Lecture 01: Mathematical Basics

- For events A and B, Bayes' Rule states

$$
\operatorname{Pr}[A, B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]
$$

- English: Probability of events A and B is equal to the probability of event A multiplied by the probability of event B conditioned on event A
- More generally,

$$
\operatorname{Pr}[A, B \mid Z]=\operatorname{Pr}[A \mid Z] \cdot \operatorname{Pr}[B \mid A, Z]
$$

- Think: English Version of this identity
- Think: Proof of this statement using Bayes' Rule

Chain Rule

- Chain Rule states

$$
\operatorname{Pr}\left[A_{1}, \ldots, A_{n}\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[A_{i} \mid A_{1}, \ldots, A_{i-1}\right]
$$

- Think: Prove this using the generalized Chain Rule and induction
- In general

$$
\operatorname{Pr}\left[A_{1}, \ldots, A_{n} \mid Z\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[A_{i} \mid A_{1}, \ldots, A_{i-1}, Z\right]
$$

Union Bound

- By Inclusion-Exclusion Principle we have

$$
\operatorname{Pr}[A \vee B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \wedge B]
$$

- Union-bound can be deduced from above

$$
\operatorname{Pr}[A \vee B] \leqslant \operatorname{Pr}[A]+\operatorname{Pr}[B]
$$

- In general

$$
\operatorname{Pr}\left[\stackrel{V}{i=1}_{t} A_{i}\right] \leqslant \sum_{i=1}^{t} \operatorname{Pr}\left[A_{i}\right]
$$

- Think: Prove using induction
- Think: Tightness of the inequality

AM-GM-HM Inequality

- AM-GM inequality states: For $a, b \geqslant 0$

$$
\frac{a+b}{2} \geqslant \sqrt{a b}
$$

- Equality hold if and only if $a=b$
- Think: Proof?
- GM-HM inequality states: For $a, b \geqslant 0$

$$
\sqrt{a b} \geqslant\left(\frac{\frac{1}{a}+\frac{1}{b}}{2}\right)^{-1}
$$

- Think: Using AM-GM prove GM-HM

AM-GM Generalization

- AM-GM directly gives the following inequality

$$
\frac{\sum_{i=1}^{n} a_{i}}{n} \geqslant\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n}
$$

- Think: Use AM-GM and induction to prove this
- Think: Tightness characterization
- More generally, for $\alpha_{i} \in \mathbb{Q}$ such that $\alpha_{i} \geqslant 0$, for all $i \in[n]$, and $\sum_{i=1}^{n} \alpha_{i}=1$ we have: For $a_{i} \geqslant 0$, for all $i \in[n]$, we have

$$
\sum_{i=1}^{n} \alpha_{i} a_{i} \geqslant \prod_{i=1}^{n} a_{i}^{\alpha_{i}}
$$

- Think: Proof (Hint: Multiply with GCD of denominator)
- Think: Tightness

AM-GM Generalization

- For $\alpha_{i} \in \mathbb{R}$ such that $\alpha_{i} \geqslant 0$, for all $i \in[n]$, and $\sum_{i=1}^{n} \alpha_{i}=1$ we have: For $a_{i} \geqslant 0$, for all $i \in[n]$, we have

$$
\sum_{i=1}^{n} \alpha_{i} a_{i} \geqslant \prod_{i=1}^{n} a_{i}^{\alpha_{i}}
$$

- Think: Proof

Cauchy-Schwarz Inequality

- Cauchy-Schwarz states: For positive $a_{i} \mathrm{~s}$ and $b_{i} \mathrm{~s}$ we have

$$
\sum_{i=1}^{n} a_{i} b_{i} \leqslant\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2} \cdot\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1 / 2}
$$

- Equality holds if and only if a_{i} / b_{i} is identical for all $i \in[n]$.
- Intuition: Dot product of two vectors is at most the product of their lengths, and equality holds if and only if the vectors are parallel or anti-parallel
- Think: Proof
- Read: Hölder's Inequality

Jensen's Inequality

- Let f be "convex upwards"
- Then, for $\alpha \in[0,1]$, Jensen's Inequality states

$$
f(\alpha a+(1-\alpha) b) \leqslant \alpha f(a)+(1-\alpha) f(b)
$$

- Intuition: Chord is above the function-curve
- In general for $\alpha_{i} \geqslant 0$ such that $\sum_{i=1}^{n} \alpha_{i}=1$, we have:

$$
f\left(\sum_{i=1}^{n} \alpha_{i} a_{i}\right) \leqslant \sum_{i=1}^{n} \alpha_{i} f\left(a_{i}\right)
$$

- Convex upward functions: $f(x)=x^{1+\varepsilon}$ (for positive x), $f(x)=x \ln x$ (for positive x), $f(x)=\exp (x), f(x)=\exp (-x)$
- Think: Deduce previous inequalities using Jensen's Inequality on appropriate functions

Useful Inequalities

- There exists a constant $c \in(0,1)$ such that the following holds ($c=1 / 2$ suffices): For $x \in[0, c]$ we have

$$
\exp \left(-x-x^{2}\right) \leqslant(1-x) \leqslant \exp (-x) \leqslant 1-x+x^{2}
$$

- Think: Prove $(1-x) \leqslant \exp (-x)$ using the "tangent is below the curve" intuition

Birthday Paradox

- Let $U=\{1, \ldots, n\}$ be the universe
- We draw k independent samples uniformly at random from the universe
- In particular, for the birthday problem we have $n=365$
- Suppose we draw k samples s_{1}, \ldots, s_{k}
- Let Coll ${ }_{k}$ be the event that there exists i, j such that $i<j \leqslant k$ and the $s_{i}=s_{j}$
- We have the following:

$$
\begin{aligned}
\operatorname{Pr}\left[\neg \text { CoIl }_{k}\right] & =1 \cdot\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) \\
& =\prod_{i=1}^{k-1}\left(1-\frac{i}{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[\neg \text { Coll }_{k}\right] & \geqslant \prod_{i=1}^{k-1} \exp \left(-\frac{i}{n}-\frac{i^{2}}{n^{2}}\right) \\
& =\exp \left(-\frac{\sum_{i=1}^{k} i}{n}-\frac{\sum_{i=1}^{k} i^{2}}{n^{2}}\right) \\
& =\exp \left(-\frac{(k-1) k}{n}-\frac{(k-1)(k-1 / 2) k}{n^{2}}\right) \\
& =\exp \left(-\frac{k^{2}}{n}+O(1 / \sqrt{n})\right), \quad \text { for } k=O(\sqrt{n}) \\
& \geqslant 1-\frac{k^{2}}{n}+O(1 / \sqrt{n})
\end{aligned}
$$

- Think: Choose $k=\alpha \sqrt{n}$ and compute the lower bound
- Think: If we want to avoid collisions with probability 0.99 , what will be a good choice of k ?

$$
\begin{aligned}
\operatorname{Pr}\left[\sim \text { Coll }_{k}\right] & \leqslant \prod_{i=1}^{k-1} \exp \left(-\frac{i}{n}\right) \\
& =\exp \left(-\frac{\sum_{i=1}^{k} i}{n}\right) \\
& =\exp \left(-\frac{(k-1) k}{n}\right) \\
& =\exp \left(-\frac{k^{2}}{n}+O(1 / \sqrt{n})\right), \quad \text { for } k=O(\sqrt{n}) \\
& \leqslant 1-\frac{k^{2}}{n}+\frac{k^{4}}{n^{2}}+O(1 / \sqrt{n})
\end{aligned}
$$

- Think: Choose $k=\alpha \sqrt{n}$ and compute the upper bound
- Think: What will be a good choice of k such that collisions happen with probability 0.99 ?
- A new way to compute $\operatorname{Pr}\left[\neg \mathrm{Coll}_{k}\right]$
- Let NoColl_{t} be the event that the sample s_{t} is distinct from all samples $\left(s_{1}, \ldots, s_{t-1}\right)$
- Note that \neg Coll $_{k}=\mathrm{NoColl}_{1} \wedge$ NoColl $_{2} \wedge \cdots \wedge$ NoColl $_{k}$
- Think: Compute $\operatorname{Pr}\left[\mathrm{NoColl}_{t} \mid \mathrm{NoColl}_{1}, \ldots\right.$, NoColl $\left._{t-1}\right]$
- Think: Apply Chain Rule to evaluate $\operatorname{Pr}\left[\neg\right.$ Coll $\left._{k}\right]$

