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Motivation: Delegating Computation to Two Servers
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Assumptions on Viruses

Assumptions
1 Passive: Do not tamper with the server messages
2 Bounded Communication: Only c-bits of virus communication

Justification
Virus Detection Mechanisms make tampering server messages and
large communication between viruses difficult

Note

Viruses can store the entire server view before communicating



Related Problem 1: Delegation to Single Server

Client with
input x Server

x̂ Client computes
output y

ŷ

Solution
Fully Homomorphic Encryption [Gentry–09]

Concerns
Quite far from practical
Relies on a relatively narrow class of cryptographic hardness
assumptions
No information-theoretic analogue



Related Problem 2: Non-communicating Viruses

Client with
input x

Server 1 Server 2

x̂1 x̂2

Client computes
output y

ŷ1 ŷ2

Solution
Secure Two-party Computation
[Yao–82,Goldreich–Micali–
Wigderson–87]

Features
Information-theoretic
Security using OT or
correlated private
randomness
Computational Security
based on general
cryptographic assumptions

Primary Concern
Yao and GMW are insecure even for 1-bit virus communication



Main Result: Informal

Definition (Bounded Communication Leakage Resilience)

A c-BCL-resilient protocol delegates a computation to two servers,
such that any c-bounded communication leakage reveals essentially
nothing about the input

Theorem (Our Main Result: Informal)

Given an n-bit input/output circuit Cf of
size s, and depth h

We construct a c-BCL-resilient protocol such that:
Client is implemented by a circuit of size Õ(n + c)

Servers are implemented by a circuit of size Õ(s + ch + c2)

Information-theoretic security given OT
Computational security based on standard cryptographic
assumptions



Comparison to Previous Work (1)

[Dziembowski–Faust–12]

Information-theoretic 2-server Solution using “Leak-free Hardware”

Drawback
The size of the “Leak-free Components” depends on the leakage
bound and the statistical security parameter

Feature of our solution
The size of “Leak-free Components” (Oblivious Transfer
functionality, which is minimal) is constant

Crucial to instantiating our construction with standard
cryptographic assumptions



Comparison to Previous Work (2)

[Goldwasser–Rothblum–12] & [Bitansky–Dachman-Soled–Lin–14]

Information-theoretic solution using large-number of servers

Drawback
The number of servers is large

Feature of our solution
A 2-server solution (which is minimal)



Comparison to Previous Work (3)

[Dachman-Soled–Liu–Zhou–15]

Instantiated the hardware components of [Dziembowski–Faust–12]
using Deniable Encryption in the computational setting

Drawback
Only known instantiations of Deniable Encryption rely on iO
[Garg–Gentry–Halevi,Raykova–Sahai–Waters–13,Sahai–Waters–14]

Feature of our solution
Milder cryptographic hardness assumptions like the intractability of
factoring Blum Integers and the Decisional Diffie Hellman



Efficiency Comparison to Previous Works

Legend:
Circuit size of an implementation of f : s
Circuit size of BCL-resilient Protocol: S
Bound on the communication complexity of viruses: c

Previous Works: Computational Overhead

Computational Overhead S/s > c

Our Solution: Computational Overhead

Computational Overhead S/s = polylog c , where c ≈ s1/2



Key Technical Idea: The Beginning

Two Distributions
Let µ be a ε-biased distribution
Let R be a distribution with (n − c) min-entropy

Theorem (Small-Bias Masking [Dodis–Smith–05])

SD (µ+ R,Un) 6 2c/2ε



Reformulation in Two-Server Model

Two Distributions
Let µ be a ε-biased distribution
Let R be a uniform distribution over n-bit strings

Two-server setting
View of Server 1 is R , and View of Server 2 is µ+ R

Virus 1 sends one c-bit message L = L(R) to Virus 2

Note
R conditioned on the leakage L has high average min-entropy:

H̃∞(R|L) > (n − c)

Theorem (Small-Bias Masking [Dodis–Smith–05])

SD ( (µ+ R, L) , (Un, L) ) 6 2c/2ε

Virus 2’s view looks essentially random



Generalization Goal

Two Directions
Generalize “ε-bias” to “ε-indistinguishability”

Let µ0 and µ1 be two distributions that are indistinguishable
by linear tests
We want: (µ0 + R, L) and (µ1 + R, L) to look similar

Generalize “one-round c-bit message” by “arbitrary c-bit
communication”



General Small-bias Masking

Theorem (Generalized Small-bias Masking)

Let µ0 and µ1 be be probability distribution that are
ε-indistinguishable by linear tests. Then a c-bit communication
protocol π that outputs a bit obeys:∣∣∣∣∣ Ew∼µ0

E
r

$←{0,1}n
[π(r ,w + r)]− E

w∼µ1
E

r
$←{0,1}n

[π(r ,w + r)]

∣∣∣∣∣ 6 2c/2ε



What we achieved: Reduction to Parity-Resilient Circuit

x0

µ0 ≡ C [x0]

Server 1 View
R

Server 2 View
µ0 + R

π(R, µ0 + R)

x1

µ1 ≡ C [x1]

Server 1 View
R

Server 2 View
µ1 + R

π(R, µ1 + R)

If Indistinguishable

By Linear Tests

Then
Indistinguishable



Starting Point: Private Circuits [Ishai–Sahai–Wagner–03]

Algorithms (I ′,C ′,O ′) such that

x x̂

Client Encodes
using I ′

ŷ

Evaluation of
Private Circuit C ′

y

Client Decodes
using O ′

Definition (Private Circuits)

Probing k-wires of C ′ reveals nothing about the client input x



Parity-resilient Circuit

Algorithms (I ,C ,O) such that

x x̂

Client Encodes
using I

ŷ

Evaluation of
Parity-Resilient Circuit C

y

Client Decodes
using O

Definition (Parity-Resilient Circuits)

Parity of wire-values of any subset of wires of C reveals nothing
about the client input x

Construction of C from C ′

Every wire w in C ′ is encoded as 3 wires in C whose majority is w

Caution

The actual encoding used in the paper is slightly more complicated than what
is presented here. This complication is necessitated due to the fact that the
randomness used to encode the wire w is also present in the circuit C



Parity-resilient Circuit: The NAND-Gadget

NAND-Gadget: An 8-bit input and 3-bit output Function

x̂1,0 x̂1,1 x̂1,2 x̂2,0 x̂2,1 x̂2,2

Maj(·) Maj(·)

x1 x2

NAND

y

r1

r0
Encoder

ŷ0 ŷ1 ŷ2



Parity-resilient Circuit: Proof

Why does it work?
Small parity tests are fooled by the privacy guarantee
Big parity tests are fooled because the XOR of a large number
of independent & small-biased bits is close to uniform



Overall Construction

Private Circuits

Parity-resilient Circuits
using small trusted-hardware

Construction of
Small-bias Distribution

BCL-Resilient Protocol
using small trusted-hardware

Generalization of
Small-bias Masking

BCL-Resilient Protocol
using OT

Joint Simulation Security

Computational
BCL-Reslient Protocol

Non-committing Encryption



Thank You!

Open Problems
Continual Leakage
Setting
Information-theoretic
construction for
3-Servers in the plain
model

Summary of Our Construction

Private Circuits

Parity-resilient Circuits
using small trusted-hardware

Construction of
Small-bias Distribution

BCL-Resilient Protocol
using small trusted-hardware

Generalization of
Small-bias Masking

BCL-Resilient Protocol
using OT

Joint Simulation Security

Computational
BCL-Reslient Protocol

Non-committing Encryption


