right) / 2
$$

