
Lecture 3: Distributions

Lecture 3: Distributions



Distribution

1 X is a distribution over the sample space S

1 Assigns probability ps to the element s ∈ S
2 Y is a distribution over the same sample space S and assigns

qs probability to element s ∈ S
3 Difference between distributions
4 Prediction Advantage
5 Intuition: More the difference, easier to predict whether the

sample was sampled according to the distribution X or Y
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Total Variation Distance

Definition (Total Variation Distance)

SD (X ,Y ) :=
∑
s∈S
|ps − qs |

1 Intuition?
2 Another definition:

max
A
|Pr [s ∼ X : A(s) = 1]− Pr [s ∼ Y : A(s) = 1]|

3 Equivalent!
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Prediction Advantage

Definition:

max
A

Pr
[
b

$←{0, 1}, s ∼ (1− b)X + bY : A(s) = b
]
− 1

2

Relation with Total Variation Distance?
Think: SD between Un and f (Un−1) for any function
f : {0, 1}n−1 → {0, 1}n

Think: What if there are more than two distributions?
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Ensembles of Probability Distributions

Definition
A sequence {Xn}n∈N is called an ensemble if for each n ∈ N, Xn is
a probability distribution over {0, 1}∗.

Generally, Xn will be a distribution over the sample space
{0, 1}`(n) (where `(·) is a polynomial)
How to measure difference between two ensembles?

Distance
Prediction Advantage
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