Lecture 04: Properties of Perfect Security

Mathematical Fundamentals: Group

Definition (Group)

For a set G and operator \circ, the pair (G, \circ) is a group if it satisfies the following properties:

- Closure: For all $a, b \in G$, we have $a \circ b \in G$
- Associativity: For all $a, b, c \in G$ we have $(a \circ b) \circ c=a \circ(b \circ c)$
- Identity: There exists $e \in G$ such that for all $a \in G$ we have: $e \circ a=a \circ e=a$
- Inverse: For every $a \in G$, there exists $b \in G$ such that we have: $a \circ b=b \circ a=e$

Example of Groups

- Let $G=\{0,1\}$ and \circ be the XOR operator
- Let $G=\mathbb{Z}$ and \circ be the + operator
- Let $G=\mathbb{Q}^{*}$ (i.e., the set of all rationals except 0) and \circ be the \times operator
- Let $G=\mathbb{Z}_{n}=\{0, \ldots, n-1\}$ and \circ be the addition $\bmod n$ operator
- Let $G=\mathbb{Z}_{p}^{*}=\{1, \ldots, p-1\}$ (for prime p) and \circ be the multiplication $\bmod p$ operator
- Let G be the set of all full-rank $n \times n$ matrices with rational entries and \circ be the matrix multiplication operator
- Given any group (G, \circ) we can define another group $\left(G^{\lambda}, \circ^{\lambda}\right)$ where G^{λ} is a λ-long vector with entries in G, and \circ^{λ} is a component-wise application of \circ
Note that we have seen examples where G need not be finite and the \circ operator need not be commutative (i.e., $a \circ b=b \circ a$).
Groups that additionally satisfy commutativity are called Abelian Groups

One-time Pad

- Let (G, o) be a group
- Suppose $\mathcal{K}=\mathcal{M}=\mathcal{C}=G$
- Gen (G) outputs sk drawn uniformly randomly from G
- $\operatorname{Enc}_{\text {sk }}(m)=m \circ s k$
- $\operatorname{Dec}_{\mathrm{sk}}(c)=c \circ \operatorname{inv}(\mathrm{sk})$, where $\operatorname{inv(sk)}$ is the inverse of sk with respect to the o operator
The proof that one-time pad is perfectly secure is left as an exercise

Proceed by defining meaningful groups (G, \circ) to obtain perfectly secure encryption schemes for the following:

- $\mathcal{M}=\{a, b, \ldots, z\}^{\lambda}$
- $\mathcal{M}=\{0,1\}^{\lambda}$

First Basic Observation

Henceforth, we will restrict our study to encryption scheme that always correctly decrypt, that is:

$$
\operatorname{Pr}\left[\operatorname{Dec}_{\mathrm{sk}}\left(\operatorname{Enc}_{\mathrm{sk}}(m)\right)=m\right]=1
$$

Theorem

For a perfect encryption scheme

$$
|\mathcal{C}| \geqslant|\mathcal{M}|
$$

Proof:

- Fix any sk $\in \mathcal{K}$.
- For any distinct $m, m^{\prime} \in \mathcal{M}$ we cannot have $\operatorname{Enc}_{\text {sk }}(m)$ and $\mathrm{Enc}_{\text {sk }}\left(m^{\prime}\right)$ produce the same cipher text c. Otherwise, Bob will not be able to correctly decrypt with probability 1 when it gets (sk, c).

Second Basic Observation

Theorem

For a perfect encryption scheme

$$
|\mathcal{K}| \geqslant|\mathcal{M}|
$$

Proof:

- Fix a ciphertext c
- For a message $m^{(1)} \in \mathcal{M}$ let $T^{(1)}=\left\{\mathrm{sk}^{(1)}, \ldots, \mathrm{sk}^{\left(i_{1}\right)}\right\}$ be the set of all distinct secret keys such that $m^{(1)}$ encrypts to c
- Similarly, for a message $m^{(2)} \in \mathcal{M}$ let $T^{(2)}=\left\{\mathrm{sk}^{\left(i_{1}+1\right)}, \ldots, \mathrm{sk}^{\left(i_{2}\right)}\right\}$ be the set of all distinct secret keys such that $m^{(2)}$ encrypts to c
- In general, for a message $m^{(k)} \in \mathcal{M}$ let $T^{(k)}=\left\{\mathrm{sk}^{\left(i_{k-1}+1\right)}, \ldots, \mathrm{sk}^{\left(i_{k}\right)}\right\}$ be the set of all distinct secret keys such that $m^{(k)}$ encrypts to c

We make two claims. First claim:

Claim

Let $\mathcal{M}(c)$ be the set of all messages that encrypt to c under some sk. Then $|\mathcal{M}(c)|=|\mathcal{M}|$.

Proof:

- If possible let $m \in \mathcal{M}$ such that $m \notin \mathcal{M}(c)$
- Let M be a uniform distribution over \mathcal{M}
- Now $\operatorname{Pr}[M=m \mid C=c]=0$, but $\operatorname{Pr}[M=m]=1 /|\mathcal{M}| \neq 0$
- So, perfect security is violated

Second claim:
Claim
For $k \neq k^{\prime}$, we have $T^{(k)} \cap T^{\left(k^{\prime}\right)}=\emptyset$.
Proof:

- Fix c and suppose on the contrary that there exists $s k \in T^{(k)} \cap T^{\left(k^{\prime}\right)}$
- Consider the case when Bob receives the secret-key sk and c as the ciphertext
- In this case, Bob cannot always correctly decrypt the message as both $m^{(k)}$ and $m^{\left(k^{\prime}\right)}$ are valid decryptions of the ciphertext c when the secret-key is sk

Using the two claims we do the following argument:

- Let $\mathcal{M}=\left\{m^{(1)}, \ldots, m^{(S)}\right\}$
- Then, every set $T^{(1)}, \ldots, T^{(S)}$ is non-empty (by first claim). Formally, $i_{1} \geqslant 1,\left(i_{2}-i_{1}\right) \geqslant 1, \ldots,\left(i_{S}-i_{S-1}\right) \geqslant 1$
- Further, $T^{(1)}, \ldots, T^{(S)}$ are distinct (by second claim) and their union has size $\leqslant|\mathcal{K}|$
- Consider the following manipulation:

$$
\begin{aligned}
|\mathcal{M}| & =S=\sum_{k=1}^{S} 1 \\
& \leqslant \sum_{k=1}^{S}\left(i_{k}-i_{k-1}\right) \\
& =i_{S} \\
& \leqslant|\mathcal{K}|
\end{aligned}
$$

- This completes the proof that $|\mathcal{K}| \geqslant|\mathcal{M}|$

Food for Thought

- Observe that One-time Pad achieves $|K|=|M|=|C|$, thus the inequalities in the theorems are tight and can be simultaneously achieved
- Note that the equality in the second theorem is achieved if and only if $\left(i_{k}-i_{k-1}\right)=1$ and $T^{(1)} \cup \cdots \cup T^{(S)}=\mathcal{K}$. This observation is extremely important will be used extensively in the next theorem's proof

Theorem (Shannon's Theorem)

An encryption scheme is perfectly secure with $|\mathcal{K}|=|\mathcal{M}|=|\mathcal{C}|$ if and only if

- Gen samples sk uniformly at random from \mathcal{K}, and
- For every $m \in \mathcal{M}$ and $c \in \mathcal{C}$, there is a unique sk such that $\operatorname{Enc}_{\text {sk }}(m)=c$

Suppose Gen samples sk uniformly at random from \mathcal{K} and for every $m \in \mathcal{M}$ and $c \in \mathcal{C}$, there is a unique sk such that $\operatorname{Enc}_{\mathrm{sk}}(m)=c$. We want to show that this scheme is perfectly secure.

- First guarantee implies: $\operatorname{Pr}[s k=s k]=1 /|\mathcal{K}|$, for all $s k \in \mathcal{K}$
- Fix a c and m. Second guarantee states that there is a unique secret-key under which m is encrypted as c. Let this secret-key be $\mathrm{sk}_{m, c}$. Now,

$$
\begin{aligned}
\operatorname{Pr}[C=c \mid M=m] & =\operatorname{Pr}[C=c \wedge M=m] / \operatorname{Pr}[M=m] \\
& =\operatorname{Pr}\left[s k=s k_{m, c} \wedge M=m\right] / \operatorname{Pr}[M=m] \\
& =\operatorname{Pr}\left[\mathrm{sk}=\mathrm{sk}_{m, c}\right] \cdot \operatorname{Pr}[M=m] / \operatorname{Pr}[M=m] \\
& =\operatorname{Pr}\left[\mathrm{sk}=\mathrm{sk}_{m, c}\right]
\end{aligned}
$$

- By first guarantee, we can conclude that $\operatorname{Pr}[C=c \mid M=m]=1 /|\mathcal{K}|$, for all c, m and, hence, the scheme is perfectly secret

Second Direction

Suppose we are given a perfectly secure encryption scheme such that $|\mathcal{K}|=|\mathcal{M}|=|\mathcal{C}|$.

- Fix a ciphertext c
- Because of the tightness of the inequality it is clear that $\left|T^{(k)}\right|=1$, for all k (we have already argued this earlier). So, for every m, c there is a unique $s k_{m, c}$ under which m is encrypted as c. This proves the part (2) of the implication
- Further, tightness of the inequality implies that $T^{(1)} \cup \cdots \cup T^{(S)}=\mathcal{K}$, where $S=|\mathcal{M}|$
- Let us consider the following probability for any $m \in \mathcal{M}$:

$$
\begin{aligned}
\operatorname{Pr}[C=c \mid M=m] & =\operatorname{Pr}[C=c \wedge M=m] / \operatorname{Pr}[M=m] \\
& =\operatorname{Pr}\left[\text { sk }=s \mathbf{s k}_{m, c} \wedge M=m\right] / \operatorname{Pr}[M=m] \\
& =\operatorname{Pr}\left[\text { sk }=s k_{m, c}\right] \cdot \operatorname{Pr}[M=m] / \operatorname{Pr}[M=m] \\
& =\operatorname{Pr}\left[\text { sk }=\text { sk }_{m, c}\right]
\end{aligned}
$$

- Recall that for perfect secrecy, we must have $\operatorname{Pr}[C=c \mid M=m]$ identical for all $m \in \mathcal{M}$
- So, for every $m \in \mathcal{M}$, we get $\operatorname{Pr}\left[s k=s k_{m, c}\right]$ is identical
- Recall that $\mathcal{M}=\left\{m^{(1)}, \ldots, m^{(S)}\right\}$ and
$\left\{\mathrm{sk}_{m^{(1)}, c}, \ldots, \mathrm{sk}_{m^{(s)}, c}\right\}=\mathcal{K}$
- So, we get that $\operatorname{Pr}\left[\mathrm{sk}=s \mathrm{~s}_{m, c}\right]=1 /|\mathcal{K}|$. This proves the part (1) of the implication

Food for Thought

- What information is leaked when two messages are encrypted using the same secret-key in one-time pad?
- For example, for two different message $\left(m, m^{\prime}\right)$, their encryptions are (c, c^{\prime}), where $c=m \circ$ sk and $c^{\prime}=m^{\prime} \circ$ sk
- So, we can compute $c \circ \operatorname{inv}\left(c^{\prime}\right)$ to compute $m \circ \operatorname{inv}\left(m^{\prime}\right)$
- Is any additional information leaked?
- How to argue that "no additional information" is leaked?

