Lecture 9: Pseudorandom Function
Let $G(s) = (G_0(s), G_1(s))$ be a length doubling PRG.
Recall: GGM Construction

Let $G(s) = (G_0(s), G_1(s))$ be a length doubling PRG

$f_s(x) := G_{x_n} \left(G_{x_{n-1}} \left(\cdots G_{x_1}(s) \cdots \right) \right)$
Security Proof: Query Complexity = 1
H_0 has $f_s(x) := G_{x_n} \left(G_{x_{n-1}} \left(\cdots G_{x_1}(s) \cdots \right) \right)$
Security Proof: Query Complexity $= 1$

- H_0 has $f_s(x) := G_{x_n} (G_{x_{n-1}} (\cdots G_{x_1} (s) \cdots))$
- H_n has $f_s(x) := U_n$
Security Proof: Query Complexity $= 1$

- H_0 has $f_s(x) := G_{x_n} \left(G_{x_{n-1}} \left(\cdots G_{x_1}(s) \cdots \right) \right)$
- H_n has $f_s(x) := U_n$
- H_1 has $f_s(x) := G_{x_n} \left(G_{x_{n-1}} \left(\cdots G_{x_2}(U_n) \cdots \right) \right)$
Security Proof: Query Complexity = 1

- H_0 has $f_s(x) := G_{x_n} \left(G_{x_{n-1}} (\cdots G_{x_1}(s) \cdots) \right)$
- H_n has $f_s(x) := U_n$
- H_1 has $f_s(x) := G_{x_n} \left(G_{x_{n-1}} (\cdots G_{x_2}(U_n) \cdots) \right)$
- H_i has $f_s(x) := G_{x_n} \left(G_{x_{n-1}} (\cdots G_{x_{i+1}}(U_n) \cdots) \right)$
Query Complexity $= q(n)$
Query Complexity = $q(n)$
Query Complexity $\leq q(n)$
Query Complexity = \(q(n) \)
Query Complexity \(\leq q(n) \)
Think: Expected Query Complexity = \(q(n) \)
Punctured PRF: A PRF which can be evaluated at all $x \neq x^*$
Punctured PRF: A PRF which can be evaluated at all $x \neq x^*$

- $k(x^*)$ is a key which helps evaluated the PRF at all points x other than x^*
Punctured PRF: A PRF which can be evaluated at all \(x \neq x^* \)

\(k(x^*) \) is a key which helps evaluate the PRF at all points \(x \) other than \(x^* \)

Think: Construction
Design a box which answers queries with random answers
Example Problem

Design a box which answers queries with random answers
Think: Multi-message Encryption
Example Problem

- Design a box which answers queries with random answers
- Think: Multi-message Encryption
- Think: Difference from PRG based construction (Which one would you prefer?)