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Abstract

Coin flipping is one of the most fundamental tasks in cryptographic protocol design. Informally, a
coin flipping protocol should guarantee both (1) Completeness: an honest execution of the protocol by
both parties results in a fair coin toss, and (2) Security: a cheating party cannot increase the probability
of its desired outcome by any significant amount. Since its introduction by Blum [B82], coin flipping
has occupied a central place in the theory of cryptographic protocols. In this paper, we explore what are
the implications of the existence of secure coin flipping protocols for complexity theory. As exposited
recently by Impagliazzo [I], surprisingly little is known about this question.

Previous work has shown that if we interpret the Security property of coin flipping protocols very
strongly, namely that nothing beyond a negligible bias by cheating parties is allowed, then one-way
functions must exist [IL89]. However, for even a slight weakening of this security property (for example
that cheating parties cannot bias the outcome by any additive constant ε > 0), the only complexity-
theoretic implication that was known was that PSPACE * BPP.

We put forward a new attack to establish our main result, which shows that, informally speaking,
the existence of any (weak) coin flipping protocol that prevents a cheating adversary from biasing the
output by more than 1

4 − ε implies that NP * BPP. Furthermore, for constant-round protocols, we
show that the existence of any (weak) coin flipping protocol that allows an honest party to maintain
any noticeable chance of prevailing against a cheating party implies the existence of (infinitely often)
one-way functions.
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1 Introduction
A fundamental problem in cryptography is to design protocols that allow two mutually distrusting parties
to agree on a random coin. The problem of coin flipping is certainly intrinsically fascinating, but moreover
coin flipping protocols have proven to be extremely useful to the theory and design of secure protocols:
For example, they are an essential ingredient in all known secure two-party and multi-party computation
protocols (e.g. Goldreich, Micali, and Wigderson [GMW87]). They have also proven to be influential more
widely: For example, they provide a primary motivation for the utility of the Common Random String (CRS)
model [BFM88], one of the most popular models for cryptographic protocol design.

The problem of coin flipping was introduced in the seminal work of Blum [B82], who described the task
by means of the following scenario: Alice and Bob are divorcing, and have agreed to let the ownership of
their favorite car be decided by a coin toss: Heads means that Alice gets the car, and Tails means that Bob
gets it. Unfortunately, Alice and Bob are not willing to be in the same room, and need to implement this
coin toss over the telephone. As such, Alice and Bob want a protocol such that (informally speaking):

1. The transcript of their conversation uniquely determines who gets the car.

2. If both Alice and Bob behave honestly, then Alice and Bob should both get the car with probability 1
2 .

3. If Alice behaves maliciously but Bob behaves honestly, then Alice cannot significantly increase the
probability that she gets the car. Similarly, if Bob behaves maliciously but Alice behaves honestly,
then Bob cannot significantly increase the probability that he gets the car.

Such a protocol incentivizes honest behavior by both parties, since they know that deviating from the
protocol would not allow them to obtain any significant gain. Here, we are making the non-trivial assumption
that both parties want to get the car – that is, we do not disallow a cheating Alice to increase the probability
of Bob getting the car1. As such, this notion of coin flipping is often called “weak” coin flipping (explicitly
in the quantum cryptography literature [KN04]), in contrast to “strong” coin flipping where neither party
should be able to bias the coin significantly in either direction. 2 Of course, a crucial parameter here is how
much bias constitutes a “significant gain.” Let us define a (1 − δ)-secure weak coin flipping protocol to be
one where no cheating party can increase the probability of their desired outcome by more than an additive
factor of δ.

The Computational Complexity of Coin Flipping. The goal of this paper is to explore the implications
of the existence of such (weak3) coin flipping protocols for complexity theory. Despite the centrality of
randomness and coin flipping to complexity theory and cryptography, surprisingly little is known about this
question, as was recently exposited by Impagliazzo[I].

To the best of our knowledge, the only nontrivial results on the subject show, informally, that if one-way
functions do not exist, then it must be possible to bias every r-round coin flipping protocol by an additive
Θ(1/

√
r) factor [IL89, CI93, I10]. Informally speaking, this does show that (1 − negligible)-secure weak

coin flipping implies the existence of one-way functions. (This result is “tight” for this setting, since if
1Note that by symmetry, our requirements imply that if a protocol fails to meet the requirements, it must be the case that either

(1) a single party can bias the outcome significantly in both directions, or (2) both parties can bias the outcome significantly in
the same direction. If neither of these attacks are possible, then there is always a renaming of Alice and Bob that implies that the
protocol meets our requirements.

2This is also closely related to the notion of “coin flipping with abort”, where the requirement, informally speaking, is that
unless a cheating party aborts or is “caught cheating” by the honest party, it cannot bias the coin in either direction. Note that such
a protocol immediately implies weak coin flipping, since we can define the output of the protocol to be Tails if Alice aborts or is
caught cheating, and similarly Heads if Bob aborts or is caught cheating.

3Since strong coin flipping and “coin flipping with abort” both imply weak coin flipping, our results of course also apply to the
existence of these other types of protocols.
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one-way functions exist then weak coin flipping protocols do exist that rule out non-negligible additive
bias [B82, GL89].)

However, what about other natural notions of significant gain? For example, what are the consequences
of (1− ε)-secure weak coin flipping protocols – protocols that do not allow a bias of any additive constant
ε or more?4 What about c-secure weak coin flipping protocols where c ∈ (0, 1) is a fixed constant?

For both these questions, the only consequences known are of the flavor that PSPACE * BPP.
Indeed, it is not difficult to see that if PSPACE ⊆ BPP, then for any coin flipping protocol, either a
cheating Alice could force the output 1 with probability 1 or Bob could force the output 0 with probability
1. This attack would proceed by using the power of PSPACE to perform an iterated min-max (actually
max-average) computation, with polynomial look-ahead depth for each round of the protocol. The question
before us is whether a similar attack (but with relaxed success goals) could be carried out with much less
computational power, for instance with only a constant level of look-ahead, or using a max (instead of max-
average) computation – something that intuitively can be carried out with only the power of NP – even
though the overall protocol can have polynomially many rounds?

Our Main Result and Intuition. In this work, we show (as our main result) that the existence of any(
3
4 + ε

)
-secure weak coin flipping protocol implies that NP * BPP. This resolves an open question

posed by Impagliazzo [I]: whether (1− ε)-secure weak coin flipping protocols are possible if P = NP (we
show they are not). To prove this result, we introduce a new attack strategy that we call Hedged Greedy that
is fundamentally different from previous attacks in this setting.

At an intuitive level, previous attacks [IL89, CI93] work by having the attacking party behave honestly
until it notices that it has reached a node where its choice will have a significant effect on the expected
outcome assuming honest behavior (conditioned on its choices so far) from that point onwards. The attack
only deviates from honest behavior at this one point, and the non-triviality of this attack follows from an
argument that there must be at least one round in the protocol where the attacker’s choice influences the
outcome by an additive factor of at least Θ(1/

√
r) for an r-round protocol. Informally speaking, as pointed

out to us by Impagliazzo [I10], this technique fundamentally cannot get a stronger result since a stronger
result by this attack would also imply better unconditional attacks on strong coin flipping protocols by
fail-stop adversaries, where a bias of Θ(1/

√
r) is known to be tight (see e.g. [MNS09]).

A conceptually even simpler attack strategy is a “greedy” strategy. To illustrate, let’s consider a toy
protocol, as described in the protocol tree drawn in Example 1 below.

A/1
2

A/
(

1
2 − ε

)
B/
(

1
2 + ε

)
B/ε B/ (1− ε)

Example 1: Motivating Hedged-Greedy

In this protocol tree, for instance the annotation “A/1
2” on the root node denotes two facts: (1) the value

(or “color”) of this node is 1
2 , meaning that an honest execution of the protocol from this node would lead

to a coin with expected value 1
2 (i.e. a fair coin), and (2) the first message of the protocol is sent by Alice,

and the bit that is sent determines which child of this node corresponds to the next step of the protocol. The
honest Alice will place appropriate probabilities on its children so as to maintain the value of the coin –

4More precisely, for every constant ε > 0, for large enough security parameters 1k provided as common input to both Alice and
Bob, the protocol should not allow additive bias of at least ε.
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in this example at the root node, the honest Alice would proceed left with probability 1
2 , and proceed right

otherwise. A leaf node marked “B/ε”, for instance, just means that honest Bob declares the output to be 1
with probability ε, and declares the output to be 0 otherwise (but Bob has full control over the outcome of
the protocol if this leaf node is reached).

We would define the “greedy” attack strategy for Alice (when she is attempting to bias the outcome
towards 1) to be one where she always proceeds toward the child with higher value. As this example
illustrates, however, this attack may obtain only a tiny additive bias: Here, greedy Alice would proceed to
the right child at the root of the tree, obtaining an additive bias of only ε, which can be arbitrarily small. (In
this example, however, greedy Bob would still be quite successful. In Appendix A, we show an extension
of this example where greedy strategies for both Alice and Bob perform poorly.)

In this example, the optimal strategy for Alice is in fact to always proceed to the left child; however, in
more complex versions of this example (where “dummy” rounds are added in between the actual rounds of
the protocol), it may be very difficult for an attacking Alice to realize that she would have near complete
control of the outcome on the left branch of the tree. Given only a bounded look-ahead capability to observe
nodes in the protocol tree, for instance, Alice would not be able to ascertain whether or not she can control
the output of the protocol on the left due to “dummy” rounds.

Instead, the basic intuitive idea behind our attack strategy is to implement a hedged greedy strategy:
instead of always following the greedy strategy, our attack will “hedge its bet” by also proceeding to the
other child with some probability. Intuitively, when the advantage of behaving greedily is clearer, the attack
will potentially deviate more from honest behavior. In the example above, at the root node, since the values
of the children are so close, the hedged greedy Alice strategy will place almost equal probabilities to both
children (behaving very much like the honest Alice would). But at the level below, on the left, where the
values of the two children are so different, the hedged greedy Alice strategy would proceed to the node with
value (1 − ε) with probability very close to 1 (thus deviating very strongly from how honest Alice would
behave at this node).

In the example above, the hedged greedy Alice strategy would be able to bias the coin to nearly 3
4 .

Through a careful choice of the exact hedging behavior of our strategy, we show that in fact we can guarantee
similar performance for any protocol – in the sense that either hedged greedy Alice will be able to bias to
at least roughly 3

4 or hedged greedy Bob will be able to bias to at most roughly 1
4 . In fact we prove a more

general tradeoff between the relative success of hedged greedy Alice and hedged greedy Bob: for example,
if hedged greedy Bob does not significantly bias the outcome below 1

2 , then we show that hedged greedy
Alice must be able to bias the outcome all the way to roughly 1. (In the example above, however, note that
even greedy Bob would be able to guarantee the output 0. As such, the example above only illustrates the
idea behind our attack, not the actual analysis of it, which is fairly delicate. We are not aware of any simpler
attack and analysis that even guarantees a tiny constant additive bias.) We also show that our analysis of our
attack is tight, by showing that in fact any attack that bases its decisions on only a bounded look-ahead view
of the protocol tree (including the values of the nodes, as illustrated above) cannot obtain better bias.

At a technical level, our proof proceeds in two stages: First, we use the power of NP to convert an
arbitrary coin flipping protocol to a stateless coin flipping protocol with nearly identical security guarantees.
In a stateless protocol, honest parties only need the transcript of the protocol so far (and fresh randomness)
to determine their next move. We then show an unconditional polynomial-time “hedged greedy” attack on
any stateless protocol. We believe this modular approach may be of independent interest.

A stronger result for constant-round protocols. For constant round protocols, it is not difficult to see
that the “PSPACE” attack described above can be implemented if NP ⊆ BPP, since a constant round
protocol would only involve a constant number of alternations. A natural question is whether any potentially
stronger consequence is true.

For this setting, informally speaking, we obtain essentially the best possible result: even the existence
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of ε-secure weak coin flipping protocols implies the existence of (infinitely often) one-way functions. The
core difference between the setting of NP ⊆ BPP and the non-existence of one-way functions is that in
the latter case, one only obtains an inverse sampler and approximator that works with high probability over
a fixed distribution of inputs. Our attack works by showing how to combine a constant number of inverters
for a constant number of related functions to carry out the desired attack.

Conclusions and Future Directions. This work revisits the fundamental question of the computational
complexity implications of the existence of coin flipping protocols, where surprisingly little was known. We
provide new results which show that in many natural settings of parameters, weak coin flipping protocols in
fact imply NP * BPP, where previously only PSPACE * BPP was known. We do this by introducing
new techniques for this setting, including a hedged greedy attack strategy and a method for its analysis.

A number of important natural questions remain open: For the parameters that we consider in our main
result, can we conclude that one-way functions exist (and not just that NP * BPP)? Is it possible that an
ε-secure weak coin flipping protocol (with polynomially many rounds) can exist even if P = NP?

2 Preliminaries and Conventions
Consider any 2-party protocol π. We view the transcript generation procedure as traversal of a tree, called
the transcript tree of π. Any transcript prefix v is a node in this tree and the two extensions of the transcript
v0 and v1 are its two children in the tree. The leaves of the tree are labeled with an output 0 or 1. The depth
of the tree D is the communication complexity (maximum number of bits exchanged) of the protocol. Each
node is annotated as an Alice node or a Bob node, indicating which party must send the next message in
the protocol. When a polynomial blow-up in the round complexity of the protocol is not important, we may
consider the Alice and Bob nodes as alternating in any path in the tree. (In Section 4, where the number
of rounds is important, we remove the restriction that the tree is binary, but will retain the convention that
Alice and Bob nodes alternate.)

The protocol is specified by a randomized algorithm fπ which takes as input a transcript prefix v and
a private “state” and outputs an updated state and a next bit (or, if v is a complete transcript, produces a
deterministic binary output based only on v). A protocol is called stateless if the state variable is always
empty.

Let χv be the probability of the output of the protocol being 1 conditioned on v being a prefix of the
final transcript (when both parties honestly follow the protocol). We call this the color of the node v. We
shall denote the subtree rooted at v by Sv. We will assume that the height D of the protocol π is the security
parameter. When we mention that some event occurs with high probability (written as w.h.p.) it implies that
the probability of that event is at least 1− exp(−Θ(D + 1/ε)).

We define a µ-secure protocol for a χ∗-weak coin as follows:

Definition 1 (µ-secure implementation of χ∗-Weak coin). For χ∗ ∈ [0, 1] and µ ∈ [0, 1], let χ+ = 1 −
µ(D)(1 − χ∗) and χ− = µ(D)χ∗. A protocol π is said to be a µ-secure implementation of χ∗ weak
coin-flipping, if the outcome is a χ∗-coin if both parties follow the protocol honestly, and either

1. (Secure when Alice wants 1 and Bob wants 0) For any efficient (PPT) adversarial Alice strategy,
the expected outcome of the protocol when playing against the honest Bob strategy is no higher than
χ+ and for any efficient Bob strategy, the expected outcome when playing against the honest Alice
strategy is no lower than χ−, or

2. (Secure when Alice wants 0 and Bob wants 1) For any efficient (PPT) adversarial Alice strategy,
the expected outcome of the protocol when playing against the honest Bob strategy is no lower than
χ− and for any efficient Bob strategy, the expected outcome when playing against the honest Alice
strategy is no higher than χ+.
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With increasing µ, the protocol has a better security guarantee: if µ = 1, then neither party can bias the
coin away from χ∗ towards their desired outcome. Against an adversary with access to a PSPACE oracle,
it is easy to see that any efficient protocol is 0-secure. Our attack in Section 3 renders any protocol about
1
2 -secure; for χ∗ = 1

2 , this means that some party can bias the protocol to about 1
4 (if its desired outcome is

0) or to about 3
4 (if its desired outcome is 1). (Our attack in Section 4 on the other hand renders any protocol

µ secure with µ close to 0.)
In Section 4 we show that if a constant round weak coin-flipping protocol must be secure, then a stan-

dard weaker variant of one-way functions, called infinitely-often one-way functions must exist. This variant
appears in earlier work like [OW93], but seems to have been named so in [HI07]. A polynomial time com-
putable function f : {0, 1}∗ → {0, 1}∗ is called an infinitely-often one-way function if for any polynomial
p and any PPT adversary A, if for infinitely many values n, Prx←{0,1}n [f(A(f(x)) = f(x)] < 1

p(n) (where
the probability is also over the coins of A). Thus, if f is not an infinitely-often one-way function, then there
is a PPT adversary A which for all but finitely many values of n has a significant probability of inverting f
on random inputs from {0, 1}n.

3 Complexity of Weak Coin-Tossing
In this section we show our main result, that if there is a polynomial time weak coin-tossing protocol, then
NP * BPP. In fact, we show that any weak coin-tossing protocol can be attacked significantly (biasing
the outcome by close to 0.75) by polynomial time adversaries with access to an NP oracle. We arrive at
this result in a few steps:

• First, we observe that for any polynomial time protocol π, there exists a state-less protocol π′ that runs
in polynomial time with access to an NP oracle, such that π′ is “as secure as” π when considering
adversaries with access to NP oracles. (Lemma 2.)

• Next we show that, unconditionally, any state-less protocol for weak coin-flipping can be attacked
efficiently, using just the protocol itself as a black-box.

Together, these give an attack on any polynomial time protocol π, wherein the attack will use an NP oracle
(which will be used to implement the state-less protocol π′ that will be accessed as a black-box by the
attack).

The first of these follows rather easily from a result on uniform generation of NP-witnesses given an
NP oracle [JVV86, BGP00]. (See Appendix B.) We remark that while much weaker computational power
(namely inverting a one-way function) is enough for carrying out such a reconstruction in the normal course
of the protocol, it is much harder to ensure that the reconstruction works with adequate accuracy even when
the protocol is under attack and may result in a transcript distribution significantly different from that in the
normal execution. However, by [JVV86, BGP00], such reconstruction can be accurately carried out for any
transcript history when an NP-oracle is given.

Our main work then is in showing an attack on a state-less protocol. Surprisingly we can do this effi-
ciently using the protocol itself as a black-box, and with no further computational complexity assumption. In
Section 3.1 we provide an intuition for the way the attack works, assuming we have certain additional oracles
related to the protcol. Then in Section 3.2 we present the actual attack, which involves additional checks to
make the simpler attack robust, and then replaces the oracles it required by approximate implementations.

3.1 A Simplified Sketch of the Attack
In this section we describe an attack on any weak coin flipping protocol π, given an oracle that, for any
partial transcript v, can return χv, the color of v in the protocol π.

Given such an oracle for the colors, we define four attacks, two each for corrupt Alice and corrupt Bob
— for each party, one to bias the outcome towards 0 and one to bias it towards 1. In Figure 1, we describe
the attack for Alice to bias the outcome towards 1; the other attacks are symmetric.
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Intuition of Attack Adv(1)
A

A D round protocol π with for a χ∗-coin is given. We have access to an oracle which provides the
exact color χv of any node v.

Suppose the protocol is currently at an Alice-node v (i.e., the next message is sent by Alice). Let v0
and v1 be its two children. For convenience we write χ, χ0 and χ1 respectively for χv, χv0, and χv1.
Let p0 = Prπ[v0|v] and p1 = Prπ[v1|v] so that p0 + p1 = 1 and χ = p0χ0 + p1χ1. Given χ, χ0 and
χ1 we can calculate p0 and p1.

• Let tb =
pbχb(1−χ(1−b))

(χ−χ0χ1) , for b ∈ {0, 1}. Send 0 as the next message with probability t0 and 1 as
the next message with probability t1.

Figure 1: Intuition of Attack Adv(1)
A for Alice to bias towards outcome 1.

Note that indeed t0 + t1 = (p0χ0+p1χ1)−(p0+p1)χ0χ1

χ−χ0χ1
= 1, since p0χ0 + p1χ1 = χ and p0 + p1 = 1.

We shall show that our choice of the probabilities t0 and t1 are such that no matter what the protocol
is, these attacks break the security of the protocol. More precisely, if we denote the four attacks by Adv(0)

A ,
Adv(1)

A , Adv(0)
B and Adv(1)

B (with Adv(0)
A corresponding to Alice trying to bias towards 0 and so on), we

show that in any such protocol either Adv(1)
A biases the outcome to 1 with probability at least 0.75, or Adv(0)

B

biases the outcome to 0 with probability at least 0.75. Also, either Adv(0)
A biases the outcome to 0 or Adv(1)

B

biases the outcome to 1 with probability at least 0.75. Then, the protocol π is not a secure weak coin-flipping
protocol.

In order to analyze these attacks, we will define the following functions to assign a score for the (failure
of) performance in biasing the orginal color χ at a node to a value x when the goal is to bias towards a bit b:
sb(x, χ) := |b−x|

|b−χ| (for χ 6= b). That is,

s1(x, χ) =
1− x

(1− χ)
s0(x, χ) =

x

χ

In addition, we define s0(0, 0) := 0 and s1(1, 1) := 0. Note that the lower the score, the better the
performance in biasing towards b.

For any node v in the transcript tree, let A(0)(v), A(1)(v), B(0)(v), B(1)(v) denote the colors induced at
the node v by our four attacks. Then, we will show that:

A(1)(v), B(1)(v) ∈ [χv, 1] and A(0)(v), B(0)(v) ∈ [0, χv] (1)

s1(A(1)(v), χv) + s0(B(0)(v), χv) ≤ 1 (2)

s0(A(0)(v), χv) + s1(B(1)(v), χv) ≤ 1 (3)

Intuitively these two inequalities state that if Alice fails to bias the output to b by a significant amount
then Bob can bias the output to (1 − b) by a significant amount. More precisely, when v is the root of
a protocol that yields a fair coin under honest execution (χv = 1

2 ), the first equation above shows that
either s1(A(1)(v), χv) ≥ 1

2 (which implies that A(1)(v) ≥ 3
4 ) or s0(B(0)(v), χv) ≥ 1

2 (which implies that
B(0)(v) ≤ 1

4 ). That is, the protocol is not secure against an Alice who prefers 1 and a Bob who prefers
0. Similarly, the second equation shows that protocol is not secure when Alice and Bob prefer 0 and 1
respectively either.

We will prove the result by induction on the height h of Sv the subtree rooted at v. If h = 1, it is trivial
to see that both the conditions are satisfied. Let the four tuple associated with the performance of our attack
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on the Svb be (A(0)
b , A

(1)
b , B

(0)
b , B

(1)
b ) = (A(0)(vb), A(1)(vb), B(0)(vb), B(1)(vb)). We will only show how

the induction works for the first case, i.e. s1(A(1)(v), χv) + s0(B(0)(v), χv) ≤ 1. By induction hypothesis,
we know that: B

(0)
b ≤ χb and

1−A
(1)
b

(1− χb)
+

B
(0)
b

χb
≤ 1 =⇒ (1−A

(1)
b ) ≤

(
1−

B
(0)
b

χb

)
(1− χb).

(This inequality in fact holds for the extreme cases of χ0 = 0 and χ0 = 1 as well: when χ0 = 1, we have
A

(0)
1 ∈ [χ0, 1] =⇒ A

(0)
1 = 1; when χ0 = 0, then B

(0)
0 = 0 and our convention for the score will interpret

B
(0)
0

χ0
as 0.)

Suppose v is an Alice node and she outputs b as the next message with probability tb, where b ∈ {0, 1}.
Then A(1)(v) = t0A

(1)
0 + t1A

(1)
1 and B(0)(v) = p0B

(0)
0 + p1B

(0)
1 .

s1(A(1)(v), χ) + s0(B(0)(v), χ) =
1−A(1)(v)

(1− χ)
+

B(0)(v)
χ

=
t0(1−A

(1)
0 ) + t1(1−A

(1)
1 )

(1− χ)
+

p0B
(0)
0 + p1B

(0)
1

χ

≤ B
(0)
0 T0 + B

(0)
1 T1 +

t0(1− χ0) + t1(1− χ1)
(1− χ)

where T0 =
[

p0

χ − t0(1−χ0)
(1−χ)χ0

]
and T1 =

[
p1

χ − t1(1−χ1)
(1−χ)χ1

]
. If we show that T0 ≥ 0 and T1 ≥ 0, then indeed

s1(A(1)(v), χ) + s0(B(0)(v), χ) ≤ χ0T0 + χ1T1 +
t0(1− χ0) + t1(1− χ1)

(1− χ)

=
p0χ0 + p1χ1

χ
= 1

(using the fact that B
(0)
b ≤ χb). Now, substituting t0 = p0χ0(1−χ1)

(χ−χ0χ1) and t1 = p1χ1(1−χ0)
(χ−χ0χ1) , we observe that

T0 =
p0 [(1− χ)(χ− χ0χ1)− χ(1− χ0)(1− χ1)]

χ(1− χ)(χ− χ0χ1)
=

p0(χ1 − χ)(χ− χ0)
χ(1− χ)(χ− χ0χ1)

≥ 0

(using the fact that min{χ0, χ1} ≤ χ ≤ max{χ0, χ1}), and similarly T1 ≥ 0.
Now we need to show that A(1)(v) ∈ [χ, 1] and B(0)(v) ∈ [0, χ]. Note that if χ0 ≥ χ1 then t0 ≥ p0

and if χ1 ≥ χ0, then t1 ≥ p1. Hence we have A(1)(v) = t0χ0 + t1χ1 ≥ p0χ0 + p1χ1 = χ. Also, since
B

(0)
0 ≤ χ0 and B

(0)
1 ≤ χ1, we have B(0)(v) = p0B

(0)
0 + p1B

(0)
1 ≤ p0χ0 + p1χ1 = χ. This completes the

analysis of this simplified attack, which assumes t0 and t1 can be computed correctly.
Our actual attack is significantly complicated than the one explained in this section, by the fact that we

do not have oracles to find χv exactly (even given an NP oracle). In fact, we can only estimate χv with a
small additive error term. The effect of this error on our attack can be severe when χ is very close to 1 or
(χ− χ0χ1) is very small. The actual attack takes care of these special cases separately.

3.2 The Actual Attack
We describe our actual attack against a stateless protocol in Appendix C. The attack closely follows the
intuition above, but significantly differs in the details and the analysis. The differences arise from the fact
that the above attack depended on accurately knowing certain ratios, which simply cannot be estimated
sufficiently accurately.

As described in Figure 5, the attack has two additional checks before carrying out an approximate version
of the above attack. Firstly, if the color of the current node is very close to 0 or 1, the attack continues by
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simply following the protocol honestly (even if it later encounters nodes with different colors). Note that
this is done even on reaching a node with the color opposite to what the attack desires. The second check
is more subtle, and is designed to handle the technical difficulty in accurately estimating t0 and t1 when the
denominator is close to 0. In the case of Adv(1)

A (Alice biasing towards 1), this denominator is χ − χ0χ1;
if we see that χ is close to min{χ0, χ1}, then the current step of the attack is changed to weigh the two
children using the contribution (in the honest execution) that they make to the color of the current node, i.e.,
using probabilities hb = pbχb

χ instead of tb. If these checks pass, then the original attack (but with ratios
calculated according to the estimated values) is carried out.

In Appendix C, first we describe the attack in terms of a couple of oracles; but using the fact that π
is a stateless protocol, we show that we can indeed implement statistically close approximations of these
oracles, using black-box access to (the next message function of) π. Also, the attack needs estimating
various quantities with sufficient accuracy, which also can be carried out with black-box access to π.

In Appendix D, we prove the following theorem.

Theorem 1. Let π be a D round stateless coin-flipping protocol with expected outcome (under honest
execution) χ ∈ (0, 1). For any function (of the security parameter) 0 < ε < 1 define χ− = χ − χ

2 (1 − ε),
and χ+ = χ+ (1−χ)

2 (1−ε). Then there exist attacks Adv(0)
A , Adv(1)

A , Adv(0)
B and Adv(1)

B which use black-box
access to π and run in poly(1

ε + D) time, such that

1. A(1) ≥ χ+ or B(0) ≤ χ−, (i.e., not secure if Alice wants 1 and Bob wants 0)

2. and, B(1) ≥ χ+ or A(0) ≤ χ− (i.e., not secure if Bob wants 1 and Alice wants 0).

where A(b) (resp. B(b)), for b ∈ {0, 1}, is the expectation of the outcome when Alice runs the attack Adv(b)
A

against honest Bob (resp. Bob runs Adv(b)
B against honest Alice).

As a corollary of Theorem 1, we can conclude that:

Corollary 2. If a stateless protocol π is a µ-secure polynomial time implementation of χ∗-weak coin for any
constant 0 < χ∗ < 1, then µ ≤ 1

2 + negl(D), where D is the number of rounds in π and negl is a negligible
function.

Note that an ideal secure protocol for weak coin-flipping would be a 1-secure protocol. Relative to adver-
saries with access to a PSPACE oracle, all protocols are 0-secure protocols. Our attack is not as effective
as an attack with a PSPACE oracle, but instead renders any (stateless) protocol at most 1

2 + negl(D)-
secure. Theorem 1 is proven in Appendix D. Here we give a brief summary. At the heart of the analysis
is an analogue of the inductively maintained inequalities equation (1)-equation (3). These inequalities had
depended on the fact the we could arrange the quantities T0 and T1 to be positive. Unfortunately, this is no
more the case in the analysis of the actual attack. But by carefully choosing our parameters, we can carry
out a case analysis and prove Lemma 3. Note that we described the attack assuming access to oracles ΠH

and ΠT in addition to Π, and required estimates of various quantities. To complete the proof we show how
to estimate these values required by our attack (Lemma 4) and implement (good approximations of) the
oracles ΠT and ΠH (Lemma 5) using black-box access to the protocol π. Finally, in Appendix D.2 we give
the choice of parameters to conclude the proof of Theorem 1.

Finally, from Theorem 1 and Lemma 2 we obtain our main result.

Theorem 3. Let π be a polynomial time (possibly stateful) coin-flipping protocol with expected outcome
(under honest execution) χ ∈ (0, 1). For any function (of the security parameter) 0 < ε < 1 define
χ− = χ − χ

2 (1 − ε), and χ+ = χ + (1−χ)
2 (1 − ε). Then there exist attacks Adv(0)

A , Adv(1)
A , Adv(0)

B and

Adv(1)
B which use an NP oracle, but otherwise run in poly(1

ε + D) time, such that at
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1. A(1) ≥ χ+ or B(0) ≤ χ−,

2. and, B(1) ≥ χ+ or A(0) ≤ χ−,

where A(b) (resp. B(b)), for b ∈ {0, 1}, is the expectation of the outcome when Alice runs the attack Adv(b)
A

against honest Bob (resp. Bob runs Adv(b)
B against honest Alice).

Proof Sketch. Consider the stateless protocol π′ guaranteed by Lemma 2. (This protocol is polynomial time
given an NP oracle.) By Theorem 1, there are adversaries Adv(0)

A , Adv(0)
B , Adv(1)

A , Adv(1)
B , which attack π′,

and access π′ as a black-box. Thus these adversaries can be implemented in polynomial time, given an NP
oracle. By Lemma 2 (or rather, its proof) these adversaries have the same advantage with π as with π′, and
hence one of the four conditions stated in Theorem 1 hold with respect to π and these adversaries. Note that
these are the same conditions described above, arranged differently.

Finally, note that if NP ⊆ BPP, then a highly accurate NP oracle can be implemented in probabilistic
polynomial time, and hence the adversaries in the above theorem can be converted to PPT adversaries.

Corollary 4. If π is a µ-secure polynomial time implementation of χ∗-weak coin for any constant 0 < χ∗ <
1, then unless NP 6⊆ BPP, µ ≤ 1

2 +negl(D), where D is the number of rounds in π and negl is a negligible
function.

In particular, if there is a weak coin-flip protocol for a coin of bias 1
2 which is µ-secure with µ > 1

2 + α
for some non-negligible function α (corresponding to limiting the bias approximately to the range [14 , 3

4 ]),
then NP 6⊆ BPP.

4 Constant Round Weak Coin-Flipping
In this section we show a much stronger intractability implication of a weak coin-flipping protocol with a
very weak unbiasability guarantee, if the protocol has only constantly many rounds. Note that we do allow
the communication complexity of the protocol to be polynomial. We show the following result:

Theorem 5. If infinitely-often one-way functions do not exist then for any constant round coin-tossing
protocol π, there exist attacks Adv(0)

A , Adv(1)
A , Adv(0)

B and Adv(1)
B , such that for any ε = 1/poly(k) (0 <

ε < 1), the attacks run in polynomial time in k, and for sufficiently large k:

1. min
{
1−A(1), B(0)

}
≤ ε, and

2. min
{
A(0), 1−B(1)

}
≤ ε,

where A(b) (resp. B(b)) for b ∈ {0, 1}, is the expectation of the outcome when Alice runs the attack Adv(b)
A

against honest Bob (resp. Bob runs Adv(b)
B against honest Alice).

In other words, if infinitely-often one-way functions do not exist then with probability close to 1 either
Alice can bias the outcome to b or Bob can bias it to (1− b) starting from any transcript prefix v.

The attack has the following intuitive form: use the fact that any polynomial time function can be
inverted to implement next message function oracle for the protocol. At any point in the protocol, use this
to sample a polynomial-sized sub-tree of the protocol (with the density of children sampled at each node
increasing with depth), and run the PSPACE attack on this sampled tree to decide on the next move in the
attack. While conceptually simple, this idea runs into two complications.

• At each round, the response from the honest party may not fall within the sub-tree that was sampled
for the attack at that round; and as such the original attack computed may have no further relevance,
and no use in deciding the response in subsequent rounds. Further, the PSPACE attack involves
evaluating a max-average tree, and by sampling it is quite possible to miss the maximum.

9



• During the attack the distributions on the nodes at each level of the tree can deviate significantly from
that under the honest execution, and the next message function oracles need to work well on these
distributions. These distributions depend on the behavior of the attack in the previous rounds, which
however carries out recursive look-aheads (in implementing the PSPACE attack), and these look-
aheads in turn involve accessing the next message function oracles. A simple attempt at implementing
the next message function oracles can lead to circularity.

The second issue can be taken care of by carefully defining a family of next message function oracles, which
not only depend on what depth in the protocol it is sampling a message for, but also on which iteration in
the PSPACE attack it appears in.

The first issue is addressed by the following intuition: even though it is possible for (say) Alice to miss
the maximum (i.e., the child where her advantage is maximum) by a large margin when sampling, this means
that a random choice should cause Alice to perform badly; hence this node confers advantage to Bob who is
trying to bias the coin in the opposite direction. The actual calculations include more details, and are given
in Appendix E.

Implementing Inverters. Our attack is based on realizing an efficient algorithm I , called inverter, which
can efficiently perform the following task: Given a partial transcript v, it outputs a k-bit message m such
that Pr(m|v) is identical to the probability of π generating a transcript vm conditioned on the fact that v is
generated as a partial transcript.

Alternately, if we are able to sample uniformly at random from the set of randomness Rv of pairs
(rA, rB) such that Alice and Bob with local randomness rA and rB generate the partial transcript v when
running the protocol π, then we can implement I . We shall reverse sample from the set Rv and run the
protocol for one more round and obtain a transcript prefix vm.

We will show the following result:

Lemma 1. If infinitely-often one-way functions do not exist, then, for sufficiently large k, there exists a class
I = {Ĩi,j |i ∈ [D] and j ∈ [i]} of efficient inverters, such that if Alice uses Ĩi,j to invert v at height j when
she is attacking the (D− i+ 1)-th round then the behavior of Adv(1)

A is at most 1/poly(k) different from the
case when she uses the actual inverter I .

Let f(x) = y be a polynomial time function and D be the distribution of f(x) when x is uniformly
sampled. If one-way functions do not exist, then there exists an efficient algorithm A such that A(y) is 1/kc

close to the uniform distribution when y is sampled according to the distribution D. Note that the guarantee
is only for the distribution D and not for any arbitrary distribution.

So, we can not use this result to directly create an inverter. The main observation is that the set of nodes
Qi,j at height j required to invert when Alice is attacking the i-th round could be performed simultaneously.
In other words, they only depend on the nodes inverted while attacking i′ > i rounds or at higher levels
j′ > j. So, we define the the execution of Adv(1)

A just before it inverts Qi,j as the function f . Now, the
inverter Ii,j = A could be used to invert all partial transcripts in Qi,j .

It is worth mentioning that the time complexity of Ii,j is only guaranteed to be polynomial in the time
complexity of all the inverters {Ii′,j′ |i′ > i or j′ > j}. So, the time complexity of the inverter I1,1 turns out
to be kΘ(1)D

, which is polynomial if and only if D is constant. Therefore, this approach works only when
D is a constant. For details see Appendix E.
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gation, and a number of useful conversations. We also thank Boaz Barak and Yael Kalai for collaboration at
an early stage of this research.
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A Examples
Greedy does not work well. Greedy strategy is one of the basic strategies to bias the outcome towards b.
At a partial transcript v, output a bit d such that the color χvd is closer to b than χv(1−d). But this strategy
is not good and we explicitly construct a protocol tree where we can make the bias obtained by the greedy
algorithm arbitrarily small. Recall that if A/χv is written at a node, it means that Alice is supposed to send
the next message after the partial transcript v is generated and the subtree Sv computes a χv-coin when both
parties are honest. For simplicity, when we explain the transcript tree construction, we do not insist that
Alice and Bob nodes alternate. If an Alice node v follows an Alice node v′, then we can assume that there is
a dummy Bob node v′′ such that whatever bit is sent at v′′ it does not not effect the outcome. We can assume
that both children of v′′ are identical to v′.

Consider the following recursive graph construction (Figure 2):

1. For the base case of k = 0, define G0 as the tree where Alice announces the outcome of the 1
2 -coin.

2. For any other k > 0, we recursively define Gk using Gk−1. The root node v is an Alice node that
implements a 1

2 -coin. Its two children v0 and v1 are Bob nodes which implement 1
2 − ε and 1

2 + ε-
coins respectively. Nodes v00 is an Alice node implementing 1

2 − 2ε-coin and v11 is a Bob node
implementing 1

2 + 2ε coin. The Sv01 and Sv10 are the tree Gk−1.

A/1
2

G0:

A/1
2 − 2ε Gk−1 Gk−1 B/1

2 + 2ε

B/1
2 − ε B/1

2 + ε

A/1
2

For k ≥ 1, Gk:

Figure 2: Greedy strategy is not good.
Let gA

b (k) (resp. gB
b (k)) be the expectation of the outcome when Alice (resp. Bob) is trying to bias the

outcome to b in Gk.

gA
1 (k) =

1
2
gA
1 (k − 1) +

(
1
4

+ ε

)
=

1
2

+ 2ε +
Θ(1)
2k

gB
0 (k) =

1
2
gB
0 (k − 1) +

(
1
4
− ε

)
=

1
2
− 2ε +

Θ(1)
2k

By symmetry, 1− gA
0 (k) = gA

1 (k) and 1− gB
1 (k) = gB

0 (k). We see that we can drive the bias obtained by
the greedy algorithm to negligibly close to 1

2 .
Let hA

b (k) (resp. hB
b (k)) be the expectation of the outcome when Alice (resp. Bob) is trying to bias the
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outcome to b in Gk. We can write the following recurrence:

hA
1 (k) =

1
2
hA

1 (k − 1) +
(

3
8

+
2ε2(1− ε)
(1 + 4ε2)

)(
Adv(1)

A on Gk

)
=

3
4

+
4ε2(1− ε)
(1 + 4ε2)

+
Θ(1)
2k

hB
0 (k) =

1
2
hB

0 (k − 1) +
(

1
8
− 2ε2

)(
Adv(0)

B on Gk

)
=

1
4
− 4ε2 +

Θ(1)
2k

This shows that our attack achieves nearly close to 3/4 and 1/4 bias.

Need to attack at more than constant rounds. Consider the recursive graph construction as shown in
Figure 3. Fix a particular k and consider the tree Gk such that the probability that the honest protocol
reaches any A/1

2 leaf is ε and the probability of reaching any B/1
2 leaf is 1

k+1 −
kε

k+1 . If Bob is honest then
Alice can not bias the outcome by more than kε, which can be made arbitrarily small. If Bob is not honest
and he attacks at only c rounds, then the maximum bias he could generate is c

k+1 −
kcε
k+1 . So, to go beyond

1/poly(k) bias, Bob needs to attack at more than constant number of rounds.

B/1
2

G0 :

B/1
2

Gk :

A/1
2 A/1

2

B/1
2

Gk−1

Figure 3: Attacking constant number of grounds does not help.

Beyond 1/4 bias. Consider the class of adversarial strategies which uses only χv, χv0, χv1 and |v| to
determine the distribution according to which the next bit is sampled. We will show that any adversary in
this class can not bias by more than 1/4. Consider the performance of such adversaries on the graph in
Figure 4. Suppose the probability of reaching any child vb from a node v in the honest protocol is 1

2 . If Bob
is not honest, then with probability 1

2 it can decide the outcome of a 1
2 -coin. So, the maximum bias it can

obtain is 1/4. Now, if Alice is not honest then she can reach a leaf A/1
2 coin with probability 1

2 independent
of her strategy. So, she can obtain a maximum bias of 1/4.

If we expand the class of adversaries to include any adversary with constant look ahead in the protocol
tree, then we can generalize the graph in Figure 4 so that they can obtain at most 1/4 bias. The class
of adversaries we have considered currently can be interpreted as 1-look ahead adversaries. Suppose, we
introduce c redundant levels between any two levels of the graph in Figure 4. Then any adversary with
(c + 1) look ahead in the protocol tree can not obtain more than 1/4 bias. Note that by adding dummy
nodes, even if the adversary’s strategy looks ahead a bounded depth or tries to take into account whose turn
is next, this cannot help it achieve a better bias.
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B/1
2

A/1
2 A/1

2

B/1
2 A/1

2 A/1
2 B/1

2

Figure 4: Certain class of local algorithms can not go beyond 1/4 bias.

B Private State is Not Useful
Access to an NP-oracle can be used to reconstruct a correctly distributed random tape for a party in a
protocol, using just the public history of the protocol. We remark that while much weaker computational
power (namely inverting a one-way function) is enough for carrying out such a reconstruction in the normal
course of the protocol, it is much harder to ensure that the reconstruction works with adequate accuracy
even when the protocol is under attack and may result in a transcript distribution significantly different from
that in the normal execution. However, by a result on uniform generation of NP-witnesses given an NP
oracle [JVV86, BGP00], such reconstruction can be accurately carried out for any transcript history when an
NP-oracle is given. More formally, we need the following result.

Lemma 2. For any polynomial time protocol π for χ∗ weak coin-flipping that is µ-secure against polyno-
mial time adversaries with access to NP oracles, there is a state-less protocol π′ that runs in (expected)
polynomial time with access to an NP oracle, and is also a χ∗ weak coin-flipping that is µ-secure against
polynomial time adversaries with access to NP oracles.

Proof Sketch. We shall in fact show a much more general result here: π can be any arbitrary polynomial
time protocol (not necessarily for coin-flipping) and we can consider its behavior against any arbitrary class
of adversaries. We shall describe a protocol π′ which is executed with the help of an NP oracle, such that
any adversary’s view when interacting with honest players running π and those running π′ are identical (or
statistically close, if using a strict polynomial time implementation of π′).

To define π′ we shall use the result of Bellare et al. [BGP00] that for any NP relation R(·; ·), there is an
expected polynomial time algorithm SSAT

R (with access to the oracle for SAT) such that given x, it samples
an element uniformly from the set R−1(x) := {w|R(x;w) = 1}, provided that this set is non-empty.

Define RA(v; rA) = 1 iff v is a prefix of the transcript generated when Alice executes the protocol π
with a random tape rA and receives responses from Bob consistent with v. Note that this is indeed an NP
relation5 since Alice’s program is polynomial time. Hence, by [BGP00], SSAT

RA
(v) outputs a random tape rA

uniformly from R−1
A (v). Similarly define RB and SRB

.
Define π′ to be the stateless protocol in which Alice and Bob behave as follows: on being given a

transcript prefix v, Alice uses SSAT
RA

(v) to sample a random tape rA, internally simulates the stateful protocol
π with this random tape, and responses from Bob as given in v, and outputs the next bit after v in the
transcript so generated. Bob behaves symmetrically, using SRB

instead.
Then, the protocol tree defined for π′ is identical to that of π, and for any adversary, the view on attacking

π′ is the same as that of attacking π.

5More formally we can include the security parameter on both arguments to R to ensure that it is polynomially balanced.
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C Attack on Stateless Protocols
In this section we describe our actual attack against a stateless protocol, which follows the intuition of the
attack in Section 3.1, but does not use exact color oracles. Instead, the attack uses only the protocol itself as
a black-box.

Let π be a protocol for coin with bias χ∗ ∈ (0, 1) (henceforth, called a χ∗-coin). For convenience first
we shall describe the attack using a few oracles related to the π:

1. Π: Given a partial transcript v as input, it outputs the next message (bit) as specified by the protocol
π. (Recall that the protocol is stateless.)

2. ΠH : Given a partial transcript v as input, it samples a transcript τ as generated by the protocol,
conditioned on v being a prefix of τ and the outcome of the protocol at τ being 1 (heads). Then it
outputs the bit b such that vb is a prefix of τ .

3. ΠT : Given a partial transcript v as input, it samples a transcript τ as generated by the protocol,
conditioned on v being a prefix of τ and the outcome of the protocol at τ being 0 (tails). Then it
outputs the bit b such that vb is a prefix of τ .

Attack Adv(1)
A

A D round protocol π with bias χ∗ (along with corresponding oracles Π and ΠH ) is given. The attack
is parametrized by a function of the security parameter 0 < ε < 1. Let δ = min

{
(1−χ∗)ε

4 , χ∗ε
4

}
and

λ = min
{

δ3

36D
, ε3δ3

(72)3D3 , 1
29

}
= ε3δ3

(72)3D3 .

Alice performs the following attack at all nodes v where she is supposed to send the next bit. First,
compute the following estimates, as described in Lemma 4. Let χ̃ be an estimate of χ := χv, so that
|χ̃− χ| ≤ λ w.h.p.. Similarly, let χ̃0 and χ̃1 be estimates of χ0 := χv0 and χ1 := χv1 respectively.
Then proceed as follows:

1. If χ̃ ≥ 1− (δ + λ) or χ̃ ≤ (δ + λ): Henceforth, follow the protocol honestly by making calls to
Π. This case takes care of nodes in the transcript tree such that χ is too close to 0 or 1.

2. Else, if χ̃ −min{χ̃0 χ̃1} < λ1/3 + 2λ, then output d = ΠH(v) as the next message. This case
takes care of nodes in the transcript tree such that χ− χ0χ1 is too small.

3. Else (here, χ ∈ [δ, 1 − δ] and χ − min{χ0, χ1} ≥ λ1/3), we perform a variant of our original
attack. Let c′ ∈ {0, 1} be such that min{χ̃0, χ̃1} = χ̃c′ (i.e., the child with lower estimated
probability of heads). Let p0 and p1 be the probabilities assigned by π to the two possible next
messages at v, so that p0 +p1 = 1 and χ = p0χ0 +p1χ1. Let h̃c′ be an estimation of hc′ = pc′χc′

χ

such that
∣∣∣h̃c′ − hc′

∣∣∣ ≤ 3λ1/3 (see Lemma 4). Evaluate t̃c′ which is an approximation of

tc′ =
pc′χc′

(
1− χ(1−c′)

)
(χ− χ0χ1)

,

such that
∣∣t̃c′ − tc

∣∣ ≤ 9λ1/3 (Lemma 4). Set r̃c′ = min{t̃c′ ,max{0, h̃c′ − 3λ1/3}}.

Send the bit c′ with probability r̃c′ and send 1− c′ with probability 1− r̃c′ .

Figure 5: Attack Adv(1)
A for Alice to bias towards outcome 1.
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We will define the four attacks Adv(b)
A and Adv(b)

B , where b ∈ {0, 1} as before: Adv(b)
A is an algorithm

which will provide Alice with a strategy to bias the output towards b. Similarly, Adv(b)
B will provide a

strategy for Bob to bias the output towards b. In Figure 5, we explicitly define Adv(1)
A and all other attacks

can be symmetrically defined: algorithm Adv(0)
A is obtained from Adv(1)

A by interchanging the interpretations
of 1 (Heads) and 0 (Tails). And Adv(b)

B is defined similarly where that attack is carried out at Bob-nodes in
the protocol (i.e., where Bob sends the next bit of the transcript).

The attack refers to oracles ΠH and ΠT , and also estimates of various quantities. But (as we shall see)
since π is a stateless protocol, we can indeed implement statistically close approximations of these oracles,
and also obtain good estimates of the quantities used in the attack, simply using black-box access to the
protocol π.

D Proof of Theorem 1
In this section we analyze the protocol in Appendix C and prove Theorem 1.

First, similar to the analysis of our simpler attack, we shall prove a lower-bound on the sum of the scores
of a pair of attacks.

Lemma 3. For a stateless weak coin-flipping protocol π, if v is a node in the protocol tree at height h, we
have A(0)(v), B(0)(v) ∈ [0, χv] and A(1)(v), B(1)(v) ∈ [χv, 1]; and

s1(A(1)(v), χv) + s0(B(0)(v), χv) ≤ 1 +
δ

(1− χv)
+

δ

χv
+ νh

s0(A(0)(v), χv) + s1(B(1)(v), χv) ≤ 1 +
δ

(1− χv)
+

δ

χv
+ νh

where A(b)(v) (resp. B(b)), for b ∈ {0, 1}, is the expectation of the outcome when Alice runs the attack
Adv(b)

A against honest Bob (resp. Bob runs Adv(b)
B against honest Alice), and ν0 = 0 and νh+1 = 9λ1/3

δ +

νh

(
1 + 9λ1/3

δ

)
.

We will just prove the first part of the result, i.e. s1(A(1)(v), χv) + s0(B(0)(v), χv) ≤ 1 + δ
(1−χv) +

δ
χv

+ νh. We will proceed by induction on the height of v (i.e., height of Sv, the sub-tree rooted at v). It is
easy to see that for the base case of h = 1, the result is true since χv ∈ {0, 1} and then one of the two terms
is 1 and the other is 0 (corresponding to the fact that one of Alice and Bob has zero advantage (and hence
score 1) in biasing to their desired value, while for the other party, the outcome is completely biased to their
desired value).

Suppose v has height (h+1) and we will use the notation χ = χv, χ0 = χv0 and χ1 = χv1. Let χlow =
min{χ0, χ1} = χc and χhigh = max{χ0, χ1} = χ(1−c), where c ∈ {0, 1}. If p0 and p1 are the probabilities
that the next bit after v is 0 and 1, respectively, then we can express χ = pcχlow + p(1−c)χhigh . The

four tuple summarizing the performance of our attack on the protocol on Svb be (A(0)
b , A

(1)
b , B

(0)
b , B

(1)
b ) =

(A(0)(vb), A(1)(vb), B(0)(vb), B(1)(vb)). By induction hypothesis, we have the following constraint:

s1(A
(1)
b , χb) + sb(B

(0)
b , χb) =

1−A
(1)
b

(1− χb)
+

B
(0)
b

χb
≤ 1 +

δ

(1− χb)
+

δ

χb
+ νh

=⇒ (1−A
(1)
b ) ≤

[
1 +

δ

(1− χb)
+

δ

χb
+ νh −

B
(0)
b

χb

]
(1− χb)

Suppose, Alice is expected to send the bit after v is generated in the protocol. She decides to send 0
with probability r̃0 and 1 with probability r̃1 = 1 − r̃0. Now, A(1)(v) = r̃0A

(1)
0 + r̃1A

(1)
1 and B(0)(v) =
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p0B
(0)
0 + p1B

(1)
1 . We define the following quantity E:

E = s1(A(1)(v), χ) + s0(B(0)(v), χ) =
1−A(1)(v)

(1− χ)
+

B(0)(v)
χ

=
r̃0(1−A

(1)
0 ) + r̃1(1−A

(1)
1 )

(1− χ)
+

p0B
(0)
0 + p1B

(0)
1

χ

≤ B
(0)
0

[
p0

χ
− r̃0(1− χ0)

(1− χ)χ0

]
+ B

(0)
1

[
p1

χ
− r̃1(1− χ1)

(1− χ)χ1

]
+

r̃0(1− χ0) + r̃1(1− χ1)
(1− χ)

+
(r̃0 + r̃1)δ
(1− χ)

+
δ

(1− χ)

(
r̃0(1− χ0)

χ0
+

r̃1(1− χ1)
χ1

)
+ νh

(
r̃0(1− χ0) + r̃1(1− χ1)

(1− χ)

)
Let T̃0 =

[
p0

χ − r̃0(1−χ0)
(1−χ)χ0

]
and T̃1 =

[
p1

χ − r̃1(1−χ1)
(1−χ)χ1

]
. Let δ

χ′ = δ
(1−χ)

(
r̃0(1−χ0)

χ0
+ r̃1(1−χ1)

χ1

)
and

ν ′h = νh

(
r̃0(1−χ0)+r̃1(1−χ1)

(1−χ)

)
. We define r∗b as the value of r̃b such that T̃b = 0. It is impossible to have

T̃0, T̃1 < 0 because r∗0 + r∗1 > 1 (Lemma 6). So, there are only three cases to consider:

1. If T̃0 ≥ 0 and T̃1 ≥ 0, then

E ≤ χ0T̃0 + χ1T̃1 +
r̃0(1− χ0) + r̃1(1− χ1)

(1− χ)
+

δ

(1− χ)
+

δ

χ′
+ ν ′h

= 1 +
δ

(1− χ)
+

δ

χ′
+ ν ′h = E(+,+)

2. If T̃0 ≥ 0 and T̃1 < 0, then:

E ≤ χ0T̃0 + 0 · T̃1 +
r̃0(1− χ0) + r̃1(1− χ1)

(1− χ)
+

δ

(1− χ)
+

δ

χ′
+ ν ′h

=
p0χ0

χ
+

r̃1(1− χ1)
(1− χ)

+
δ

(1− χ)
+

δ

χ′
+ ν ′h

= 1 +
δ

(1− χ)
+

δ

χ′
+
(

r̃1(1− χ1)
(1− χ)

− p1χ1

χ

)
+ ν ′h

= E(+,−)

3. Similarly, if T̃0 < 0 and T̃1 ≥ 0, then:

E ≤ 1 +
δ

(1− χ)
+

δ

χ′
+
(

r̃0(1− χ0)
(1− χ)

− p0χ0

χ

)
+ ν ′h

= E(−,+)

In our attacks, we intend to use r̃c ≤ hc = pcχc

χ because:

1
χ′

=
1

(1− χ)

(
r̃0(1− χ0)

χ0
+

r̃1(1− χ1)
χ1

)
≤ 1

χ

⇐⇒ r̃0

χ0
+

r̃1

χ1
≤ 1

χ

⇐⇒ r̃c

(
1
χc
− 1

χ1−c

)
≤
(

1
χ
− 1

χ1−c

)
⇐⇒ r̃c ≤

pcχc

χ
= hc

The three cases of our attack are analyzed below:
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Case 0: Suppose χ̃ ≥ 1−(δ+λ) or χ̃ ≤ (δ+λ), then we know that w.h.p. χ ≥ 1−(δ+2λ) or χ ≤ (δ+2λ).
In this case Lemma 8 shows that the induction goes through.

Case 1: In this case χ ∈ [δ, 1− δ] and χ−χc ≤ λ1/3 +4λ. We use r̃0 = p0χ0

χ and r̃1 = p1χ1

χ and Lemma 9
shows that the induction also works in this case.

Case 2: In this case χ ∈ [δ, 1−δ] and χ̃−min{χ̃0, χ̃1} ≥ λ1/3 +2λ. Observe that |χ0 − χ1| ≥ λ1/3 ≥ 2λ.
So, χ̃0 < χ̃1 if and only if χ0 ≤ χ1. Therefore, c = c′.

Since, (χ̃−min{χ̃0, χ̃1}) ≥ λ1/3 + 2λ, we have (χ− χ0χ1) ≥ λ1/3. So, we can use Lemma 4
to estimate tc such that

∣∣t̃c − tc
∣∣ ≤ 9λ1/3. Recall, r̃c = min

{
t̃c,max

{
0, h̃c − 3λ1/3

}}
≤ hc

(Lemma 11). Now, Lemma 12 implies that |r̃c − tc| ≤ 9λ1/3 and Lemma 10 shows that the induction
works for this case.

Observe that in all cases of our attack, we used r̃c ≤ hc = pcχc

χ ≤ pc and hence A(1)(v) = r̃cA
(1)
c +

r̃(1−c)A
(1)
(1−c) ≥ r̃cχc + r̃(1−c)χ(1−c) ≥ pcχc + p(1−c)χ(1−c) = χ. And B(0)(v) = p0B

(0)
0 + p1B

(0)
1 ≤

p0χ0 + p1χ1 = χ. This completes the proof of this lemma.

D.1 Estimating Quantities and Implementing Oracles ΠH and ΠT

Estimation of quantities. In our attack, we used estimations of χ, χb, pb, hb = pbχb
χ and tb = pbχb(1−χ(1−b))

(χ−χ0χ1) .
The color of any node can be estimated by sampling N of transcripts which have v as their prefix, according
to the honest distribution, and computing the average of all the outcomes. A random transcript can be gen-
erated by repeated invocation of the oracle Π. By simple Chernoff Bound, if N = (D + 1/ε)/λ2, then the
difference between the estimated and actual colors is at most λ with probability 1 − exp(−Θ(D + 1/ε)).
Similarly, to estimate pb, invoke Π at v for N times and estimate pb as the fraction of instances where b is
obtained the next bit.

Estimation of hb and tb is performed by estimating the individual quantities in the expression and then
using them for the calculation. For example, to estimate hb we first compute p̃b (estimation of pb), χ̃b

(estimation of χb) and χ̃ (estimation of χ). Then we define h̃b = p̃bχ̃b
χ̃ . But the error in estimation could

increase significantly if χ is very small. So, this method to estimate hb should only be used when χ is larger
than a particular threshold. Lemma 4 provides the exact details and bounds on these values:

Lemma 4 (Estimation). In the oracle world we can efficiently find χ̃, χ̃0, χ̃1, p̃b, h̃b and t̃b such that, w.h.p.:

1. |χ̃− χ| , |χ̃0 − χ0| , |χ̃1 − χ1| , |p̃c − pc| ≤ λ, and

2.
∣∣∣h̃b − hb

∣∣∣ ≤ 3λ1/3, if χ ≥ δ ≥ λ1/3 and λ ≤ 1/3.

3.
∣∣t̃b − tb

∣∣ ≤ 9λ1/3, if χ− χ0χ1 ≥ λ1/3 and λ ≤ 1
29 .

Proof. We provide the explicit mechanisms to evaluate these quantities.

1. Estimation of pb: Call Π N times at node v. Let Nb be the number of times the output of the oracle is
b. Define p̃b = Nb/N . If N = D/λ2 then w.h.p. |p̃b − pb| ≤ λ.

2. Estimation of χ, χ0 and χ1: Using access to Π, sample N transcripts with prefix v. Let N1 be the
total number of transcripts where the outcome of the coin is 1. Define χ̃ = N1/N . If N = D/λ2 then
w.h.p. |χ̃− χ| ≤ λ. Similarly, we can also estimate χ̃0 and χ̃1.
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3. Estimation of hb: Compute p̃b, χ̃b and χ̃ as approximations of pb, χb and χ, such that |p̃b − pb| ≤ λ,
|χ̃b − χb| ≤ λ and |χ̃− χ| ≤ λ. Let a1 = pbχb. Define the estimation of a1 as ã1 = p̃bχ̃b. We
know that |ã1 − a1| ≤ 3λ. Define the estimation of a2 = 1

χ as ã2 = 1
χ̃ . Then, we know that

|ã2 − a2| ≤ λ
δ(δ−λ) ≤ 2λ/δ2 ≤ 2λ1/3. Define h̃b = ã1ã2. Now,

∣∣∣h̃b − hb

∣∣∣ ≤ 2λ + 2λ1/3 ≤ 3λ1/3.

4. Estimation of tb: Suppose we compute χ̃, χ̃0, χ̃1 and p̃b such that |χ̃− χ| ≤ λ, |χ̃0 − χ0| ≤ λ,
|χ̃1 − χ1| ≤ λ and |p̃b − pb| ≤ λ. First we will estimate a1 = pbχb

(
1− χ(1−b)

)
. Define ã1 =

p̃bχ̃b

(
1− χ̃(1−b)

)
, then |ã1 − a1| ≤ 7λ. Next, we will estimate a2 = (χ− χ0χ1). Define ã2 =

(χ̃− χ̃0χ̃1), then |ã2 − a2| ≤ 4λ. Let a3 = 1/a2. If we define ã3 = 1/ã2, then:

|ã3 − a3| ≤
4λ

λ1/3
(
λ1/3 − 4λ

) (
∵ a2 ≥ λ1/3

)
≤ 8λ1/3

(
∵

1(
λ1/3 − 4λ

) ≤ 2
λ1/3

)

Let t̃b = ã1ã3, then
∣∣t̃b − tb

∣∣ ≤ 9λ1/3, because λ ≤ 1
29 .

Implementing the Oracles ΠH and ΠT . We show how to implement these oracles using only black-box
access tothe protocol.

Lemma 5. Given black-box access to the next message function of a stateless protocol π, we can efficiently
implement the oracle Π and provide statistically close approximations of ΠH and ΠT on queries v such that
χv ∈ [δ, 1− δ].

Proof. Implementing Π simply involves picking a random string r uniformly at random and returning the
bit fπ(v; r), where fπ is the next message function of the protocol π.

Suppose we want to implement ΠH for input v, such that χv ≥ δ. We generate (D + 1/ε)/δ transcripts
which are extensions of v. (This is performed by repeatedly calling Π on ui starting with u|v| = v and
ui+1 := Π(ui), till getting a complete transcript τ = uD.)

If there are no transcripts with outcome 1 (Heads) then we return 0 as the bit after v. Otherwise, return the
bit after v in the first transcript which has outcome 1 (Heads). Conditioned on there being such a transcript,
the bit produced is correctly distributed. On the other hand, the probability that none of the transcripts has
outcome 1 is at most (1 − δ)(D+1/ε)/δ ≤ exp(−D − 1/ε). So the probability of generating the output b is
exponentially close to hb. The oracle ΠT is also implemented similarly.

So, by making at most D(D + 1/ε)/δ calls to f(·; ·) we can implement Π̃H and Π̃T that are statistically
close to ΠH and ΠT respectively, for all v such that χv ∈ [1− δ, δ].

D.2 Putting everything together
Now we can combine Lemma 3, Lemma 4 and Lemma 5 to obtain Theorem 1. When we run our attack in the

oracle world, we have νD =
(
1 + 9λ1/3

δ

)D
− 1 ≤ 18Dλ1/3/δ ≤ ε/4, since 9λ1/3/δ ≤ 1 and λ ≤

(
εδ

72D

)3
.

So, in the oracle world, for the root node of the protocol we have:

s1(A(1)(v), χ∗) + s0(B(0)(v), χ∗) ≤ 1 +
δ

(1− χ∗)
+

δ

χ∗
+

ε

4
≤ 1 +

3ε

4

s0(A(0)(v), χ∗) + s1(B(1)(v), χ∗) ≤ 1 +
δ

(1− χ∗)
+

δ

χ∗
+

ε

4
≤ 1 +

3ε

4
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In the oracle world, the oracles are accessed at most poly(D + ε−1) times. Since the approximate oracles
Π̃H and Π̃T are statistically close to the respective original oracles, the attack behavior in the real world and
the oracle world differ by at most ε/4. So, in the real world, for the root node of the protocol π we have:

s1(A(1)(v), χ∗) + s0(B(0)(v), χ∗) ≤ 1 + ε

s0(A(0)(v), χ∗) + s1(B(1)(v), χ∗) ≤ 1 + ε

Let χ+ and χ− be such that s1(χ+, χ∗) = s0(χ−, χ∗) = 1
2 + ε

2 . Now, Theorem 1 immediately follows.

D.3 Deferred Calculations
Lemma 6. If χ0, χ1, p0 ∈ (0, 1) then 1− r∗(1−c) < r∗c < pc.

Proof. Recall that r∗(1−c) = p(1−c)

[
χhigh−χχhigh

χ−χχhigh

]
and r∗c = pc

[
χlow−χχlow

χ−χχlow

]
= pc

“
1
χ
−1

”
“

1
χlow

−1
” < pc , where

χ = pcχlow + p(1−c)χhigh and pc + p(1−c) = 1.

1− r∗(1−c) = 1−
p(1−c)(1− χ)χhigh

(1− χhigh)χ

=
(χ− p(1−c)χhigh)− (χχhigh − p(1−c)χχhigh)

(1− χhigh)χ

= pc

[
χlow − χχhigh

χ− χχhigh

]

Consider the function f(x) = pc

[
1− χ−χlow

χ−χx

]
. It is easy to see that it is a monotonically decreasing

function. Observe that f(χlow ) = r∗c and f(χhigh) = 1− r∗(1−c). So, 1− r∗(1−c) < r∗c < pc.

Lemma 7. Let χ = p0χ0 + p1χ1 ≤ 1− δ and p0, p1 ∈ [0, 1] such that p0 + p1 = 1. Suppose r̃0 = r0 + e
and r̃1 = 1− r̃0, where rc ≤ pc and e ∈ [−B,B], then:(

r̃0(1− χ0) + r̃1(1− χ1)
(1− χ)

)
≤ 1 +

B

δ

Proof. Consider the following manipulation:(
r̃0(1− χ0) + r̃1(1− χ1)

(1− χ)

)
=

1− (rcχc + (1− rc)χ(1−c)) + e(χ(1−c) − χc)
(1− χ)

≤ 1− χ + e

(1− χ)
≤ 1 +

B

δ

Lemma 8 (Case 0). If χ ≥ 1 − (δ + 2λ) or χ ≤ (δ + 2λ) and we honestly follow the protocol then
E ≤ 2 ≤ 1 + δ

(1−χ) + δ
χ + νh+1.

Proof. The result is immediate from the observation that E ≤ 2 and from the following inequality:

1 ≤ δ

1− (1− (δ + 2λ))
+ ν1

Lemma 9 (Case 1). If χ − χc ≤ λ1/3 + 4λ, χ ≤ 1 − δ, and we substitute r̃0 = p0χ0

χ and r̃1 = p1χ1

χ , then
E ≤ 1 + δ

(1−χ) + δ
χ + νh+1.
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Proof. Since r̃c = pcχc

χ > r∗c and r̃(1−c) = p(1−c)χ(1−c)

χ < r∗(1−c), we have T̃c < 0 and T̃(1−c) > 0. We
know that 1

χ′ ≤
1
χ if and only if r̃c ≤ hc. Because e = 0, we can use the bound in Lemma 7 in our lower

bound to obtain:

E ≤ 1 +
δ

(1− χ)
+

δ

χ′
+

pcχc

χ

(
χ− χc

(1− χ)

)
+ ν ′h

≤ 1 +
δ

(1− χ)
+

δ

χ
+

λ1/3 + 4λ

δ
+ νh

≤ 1 +
δ

(1− χ)
+

δ

χ
+ νh+1

Lemma 10 (Case 2). If χ ≤ 1−δ, and we substitute r̃0 = t0+e and r̃1 = t1−e, where e ∈ [−9λ1/3, 9λ1/3]
and r̃c ≤ hc, then E ≤ 1 + δ

(1−χ) + δ
χ + νh+1.

Proof. Recall that 1
χ′ ≤

1
χ if and only if r̃c ≤ hc. Since tc < pc, we can use the bound in Lemma 7. When

we substitute r̃0 and r̃1 and we get T̃low ≥ 0 and T̃high ≥ 0 then:

E(+,+) ≤ 1 +
δ

(1− χ)
+

δ

χ′
+ ν ′h

≤ 1 +
δ

(1− χ)
+

δ

χ
+ νh

(
1 +

9λ1/3

δ

)

≤ 1 +
δ

(1− χ)
+

δ

χ
+ νh+1

If we substitute r̃0 and r̃1 and we get T̃0 ≥ 0 and T̃1 < 0 then we know that r̃1 = r∗1 + e′ such that
e′ ∈ [0, 9λ1/3] (Lemma 11). In this case:

E(+,−) ≤ 1 +
δ

(1− δ)
+

δ

χ′
+

e′(1− χ1)
(1− χ)

+ ν ′h

≤ 1 +
δ

(1− χ)
+

δ

χ
+

e′(1− χ1)
(1− χ)

+ νh

(
1 +

9λ1/3

δ

)

≤ 1 +
δ

(1− χ)
+

δ

χ
+

9λ1/3

δ
+ νh

(
1 +

9λ1/3

δ

)

= 1 +
δ

(1− χ)
+

δ

χ
+ νh+1

Similarly, if T̃0 < 0 and T̃1 ≥ 0 then:

E(−,+) ≤ 1 +
δ

(1− χ)
+

δ

χ′
+

e′(1− χ0)
(1− χ)

+ ν ′h

≤ 1 +
δ

(1− χ)
+

δ

χ
+

e′(1− χ0)
(1− χ)

+ νh

(
1 +

9λ1/3

δ

)

≤ 1 +
δ

(1− χ)
+

δ

χ
+

9λ1/3

δ
+ νh

(
1 +

9λ1/3

δ

)

= 1 +
δ

(1− χ)
+

δ

χ
+ νh+1
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Lemma 11. tc ≤ r∗c ≤ hc and t(1−c) ≤ r∗(1−c) and tc + t(1−c) = 1.

Proof. It is trivial to see that r∗c = pcχc(1−χ)
χ(1−χc)

≤ hc = pcχc

χ . The remainder of the proof is immediate from
simple manipulation of terms:

tc =
pcχc(1− χ(1−c))

(χ− χ0χ1)
≤ pcχc(1− χ)

χ(1− χc)
= r∗c

⇐⇒ χ− (χ0 + χ1)χ + χχ0χ1 ≤ χ− χ0χ1 − χ2 + χχ0χ1

⇐⇒ 0 ≤ (χ0 − χ)(χ− χ1)

⇐⇒ t(1−c) =
p(1−c)χ(1−c)(1− χc)

(χ− χ0χ1)
≤

p(1−c)χ(1−c)(1− χ)
χ(1− χ(1−c))

= r∗(1−c)

And for the second part,

tc + t(1−c) =
p0χ0 − p0χ0χ1 + p1χ1 − p1χ0χ1

(χ− χ0χ1)
= 1

Lemma 12. If
∣∣t̃c − tc

∣∣ ≤ 9λ1/3,
∣∣∣h̃c − hc

∣∣∣ ≤ 3λ1/3 and r̃c = min{t̃c,max{0, h̃c − 3λ1/3}}, then

|r̃c − tc| ≤ 9λ1/3 and r̃c ≤ hc.

Proof. Let ã = max{0, h̃c−3λ1/3}. It is trivial to observe that ã ≤ hc. We will show that |ã− hc| ≤ 6λ1/3,
i.e. ã is a good approximation of hc. If h̃c ≥ 3λ1/3 then the result is trivial. Otherwise, hc ≤ 6λ1/3 and,
hence, |ã− pc| ≤ 6λ1/3.

If t̃c ≤ ã then |r̃c − tc| ≤ 9λ1/3. Otherwise, i.e. t̃c > ã, we need to consider two cases. If tc ≤ ã then
|ã− tc| = ã − tc ≤ t̃c − tc =

∣∣t̃c − tc
∣∣ ≤ 9λ1/3. If hc ≥ tc ≥ ã (Lemma 11) then |ã− tc| ≤ |ã− hc| ≤

6λ1/3. Hence, |r̃c − tc| ≤ max{6λ1/3, 9λ1/3} = 9λ1/3.
Moreover, r̃c ≤ ã ≤ hc.

E Constant Round Weak Coin-Flipping
In this section we will consider protocols whose transcripts are polynomially long but there are only constant
number of rounds (i.e., alternations between Alice and Bob while generating the transcript). In general, the
transcript tree can be thought of as a depth D (constant) tree with 2k fan-out at each node, where k is the
security parameter.

Recall that A(b)(v) (resp. B(b)(v)) represents the expectation of the outcome when Alice (resp. Bob)
wants to bias the outcome towards b in the subtree Sv. We will show the following result:

Theorem 5. If infinitely-often one-way functions do not exist then for any constant round coin-tossing
protocol π, there exist attacks Adv(0)

A , Adv(1)
A , Adv(0)

B and Adv(1)
B , such that for any ε = 1/poly(k) (0 <

ε < 1), the attacks run in polynomial time in k, and for sufficiently large k:

1. min
{
1−A(1), B(0)

}
≤ ε, and

2. min
{
A(0), 1−B(1)

}
≤ ε,

where A(b) (resp. B(b)) for b ∈ {0, 1}, is the expectation of the outcome when Alice runs the attack Adv(b)
A

against honest Bob (resp. Bob runs Adv(b)
B against honest Alice).

In other words, if infinitely-often one-way functions do not exist then with probability close to 1 either
Alice can bias the outcome to b or Bob can bias it to (1− b) starting from any transcript prefix v.
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E.1 Oracle World
For simplicity, we will prove Theorem 5 in an oracle world where we have access to inverters. An inverter I ,
when presented with a partial transcript v, honestly extends v by one round. The challenge is to implement
these inverters so that they work well on the distributions effected by the attack (which in turn depends on
inverters). In Section E.2, we will show how to efficiently approximate these inverters, if infinitely-often
one-way functions do not exist, such that the actual algorithm’s execution differ from the execution of the
attack in the oracle world by at most 1/poly(k).

Hypothetical Attack. First we present the ideal attack we want to perform when we are provided access
to inverters. We will describe the attack for Alice to bias towards 1 and other attacks can be analogously
defined. When Alice wants to bias the outcome towards 1, she attacks at all nodes in the transcript tree
which are Alice nodes. Suppose v is a partial transcript generated during the execution of the protocol. Our
attack is recursively defined. Let h be the height of the node v in the transcript tree and A(1)(v) be the
expected outcome when Alice is trying to bias towards 1 by performing her attack v onwards. For a leaf,
A(1)(v) is defined to be the color of v and for a Bob node v, A(1)(v) is the expectation of A(1)(u), where u
is a honest extension of the partial transcript v. When v is an Alice node, we shall use the following strategy
for Alice: Alice will sample Nh extensions of the partial transcript v, i.e. {u1, . . . , uNh

}, and finds i ∈ Nh

such that A(1)(ui) = maxi∈[Nh] ui. She sends the next message so that the computation moves to the node
ui in the transcript tree. Thus, A(1)(v) is defined as the expectation of maxi∈[Nh] ui where each ui is an
honest extension of v. The quantity Nh will be defined suitably later in this section. We remark that, for
every node v in the transcript tree, A(1)(v) or B(0)(v) are close to 1 or 0 respectively. This statement will be
formalized as a lemma later in this section and we will also see how we can choose our parameters so that
Alice or Bob can force 1 or 0 with near certainty.

Actual Attack. Despite having access to inverters, it is extremely hard to exactly compute the expected
A(1)(u) when u is an honest extension of v. The problem is considerably harder when we try to compute
the expectation maxi∈[Nh] ui. Instead, we will try to estimate the performance of the hypothetical attack
using repetitive sampling. Note that we might incur an additive error in our estimation and, with extremely
low probability, our estimation could be completely wrong. Thus, we will try to compute Ã(1)(v) and
B̃(0)(v) which are good estimations of A(1)(v) and B(0)(v) respectively with high probability; and we will
recursively use them in our attack instead of the exact A(1)(v) and B(0)(v) values.

Formally, the functions Ã(1)(v), B̃(0)(v) are such that, with probability (1−εh), the following conditions
are satisfied:

1.
∣∣∣A(1)(v)− Ã(1)(v)

∣∣∣ ≤ εh,

2.
∣∣∣B(0)(v)− B̃(0)(v)

∣∣∣ ≤ εh, and

3. min
{

1− Ã(1)(v), B̃(0)(v)
}
≤ εh,

where h is the height of v in the transcript tree, εh+1 = Γ1/2ε
1/6
h and ε1 = Γ3/5ε6

D
and Γ is a parameter

which will be defined later. The parameter Γ will be a large number which will be of the form (1/ε)Θ(1).

::::
Use

::
ε0::::::::

instead
::
of

:::
ε1::

in
::::
the

::::::::::
recursion.

Given, a particular ε = 1/poly(k), we will show how to perform our attack. We will prove the following
result:

Lemma 13. In the oracle world where we have access to the ideal inverters, we can efficiently implement
Ã(1)(v) and B̃(0)(v) for all partial transcripts v; and min{1 − A(1)(v), B(0)(v)} ≤ εh, where h is the
height of the node v in the transcript tree.
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We emphasize that the condition min{1−A(1)(v), B(0)(v)} ≤ εh is not probabilistic, unlike the proper-
ties of the quantities Ã(1)(v) and B̃(0)(v). We also do not try to obtain tighter bounds because the qualitative
result does not change; although as intermediate steps, we will prove and use tighter bounds on these quan-
tities. To prove this lemma, we will proceed by induction on the height h of the node v. Recall that leaves,
which correspond to complete transcripts, have height h = 0 and the root r of the transcript tree has height
h = D. For the base case, consider any node v at height 0, i.e. either Alice or Bob announces that the
outcome is 0 or 1. In this case, it is trivial to implement Ã(1)(v) and B̃(0)(v).

For the inductive step, we will show that given an implementation of these functions for nodes with
height h we can implement these functions for any node at height (h + 1). W.l.o.g., let v be an Alice node
at height (h + 1).

Computation of Ã(1)(v). Prepare a set {u1, . . . , uNh+1
}, where Nh+1 = ε

−1/2
h , of honest extensions of

the partial transcript v. Find the maximum Ã(1)(ui), for i ∈ [Nh+1]. Recall, that A(1)(v) is the expected
outcome of this experiment. Perform this task Mh+1 = Γ1/3ε

−1/3
h times and define Ã(1)(v) as the average

of the respective maximums. Intuitively, we are repeating the experiment Mh+1 times to obtain a good esti-
mation of A(1)(v). We will prove that this definition of Ã(1)(v) suffices by considering several intermediate
hybrid worlds.

1. As an intermediate world, suppose we have access to the ideal values of A(1)(u), where u is a honest
extension of the transcript v. A(1)(v) is defined as the expected outcome when we honestly sample
Nh+1 children of v and compute their average. Repeating this experiment Mh+1 times helps us
estimate A(1)(v) with ζ such that, with probability 1− exp(−Θ(Γ)), the quantity

∣∣ζ −A(1)(v)
∣∣ is at

most
√

Γ
Mh+1

= k1/3ε
1/6
h . We will choose Γ = Θ

((
1

ε6
D

)5/8
)

such that,

exp(−Θ(Γ)) ≤ Θ
(

1
Γ

)
≤ Γ3/5ε6

D
= ε1

≤ εh

This implies that the expression 1 − exp(−Θ(Γ)) in the Chernoff bound is at least 1 − εh, i.e. with
probability (1− εh) our estimation is within k1/3ε

1/6
h additive error of the actual value of A(1)(v).

2. Now, we replace every ideal value of A(1)(u) with (A(1)(u))′ such that (A(1)(u))′ = A(1)(u) with
probability 1−εh. In this hybrid, we get a new estimate ζ ′ such that, with probability 1−Mh+1Nh+1εh−
εh = 1−k1/3ε

1/6
h −εh, the error in our estimation

∣∣ζ ′ −A(1)(v)
∣∣ is at most k1/3ε

1/6
h . This step follows

from union bound.

3. Finally, replacing (A(1)(u))′ values with the Ã(1)(u) values, the new estimate Ã(1)(v) can deviate at
most εh away from the estimated ζ ′. This step follows from the fact that Ã(1)(v) is a convex linear
combination of Ã(1)(u) values. Thus, we can conclude that

∣∣∣A(1)(v)− Ã(1)(v)
∣∣∣ ≤ k1/3ε

1/6
h + εh ≤

εh+1, with probability at least 1− k1/3ε
1/6
h − εh ≥ 1− εh+1.

Computation of B̃(0)(v). Compute {u1, . . . , uMh+1
} honest extensions of the partial transcript v. Define

B̃(0)(v) as the average of B̃(0)(ui), where i ∈ [Mh+1]. Similar to the argument presented above, with
probability at least (1−Mh+1εh− εh) ≥ (1− εh+1), the quantity

∣∣∣B(0)(v)− B̃(0)(v)
∣∣∣ is at most Mh+1εh +

εh ≤ Γ1/3ε
1/6
h + εh ≤ εh+1.
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Attacks are good. For the final step in our inductive proof, we need to show that the quantities Ã(1)(v)
and B̃(0)(v) satisfy the third property of our theorem, i.e. at least one them is a very good attack; and we also
need to show that A(1)(v) or B(0)(v) is (respectively) close to 1 or 0 as well. Let (1− p) be the probability
of A(1)(u) ≥ 1 − εh, where u is some honest extension of v by one round. Let q ≥ p (since, inductively,
A(1)(u) or B(0)(v) is within εh of 1 or 0 respectively) be the probability of B(0)(u) ≤ εh, where u is some
honest extension of v by one round. Observe that the maximum of Nh+1 samples of A(1)(u) is at least
1− εh, unless each one of the sampled A(1)(u)s were less than 1− εh. Thus, the expected outcome A(1)(v)
is at least

(
1− pNh+1

)
(1 − εh). Similarly, one can argue that B(0)(v) ≤ (1 − p) + pεh ≤ (1 − p) + εh.

There are two cases to consider:

1. If p ≥ 1− ε
1/4
h , then B(0)(v) ≤ ε

1/4
h + εh.

2. If p ≤ 1− ε
1/4
h , then

A(1)(v) ≥
(
1− pNh+1

)
(1− εh)

≥
(

1−
(
1− ε

1/4
h

)Nh+1
)

(1− εh) , since p ≤ 1− ε
1/4
h

≥
(
1− exp

(
−Nh+1ε

1/4
h

))
(1− εh) , since (1− x) ≤ exp(−x)

=
(
1− exp

(
−ε
−1/4
h

))
(1− εh) , since Nh+1 = ε

−1/2
h

≥ (1− ε
1/4
h )(1− εh) , since x ≤ 1 =⇒ exp(−1/x) ≤ x

≥ 1− ε1/4 − εh , by expansion

So, we obtain that min{1 − A(1)(v), B(0)(v)} ≤ ε1/4 + εh ≤ εh+1. Finally, with probability (1 − εh+1),
we have min{1− Ã(1)(v), B̃(0)(v)} ≤ (Γ1/3ε

1/6
h + εh) + (ε1/4

h + εh) ≤ εh+1. This completes the induction
step and the proof of the lemma.

Figure 6 describes the algorithm to implement Ã(1)(v). One important observation is that, since the
number of rounds D is constant, we have εi ≥ ε1 = Γ3/5εΘ(1). Since, at each round the time complexity of
our attack is poly(1/εi), our attack runs in polynomial time. Moreover, it is also easy to see that 1−A(1)(r)
or B(0)(r) is at most ε, where r is the root of the transcript tree.

E.2 Implementing Efficient Inverters

:::::
Need

:::
to

:::::::
rewrite

:::::
this

::::::::
section. Given access to efficient inverters, Section E.1 shows how Alice and Bob

can efficiently bias the outcome ε-close to b or (1 − b), respectively. In this section, we will show that if
infinitely-often one-way functions do not exist then for sufficiently large Γ, we can efficiently implement
close approximations of these inverters.

A closer look at our attack reveals that the inverters are used in the following manner. Suppose Alice
wants to bias the outcome to 1. Let the current partial transcript be v (suppose (D − i) message exchanges
have already taken place) and Alice is supposed to send the next message of the transcript. To generate her
message, she needs to implement Ã(1)(·) functions for some nodes in Sv. In fact, she samples a subtree of
Sv such that, for some node u in it:

1. If u is an Alice node, then its degree is NjMj , and

2. If u is a Bob node, then its degree is Mj ,

where j is the height of u in the transcript tree. So, in other words, to generate the (D − i + 1)-th message,
Alice accesses polynomially many inverters on nodes u which are at height i, (i−1), . . . , 1 in that order. Let
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Subroutine to compute Ã(1)(v)

1. If v is a leaf, return Ã(1)(v) = χv.

2. If v is an Alice node at height j: Sample {u1, . . . , uNjMj} honest extensions of v by calling I(v).
Return

Ã(1)(v) =

∑Mj

k=1

[
maxNj

k′=1 Ã(1)
(
u(k−1)Nj+k′

)]
Mj

3. If v is a Bob node at height j: Sample {u1, . . . , uMj} honest extensions of v by calling I(v).
Return

Ã(1)(v) =
∑Mj

k=1 Ã(1)(uk)
Mj

Algorithm Adv(1)
A

Let v be an Alice node at height j.

1. Sample {u1, . . . , vNj} honest extensions of v using I(·).

2. Output the message m such that vm = argmaxk∈[Nj ]
Ã(1)(uk).

Figure 6: Computation of Ã(1)(v) to help Alice bias towards outcome 1.

Qi,j be the set of nodes at height j queried by Alice. Observe that all queries inQi,j are independent of each
other; and without loss of generality, we can assume that all queries in Qi,j are performed simultaneously.
The number of queries performed is upper bounded in the following manner: |Qi,j | ≤

∏i
k=j MkNk.

Let Ĩi,j be the inverter used by Alice to query the nodes at height j when she is generating the (D−i+1)-
th message. We will provide an inductive construction of Ĩi,j , where i ∈ [D] and j ∈ [i]. Define Ii,j as

the collection of all inverters of the form
{

Ĩi′,j′ |(D ≥ i′ > i or D ≥ j′ > j) and j′ ∈ [i′] and i′ ≥ i
}

. Let
A(rA) be the attack algorithm for Alice when she tries to bias the outcome to 1, where rA is its random
tape and she uses the oracles provided in I0,0. We can assume, without loss of generality, that the random
tape used by A(rA) to run an instance of the inverter Ĩi,j is independently chosen. Let A(pre)

i,j (rA) be the
execution of A(rA) till it makes the Qi,j queries and outputs the set Qi,j , using the oracles provided in Ii,j .
Consider the following machine C(k,A(pre)

i,j ): It samples rA and rB uniformly at random and simulates a

run of A(pre)
i,j (rA) against a honest Bob with local randomness rB . Let C∗(k,A(pre)

i,j ) be the machine which

runs C(k,A(pre)
i,j ) and concatenates rA ◦ rB at the end.

If infinitely-often one-way functions do not exist, then for any constant c and sufficiently large k, there
exists an efficient machine Ĩi,j such that [OW93]:∥∥∥C∗(k,A(pre)

i,j )− C(k,A(pre)
i,j ) ◦ Ĩi,j(C,A(pre)

i,j , 0kcD2|Qi,j |)
∥∥∥

1
≤ 1

kcD2|Qi,j |

Note that the time complexity of Ĩi,j is at most kΘ(1)D2

, which is a polynomial because D is a constant.
Since there are finitely many inverters Ĩi,j and four different attacks, for sufficiently large k all inverters
used in each of our attacks perform well. By union bound, the behavior of our attacks when provided with
I0,0 instead of the actual inverters I(·) can differ by at most 1/kc. This completes the proof of Theorem 5.
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