Lecture 2: One-way Functions

Concepts:

- Negligible Functions

Proof Techniques:

Concepts:

- Negligible Functions
- PPT Constructions

Proof Techniques:

Concepts:

- Negligible Functions
- PPT Constructions
- n.u. PPT Adversaries

Proof Techniques:

Concepts:

- Negligible Functions
- PPT Constructions
- n.u. PPT Adversaries
- Function Evaluation (w.h.p.)

Proof Techniques:

Concepts:

- Negligible Functions
- PPT Constructions
- n.u. PPT Adversaries
- Function Evaluation (w.h.p.)
- Strong OWF Definition

Proof Techniques:

Concepts:

- Negligible Functions
- PPT Constructions
- n.u. PPT Adversaries
- Function Evaluation (w.h.p.)
- Strong OWF Definition

Proof Techniques:

- Reduction: Functions with string output to Functions with one-bit output

Concepts:

- Negligible Functions
- PPT Constructions
- n.u. PPT Adversaries
- Function Evaluation (w.h.p.)
- Strong OWF Definition

Proof Techniques:

- Reduction: Functions with string output to Functions with one-bit output
- Amplification: Slight advantage in predicting output to computing output w.h.p.

One-way Functions

Definition (Strong One-Way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a strong one-way function if it satisfies the following two conditions:
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Hard to invert. For any n.u. PPT adversary \mathcal{A}, there exists a negligible function $\nu(\cdot)$ such that for any input length $n \in \mathbb{N}$,

$$
\operatorname{Pr}\left[x \leftarrow_{\leftarrow}^{\S}\{0,1\}^{n} ; y \leftarrow f(x): f\left(\mathcal{A}\left(1^{n}, y\right), y\right)=y\right] \leqslant \nu(n)
$$

Weak One-way Functions

Definition (Weak One-way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a weak one-way function if it satisfies the following two conditions.
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and

Weak One-way Functions

Definition (Weak One-way Function)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a weak one-way function if it satisfies the following two conditions.
(1) Easy to compute. There is a PPT \mathcal{C} that computes $f(x)$ on all inputs $x \in\{0,1\}^{*}$, and
(2) Slightly hard to invert. There exists a polynomial function $q: \mathbb{N} \rightarrow \mathbb{N}$ such that for any adversary \mathcal{A}, for sufficiently large $n \in \mathbb{N}$, we have:

$$
\operatorname{Pr}\left[x \leftarrow_{\leftarrow}^{\leftarrow}\{0,1\}^{n} ; y \leftarrow f(x): f\left(\mathcal{A}\left(1^{n}, y\right)\right)=y\right] \leqslant 1-\frac{1}{q(n)}
$$

Amplification

Lecture 2: One-way Functions

Amplification

Theorem (Weak to Strong Amplification)

For any weak one-way function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, there exists a polynomial $m(\cdot)$ such that the function
$f^{\prime}:\left(\{0,1\}^{n}\right)^{m(n)} \rightarrow\left(\{0,1\}^{*}\right)^{m(n)}$ defined as follows:

$$
f^{\prime}\left(x_{1}, x_{2}, \ldots, x_{m(n)}\right):=\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{m(n)}\right)\right) .
$$

is strongly one-way.

Amplification

Theorem (Weak to Strong Amplification)

For any weak one-way function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, there exists a polynomial $m(\cdot)$ such that the function
$f^{\prime}:\left(\{0,1\}^{n}\right)^{m(n)} \rightarrow\left(\{0,1\}^{*}\right)^{m(n)}$ defined as follows:

$$
f^{\prime}\left(x_{1}, x_{2}, \ldots, x_{m(n)}\right):=\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{m(n)}\right)\right) .
$$

is strongly one-way.

- Think: Proof

Discussion

(1) Do they exist?

Discussion

(1) Do they exist? NOT Unconditionally

Discussion

(1) Do they exist? NOT Unconditionally
(2) Necessary for most cryptography [Impaglizzo-Luby-89]

Discussion

(1) Do they exist? NOT Unconditionally
(2) Necessary for most cryptography [Impaglizzo-Luby-89]

- Variant of OWF: Distributionally One-way Functions [Impagliazzo-Ph.D.-Thesis]

Discussion

(1) Do they exist? NOT Unconditionally
(2) Necessary for most cryptography [Impaglizzo-Luby-89]

- Variant of OWF: Distributionally One-way Functions [Impagliazzo-Ph.D.-Thesis]
- Interesting Open Problems exist!

Discussion

(1) Do they exist? NOT Unconditionally
(2) Necessary for most cryptography [Impaglizzo-Luby-89]

- Variant of OWF: Distributionally One-way Functions [Impagliazzo-Ph.D.-Thesis]
- Interesting Open Problems exist!
(3) Insufficient for a lot of useful cryptography [Impagliazzo-Rudich-89]

Discussion

(1) Do they exist? NOT Unconditionally
(2) Necessary for most cryptography [Impaglizzo-Luby-89]

- Variant of OWF: Distributionally One-way Functions [Impagliazzo-Ph.D.-Thesis]
- Interesting Open Problems exist!
(3) Insufficient for a lot of useful cryptography [Impagliazzo-Rudich-89]
- Technique: Black-box Separation

Discussion

(1) Do they exist? NOT Unconditionally
(2) Necessary for most cryptography [Impaglizzo-Luby-89]

- Variant of OWF: Distributionally One-way Functions [Impagliazzo-Ph.D.-Thesis]
- Interesting Open Problems exist!
(3) Insufficient for a lot of useful cryptography [Impagliazzo-Rudich-89]
- Technique: Black-box Separation
- Interesting Open Problems exist!
(1) Let Π_{n} be the set of all prime number $<2^{n}$
(1) Let Π_{n} be the set of all prime number $<2^{n}$
- Think: What is $\left|\Pi_{n}\right|$?
(1) Let Π_{n} be the set of all prime number $<2^{n}$
- Think: What is $\left|\Pi_{n}\right|$?
(2) Function: $f(x, y)=x \cdot y$
(1) Let Π_{n} be the set of all prime number $<2^{n}$
- Think: What is $\left|\Pi_{n}\right|$?
(2) Function: $f(x, y)=x \cdot y$
(3) Hardness: For $x, y \underset{\leftarrow}{\leftarrow} \Pi_{n}$, "No adversary can factorize $\mathrm{f}(\mathrm{x}, \mathrm{y})$ with non-negligible probability"

Candidate Construction

(1) Construct a OWF assuming Factorization is Hard

Candidate Construction

(1) Construct a OWF assuming Factorization is Hard
(2) Candidate construction

Candidate Construction

(1) Construct a OWF assuming Factorization is Hard
(2) Candidate construction: $f(x, y)=x \cdot y$

Candidate Construction

(1) Construct a OWF assuming Factorization is Hard
(2) Candidate construction: $f(x, y)=x \cdot y$
(3) Is it a one-way function?

Candidate Construction

(1) Construct a OWF assuming Factorization is Hard
(2) Candidate construction: $f(x, y)=x \cdot y$
(3) Is it a one-way function? No, but it is a weak one-way function and we can amplify it

Candidate Construction

(1) Construct a OWF assuming Factorization is Hard
(2) Candidate construction: $f(x, y)=x \cdot y$
(3) Is it a one-way function? No, but it is a weak one-way function and we can amplify it
(9) Argument: Reduce weak one-way function guarantee of f to hardness of Factorization

Candidate Construction

(1) Construct a OWF assuming Factorization is Hard
(2) Candidate construction: $f(x, y)=x \cdot y$
(3) Is it a one-way function? No, but it is a weak one-way function and we can amplify it
(9) Argument: Reduce weak one-way function guarantee of f to hardness of Factorization

- Think: Proof

