Lecture 4: Computational Indistinguishability
Recall

- Distribution over Sample space
Recall

- Distribution over Sample space
- Distance between two distributions:
Recall

- Distribution over Sample space
- Distance between two distributions:
 - Prediction Advantage: Best strategy always outputs the most likely distribution
Recall

Distribution over Sample space

Distance between two distributions:
 - Prediction Advantage: Best strategy always outputs the most likely distribution
 - Total Variation Distance

Equivalent
Think: Generalize to more than two distributions
Recall

- Distribution over Sample space
- Distance between two distributions:
 - Prediction Advantage: Best strategy always outputs the most likely distribution
 - Total Variation Distance
- Equivalent
Recall

- Distribution over Sample space
- Distance between two distributions:
 - Prediction Advantage: Best strategy always outputs the most likely distribution
 - Total Variation Distance
- Equivalent
- Think: Generalize to more than two distributions
Given two probability ensembles \(\{X_n\} \) and \(\{Y_n\} \) and a n.u. TM \(D \), if we have:

\[
|\Pr[s \sim X_n : D(s) = 1] - \Pr[s \sim Y_n : D(s) = 1]| = \varepsilon(n)
\]

then, we say that “\(D \) distinguishes \(\{X_n\} \) and \(\{Y_n\} \) with probability \(\varepsilon(n) \).”
Given two probability ensembles \(\{X_n\} \) and \(\{Y_n\} \) and a n.u. TM \(D \), if we have:

\[
|\Pr[s \sim X_n : D(s) = 1] - \Pr[s \sim Y_n : D(s) = 1]| = \varepsilon(n)
\]

then, we say that “\(D \) distinguishes \(\{X_n\} \) and \(\{Y_n\} \) with probability \(\varepsilon(n) \).”

- **Predictive advantage**: If n.u. TM \(D \) distinguishes \(\{X_n\} \) and \(\{Y_n\} \) with probability \(\varepsilon(n) \) then \(D \) distinguishes \(\{X_n\} \) and \(\{Y_n\} \) with predictive advantage \(\varepsilon(n)/2 \)
Given two probability ensembles $\{X_n\}$ and $\{Y_n\}$ and a n.u. TM D, if we have:

$$|\Pr[s \sim X_n : D(s) = 1] - \Pr[s \sim Y_n : D(s) = 1]| = \varepsilon(n)$$

then, we say that “D distinguishes $\{X_n\}$ and $\{Y_n\}$ with probability $\varepsilon(n)$.”

- Predictive advantage: If n.u. TM D distinguishes $\{X_n\}$ and $\{Y_n\}$ with probability $\varepsilon(n)$ then D distinguishes $\{X_n\}$ and $\{Y_n\}$ with predictive advantage $\varepsilon(n)/2$

- $\varepsilon(n)$-Indistinguishable: For all n.u. TM D we have

$$|\Pr[s \sim X_n : D(s) = 1] - \Pr[s \sim Y_n : D(s) = 1]| \leq \varepsilon(n)$$
Computational Indistinguishability

Definition

Let \(\{X_n\} \) and \(\{Y_n\} \) be two probability distribution ensembles. For any n.u. PPT \(D \), if we have:

\[
|\Pr[s \sim X_n : D(s) = 1] - \Pr[s \sim Y_n : D(s) = 1]| \leq \varepsilon(n)
\]

then, we say that “\(\{X_n\} \) and \(\{Y_n\} \) are \(\varepsilon(n) \) computationally distinguishable.” Represented by: \(\{X_n\} \approx_{\varepsilon(n)} \{Y_n\} \).
Definition

Let \(\{X_n\} \) and \(\{Y_n\} \) be two probability distribution ensembles. For any n.u. PPT \(D \), if we have:

\[
|\Pr[s \sim X_n: D(s) = 1] - \Pr[s \sim Y_n: D(s) = 1]| \leq \epsilon(n)
\]

then, we say that “\(\{X_n\} \) and \(\{Y_n\} \) are \(\epsilon(n) \) computationally distinguishable.” Represented by: \(\{X_n\} \approx_{\epsilon(n)} \{Y_n\} \).

If \(\{X_n\} \) and \(\{Y_n\} \) are \(\nu(n) \) computationally indistinguishable, for some negligible function \(\nu(\cdot) \), then we say that “\(\{X_n\} \) and \(\{Y_n\} \) are computationally indistinguishable” (represented by \(\{X_n\} \approx \{Y_n\} \)).
If \(\{X_n\} \) and \(\{Y_n\} \) are \(\varepsilon(n) \)-computationally indistinguishable, then for any n.u. PPT \(M \) we have: \(\{M(X_n)\} \) and \(\{M(Y_n)\} \) are \(\varepsilon(n) \)-computationally indistinguishable.
If \(\{X_n\} \) and \(\{Y_n\} \) are \(\epsilon(n) \) computationally indistinguishable, then for any n.u. PPT \(M \) we have: \(\{M(X_n)\} \) and \(\{M(Y_n)\} \) are \(\epsilon(n) \) computationally indistinguishable

- Proof?
If \(\{X_n\} \) and \(\{Y_n\} \) are \(\varepsilon(n) \) computationally indistinguishable, then for any n.u. PPT \(M \) we have: \(\{M(X_n)\} \) and \(\{M(Y_n)\} \) are \(\varepsilon(n) \) computationally indistinguishable

- Proof?
- Special Case:
 \(\{X_n\} \approx \{Y_n\} \implies \forall \text{n.u. PPT } M: \{M(X_n)\} \approx \{M(Y_n)\} \)
Lemma (Hybrid Lemma)

Let \(\{X_n^{(1)}\}, \{X_n^{(2)}\}, \ldots, \{X_n^{(m)}\} \) be a set of probability ensembles. If there exists a n.u. PPT D (distinguisher) which distinguishes \(\{X_n^{(1)}\} \) and \(\{X_n^{(m)}\} \) with probability \(\varepsilon(n) \) then there exists \(1 \leq i < m \) such that n.u. PPT D distinguishes \(\{X_n^{(i)}\} \) and \(\{X_n^{(i+1)}\} \) with probability \(\varepsilon(n)/m \).
Lemma (Hybrid Lemma)

Let \(\{X_n^{(1)}\}, \{X_n^{(2)}\}, \ldots, \{X_n^{(m)}\} \) be a set of probability ensembles. If there exists a n.u. PPT \(D \) (distinguisher) which distinguishes \(\{X_n^{(1)}\} \) and \(\{X_n^{(m)}\} \) with probability \(\varepsilon(n) \) then there exists \(1 \leq i < m \) such that n.u. PPT \(D \) distinguishes \(\{X_n^{(i)}\} \) and \(\{X_n^{(i+1)}\} \) with probability \(\varepsilon(n)/m \).

\[\Box \] Proof?