Lecture 4: Computational Indistinguishability

3 →

• Distribution over Sample space

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

- Distribution over Sample space
- Distance between two distributions:

・ロト ・ 日 ・ ・ 日 ・ ・ 日

э

- Distribution over Sample space
- Distance between two distributions:
 - Prediction Advantage: Best strategy always outputs the most likely distribution

・ 同 ト ・ ヨ ト ・ ヨ ト

- Distribution over Sample space
- Distance between two distributions:
 - Prediction Advantage: Best strategy always outputs the most likely distribution
 - Total Variation Distance

< ロ > < 同 > < 回 > < 回 >

- Distribution over Sample space
- Distance between two distributions:
 - Prediction Advantage: Best strategy always outputs the most likely distribution
 - Total Variation Distance
- Equivalent

< ロ > < 同 > < 回 > < 回 >

- Distribution over Sample space
- Distance between two distributions:
 - Prediction Advantage: Best strategy always outputs the most likely distribution
 - Total Variation Distance
- Equivalent
- Think: Generalize to more than two distributions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Given two probability ensembles $\{X_n\}$ and $\{Y_n\}$ and a n.u. TM *D*, if we have:

$$|\Pr[s \sim X_n: D(s) = 1] - \Pr[s \sim Y_n: D(s) = 1]| = \varepsilon(n)$$

then, we say that "*D* distinguishes $\{X_n\}$ and $\{Y_n\}$ with probability $\varepsilon(n)$."

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Given two probability ensembles $\{X_n\}$ and $\{Y_n\}$ and a n.u. TM *D*, if we have:

$$|\Pr[s \sim X_n: D(s) = 1] - \Pr[s \sim Y_n: D(s) = 1]| = \varepsilon(n)$$

then, we say that "*D* distinguishes $\{X_n\}$ and $\{Y_n\}$ with probability $\varepsilon(n)$."

• Predictive advantage: If n.u. TM D distinguishes $\{X_n\}$ and $\{Y_n\}$ with probability $\varepsilon(n)$ then D distinguishes $\{X_n\}$ and $\{Y_n\}$ with predictive advantage $\varepsilon(n)/2$

イロト イポト イヨト イヨト

Given two probability ensembles $\{X_n\}$ and $\{Y_n\}$ and a n.u. TM *D*, if we have:

$$|\Pr[s \sim X_n: D(s) = 1] - \Pr[s \sim Y_n: D(s) = 1]| = \varepsilon(n)$$

then, we say that "*D* distinguishes $\{X_n\}$ and $\{Y_n\}$ with probability $\varepsilon(n)$."

- Predictive advantage: If n.u. TM D distinguishes $\{X_n\}$ and $\{Y_n\}$ with probability $\varepsilon(n)$ then D distinguishes $\{X_n\}$ and $\{Y_n\}$ with predictive advantage $\varepsilon(n)/2$
- $\varepsilon(n)$ -Indistinguishable: For all n.u. TM D we have

$$|\Pr[s \sim X_n: D(s) = 1] - \Pr[s \sim Y_n: D(s) = 1]| \leq \varepsilon(n)$$

イロト イポト イヨト イヨト

Definition

Let $\{X_n\}$ and $\{Y_n\}$ be two probability distribution ensembles. For any n.u. PPT *D*, if we have:

$$|\Pr[s \sim X_n : D(s) = 1] - \Pr[s \sim Y_n : D(s) = 1]| \leq \varepsilon(n)$$

then, we say that " $\{X_n\}$ and $\{Y_n\}$ are $\varepsilon(n)$ computationally distinguishable." Represented by: $\{X_n\} \approx_{\varepsilon(n)} \{Y_n\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let $\{X_n\}$ and $\{Y_n\}$ be two probability distribution ensembles. For any n.u. PPT *D*, if we have:

$$|\Pr[s \sim X_n: D(s) = 1] - \Pr[s \sim Y_n: D(s) = 1]| \leq \varepsilon(n)$$

then, we say that " $\{X_n\}$ and $\{Y_n\}$ are $\varepsilon(n)$ computationally distinguishable." Represented by: $\{X_n\} \approx_{\varepsilon(n)} \{Y_n\}$.

If $\{X_n\}$ and $\{Y_n\}$ are $\nu(n)$ computationally indistinguishable, for some negligible function $\nu(\cdot)$, then we say that " $\{X_n\}$ and $\{Y_n\}$ are computationally indistinguishable" (represented by $\{X_n\} \approx \{Y_n\}$).

< ロ > < 同 > < 回 > < 回 > < 回 > <

If $\{X_n\}$ and $\{Y_n\}$ are $\varepsilon(n)$ computationally indistinguishable, then for any n.u. PPT M we have: $\{M(X_n)\}$ and $\{M(Y_n)\}$ are $\varepsilon(n)$ computationally indistinguishable

イロト イポト イヨト イヨト

If $\{X_n\}$ and $\{Y_n\}$ are $\varepsilon(n)$ computationally indistinguishable, then for any n.u. PPT M we have: $\{M(X_n)\}$ and $\{M(Y_n)\}$ are $\varepsilon(n)$ computationally indistinguishable

Proof?

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\{X_n\}$ and $\{Y_n\}$ are $\varepsilon(n)$ computationally indistinguishable, then for any n.u. PPT M we have: $\{M(X_n)\}$ and $\{M(Y_n)\}$ are $\varepsilon(n)$ computationally indistinguishable

- Proof?
- Special Case: $\{X_n\} \approx \{Y_n\} \implies \forall n.u. PPT M: \{M(X_n)\} \approx \{M(Y_n)\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma (Hybrid Lemma)

Let $\{X_n^{(1)}\}, \{X_n^{(2)}\}, \ldots, \{X_n^{(m)}\}\$ be a set of probability ensembles. If there exists a n.u. PPT D (distinguisher) which distinguishes $\{X_n^{(1)}\}\$ and $\{X_n^{(m)}\}\$ with probability $\varepsilon(n)$ then there exists $1 \le i < m$ such that n.u. PPT D distinguishes $\{X_n^{(i)}\}\$ and $\{X_n^{(i+1)}\}\$ with probability $\varepsilon(n)/m$.

Lemma (Hybrid Lemma)

Let $\{X_n^{(1)}\}, \{X_n^{(2)}\}, \ldots, \{X_n^{(m)}\}\$ be a set of probability ensembles. If there exists a n.u. PPT D (distinguisher) which distinguishes $\{X_n^{(1)}\}\$ and $\{X_n^{(m)}\}\$ with probability $\varepsilon(n)$ then there exists $1 \le i < m$ such that n.u. PPT D distinguishes $\{X_n^{(i)}\}\$ and $\{X_n^{(i+1)}\}\$ with probability $\varepsilon(n)/m$.

Proof?

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >