Lecture 4: Computational Indistinguishability

- Distribution over Sample space
- Distribution over Sample space
- Distance between two distributions:
- Distribution over Sample space
- Distance between two distributions:
- Prediction Advantage: Best strategy always outputs the most likely distribution
- Distribution over Sample space
- Distance between two distributions:
- Prediction Advantage: Best strategy always outputs the most likely distribution
- Total Variation Distance
- Distribution over Sample space
- Distance between two distributions:
- Prediction Advantage: Best strategy always outputs the most likely distribution
- Total Variation Distance
- Equivalent
- Distribution over Sample space
- Distance between two distributions:
- Prediction Advantage: Best strategy always outputs the most likely distribution
- Total Variation Distance
- Equivalent
- Think: Generalize to more than two distributions

Distinguisher

Given two probability ensembles $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ and a n.u. TM D, if we have:

$$
\left|\operatorname{Pr}\left[s \sim X_{n}: D(s)=1\right]-\operatorname{Pr}\left[s \sim Y_{n}: D(s)=1\right]\right|=\varepsilon(n)
$$

then, we say that " D distinguishes $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ with probability $\varepsilon(n) . "$

Distinguisher

Given two probability ensembles $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ and a n.u. TM D, if we have:

$$
\left|\operatorname{Pr}\left[s \sim X_{n}: D(s)=1\right]-\operatorname{Pr}\left[s \sim Y_{n}: D(s)=1\right]\right|=\varepsilon(n)
$$

then, we say that " D distinguishes $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ with probability $\varepsilon(n)$."

- Predictive advantage: If n.u. TM D distinguishes $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ with probability $\varepsilon(n)$ then D distinguishes $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ with predictive advantage $\varepsilon(n) / 2$

Distinguisher

Given two probability ensembles $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ and a n.u. TM D, if we have:

$$
\left|\operatorname{Pr}\left[s \sim X_{n}: D(s)=1\right]-\operatorname{Pr}\left[s \sim Y_{n}: D(s)=1\right]\right|=\varepsilon(n)
$$

then, we say that " D distinguishes $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ with probability $\varepsilon(n)$."

- Predictive advantage: If n.u. TM D distinguishes $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ with probability $\varepsilon(n)$ then D distinguishes $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ with predictive advantage $\varepsilon(n) / 2$
- $\varepsilon(n)$-Indistinguishable: For all n.u. TM D we have

$$
\left|\operatorname{Pr}\left[s \sim X_{n}: D(s)=1\right]-\operatorname{Pr}\left[s \sim Y_{n}: D(s)=1\right]\right| \leqslant \varepsilon(n)
$$

Computational Indistinguishability

Definition

Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be two probability distribution ensembles. For any n.u. PPT D, if we have:

$$
\left|\operatorname{Pr}\left[s \sim X_{n}: D(s)=1\right]-\operatorname{Pr}\left[s \sim Y_{n}: D(s)=1\right]\right| \leqslant \varepsilon(n)
$$

then, we say that " $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are $\varepsilon(n)$ computationally distinguishable." Represented by: $\left\{X_{n}\right\} \approx_{\varepsilon(n)}\left\{Y_{n}\right\}$.

Computational Indistinguishability

Definition

Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be two probability distribution ensembles. For any n.u. PPT D, if we have:

$$
\left|\operatorname{Pr}\left[s \sim X_{n}: D(s)=1\right]-\operatorname{Pr}\left[s \sim Y_{n}: D(s)=1\right]\right| \leqslant \varepsilon(n)
$$

then, we say that " $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are $\varepsilon(n)$ computationally distinguishable." Represented by: $\left\{X_{n}\right\} \approx_{\varepsilon(n)}\left\{Y_{n}\right\}$.

If $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are $\nu(n)$ computationally indistinguishable, for some negligible function $\nu(\cdot)$, then we say that " $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are computationally indistinguishable" (represented by $\left\{X_{n}\right\} \approx\left\{Y_{n}\right\}$).

Data Processing Inequality

If $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are $\varepsilon(n)$ computationally indistinguishable, then for any n.u. PPT M we have: $\left\{M\left(X_{n}\right)\right\}$ and $\left\{M\left(Y_{n}\right)\right\}$ are $\varepsilon(n)$ computationally indistinguishable

Data Processing Inequality

If $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are $\varepsilon(n)$ computationally indistinguishable, then for any n.u. PPT M we have: $\left\{M\left(X_{n}\right)\right\}$ and $\left\{M\left(Y_{n}\right)\right\}$ are $\varepsilon(n)$ computationally indistinguishable

- Proof?

Data Processing Inequality

If $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are $\varepsilon(n)$ computationally indistinguishable, then for any n.u. PPT M we have: $\left\{M\left(X_{n}\right)\right\}$ and $\left\{M\left(Y_{n}\right)\right\}$ are $\varepsilon(n)$ computationally indistinguishable

- Proof?
- Special Case:

$$
\left\{X_{n}\right\} \approx\left\{Y_{n}\right\} \Longrightarrow \forall \text { n.u. PPT } M:\left\{M\left(X_{n}\right)\right\} \approx\left\{M\left(Y_{n}\right)\right\}
$$

Transitivity

Lemma (Hybrid Lemma)

Let $\left\{X_{n}^{(1)}\right\},\left\{X_{n}^{(2)}\right\}, \ldots,\left\{X_{n}^{(m)}\right\}$ be a set of probability ensembles. If there exists a n.u. PPT D (distinguisher) which distinguishes $\left\{X_{n}^{(1)}\right\}$ and $\left\{X_{n}^{(m)}\right\}$ with probability $\varepsilon(n)$ then there exists $1 \leqslant i<m$ such that n.u. PPT D distinguishes $\left\{X_{n}^{(i)}\right\}$ and $\left\{X_{n}^{(i+1)}\right\}$ with probability $\varepsilon(n) / m$.

Transitivity

Lemma (Hybrid Lemma)

Let $\left\{X_{n}^{(1)}\right\},\left\{X_{n}^{(2)}\right\}, \ldots,\left\{X_{n}^{(m)}\right\}$ be a set of probability ensembles. If there exists a n.u. PPT D (distinguisher) which distinguishes $\left\{X_{n}^{(1)}\right\}$ and $\left\{X_{n}^{(m)}\right\}$ with probability $\varepsilon(n)$ then there exists $1 \leqslant i<m$ such that n.u. PPT D distinguishes $\left\{X_{n}^{(i)}\right\}$ and $\left\{X_{n}^{(i+1)}\right\}$ with probability $\varepsilon(n) / m$.

- Proof?

