Lecture 7.2: Pseudorandom Functions

(日) (圖) (臣) (臣)

• A binary-output oracle O maps a query $q \in \{0,1\}^n$ to an answer $a \in \{0,1\}$

- A binary-output oracle O maps a query $q \in \{0,1\}^n$ to an answer $a \in \{0,1\}$
- Querying and receiving an answer from the oracle takes unit time

- A binary-output oracle O maps a query $q \in \{0,1\}^n$ to an answer $a \in \{0,1\}$
- Querying and receiving an answer from the oracle takes unit time
- \bullet An oracle algorithm ${\mathcal A}$ with oracle access to oracle ${\mathcal O}$ is written as ${\mathcal A}^{{\mathcal O}}$

▲ 同 ▶ → 目 ▶ → ● ▶ →

- A binary-output oracle O maps a query $q \in \{0,1\}^n$ to an answer $a \in \{0,1\}$
- Querying and receiving an answer from the oracle takes unit time
- \bullet An oracle algorithm ${\mathcal A}$ with oracle access to oracle ${\mathcal O}$ is written as ${\mathcal A}^{{\mathcal O}}$
- Think: Definition of PPT and n.u. PPT in this context

소 曰 ▷ (本) ● ▷ (本) ● ▷ (本) ● ▷ (本)

• Let \mathcal{F}_n be the set of all functions which map inputs in $\{0,1\}^n$ to $\{0,1\}$

- Let \$\mathcal{F}_n\$ be the set of all functions which map inputs in \$\{0,1\}^n\$ to \$\{0,1\}\$
- What is $|\mathcal{F}_n|$?

- Let \$\mathcal{F}_n\$ be the set of all functions which map inputs in \$\{0,1\}^n\$ to \$\{0,1\}\$
- What is $|\mathcal{F}_n|$? Ans: 2^{2^n}

イロト イポト イヨト イヨト

- Let \$\mathcal{F}_n\$ be the set of all functions which map inputs in \$\{0,1\}^n\$ to \$\{0,1\}\$
- What is $|\mathcal{F}_n|$? Ans: 2^{2^n}
- A random function is: $f \xleftarrow{\$} \mathcal{F}_n$

イロト イポト イヨト イヨト

Definition (Oracle Ensemble)

An oracle ensemble $\{O_n\}$ is a probability distribution over the set of all functions $f: \{0,1\}^n \to \{0,1\}^{\ell(n)}$.

Lecture 7.2: Pseudorandom Functions

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Oracle Ensemble)

An oracle ensemble $\{O_n\}$ is a probability distribution over the set of all functions $f: \{0,1\}^n \to \{0,1\}^{\ell(n)}$.

Mostly we will have $\ell(n) = n$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition (Oracle Ensemble)

An oracle ensemble $\{O_n\}$ is a probability distribution over the set of all functions $f: \{0,1\}^n \to \{0,1\}^{\ell(n)}$.

Mostly we will have $\ell(n) = n$

Definition (Oracle Indistinguishability)

Two oracle ensembles $\{O_n\}$ and $\{O'_n\}$ are computationally indistinguishable if for all n.u. PPT oracle machines D, there exists a negligible function $\varepsilon(\cdot)$ such that:

$$\Pr[f \leftarrow O_n : D^f(1^n) = 1] - \Pr[f \leftarrow O'_n : D^f(1^n) = 1] \leq \varepsilon(n)$$

- 4 同 6 4 日 6 4 日 6

Definition (Pseudo-random Functions)

A family of functions $\{f_s \colon \{0,1\}^n \to \{0,1\}^n\}$ is a pseudo-random function if:

 There exists a PPT F such that F(s, x) efficiently computes the function f_s(x), and

・ロン ・四 ・ ・ ヨン ・ ヨン

Definition (Pseudo-random Functions)

A family of functions $\{f_s \colon \{0,1\}^n \to \{0,1\}^n\}$ is a pseudo-random function if:

• There exists a PPT F such that F(s, x) efficiently computes the function $f_s(x)$, and

•
$$\{s \stackrel{\$}{\leftarrow} \{0,1\}^n \colon f_s\} \approx \{f \stackrel{\$}{\leftarrow} \mathcal{F}_n \colon f\}$$