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Recall

Distribution over Sample space

Distance between two distributions:

Prediction Advantage: Best strategy always outputs the most
likely distribution
Total Variation Distance

Equivalent
Think: Generalize to more than two distributions
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Distinguisher

Given two probability ensembles {Xn} and {Yn} and a n.u. TM D,
if we have:

|Pr[s ∼ Xn : D(s) = 1]− Pr[s ∼ Yn : D(s) = 1]| = ε(n)

then, we say that “D distinguishes {Xn} and {Yn} with probability
ε(n).”

Predictive advantage: If n.u. TM D distinguishes {Xn} and
{Yn} with probability ε(n) then D distinguishes {Xn} and
{Yn} with predictive advantage ε(n)/2
ε(n)-Indistinguishable: For all n.u. TM D we have

|Pr[s ∼ Xn : D(s) = 1]− Pr[s ∼ Yn : D(s) = 1]| 6 ε(n)
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Computational Indistinguishability

Definition
Let {Xn} and {Yn} be two probability distribution ensembles. For
any n.u. PPT D, if we have:

|Pr[s ∼ Xn : D(s) = 1]− Pr[s ∼ Yn : D(s) = 1]| 6 ε(n)

then, we say that “{Xn} and {Yn} are ε(n) computationally
distinguishable.” Represented by: {Xn} ≈ε(n) {Yn}.

If {Xn} and {Yn} are ν(n) computationally indistinguishable, for
some negligible function ν(·), then we say that “{Xn} and {Yn} are
computationally indistinguishable” (represented by {Xn} ≈ {Yn}).

Lecture 4: Computational Indistinguishability



Computational Indistinguishability

Definition
Let {Xn} and {Yn} be two probability distribution ensembles. For
any n.u. PPT D, if we have:

|Pr[s ∼ Xn : D(s) = 1]− Pr[s ∼ Yn : D(s) = 1]| 6 ε(n)

then, we say that “{Xn} and {Yn} are ε(n) computationally
distinguishable.” Represented by: {Xn} ≈ε(n) {Yn}.

If {Xn} and {Yn} are ν(n) computationally indistinguishable, for
some negligible function ν(·), then we say that “{Xn} and {Yn} are
computationally indistinguishable” (represented by {Xn} ≈ {Yn}).

Lecture 4: Computational Indistinguishability



Data Processing Inequality

If {Xn} and {Yn} are ε(n) computationally indistinguishable, then
for any n.u. PPT M we have: {M(Xn)} and {M(Yn)} are ε(n)
computationally indistinguishable

Proof?
Special Case:
{Xn} ≈ {Yn} =⇒ ∀n.u. PPT M : {M(Xn)} ≈ {M(Yn)}
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Transitivity

Lemma (Hybrid Lemma)

Let {X (1)
n }, {X (2)

n }, . . . , {X (m)
n } be a set of probability ensembles.

If there exists a n.u. PPT D (distinguisher) which distinguishes
{X (1)

n } and {X (m)
n } with probability ε(n) then there exists

1 6 i < m such that n.u. PPT D distinguishes {X (i)
n } and

{X (i+1)
n } with probability ε(n)/m.

Proof?
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