## Lecture 6: Pseudorandomness

## Outline Construction: PRG from OWF

- OWF


## Outline Construction: PRG from OWF

- OWF $\Longrightarrow$ Hardcore Predicate for OWF


## Outline Construction: PRG from OWF

- OWF $\Longrightarrow$ Hardcore Predicate for OWF $\Longrightarrow$ One-bit extension PRG


## Outline Construction: PRG from OWF

- OWF $\Longrightarrow$ Hardcore Predicate for OWF $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG


## Outline Construction: PRG from OWF

- OWF $\Longrightarrow$ Hardcore Predicate for OWF $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG


## Outline Construction: PRG from OWF

- OWF $\Longrightarrow$ Hardcore Predicate for OWF $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG
- OWP $\Longrightarrow$ Hardcore Predicate for OWP $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG


## Outline Construction: PRG from OWF

- OWF $\Longrightarrow$ Hardcore Predicate for OWF $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG
- OWP $\Longrightarrow$ Hardcore Predicate for OWP $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG


## Outline Construction: PRG from OWF

- OWF $\Longrightarrow$ Hardcore Predicate for OWF $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG
- OWP $\Longrightarrow$ Hardcore Predicate for OWP $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG


## Outline Construction: PRG from OWF

- OWF $\Longrightarrow$ Hardcore Predicate for OWF $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG
- OWP $\Longrightarrow$ Hardcore Predicate for OWP $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG
- Today's Goals:


## Outline Construction: PRG from OWF

- OWF $\Longrightarrow$ Hardcore Predicate for OWF $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG
- OWP $\Longrightarrow$ Hardcore Predicate for OWP $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG
- Today's Goals: "OWF $\Longrightarrow$ Hardcore Predicate"


## Outline Construction: PRG from OWF

- OWF $\Longrightarrow$ Hardcore Predicate for OWF $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG
- OWP $\Longrightarrow$ Hardcore Predicate for OWP $\Longrightarrow$ One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG
- Today's Goals: "OWF $\Longrightarrow$ Hardcore Predicate" and "One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG"


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

First Construction

- Let $G(s)$ be a one-bit extension PRG


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

First Construction

- Let $G(s)$ be a one-bit extension PRG
- Then: $P(s):=\overbrace{G(G(\cdots G}^{m \text {-times }}(s) \cdots))$ is an arbitrary stretch PRG


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

First Construction

- Let $G(s)$ be a one-bit extension PRG
- Then: $P(s):=\overbrace{G(G(\cdots G}^{m \text {-times }}(s) \cdots))$ is an arbitrary stretch PRG
- Proof?


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

## Second Construction

- Let $G(s)$ be a one-bit extension PRG


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

## Second Construction

- Let $G(s)$ be a one-bit extension PRG
- Let $G(s)=H(s) \| b(s)$, where $|G(\cdot)|=|H(\cdot)|$


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

## Second Construction

- Let $G(s)$ be a one-bit extension PRG
- Let $G(s)=H(s) \| b(s)$, where $|G(\cdot)|=|H(\cdot)|$
- $b_{1}=b(s)$


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

## Second Construction

- Let $G(s)$ be a one-bit extension PRG
- Let $G(s)=H(s) \| b(s)$, where $|G(\cdot)|=|H(\cdot)|$
- $b_{1}=b(s)$
- $b_{2}=b(H(s))$


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

## Second Construction

- Let $G(s)$ be a one-bit extension PRG
- Let $G(s)=H(s) \| b(s)$, where $|G(\cdot)|=|H(\cdot)|$
- $b_{1}=b(s)$
- $b_{2}=b(H(s))$
- $b_{3}=b(H(H(s)))$


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

## Second Construction

- Let $G(s)$ be a one-bit extension PRG
- Let $G(s)=H(s) \| b(s)$, where $|G(\cdot)|=|H(\cdot)|$
- $b_{1}=b(s)$
- $b_{2}=b(H(s))$
- $b_{3}=b(H(H(s)))$
( $i-1$ )-times
- $b_{i}=b(\overbrace{H(\cdots H}(s)))$


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

## Second Construction

- Let $G(s)$ be a one-bit extension PRG
- Let $G(s)=H(s) \| b(s)$, where $|G(\cdot)|=|H(\cdot)|$
- $b_{1}=b(s)$
- $b_{2}=b(H(s))$
- $b_{3}=b(H(H(s)))$
(i-1)-times
- $b_{i}=b(\overbrace{H(\cdots H}(s)))$
- Then: $P(s):=b_{1} \ldots b_{m}$ is the PRG


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

## Second Construction

- Let $G(s)$ be a one-bit extension PRG
- Let $G(s)=H(s) \| b(s)$, where $|G(\cdot)|=|H(\cdot)|$
- $b_{1}=b(s)$
- $b_{2}=b(H(s))$
- $b_{3}=b(H(H(s)))$

$$
\text { ( } i-1 \text { )-times }
$$

- $b_{i}=b(\overbrace{H(\cdots H}(s)))$
- Then: $P(s):=b_{1} \ldots b_{m}$ is the PRG
- Proof?


## One-bit extension PRG $\Longrightarrow$ Poly-stretch PRG

## Second Construction

- Let $G(s)$ be a one-bit extension PRG
- Let $G(s)=H(s) \| b(s)$, where $|G(\cdot)|=|H(\cdot)|$
- $b_{1}=b(s)$
- $b_{2}=b(H(s))$
- $b_{3}=b(H(H(s)))$

$$
\text { ( } i-1 \text { )-times }
$$

- $b_{i}=b(\overbrace{H(\cdots H}(s)))$
- Then: $P(s):=b_{1} \ldots b_{m}$ is the PRG
- Proof?
- Think: Which one is preferable?


## One-way Function $\Longrightarrow$ Hardcore Predicate

Theorem (Hardcore Predicate)
If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a OWF (OWP) then

## One-way Function $\Longrightarrow$ Hardcore Predicate

## Theorem (Hardcore Predicate)

If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a OWF (OWP) then

- The function $g:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$ defined by $g(x, r):=(f(x), r)$ is also a OWF (OWP).


## One-way Function $\Longrightarrow$ Hardcore Predicate

## Theorem (Hardcore Predicate)

If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a OWF (OWP) then

- The function $g:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$ defined by $g(x, r):=(f(x), r)$ is also a OWF (OWP).
- And $h(x, r):=\langle x, r\rangle$ is a hardcore predicate for $g(x, r)$.


## Warmup Proof (1)

- Given $g(x, r)=(f(x), r)$, the adversary $\mathcal{A}$, always correctly outputs $h(x, r)$
- Given $g(x, r)=(f(x), r)$, the adversary $\mathcal{A}$, always correctly outputs $h(x, r)$
- Use $\mathcal{A}\left(f(x), e_{i}\right)$ to obtain $x_{i}$, for all $1 \leqslant i \leqslant n$ and
( $i-1$ )-times
$e_{i}=(\overbrace{0, \ldots, 0}, 1, \ldots, 0)$


## Warmup Proof (2)

- Given $g(x, r)=(f(x), r)$, the adversary $\mathcal{A}$ computes $h(x, r)$ with probability $3 / 4+\varepsilon(n)$ (over choices of $(x, r)$ )


## Warmup Proof (2)

- Given $g(x, r)=(f(x), r)$, the adversary $\mathcal{A}$ computes $h(x, r)$ with probability $3 / 4+\varepsilon(n)$ (over choices of $(x, r)$ )
- Let,

$$
S:=\left\{x: \operatorname{Pr}\left[r \stackrel{\varsigma}{\leftarrow}\{0,1\}^{n}: \mathcal{A}(f(x), r)=h(x, r)\right] \geqslant \frac{3}{4}+\frac{\varepsilon(n)}{2}\right\}
$$

## Warmup Proof (2)

- Given $g(x, r)=(f(x), r)$, the adversary $\mathcal{A}$ computes $h(x, r)$ with probability $3 / 4+\varepsilon(n)$ (over choices of $(x, r)$ )
- Let,

$$
S:=\left\{x: \operatorname{Pr}\left[r \stackrel{\Phi}{\leftarrow}\{0,1\}^{n}: \mathcal{A}(f(x), r)=h(x, r)\right] \geqslant \frac{3}{4}+\frac{\varepsilon(n)}{2}\right\}
$$

- Then, $|S| / 2^{n} \geqslant \varepsilon(n) / 2$ (Markov Inequality)


## Warmup Proof (2)

- Given $g(x, r)=(f(x), r)$, the adversary $\mathcal{A}$ computes $h(x, r)$ with probability $3 / 4+\varepsilon(n)$ (over choices of $(x, r)$ )
- Let,

$$
S:=\left\{x: \operatorname{Pr}\left[r \stackrel{\Phi}{\leftarrow}\{0,1\}^{n}: \mathcal{A}(f(x), r)=h(x, r)\right] \geqslant \frac{3}{4}+\frac{\varepsilon(n)}{2}\right\}
$$

- Then, $|S| / 2^{n} \geqslant \varepsilon(n) / 2$ (Markov Inequality)
- Let $a:=\mathcal{A}\left(f(x), e_{i}+r\right)$ and $b:=\mathcal{A}(f(x), r)$, for $r \stackrel{\S}{\leftarrow}\{0,1\}^{n}$


## Warmup Proof (2)

- Given $g(x, r)=(f(x), r)$, the adversary $\mathcal{A}$ computes $h(x, r)$ with probability $3 / 4+\varepsilon(n)$ (over choices of $(x, r)$ )
- Let,

$$
S:=\left\{x: \operatorname{Pr}\left[r \stackrel{\Phi}{\leftarrow}\{0,1\}^{n}: \mathcal{A}(f(x), r)=h(x, r)\right] \geqslant \frac{3}{4}+\frac{\varepsilon(n)}{2}\right\}
$$

- Then, $|S| / 2^{n} \geqslant \varepsilon(n) / 2$ (Markov Inequality)
- Let $a:=\mathcal{A}\left(f(x), e_{i}+r\right)$ and $b:=\mathcal{A}(f(x), r)$, for $r \leftarrow^{\S}\{0,1\}^{n}$
- Compute $c:=a \oplus b$


## Warmup Proof (2)

- Given $g(x, r)=(f(x), r)$, the adversary $\mathcal{A}$ computes $h(x, r)$ with probability $3 / 4+\varepsilon(n)$ (over choices of $(x, r)$ )
- Let,

$$
S:=\left\{x: \operatorname{Pr}\left[r \stackrel{\Phi}{\leftarrow}\{0,1\}^{n}: \mathcal{A}(f(x), r)=h(x, r)\right] \geqslant \frac{3}{4}+\frac{\varepsilon(n)}{2}\right\}
$$

- Then, $|S| / 2^{n} \geqslant \varepsilon(n) / 2$ (Markov Inequality)
- Let $a:=\mathcal{A}\left(f(x), e_{i}+r\right)$ and $b:=\mathcal{A}(f(x), r)$, for $r \stackrel{\S}{\leftarrow}\{0,1\}^{n}$
- Compute $c:=a \oplus b$
- The bit $c$ is correct (i.e. $c=x_{i}$ ) with probability $\frac{1}{2}+\varepsilon$ (Union Bound)


## Warmup Proof (2)

- Given $g(x, r)=(f(x), r)$, the adversary $\mathcal{A}$ computes $h(x, r)$ with probability $3 / 4+\varepsilon(n)$ (over choices of $(x, r)$ )
- Let,
- Then, $|S| / 2^{n} \geqslant \varepsilon(n) / 2$ (Markov Inequality)
- Let $a:=\mathcal{A}\left(f(x), e_{i}+r\right)$ and $b:=\mathcal{A}(f(x), r)$, for $r \leftarrow^{\S}\{0,1\}^{n}$
- Compute $c:=a \oplus b$
- The bit $c$ is correct (i.e. $c=x_{i}$ ) with probability $\frac{1}{2}+\varepsilon$ (Union Bound)
- Repeat and take majority to correctly obtain $x_{i}$ with $(1-\operatorname{negl}(n))$ probability

Homework!

## Lecture 6: Pseudorandomness

## Concluding Remarks

- OWF $\Longrightarrow$ PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]


## Concluding Remarks

- OWF $\Longrightarrow$ PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]
- More Efficient Constructions: [Vadhan-Zheng-12]


## Concluding Remarks

- OWF $\Longrightarrow$ PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]
- More Efficient Constructions: [Vadhan-Zheng-12]
- Computational analogues of Entropy


## Concluding Remarks

- OWF $\Longrightarrow$ PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]
- More Efficient Constructions: [Vadhan-Zheng-12]
- Computational analogues of Entropy
- Non-cryptographic PRGs and Derandomization: [Nisan-Wigderson-88]


## Concluding Remarks

- OWF $\Longrightarrow$ PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]
- More Efficient Constructions: [Vadhan-Zheng-12]
- Computational analogues of Entropy
- Non-cryptographic PRGs and Derandomization: [Nisan-Wigderson-88]
- Non-boolean PRGs: [Dubrov-Ishai-06] and [Artemenko-Shaltiel-14]

