# Lecture 5: Pseudorandomness

Lecture 5: Pseudorandomness

э

• Computational Indistinguishability

#### Lecture 5: Pseudorandomness

・ロト ・四ト ・ヨト ・ヨト

э

- Computational Indistinguishability
  - All n.u. PPT *D* can distinguish {*X<sub>n</sub>*} from {*Y<sub>n</sub>*} only with negligible probability

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Computational Indistinguishability
  - All n.u. PPT *D* can distinguish {*X<sub>n</sub>*} from {*Y<sub>n</sub>*} only with negligible probability
- "Data Processing Inequality" (in crypto setting)

・ロト ・ 一 ト ・ モ ト ・ モ ト

- Computational Indistinguishability
  - All n.u. PPT *D* can distinguish {*X<sub>n</sub>*} from {*Y<sub>n</sub>*} only with negligible probability
- "Data Processing Inequality" (in crypto setting)
  - Efficient processing cannot help distinguish computationally indistinguishable distributions

・ロッ ・雪 ・ ・ ヨ ・ ・ ロ ・

- Computational Indistinguishability
  - All n.u. PPT D can distinguish  $\{X_n\}$  from  $\{Y_n\}$  only with negligible probability
- "Data Processing Inequality" (in crypto setting)
  - Efficient processing cannot help distinguish computationally indistinguishable distributions
- Hybrid Lemma

・ロッ ・雪 ・ ・ ヨ ・ ・ ロ ・

- Computational Indistinguishability
  - All n.u. PPT *D* can distinguish {*X<sub>n</sub>*} from {*Y<sub>n</sub>*} only with negligible probability
- "Data Processing Inequality" (in crypto setting)
  - Efficient processing cannot help distinguish computationally indistinguishable distributions
- Hybrid Lemma
  - If the first and last hybrid is computationally distinguishable then at least a pair of consecutive hybrids are computationally distinguishable

・ロト ・ 一日 ・ ・ 日 ・

A pseudorandom generator (PRG)  $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$  is an efficiently computable function, where  $\ell(\cdot)$  is a suitable polynomial, such that:

 $\{G(U_n)\}\approx\{U_{\ell(n)}\}$ 

Lecture 5: Pseudorandomness

• • = • • = •

A pseudorandom generator (PRG)  $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$  is an efficiently computable function, where  $\ell(\cdot)$  is a suitable polynomial, such that:

 $\{G(U_n)\}\approx\{U_{\ell(n)}\}$ 

Impossible unconditionally (needs computational indistinguishability)

A pseudorandom generator (PRG)  $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$  is an efficiently computable function, where  $\ell(\cdot)$  is a suitable polynomial, such that:

 $\{G(U_n)\}\approx\{U_{\ell(n)}\}$ 

- Impossible unconditionally (needs computational indistinguishability)
- 2 Think: Non-boolean PRGs?

• • = • • = •

A pseudorandom generator (PRG)  $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$  is an efficiently computable function, where  $\ell(\cdot)$  is a suitable polynomial, such that:

 $\{G(U_n)\}\approx\{U_{\ell(n)}\}$ 

- Impossible unconditionally (needs computational indistinguishability)
- 2 Think: Non-boolean PRGs?
- Think: How do we test indistinguishability against all computational tests?

# Next-bit Unpredictability

#### Lecture 5: Pseudorandomness

・ロト ・四ト ・ヨト ・ヨト

э

### Definition (Next-bit Unpredictability)

An ensemble of distributions  $\{X_n\}$  over  $\{0,1\}^{\ell(n)}$  is next-bit unpredictable if, for all  $0 \le i < \ell(n)$  and n.u. PPT A there exists negligible  $\nu(\cdot)$  such that:

$$\Pr[t_1 \ldots t_{\ell(n)} \sim X_n \colon A(t_1 \ldots t_i) = t_{i+1}] \leqslant \frac{1}{2} + \nu(n)$$

### Definition (Next-bit Unpredictability)

An ensemble of distributions  $\{X_n\}$  over  $\{0,1\}^{\ell(n)}$  is next-bit unpredictable if, for all  $0 \le i < \ell(n)$  and n.u. PPT A there exists negligible  $\nu(\cdot)$  such that:

$$\Pr[t_1 \ldots t_{\ell(n)} \sim X_n \colon A(t_1 \ldots t_i) = t_{i+1}] \leqslant \frac{1}{2} + \nu(n)$$

• If  $\{X_n\}$  is next-bit unpredictable then  $\{X_n\}$  is pseudorandom

伺 と く ヨ と く ヨ と

# Next-bit unpredictability $\implies$ Pseudorandomness

$$H_n^{(i)} := \{x \sim X_n, u \sim U_{\ell(n)} : x_1 \dots x_i u_{i+1} \dots u_{\ell(n)}\}$$

#### Lecture 5: Pseudorandomness

<ロ> (四) (四) (三) (三) (三) (三)

$$H_n^{(i)} := \{x \sim X_n, u \sim U_{\ell(n)} : x_1 \dots x_i u_{i+1} \dots u_{\ell(n)}\}$$

• Suppose this distribution is next-bit unpredictable

Lecture 5: Pseudorandomness

$$H_n^{(i)} := \{x \sim X_n, u \sim U_{\ell(n)} : x_1 \dots x_i u_{i+1} \dots u_{\ell(n)}\}$$

- Suppose this distribution is next-bit unpredictable
- If possible let this distribution not be pseudorandom

$$H_n^{(i)} := \{x \sim X_n, u \sim U_{\ell(n)} : x_1 \dots x_i u_{i+1} \dots u_{\ell(n)}\}$$

- Suppose this distribution is next-bit unpredictable
- If possible let this distribution not be pseudorandom
  H<sub>n</sub><sup>(0)</sup> is the uniform distribution

$$H_n^{(i)} := \{x \sim X_n, u \sim U_{\ell(n)} : x_1 \dots x_i u_{i+1} \dots u_{\ell(n)}\}$$

- Suppose this distribution is next-bit unpredictable
- If possible let this distribution not be pseudorandom
- $H_n^{(0)}$  is the uniform distribution
- $H_n^{(\ell(n))}$  is the distribution  $X_n$

・ 同 ト ・ 国 ト ・ 国 ト

$$H_n^{(i)} := \{x \sim X_n, u \sim U_{\ell(n)} : x_1 \dots x_i u_{i+1} \dots u_{\ell(n)}\}$$

- Suppose this distribution is next-bit unpredictable
- If possible let this distribution not be pseudorandom
   H<sub>n</sub><sup>(0)</sup> is the uniform distribution
- $H_n^{(\ell(n))}$  is the distribution  $X_n$
- If  $H_n^{(0)}$  and  $H_n^{(\ell(n))}$  are distinguishable then there exists  $0 \leq i < \ell(n)$  such that  $H_n^{(i)}$  and  $H_n^{(i+1)}$  are distinguishable

$$H_n^{(i)} := \{x \sim X_n, u \sim U_{\ell(n)} : x_1 \dots x_i u_{i+1} \dots u_{\ell(n)}\}$$

- Suppose this distribution is next-bit unpredictable
- If possible let this distribution not be pseudorandom
   H<sub>n</sub><sup>(0)</sup> is the uniform distribution
- $H_n^{(\ell(n))}$  is the distribution  $X_n$
- If  $H_n^{(0)}$  and  $H_n^{(\ell(n))}$  are distinguishable then there exists  $0 \leq i < \ell(n)$  such that  $H_n^{(i)}$  and  $H_n^{(i+1)}$  are distinguishable
- Now next bit unpredictability is violated

$$H_n^{(i)} := \{x \sim X_n, u \sim U_{\ell(n)} : x_1 \dots x_i u_{i+1} \dots u_{\ell(n)}\}$$

- Suppose this distribution is next-bit unpredictable
- If possible let this distribution not be pseudorandom
  H<sub>n</sub><sup>(0)</sup> is the uniform distribution
- $H_n^{(\ell(n))}$  is the distribution  $X_n$
- If  $H_n^{(0)}$  and  $H_n^{(\ell(n))}$  are distinguishable then there exists  $0 \leq i < \ell(n)$  such that  $H_n^{(i)}$  and  $H_n^{(i+1)}$  are distinguishable
- Now next bit unpredictability is violated
- Think: Where did we use "n.u."-ity in the adversary construction?

# • Hardcore Predicate suffices to construct PRG

・ロト ・回ト ・ヨト ・ヨト

э

- Hardcore Predicate suffices to construct PRG
- h(x) is hard to predict even if f(x) is provided to the adversary

(日本) (日本) (日本)

- Hardcore Predicate suffices to construct PRG
- h(x) is hard to predict even if f(x) is provided to the adversary

(日本) (日本) (日本)

- Hardcore Predicate suffices to construct PRG
- h(x) is hard to predict even if f(x) is provided to the adversary

### Definition (Hardcore Predicate)

The predicate  $h: \{0,1\}^* \to \{0,1\}$  is hardcore for  $f(\cdot)$  if for all n.u. PPT A there exists a negligible function  $\nu(\cdot)$  such that:

$$\Pr\left[x \xleftarrow{\hspace{0.1cm} {\color{black} {\color{blac} {\color{black} {\color{black} {\color{black} {\color{black} {\color{black}$$

> < = > < = >

# • Construction: $G(s) = f(s) \parallel h(s)$

Lecture 5: Pseudorandomness

(1日) (日) (日)

- Construction:  $G(s) = f(s) \parallel h(s)$
- Proof?



▲圖▶ ▲ 国▶ ▲ 国▶