Lecture 04: Properties of Perfect Security

Lecture 04: Properties of Perfect Security

▲圖→ ▲ 国→ ▲ 国→

Definition (Group)

For a set G and operator \circ , the pair (G, \circ) is a group if it satisfies the following properties:

- Closure: For all $a, b \in G$, we have $a \circ b \in G$
- Associativity: For all a, b, c ∈ G we have (a ∘ b) ∘ c = a ∘ (b ∘ c)
- Identity: There exists e ∈ G such that for all a ∈ G we have:
 e ∘ a = a ∘ e = a
- Inverse: For every a ∈ G, there exists b ∈ G such that we have: a ∘ b = b ∘ a = e

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example of Groups

- Let $G = \{0,1\}$ and \circ be the XOR operator
- Let $G = \mathbb{Z}$ and \circ be the + operator
- Let $G = \mathbb{Q}^*$ (i.e., the set of all rationals except 0) and \circ be the \times operator
- Let $G = \mathbb{Z}_n = \{0, \dots, n-1\}$ and \circ be the addition mod n operator
- Let $G = \mathbb{Z}_p^* = \{1, \dots, p-1\}$ (for prime p) and \circ be the multiplication mod p operator
- Let G be the set of all full-rank $n \times n$ matrices with rational entries and \circ be the matrix multiplication operator
- Given any group (G, ◦) we can define another group (G^λ, ◦^λ) where G^λ is a λ-long vector with entries in G, and ◦^λ is a component-wise application of ◦

Note that we have seen examples where *G* need not be finite and the \circ operator need not be commutative (i.e., $a \circ b = b \circ a$). Groups that additionally satisfy commutativity are called Abelian Groups

- Let (G, \circ) be a group
- Suppose $\mathcal{K} = \mathcal{M} = \mathcal{C} = G$
- Gen(G) outputs sk drawn uniformly randomly from G

•
$$Enc_{sk}(m) = m \circ sk$$

• $Dec_{sk}(c) = c \circ inv(sk)$, where inv(sk) is the inverse of sk with respect to the \circ operator

The proof that one-time pad is perfectly secure is left as an exercise

イロト イポト イヨト イヨト

Proceed by defining meaningful groups (G, \circ) to obtain perfectly secure encryption schemes for the following:

< ロ > (同 > (回 > (回 >))) 目 = (回 >) (u = (u

First Basic Observation

Henceforth, we will restrict our study to encryption scheme that always correctly decrypt, that is:

$$\Pr[\mathsf{Dec}_{\mathsf{sk}}(\mathsf{Enc}_{\mathsf{sk}}(m)) = m] = 1$$

Theorem

For a perfect encryption scheme

 $|\mathcal{C}| \geqslant |\mathcal{M}|$

Proof:

- Fix any sk $\in \mathcal{K}$.
- For any distinct m, m' ∈ M we cannot have Enc_{sk}(m) and Enc_{sk}(m') produce the same cipher text c. Otherwise, Bob will not be able to correctly decrypt with probability 1 when it gets (sk, c).

Second Basic Observation

Theorem

For a perfect encryption scheme

$$|\mathcal{K}| \geqslant |\mathcal{M}|$$

Proof:

- Fix a ciphertext c
- For a message $m^{(1)} \in \mathcal{M}$ let $T^{(1)} = \left\{ sk^{(1)}, \dots, sk^{(i_1)} \right\}$ be the set of all distinct secret keys such that $m^{(1)}$ encrypts to c
- Similarly, for a message $m^{(2)} \in \mathcal{M}$ let $\mathcal{T}^{(2)} = \left\{ sk^{(i_1+1)}, \dots, sk^{(i_2)} \right\}$ be the set of all distinct secret keys such that $m^{(2)}$ encrypts to c
- In general, for a message $m^{(k)} \in \mathcal{M}$ let $T^{(k)} = \left\{ sk^{(i_{k-1}+1)}, \dots, sk^{(i_k)} \right\}$ be the set of all distinct secret keys such that $m^{(k)}$ encrypts to c

We make two claims. First claim:

Claim

Let $\mathcal{M}(c)$ be the set of all messages that encrypt to c under some sk. Then $|\mathcal{M}(c)| = |\mathcal{M}|$.

Proof:

- If possible let $m \in \mathcal{M}$ such that $m
 ot \in \mathcal{M}(c)$
- Let M be a uniform distribution over \mathcal{M}
- Now $\Pr[M = m | C = c] = 0$, but $\Pr[M = m] = 1/|\mathcal{M}| \neq 0$
- So, perfect security is violated

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Second claim:

Claim

```
For k \neq k', we have T^{(k)} \cap T^{(k')} = \emptyset.
```

Proof:

- Fix *c* and suppose on the contrary that there exists $sk \in T^{(k)} \cap T^{(k')}$
- Consider the case when Bob receives the secret-key sk and *c* as the ciphertext
- In this case, Bob cannot always correctly decrypt the message as both $m^{(k)}$ and $m^{(k')}$ are valid decryptions of the ciphertext c when the secret-key is sk

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proof Continued

Using the two claims we do the following argument:

- Let $\mathcal{M} = \{m^{(1)}, \dots, m^{(S)}\}$
- Then, every set $T^{(1)}, \ldots, T^{(S)}$ is non-empty (by first claim). Formally, $i_1 \ge 1$, $(i_2 - i_1) \ge 1$, \ldots , $(i_S - i_{S-1}) \ge 1$
- Further, $T^{(1)}, \ldots, T^{(S)}$ are distinct (by second claim) and their union has size $\leq |\mathcal{K}|$
- Consider the following manipulation:

$$\mathcal{M}| = S = \sum_{k=1}^{S} 1$$
$$\leqslant \sum_{k=1}^{S} (i_k - i_{k-1})$$
$$= i_S$$
$$\leqslant |\mathcal{K}|$$

• This completes the proof that $|\mathcal{K}| \ge |\mathcal{M}|_{r}$

- Observe that One-time Pad achieves |K| = |M| = |C|, thus the inequalities in the theorems are tight and can be simultaneously achieved
- Note that the equality in the second theorem is achieved if and only if $(i_k i_{k-1}) = 1$ and $T^{(1)} \cup \cdots \cup T^{(S)} = \mathcal{K}$. This observation is extremely important will be used extensively in the next theorem's proof

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem (Shannon's Theorem)

An encryption scheme is perfectly secure with $|\mathcal{K}|=|\mathcal{M}|=|\mathcal{C}|$ if and only if

- \bullet Gen samples sk uniformly at random from $\mathcal{K},$ and
- For every $m \in \mathcal{M}$ and $c \in C$, there is a unique sk such that $Enc_{sk}(m) = c$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

First Direction

Suppose Gen samples sk uniformly at random from \mathcal{K} and for every $m \in \mathcal{M}$ and $c \in \mathcal{C}$, there is a unique sk such that $\operatorname{Enc}_{\operatorname{sk}}(m) = c$. We want to show that this scheme is perfectly secure.

- $\bullet~\mbox{First}$ guarantee implies: $\Pr[\mbox{sk} = \mbox{sk}] = 1/\left|\mathcal{K}\right|$, for all $\mbox{sk} \in \mathcal{K}$
- Fix a *c* and *m*. Second guarantee states that there is a unique secret-key under which *m* is encrypted as *c*. Let this secret-key be sk_{*m*,*c*}. Now,

$$\begin{split} \Pr[\mathcal{C} = c | \mathcal{M} = m] &= \Pr[\mathcal{C} = c \land \mathcal{M} = m] / \Pr[\mathcal{M} = m] \\ &= \Pr[\mathsf{sk} = \mathsf{sk}_{m,c} \land \mathcal{M} = m] / \Pr[\mathcal{M} = m] \\ &= \Pr[\mathsf{sk} = \mathsf{sk}_{m,c}] \cdot \Pr[\mathcal{M} = m] / \Pr[\mathcal{M} = m] \\ &= \Pr[\mathsf{sk} = \mathsf{sk}_{m,c}] \end{split}$$

• By first guarantee, we can conclude that $\Pr[C = c | M = m] = 1/|\mathcal{K}|$, for all c, m and, hence, the scheme is perfectly secret

Second Direction

Suppose we are given a perfectly secure encryption scheme such that $|\mathcal{K}|=|\mathcal{M}|=|\mathcal{C}|.$

- Fix a ciphertext c
- Because of the tightness of the inequality it is clear that $|\mathcal{T}^{(k)}| = 1$, for all k (we have already argued this earlier). So, for every m, c there is a unique sk_{m,c} under which m is encrypted as c. This proves the part (2) of the implication
- Further, tightness of the inequality implies that $T^{(1)} \cup \cdots \cup T^{(S)} = \mathcal{K}$, where $S = |\mathcal{M}|$
- Let us consider the following probability for any $m \in \mathcal{M}$:

$$\begin{aligned} \Pr[\mathcal{C} = c | \mathcal{M} = m] &= \Pr[\mathcal{C} = c \land \mathcal{M} = m] / \Pr[\mathcal{M} = m] \\ &= \Pr[\mathsf{sk} = \mathsf{sk}_{m,c} \land \mathcal{M} = m] / \Pr[\mathcal{M} = m] \\ &= \Pr[\mathsf{sk} = \mathsf{sk}_{m,c}] \cdot \Pr[\mathcal{M} = m] / \Pr[\mathcal{M} = m] \\ &= \Pr[\mathsf{sk} = \mathsf{sk}_{m,c}] \end{aligned}$$

Lecture 04: Properties of Perfect Security

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Recall that for perfect secrecy, we must have $\Pr[C = c | M = m]$ identical for all $m \in M$
- So, for every $m \in \mathcal{M}$, we get $\Pr[\mathsf{sk} = \mathsf{sk}_{m,c}]$ is identical
- Recall that $\mathcal{M} = \{m^{(1)}, \dots, m^{(S)}\}$ and $\left\{ \mathsf{sk}_{m^{(1)}, c}, \dots, \mathsf{sk}_{m^{(S)}, c} \right\} = \mathcal{K}$
- So, we get that $\Pr[sk = sk_{m,c}] = 1/|\mathcal{K}|$. This proves the part (1) of the implication

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

- What information is leaked when two messages are encrypted using the same secret-key in one-time pad?
- For example, for two different message (m, m'), their encryptions are (c, c'), where c = m o sk and c' = m' o sk
- So, we can compute $c \circ inv(c')$ to compute $m \circ inv(m')$
- Is any additional information leaked?
- How to argue that "no additional information" is leaked?

< ロ > < 同 > < 回 > < 回 > < 回 > <