Lecture 02: Historical Encryption Schemes

What is Encryption

- Parties involved:
- Alice: The Sender
- Bob: The Receiver
- Eve: The Eavesdropper
- Aim of Encryption
- Alice wants to send a message to Bob
- The message should remain hidden from Eve

What distinguishes Eve from Bob?

- If Eve and Bob have identical powers then Eve can employ the same strategy as Bob to retrieve the message
- What distinguishes them? A Few Possibilities:
- Alice and Bob can share a secret that Eve is unaware of
- Bob can have a secret that helps him retrieve messages addressed to him that Eve is unaware of

Symmetric-key Encryption

- Alice and Bob meet once and share a secret key sk
- Alice uses sk to encrypt the messages
- Bob uses sk to decrypt the messages
- The message remains hidden from Eve because she does not have the secret key sk
- Intuition: The secrecy of sk is leveraged to argue that the message remains hidden from Eve
- Since sk is used for both encryption and decryption, it is called symmetric-key encryption

Asymmetric(-key) Encryption

- Bob generates an (sk, pk) pair
- Bob announces to the world that whoever wants to address messages to Bob should use the public-key pk
- Alice uses pk to encrypt messages to Bob
- Bob uses sk to decrypt any message addressed to him
- Eve cannot find the message because it does not know sk
- Intuition: The secrecy of sk is leveraged to argue that the message remains hidden from Eve
- This is asymmetric cryptography because the encryption and decryption uses separate keys sk and pk, respectively

Requirements of Encryption

- Correctness: Decryption of Encryption of m is m (with high probability)
- Security: Given what Eve sees, she cannot "identify" the message being encrypted
- More on the formal definition of security in the following lectures

Symmetric-key Encryption Scheme

- Key Generation Algorithm (Gen)
- Gen $\left(1^{\lambda}\right)$ is a probabilistic algorithm that outputs the secret-key to encrypt λ-long messages
- Sampling of sk according to this distribution is represented as: sk $\sim \operatorname{Gen}\left(1^{\lambda}\right)$
- Encryption Algorithm (Enc)
- Encryption of m using the secret key sk is represented by $\mathrm{Enc}_{\text {sk }}(m)$
- The encryption algorithm itself can be probabilistic
- The ciphertext sampled according to this distribution is represented by: $c \sim \operatorname{Enc}_{\text {sk }}(m)$
- Decryption Algorithm (Dec)
- The decryption algorithm with secret-key sk takes as input the ciphertext and outputs the decoded message
- Represented by: $\widetilde{m}=\operatorname{Dec}_{\text {sk }}(c)$

Encryption Scheme

- An encryption scheme is defined by the triplet of algorithms (Gen, Enc, Dec)
- The set of all messages is represented by \mathcal{M}, the set of all secret-keys is represented by \mathcal{K} and the set of all ciphertexts is represented by \mathcal{C}
- Correctness of a scheme can be summarized as:

$$
\operatorname{Pr}\left[\operatorname{Dec}_{\mathrm{sk}}\left(\operatorname{Enc}_{\mathrm{sk}}(m)\right)=m: \mathrm{sk} \sim \operatorname{Gen}\left(1^{\lambda}\right)\right] \geqslant 0.99
$$

- The probability is taken over the randomness used in the algorithms Gen and Enc
- The security definition is being deferred to later lectures

Example Encryption Schemes

Some Comments:

- The set of English alphabets $\{a, \ldots, z\}$ will be equivalently interpreted as $\{0, \ldots, 25\}$ (or, \mathbb{Z}_{26})
- Sum of two English alphabets will be interpreted as the sum of their respective \mathbb{Z}_{26} values (mod 26)
- For example, $y+d=24+3=1=b$

Caesar's Cipher

- Encryption of a sentence $\left(m_{1}, \ldots, m_{\lambda}\right)$ is $\left(m_{1}+3\right), \ldots,\left(m_{\lambda}+3\right)$
- What is \mathcal{M}, \mathcal{K} and \mathcal{C} ?
- What are the Gen, Enc and Dec algorithms?
- How can Eve trivially break this encryption scheme?

Shift Cipher

- The secret-key sk is drawn uniformly at random from \mathbb{Z}_{26}
- Encryption of a message $m_{1}, \ldots, m_{\lambda}$ is $\left(m_{1}+\mathrm{sk}\right), \ldots,\left(m_{\lambda}+\mathrm{sk}\right)$
- What is \mathcal{M}, \mathcal{K} and \mathcal{C} ?
- What are the Gen, Enc and Dec algorithms?
- Eve can break the scheme by exhaustively running the decryption algorithm with sk $=0$, sk $=1, \ldots$, sk $=25$
- Note: Because the \mathcal{K} is small, Eve can exhaustively search all possible keys. For security, the space \mathcal{K} must be large so that exhaustive search is prohibitive

Permutation Cipher

- The secret-key is a permutation π from \mathbb{Z}_{26} to \mathbb{Z}_{26} drawn uniformly at random
- Encryption of a message $m_{1}, \ldots, m_{\lambda}$ is $\pi\left(m_{1}\right), \ldots, \pi\left(m_{\lambda}\right)$
- What is \mathcal{M}, \mathcal{K} and \mathcal{C} ?
- What are the Gen, Enc and Dec algorithms?
- Eve can break the scheme by using statistical information about English language
- For example, well formed English sentences has 'e' as the most frequent alphabet. So, if the most frequent alphabet in the ciphertext is ' t ' then it is reasonable to assume that π maps $e \rightarrow t$
- Let $p_{0}, \ldots p_{25}$ be the probability of a, \ldots, z is well-formed English sentences
- Let q_{0}, \ldots, q_{25} be the probability of a, \ldots, z in the ciphertext
- We are interested in i_{0}, \ldots, i_{25} such that $\left\{i_{0}, \ldots, i_{25}\right\}=\mathbb{Z}_{26}$ and $\sum_{k=0}^{25} p_{k} \cdot q_{i_{k}}$ is maximized (Intuition: maximize the similarity of the vectors $\left(p_{0}, \ldots, p_{25}\right)$ and $\left(q_{i 0}, \ldots, q_{i 25}\right)$)

Revisiting an old Scheme

- Note that the statistical attack in the previous slide did not need an expert of English to ascertain whether a decryption is a well-formed sentence or not
- Let us now attack the Shift Cipher
- Let $I_{\tau}=\sum_{k=0}^{25} p_{k} \cdot q_{k+\tau}$
- Then Eve can compute the τ for which I_{τ} is maximized to (potentially) retrieve the sk
- A General Comment: The Permutation Cipher with 26 ! keys is much more secure than the Shift Cipher with 26 possible keys. This intuition that "large key-space" can be translated into "more secure encryption schemes" is very precise

Vigenère Cipher

- The secret key sk is a random English word $s_{1} s_{2} \cdots s_{t}$
- Using the secret key sk = 'etc' the encryption is explained below
- The message is $m_{1} m_{2} m_{3} m_{4} m_{5} m_{6} m_{7} \ldots$
- The secret key is interpreted as 'etcetce...'
- The cipher text is

$$
\left(m_{1}+e\right)\left(m_{2}+t\right)\left(m_{3}+c\right)\left(m_{4}+e\right)\left(m_{5}+t\right)\left(m_{6}+c\right)\left(m_{7}+e\right) \ldots
$$

Attacking Vigenère Cipher

Given the value of t

- Note that the encryption of $m_{1} m_{4} m_{7} \ldots$ is using the 'shift cipher encryption scheme' and the key being ' e '
- This can be retrieved as described earlier using statistical tools
- Note that the message $m_{1} m_{4} m_{7} \ldots$ is not a well-formed English sentence but exhibits the same probability of alphabets as well-formed english sentences (at least it is assumed so)
- Similarly, the encryption of $m_{2} m_{5} \ldots$ and $m_{3} m_{6} \ldots$ can also be broken
- Thus retrieving the entire secret key sk one alphabet at a time
- Let $m^{(\tau)}$ be the substring $m_{1} m_{1+\tau} m_{1+2 \tau} \ldots$
- Let $q_{i, \tau}$ be the probability of alphabet i in the string $m^{(\tau)}$
- Let $J_{\tau}=\sum_{k=0}^{25} q_{k, \tau}^{2}$
- Define $J=\sum_{k=0}^{25} p_{k}^{2}$
- Find a value of $\tau \in\{1, \ldots, \lambda\}$ such that $J_{\tau} \approx J$
- Use this value of τ as the choice of t
- Think: Why does this work?

Some Concluding Remarks

- Note that as t increases the encryption scheme becomes more difficult to break because each instance of shift cipher that is attacked only has λ / t alphabets. If this becomes too small then the statistic might not be reflected
- What if the length of secret word is same as the length of the message being encoded?

