
A Unified Characterization of Completeness and
Triviality for Secure Function Evaluation

Hemanta K. Maji?1, Manoj Prabhakaran??2, and Mike Rosulek? ? ?3

1 University of California, Los Angeles
2 University of Illinois, Urbana-Champaign

3 University of Montana

Abstract. We present unified combinatorial characterizations of com-
pleteness for 2-party secure function evaluation (SFE) against passive
and active corruptions in the information-theoretic setting, so that all
known characterizations appear as special cases.
In doing so we develop new technical concepts. We define several notions
of isomorphism of SFE functionalities and define the “kernel” of an SFE
functionality. An SFE functionality is then said to be “simple” if and
only if it is strongly isomorphic to its kernel. An SFE functionality F ′ is
a core of an SFE functionality F if it is “redundancy free” and is weakly
isomorphic to F . Then:
– An SFE functionality is complete for security against passive cor-

ruptions if and only if it is not simple.
– A deterministic SFE functionality is complete for security against

active corruptions if and only if it has a core that is not simple. We
conjecture that this characterization extends to randomized SFE as
well.

We further give explicit combinatorial characterizations of simple SFE
functionalities.
Finally, we apply our new notions of isomorphism to reduce the problem
of characterization of trivial functionalities (i.e., those securely realizable
without setups) for the case of general SFE to the same problem for the
case of simple symmetric SFE.

1 Introduction

Two party secure function evaluation (SFE) is a fundamental concept in mod-
ern cryptography. In a seminal work, Kilian [Kil88] introduced the notion of a
complete function for SFE: given access to an ideally secure implementation of
a complete function, every SFE function can be securely implemented using a
protocol, without relying on any computational assumptions. He showed that
the oblivious transfer functionality (OT) is complete for secuity against active
corruption. Earlier results [GMW87,GV87,HM86] already implied that OT is
? e-mail: hmaji@cs.ucla.edu. Supported by NSF CI postdoctoral fellowship.

?? e-mail: mmp@illinois.edu. Supported by NSF grant CNS 07-47027.
? ? ? e-mail: mikero@cs.umt.edu. Supported by NSF grant CCF-1149647.

complete for security against passive corruption. Since then several works have
characterized which functions are complete, under passive and active corruption,
in the information-theoretic setting. While complete functionalities are in a sense
the “most complex” functionalities, at the other extreme are the trivial function-
alities which are not useful as setups, because they can be securely realized from
scratch.

In this work we develop a unified framework for stating these results in the
information-theoretic setting. Unlike previous characterizations, we do not give
separate characterizations for SFE with one output or two outputs4 or for sub-
classes of deterministic and randomized SFE. We summarize our definitions and
characterizations below. For simplicity, we restrict ourselves to “finite” func-
tionalities through out, though the results do extend to functionalities with
polynomial-sized domains (but not necessarily exponential-sized domains).

Our Results. We define strong and weak isomorphisms among SFE functionali-
ties (Definition 5). We also use the notion of the kernel of an SFE functionality
(Definition 3). We define an SFE functionality to be simple if it is strongly
isomorphic to its kernel. For characterizing completeness and triviality against
active corruption, we define an SFE functionality F ′ to be a core of an SFE
functionality F if it is “redundancy free” and is weakly isomorphic to F .
Completeness. For the case of completeness for security against passive adver-
saries (passive-completeness, for short), we obtain a complete characterization
by piecing together and extending known results for symmetric and asymmetric
SFE. In the case of (standalone or UC) security against active corruption, we
identify a gap in the known characterizations, but our unified presentation gives
a natural conjecture to fill this gap.

Our characterizations for completeness are as follows.

– A (possibly randomized) SFE functionality is passive-complete if and only
if it is not simple (e.g. Theorem 1).

– A deterministic SFE functionality is UC or standalone-complete if and only if
it has a core that is not simple (Theorem 2). The same characterization holds
for UC/standalone-completeness of “channel” functionalities as well. We con-
jecture that this characterization holds for UC/standalone-completeness of
all SFE functionalities.

Triviality. It has been known that a deterministic SSFE functionality is passive-
trivial if and only if it is “decomposable” and is active-trivial if and only if it
is “saturated” [Kus89,MPR09,KMR09]. These characterizations were extended
to general (not necessarily symmetric) SFE in [KMR09]. Our contribution is in
characterizing passive-triviality for general (not necessarily symmetric) SFE in
terms of characterization of passive-triviality for SSFE, in a manner that applies
to both deterministic and randomized SFE. Briefly, we show that:
4 SFE functionalities which produce only one output have been considered in the
literature either in the form of“symmetric” SFE (a.k.a. SSFE, which give the output
to both parties) or in the form of “asymmetric” SFE (which give the output to only
one party).

– An SFE functionality F is passive-trivial if and only if it is simple and its
kernel (which is a simple SSFE functionality) is passive-trivial.

– An SFE functionality is standalone-trivial if and only if it has a simple core
whose kernel (which is a simple SSFE functionality) is standalone-trivial.

Interestingly, the characterization of passive-trivial and standalone-trivial ran-
domized SFE still remains open. If this characterization is carried out for simple
SSFE functionality, then our results show how to extend it to general SFE.

We heavily rely on prior work which gave characterizations of completeness
and triviality for various special cases. Our main contribution is perhaps in iden-
tifying how the different results can be unified using arguably elegant definitions.
For instance, we unify the characterization of UC- and standalone-completeness
for deterministic SFE [KM11] and for randomized channels [CMW04]; further
our formulation gives a plausible conjecture for extending these characterizations
to all SFE functionalities.

Related Work. The first complete functionality that was discovered was Obliv-
ious Transfer. It was shown to be complete in the information-theoretic set-
ting, against passive adversaries in [GMW87,GV87,HM86], and against active
adversaries in [Kil88] (and explicitly extended to UC security in [IPS08]). All
subsequent completeness results build on this.

Completeness (w.r.t. security against passive and active corruption) was char-
acterized in [Kil91,Kil00,CK88,CMW04,KM11], for subclasses of SFE function-
alities. We observe that a result in [MOPR11] implicitly extended the charac-
terization of completeness w.r.t. security against passive corruption to all SFE
functionalities. (Our simpler characterization is proven based on these results.)

On the front of triviality, seminal results in secure multi-party computation
established that all functionalities are trivial for passive and standalone secu-
rity, either under computational assumptions [Yao86,GMW87] or, in the setting
involving more than two parties, under restrictions on how many parties can
be corrupted [CCD88,BGW88]. These results are mostly not applicable for the
setting we are considering (information-theoretic security for two-party com-
putation). [Kus89] introduced the notion of “decomposability” and used it to
characterize passive-trivial functionalities. Initial proofs considered only perfect
security [Kus89,Bea89], but later results extended this to the case of statisti-
cal security [MPR09,KMR09]. Triviality for UC-security has a relatively simpler
characterization and is well-understood [CKL03,PR08].

2 Preliminaries

A two-party secure function evaluation (SFE) functionality F(fA, fB) is a trusted
party whose behavior is specified using two functions fA : X × Y × R → ZA
and fB : X × Y × R → ZB . The trusted party takes inputs x ∈ X from Alice
and y ∈ Y from Bob, samples a private local randomness r $← R and evaluates
a = fA(x, y, r) and b = fB(x, y, r), the respective outcomes of Alice and Bob. A
deterministic SFE is one for which |R| = 1.

We consider, in the information-theoretic setting, security against adversaries
who may be passive (a.k.a. honest-but-curious) or active (a.k.a. byzantine, or ma-
licious). In the latter case, the adversary could be standalone (does not interact
with the environment during the course of the protocol, except via protocol in-
put/output for reactive functionalities), or not. Correspondingly, we have three
notions of security: passive security, standalone security and UC security. In set-
tings involving active adversaries we consider security with abort (if either party
is corrupt, the functionality delivers the output of the corrupt party first and
then delivers the output to the honest party when instructed by the corrupt
party); guaranteed output security notions are beyond the scope of this work.

We adopt the following useful categories of SFE from the literature:

– Symmetric SFE (SSFE), for which fA = fB . That is, both the parties get
the same output.

– Asymmetric SFE, for which either fA or fB is a constant function. In other
words, only one party gets output. A special case of an asymmetric SFE is
a channel in which the party receiving the output has no input (i.e., if fB is
not a constant function, then |Y | = 1).

– There are SFE functionalities which fall into neither of these classes. Some-
times we will use the term general SFE to stress that we are considering an
SFE which is not necessarily of the above two types.

We restrict ourselves to the universe of finite SFE functionalities: the input
and output spaces are finite — that is, have size O(1), as a function of the
security parameter. In particular, the maximum number of bits needed to rep-
resent the input to the parties (and, in the case of randomized functionalities,
the number of bits in the random tape of the functionality) does not grow with
the security parameter. We remark that for simplicity we considered the distri-
bution over R to be uniform (but |R| need not be a power of 2). However, any
fixed arbitrary distribution (which does not change with the security parameter)
could be considered, without affecting our results.

Security Notions and Hybrids. The real-ideal paradigm for security [GMW87]
is used to define security for multi-party computation. Informally, a protocol
securely realizes a functionality if, for every adversary attacking the actual pro-
tocol in the real world, there is a corresponding ideal world adversary (called
the simulator) which can achieve the same effect in any environment. Depending
on the type of the security required, the capabilities of the adversary vary. We
consider three kinds of security: security against passive adversaries (passive-
security, for short), security against active adversaries (standalone-security) and
Universally Composable security (UC-security). In passive-security the adver-
sary follows the protocol exactly and the ideal world adversary (simulator) does
not alter the input it sends to the functionality. In standalone security the ad-
versary can actively corrupt the parties, but it does not interact with the outside
environment during the course of the protocol execution.

We consider secure realization of functionalities in presence of “setups” as
well. A G-hybrid is a world where trusted implementation of the functionality G is

accessible to both parties. In the real world, parties can communicate via private
communication channel (like the plain model) as well as invoke evaluations of
G. In the ideal world, the simulator pretends to provide the access of such a
setup to the adversary. A protocol π in the G-hybrid, represented as πG , securely
realizes a functionality F if for every real world adversary, there exists an ideal
world simulator which can simulate identical behavior.

If a functionality has a secure protocol (in some security model) without
any setup (i.e., the functionality is realizable in that security model), then it
is of no value as a setup, as the access to such an ideal functionality can be
replaced by an implementation. We shall refer to such functionalities as trivial
functionalities (for the corresponding security model or reduction). In terms of
reducibility, a trivial functionality reduces to every functionality. At the other
extreme, we can consider functionalities to which every functionality reduces.
Such functionalities, any of which can replace any other setup, are called complete
functionalities (for the corresponding security model or reduction).

For brevity, we shall write “passive-trivial,” “UC-complete,” etc. to stand for
“trivial w.r.t. reductions that are secure against passive adversaries,” “complete
w.r.t. reductions that are UC-secure” etc.

3 Definitions: Isomorphism, Kernel, Simple SFE and
Core

In this section, we define the terms useful in stating unified completeness results
for 2-party SFE in various security notions.

3.1 Graph of an SFE Functionality

Given a 2-party SFE F(fA, fB) we define a bipartite graph G(F) as follows.

Definition 1 (Graph of a 2-party SFE). Given a SFE functionality F(fA, fB),
its corresponding graph G(F) is a weighted bipartite graph constructed as fol-
lows. Its partite sets are X × ZA and Y × ZB. For every (x, a) ∈ X × ZA and
(y, b) ∈ Y × ZB, the edge joining these two vertices is assigned weight

wt
(
(x, a), (y, b)

)
:=

Pr
r

$←R

[
fA(x, y, r) = a ∧ fB(x, y, r) = b

]
|X × Y |

.

The choice of the normalizing constant 1/|X × Y | is arbitrary. For this partic-
ular choice of constant, we can view the weight of an edge as representing the
joint-distribution probability of input-output pairs seen by the two parties when
(x, y, r)

$←X × Y ×R.
We remark that such representations have appeared in the literature for a

long time. In particular, on squaring the (the unweighted version of) the above
bipartite graph, the two parts separate into two characteristic graphs as defined
by Witsenhausen [Wit76] for the correlated source which samples input-output

pairs for the two parties. The bipartite graph itself, but again for correlated
sources, has appeared in later works, both in information theory (e.g. [KTRR03])
and in cryptography (e.g. [WW06]). The graph G(F) as defined above for SFE
functionalities was considered in [MOPR11] (for proving the result mentioned in
Footnote 6).

For a combinatorial characterization of what we shall define as a simple SFE
functionality, the following definition will be useful.

Definition 2 (Product Distribution Graph). A weighted bipartite graph
with partite sets U and V and weight function wt is a product distribution
graph if there exist

1. non-empty partitions {U1, . . . , Un} and {V1, . . . , Vn} of U and V respectively,
and

2. probability distributions p over U , q over V , and c over [n],

such that for all u ∈ U and v ∈ V , the weight on edge (u, v) is given by

wt(u, v) =

{
pu · qv/ck if ∃k ∈ [n], s.t. ck > 0, and u ∈ Uk, v ∈ Vk,
0 otherwise.

Intuitively, a bipartite graph G is a product distribution graph if sampling an
edge of G corresponds to first sampling a connected component of G, and then
within that component further sampling two nodes independently from the two
partite sets of the component. Thus when u ∈ Uk and v ∈ Vk, wt(u, v) =
ck · (pu/ck) · (qv/ck), where ck is the probability of selecting the kth component
and pu/ck (resp. qv/ck) is the probability of sampling u (resp. v) conditioned on
selecting the kth component.

Given an SFE functionality F , it is convenient to define an associated SSFE
functionality as the “common information” that Alice and Bob both get from F
[MOPR11].

Definition 3 (Kernel— Common-information in a SFE). The kernel of a
SSFE F is a symmetric SFE which takes inputs x and y from the parties, samples
r

$←R and computes a = fA(x, y, r) and b = fB(x, y, r). Then it outputs to both
parties the connected component of G(F) which contains the edge

(
(x, a), (y, b)

)
.

Note that the kernel of F is a symmetric functionality and is randomized only
for randomized SFE F . For example, let F be (possibly biased) symmetric coin
tossing functionality. Its kernel is a randomized functionality and, incidentally,
is identical to F itself. Further, kernel of a kernel is the kernel itself.

3.2 Isomorphisms

We introduce a couple of notions of isomorphism between SFE functionalities,
which we use in all our subsequent definitions. The definitions of isomorphism
presented here are refinements of a notion of isomorphism in [MOPR11], which

in turn was preceded by similar notions (restricted to deterministic SFE) in
[KMR09,MPR09].

Crucial to defining isomorphism is the following notion of “locality” for a
protocol:

Definition 4 (Local Protocol). In a local protocol for F which uses G as a
setup, each party maps her F-input to a G-input, calls G once with that input
and, based on her local view (i.e. her given F-input, the output of G, and possibly
local randomness), computes her final output, without any further communication
between the parties.

Definition 5 (Isomorphism). We say that F and G are strongly isomorphic
to each other if there exist two local protocols π1 and π2 such that:

1. πG1 UC-securely realizes F and πF2 UC-securely realizes G;
2. πG1 passive-securely realizes F and πF2 passive-securely realizes G; and
3. F and G have the same input domains, and in πG1 and πF2 , the parties invoke

the given functionality with the same input as they get from the environment.

F and G are said to be isomorphic to each other if conditions 1 and 2 are satisfied.
F and G are said to be weakly isomorphic to each other if condition 1 is satisfied.

A few remarks on the definition mentioned above are in order.
1. It is not hard to see that Condition 1, which is required by all three

definitions of isomorphisms, is equivalent to the (seemingly weaker) condition
obtained by replacing UC-security with standalone security. This is because of
the nature of a local reduction.

2. Condition 2 might seem weaker than Condition 1 since the former requires
security against a weaker adversary. But security against a weaker adversary is
not always a weaker requirement, since it requires that the ideal-world adver-
saries (simulators) are also weaker (passive, in this case).

3. All these notions of isomorphism are equivalence relations. In particular,
they are transitive due to secure composition of local reductions (under all three
notions of security).

4. Another consequence of secure composition is that isomorphism (and
hence strong isomorphism) preserves UC and standalone reducibility, as well
as reducibility against passive adversaries, between functionalities, and weak
isomorphism preserves UC and standalone reducibility (but not necessarily pas-
sive reducibility) between functionalities. For example, if F UC-securely (resp.,
standalone-securely or passive-securely) reduces to G, and F and F ′ are iso-
morphic to each other, and G and G′ are isomorphic to each other, then F ′
UC-securely (resp., standalone-securely or passive-securely) reduces to G′.

As we shall see shortly, an important property of an SFE functionality is
whether or not it is (strongly) isomorphic to its kernel.

Definition 6 (Simple SFE). A (possibly randomized) SFE functionality F is
said to be simple if it is strongly isomorphic to its kernel.

We shall see from our characterizations that the above definition remains
unaltered if strong isomorphism is replaced by isomorphism (see Lemma 3).
However, for deriving the characterizations, it is convenient to use the stricter
notion of isomorphism in this definition.

Though Definition 6 is in terms of isomorphism, below we give an explicit
combinatorial characterization of simple SFE functionalities. This combinato-
rial characterization will be useful in seeing how our definition unifies several
definitions in the literature for special cases (in Section 3.3).

Lemma 1. The following statements are equivalent.

1. F is simple.
2. G(F) is a product distribution graph.
3. For any nodes u0, u1 ∈ X × ZA and v0, v1 ∈ Y × ZB, the weights in G(F)

satisfy
wt(u0, v0)wt(u1, v1) = wt(u0, v1)wt(u1, v0)

We prove Lemma 1 in Appendix A.

3.3 Special cases of simple SFE

The definition of simple functionalities that we presented above unifies several
definitions that appeared in the literature for special classes of functionalities.

– Deterministic symmetric SFE. The first instance where simple func-
tionalities were identified was for the special case of deterministic symmetric
SFE: in this case a functionality is not simple if and only if the matrix rep-
resenting the function f has an “OR minor” (i.e., ∃x0, x1, y0, y1, z0, z1 with
z0 6= z1 and f(xa, yb) = za∨b, for a, b ∈ {0, 1}) [Kil91].

– Randomized symmetric SFE. In [Kil00] this was generalized to random-
ized symmetric SFE functionality: in this case (as described in Appendix B)
a functionality is not simple iff ∃x0, x1, y0, y1, z such that

Pr[f(x0, y0) = z] > 0; and Pr[f(x0, y1) = z] > 0; and
Pr[f(x0, y0) = z] · Pr[f(x1, y1) = z] 6= Pr[f(x1, y0) = z] · Pr[f(x0, y1) = z].

It is easy to see that this is a generalization of the previous definition by
setting z = z1.

– Randomized asymmetric SFE. In [Kil00], the characterization of simple
functionalities, specialized to the case of randomized asymmetric SFE too
appears. Kilian gives a combinatorial condition for being non-simple, but also
notes (the more intuitive characterization) that the condition does not hold
(i.e., the functionality is simple) if and only if the functionality has a passive-
secure protocol which involves a single deterministic message from Alice to
Bob. Equivalently, a (possibly randomized) asymmetric SFE is simple if and
only if it is strongly isomorphic to a deterministic functionality in which Bob
has no input.

– Deterministic SFE. Another generalization, this time to deterministic,
but general (not necessarily symmetric or asymmetric) SFE, appears in
[KM11]: as described in Appendix B, a deterministic SFE functionality
is not simple iff it has an “OT-core”: i.e., there are inputs x, x′ for Alice
and y, y′ for Bob such that fA(x, y) = fA(x, y

′), fB(x, y) = fB(x
′, y) and(

fA(x
′, y), fB(x, y

′)
)
6=
(
fA(x

′, y′), fB(x
′, y′)

)
.

All these special cases of the definition of simple functionalities were identified
to characterize complete functionalities (see Theorem 1 and Theorem 2).

3.4 Redundant Inputs and Core of an SFE functionality

To study security against active adversaries alone (i.e., not also against passive
adversaries) it is useful to have a notion of “redundant” inputs of an SFE func-
tionality that will never be needed by an active adversary. Combinatorial defi-
nitions of redundancy have appeared in the literature before for special classes
of SFE functionalities, but our definition is in terms of weak isomorphism and
applies to all SFE functionalities.

To state our definition we use the following notation. Given a function f :
X × Y × R → Z, and x ∈ X (resp. y ∈ Y), let f |X\{x} (resp. f |Y \{y}) denote
the function obtained by restricting f to the domain (X\{x}) × Y × R (resp.
X × (Y \{y})×R). For a functionality F(fA, fB), and x ∈ X (resp. y ∈ Y), let
F|X\{x} (resp. F|Y \{y}) denote the functionality F ′(fA|X\{x}, fB |X\{x}) (resp.
F ′(fA|Y \{y}, fB |Y \{y})).

Definition 7 (Redundant Inputs). A functionality F with input domain
X × Y is said to have a redundant input x ∈ X (resp. y ∈ Y) if F is weakly
isomorphic to F|X\{x} (resp. F|Y \{y}). F is said to be redundancy-free if it has
no redundant inputs.

We highlight two special cases:

– For deterministic SFE functionalities, Alice’s input x is redundant iff there is
an input x′ 6= x that dominates x: i.e., Alice can substitute x′ for x without
Bob noticing (i.e., for all inputs y of Bob, fB(x, y) = fB(x

′, y)) while still
allowing her to calculate her correct output (i.e., there is a deterministic
mapping Tx,x′ such that for all inputs y of Bob, fA(x, y) = Tx,x′(fA(x

′, y))).
– For (possibly randomized) asymmetric functionalities (in which only Bob

receives a non-constant output), Alice’s input x is redundant iff Alice could
instead send a “convex combination” of other inputs to achieve the same
effect for Bob. That is, there exists x1, . . . , xk ∈ X, r1, . . . , rk ∈ R with x 6∈
{x1, . . . , xk},

∑
i ri = 1 and for all y ∈ Y , we have fB(x, y) ≡

∑
i rifB(xi, y).

In the previous expression, the output of fB(·, ·) is interpreted as a proba-
bility distribution over ZB (equivalently, a stochastic vector in R|ZB |).

Definition 8 (Core). An SFE functionality F ′ is said to be a core of an SFE
functionality F if F and F ′ are weakly isomorphic to each other and F ′ is
redundancy-free.

For any SFE functionality, one can find a core by successively removing from
its domain, one at a time, inputs that are redundant (based on the set of inputs
that have not been removed yet). To see this, note that if F ′ is obtained by
removing a single redundant input from the domain of F , then by definition of
being redundant, F and F ′ are weakly isomorphic to each other. This process
must terminate after a constant number of steps, since the domains are finite. By
transitivity of weak isomorphism the final redundancy free functionality obtained
is indeed weakly isomorphic to F and hence a core of F .

From this and the transitivity of weak isomorphism, it follows that the core
of F is unique up to weak isomorphism. In fact, for the two special cases of deter-
ministic SFE and randomized channel SFE that are required in Theorem 2 and
Theorem 4, the core of F is unique with respect to (plain) isomorphisms whose
input mapping is a bijection. For the former case, this was explicitly observed
in [KM11] (where a core of F was called the redundancy-free version of F). For
the latter case, consider the set of points in R|ZB | denoting the probability dis-
tributions of fB(x); then the inputs in a core correspond to the vertices of the
convex-hull of this set of points. (If the points for multiple values of x coincide
on a vertex of the convex-hull, a core will retain exactly one of these inputs.)

To characterize active security, one will typically consider only a core of the
functionality. Redundancy-free functionalities also have the convenient property
that a protocol for a redundancy-free functionality that is secure against active
adversaries is also secure against passive adversaries:5

Lemma 2. If F is redundancy-free, then any protocol for F that is standalone-
secure is also passive-secure.

Note that this is not true in general (i.e., when F has redundant inputs). In
a general active-secure protocol, the simulator for a passively corrupt adversary
may not be a passive ideal adversary.
Proof: Let π be such a protocol for F . It suffices to show that in π, the simulator
for a passive adversary is without loss of generality passive itself. By symmetry,
consider a passive dummy adversary A for Alice, which runs the protocol hon-
estly and outputs its entire view. Note that A receives an actual input x from
the environment.

Let S be the simulator for A. Let x denote the input provided by the en-
vironment, and let Ex denote the event that S sends something other than x
to F . If for all x, Ex is negligible, then we are essentially done. We can modify
S to always send x to F ; the interaction’s outcome changes only by a negligi-
ble amount and hence the modified S is a passive ideal adversary and a valid
simulator for A.

Otherwise, fix an x such that Ex is non-negligible. Then there is a way to
condition the randomness of S so that Ex always occurs, and the outputs reported
by both parties is indistinguishable from the correct output, for all possible
5 Thus redundancy-free functionalities are a special case of what are called “deviation-
revealing functionalities” [PR08], a notion that is defined more generally for reactive
functionalities.

inputs of Bob. Call the resulting simulator Sx. Then the following is a local
protocol for F using F|X\{x}: Bob runs the dummy protocol; if Alice’s input
is not x, then she runs the dummy protocol. If Alice’s input is x, she runs Sx
and reports the prescribed output of the simulated adversary. The properties
established for Sx show that this is a secure protocol for F in which Alice never
uses input x. Since there is always a local protocol for F|X\{x} using F , we
have that F and F|X\{x} are weakly isomorphic, so x is redundant in F . This
contradicts the redundancy-freeness of F , so this case cannot happen. �

4 Completeness of Two Party Functionalities

The first complete functionality that was discovered was Oblivious Transfer. It
was shown to be complete against passive adversaries in [GMW87,GV87,HM86],
and against active adversaries in [Kil88] (and explicitly extended to UC security
in [IPS08]). All subsequent completeness results build on this.

We have a full understanding of SFE functionalities that are complete under
security against passive adversaries.

Theorem 1. A finite (possibly randomized) 2-party SFE functionality is passive-
complete in the information theoretic setting if and only if it is not simple.

The first step towards such a characterization was taken by Kilian, for the
special case of deterministic symmetric SFE [Kil91]. As mentioned before, for
this case the complete functionalities are those with an OR minor. Later, Kilian
extended it to the setting of randomized, symmetric SFE functionalities, and also
for randomized asymmetric SFE functionalities [Kil00]. [KM11] includes the case
of deterministic general SFE. We observe that a result in [MOPR11] can be used
to obtain the complete characterization.6 Our proof below directly uses Kilian’s
characterization (rather than extending Kilian’s protocol as in [MOPR11]) along
with Lemma 1.
Proof: [Proof of Theorem 1]

For the first direction, suppose for contradiction that F is passive-complete
and it is simple. This implies that K, the kernel of F , is also passive-complete.
Now, we shall invoke the completeness characterization of randomized symmetric
functionalities SFE by Kilian [Kil00] to show that K is not complete. Let Ux,k :=
({x} × ZA) ∩ Uk be the set of nodes in the k-th connected component of G(F)
which are of the form u = (x, a) for some a ∈ ZA. The probability that a

6 [MOPR11] extends the protocol in [Kil00] for asymmetric SFE to show that if an
SFE functionality F is not (strongly) isomorphic to its kernel, then it is complete
for security against passive adversaries. (Though the statement in [MOPR11] is not
in terms of strong isomorphism, the protocols that establish completeness of F only
uses the condition of F not being strongly isomorphic to its kernel.) On the other
hand, a functionality which is (strongly) isomorphic to its kernel is not complete,
since the kernel (which is an SSFE) is itself simple and hence not complete by one
of the characterizations in [Kil00].

randomly sampled edge lies in the k-th component and its corresponding Alice
and Bob inputs are x and y, respectively, is:∑

(u′,v′)∈Ux,k×Vx,k

wt(u′, v′).

But wt(u′, v′) = pu′ · qv′/ck, because G(F) is a product distribution graph. So,
the previous probability expression can be re-written as: ∑

u′∈Ux,k

pu′

×
 ∑
v′∈Vy,k

qv′

 1

ck
= Px,k ×Qy,k.

Now it is easy to verify that:

Pr[k|x0, y0]·Pr[k|x1, y1] = |X × Y |2Px0,kPx1,kQy0,kQy1,k = Pr[k|x0, y1]·Pr[k|x1, y0],

for every k ∈ [n] and (x, y) ∈ X × Y . By [Kil00], this implies that K is not a
passive-complete SSFE.

Next, we prove the more interesting direction: if F is not simple then F is
passive-complete. For this it is enough to show how to use F to passive-securely
realize a channel C in which Alice has two inputs 0 and 1, and the distributions
D0 and D1 of the output that Bob receives on input 0 and 1 respectively are
such that they are not identical, but nor do they have disjoint supports. This
is because by a characterization in Kilian [Kil00], such asymmetric non-trivial
channels are passive-complete.

First we describe the channel C we shall securely realize using F . By Lemma 1
we know that G(F) is not a product distribution graph. Given u ∈ X × ZA, we
can consider the following distributionDu over Y ×ZB . The probability of a node
v ∈ Y ×ZB induced by Du is: wt(u, v)/

∑
v′∈Y×ZB

wt(u, v′). Since, G(F) is not a
product distribution graph, there is some connected component with two nodes
u, u′ ∈ X×ZA such that Du and Du′ are not identical distributions over Y ×ZB .
Since u and u′ are connected, there is a path (u = û0, v̂0, û1, v̂1, . . . , ût = u′) in
G(F). Then there must exist ûi, ûi+1 such that Dûi and Dûi+1 are not identical.
Let D0 = Dûi

and D1 = Dûi+1
. Then D0 and D1 are not identical, but their

supports intersect (at v̂i).
Now we describe how to securely realize the channel C by invoking F several

times. For convenience, let u0 = ûi and u1 = ûi+1 so that Db = Dub
for b ∈

{0, 1}. For b ∈ {0, 1}, let pb be the probability that when F is invoked with
random inputs (x, y) $←X × Y , Alice sees outcome a and (x, a) = ub. We know
that min{p0, p1} ≥ 1/|X × Y ×R| = Θ(1). To implement the channel, Alice and
Bob invoke the functionality F with uniformly drawn inputs κ times, where κ
is the security parameter. Let I0 and I1 be the set of indices of the executions
where Alice’s input-output pair is u0 and u1 respectively. With probability at
least 1 − 2−Ω(κ) both these sets are non-empty. To send a bit b via channel C,
Alice sends a random index i $← Ib to Bob and Bob interprets his corresponding
input-output pair in the i-th invocation of F as the output of the channel. It is
not hard to show that this is a passive-secure realization of C. �

A consequence of the above characterizations is the following lemma which
gives an alternate definition for a simple functionality (where strong isomorphism
in Definition 6 is replaced by isomorphism).

Lemma 3. An SFE functionality F is simple if and only if it is isomorphic to
its kernel.

Proof: Clearly, if F is simple, i.e. strongly isomorphic to its kernel K, then it
is also isomorphic to its kernel. For the converse, assume for contradiction that
F is isomorphic to its kernel K but F is not simple. Since F is not simple, by
Theorem 1, F is passive-complete. F is isomorphic to K implies that K itself is
passive-complete. But kernel of K is identical to K and, hence, they are strongly
isomorphic to each other. This implies that K is simple and passive complete —
a contradiction by Theorem 1. �

For the case of active corruption, in standalone as well as the UC setting,
a characterization of complete functionalities is known for special cases. This
was first shown for the special case of deterministic, asymmetric SFE (in which
fA is the constant function) by Kilian [Kil00]. The complete characterization
for deterministic SFE — including the extension to UC security — is due to
Kraschewski and Müller-Quade [KM11], who phrased it in terms of the presence
of an OT-core (see Section 3.3). For the case of channels (i.e., asymmetric SFE
in which only one party has an input and only the other party gets an output),
UC and standalone-completeness was characterized in [CK88,CMW04].7 Our
characterization unifies these two results into a common characterization.

Theorem 2. A finite 2-party SFE functionality that is

– deterministic, or
– a channel

is UC or standalone-complete in the information theoretic setting if and only if
it has a core that is not simple.

Proof: We rely on the characterizations of [KM11] and [CMW04] to prove this
result.

First consider the case of deterministic 2-party SFE. Kraschewski and Müller-
Quade [KM11] showed that F is UC or standalone-complete if and only if the
“redundancy-free version” of F has an OT-core (see Section 3.3). For determin-
istic SFE F , a redundancy-free version of F in the sense of [KM11] is the same
as a core of F , (and in fact is isomorphic to every core of F). Also, as discussed
in Section 3.3, a deterministic SFE has an OT-core if and only if it is not simple.
Thus the characterization of [KM11] can be recast as saying that a deterministic
SFE F is UC or standalone-complete if and only if it has a core that is not
simple (and equivalently, every core of F is not simple).

7 [CMW04] does not explicitly deal with UC-security. However the simulator implicit
in the analysis of the protocol in [CMW04] is a straightline simulator, and can be
used to argue UC-completeness as well.

Next we consider the case of channels. Crépeau, Morozov and Wolf [CMW04]
showed that complete channels are exactly those channels for which, after remov-
ing “redundant inputs,” the resulting channel is “non-trivial.” As we described
after Definition 8, for an asymmteric SFE, and in particular for a channel SFE F ,
redundancy-free version of F in the sense of [CMW04] is isomorphic to every core
of F . Here a trivial channel is what [Kil00] characterized as non-simple (random-
ized) asymmetric SFE (see Section 3.3). Thus the characterization of [CMW04]
too can be recast as saying that a deterministic SFE F is standalone-complete if
and only if it has a core that is not simple (and equivalently, every core of F is
not simple). The proof in [CMW04] can be extended to cover UC-completeness
as well. �

Extending this characterization to cover randomized SFE remains an open
problem. We conjecture that the same characterization as in Theorem 2 holds
for all SFE (and not just deterministic SFE or channel SFE).

5 Characterizing Trivial SFE

There are three main classes of trivial SFE functions, depending on the type of
security. The simplest 2-party functionalities are the ones which are trivial under
UC security. The functionalities are equivalent to noiseless channels [CKL03]. A
much richer class of functionalities is obtained by considering triviality under
information theoretic passive security (this section), and triviality under infor-
mation theoretic standalone active security (Section 5.2. We focus on these two
low-complexity classes below. These two classes have been characterized only re-
stricted to deterministic functionalities. Our characterization reduces the prob-
lem of characterizing triviality of general SFE functionalities to the problem of
characterizing triviality of simple SSFE functionalities. We remark that it still
remains open to give a combinatorial characterization of trivial SSFE outside of
determinsitic SFE.

5.1 Passive Trivial SFE

Theorem 3. A finite 2-party SFE functionality F is passive-trivial in the in-
formation theoretic setting if and only if it is simple and its kernel (which is a
simple SSFE functionality) is passive-trivial.

Proof: If F is simple, then it is strongly isomorphic to its kernel. Hence, if the
latter is passive-trivial, then so is F .

The other direction is a simple consequence of Theorem 1. If F is not simple,
then by Theorem 1, it is passive-complete. A passive-complete functionality is
not passive-trivial (as otherwise, all functionalities will be passive-trivial, which
is not the case). �

An interesting special case of this appeared in [Kil00]: for an asymmetric
deterministic SFE, its kernel is simply a constant functionality and is passive-
trivial. Hence an asymmetric SFE is passive-trivial if and only if it is simple.
That is, any asymmetric SFE is either passive-trivial or is complete.

5.2 Standalone Trivial SFE Functionalities

Theorem 4. A finite 2-party SFE functionality is UC- or standalone-trivial in
the information theoretic setting if and only if it has a simple core whose kernel
(which is a simple SSFE functionality) is respectively UC or standalone-trivial.

Proof: We give the proof for standalone-triviality; the argument for UC-triviality
is similar.

Suppose a finite 2-party SFE functionality F has a simple core F ′ whose
kernel K is standalone-trivial. Since, F ′ is simple, i.e. strongly isomorphic to
K, and K is standalone trivial, we conclude that F ′ is also standalone trivial.
Since F is weakly-isomorphic to F ′ and weak isomorphism preserves standalone
triviality, F itself is standalone trivial.

To see the converse, suppose F is a standalone-trivial SFE. Let F ′ be a core
of F . Standalone triviality of F implies that F ′ is also standalone trivial. Now,
Lemma 2 implies that F ′ is also passive trivial and, in particular, it is not passive
complete. By Theorem 1, F ′ is simple. Now, the core K of F ′ is standalone trivial
because F is weakly isomorphic to F ′ and F ′ is strongly isomorphic to K.

Note that if any core of F is standalone trivial, then so are all cores. Because
F is weakly isomorphic to both cores and standalone triviality of one of them
shall entail standalone triviality of the other core. �

References

Bea89. Donald Beaver. Perfect privacy for two-party protocols. In Joan Feigen-
baum and Michael Merritt, editors, Proceedings of DIMACS Workshop on
Distributed Computing and Cryptography, volume 2, pages 65–77. American
Mathematical Society, 1989.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In Janos Simon, editor, STOC, pages 1–10. ACM, 1988.

CCD88. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty uncon-
ditionally secure protocols. In Janos Simon, editor, STOC, pages 11–19.
ACM, 1988.

CK88. Claude Crépeau and Joe Kilian. Achieving oblivious transfer using weak-
ened security assumptions (extended abstract). In FOCS, pages 42–52.
IEEE, 1988.

CKL03. Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations
of universally composable two-party computation without set-up assump-
tions. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes
in Computer Science. Springer, 2003.

CMW04. Claude Crépeau, Kirill Morozov, and Stefan Wolf. Efficient unconditional
oblivious transfer from almost any noisy channel. In Carlo Blundo and
Stelvio Cimato, editors, SCN, volume 3352 of Lecture Notes in Computer
Science, pages 47–59. Springer, 2004.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play ANYmental
game. In Alfred V. Aho, editor, STOC, pages 218–229. ACM, 1987. See
[Gol04, Chap. 7] for more details.

Gol04. Oded Goldreich. Foundations of Cryptography: Basic Applications. Cam-
bridge University Press, 2004.

GV87. Oded Goldreich and Ronen Vainish. How to solve any protocol problem -
an efficiency improvement. In Carl Pomerance, editor, CRYPTO, volume
293 of Lecture Notes in Computer Science, pages 73–86. Springer, 1987.

HM86. Stuart Haber and Silvio Micali. Unpublished manuscript, 1986.
IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography

on oblivious transfer - efficiently. In David Wagner, editor, CRYPTO, vol-
ume 5157 of Lecture Notes in Computer Science, pages 572–591. Springer,
2008.

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon,
editor, STOC, pages 20–31. ACM, 1988.

Kil91. Joe Kilian. A general completeness theorem for two-party games. In
Cris Koutsougeras and Jeffrey Scott Vitter, editors, STOC, pages 553–560.
ACM, 1991.

Kil00. Joe Kilian. More general completeness theorems for secure two-party com-
putation. In F. Frances Yao and Eugene M. Luks, editors, STOC, pages
316–324. ACM, 2000.

KM11. Daniel Kraschewski and Jörn Müller-Quade. Completeness theorems with
constructive proofs for finite deterministic 2-party functions. In Yuval Ishai,
editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 364–
381. Springer, 2011.

KMR09. Robin Künzler, Jörn Müller-Quade, and Dominik Raub. Secure computabil-
ity of functions in the IT setting with dishonest majority and applications to
long-term security. In Omer Reingold, editor, TCC, volume 5444 of Lecture
Notes in Computer Science, pages 238–255. Springer, 2009.

KTRR03. Prashant Koulgi, Ertem Tuncel, Shankar L. Regunathan, and Kenneth
Rose. On zero-error coding of correlated sources. IEEE Transactions on
Information Theory, 49(11):2856–2873, 2003.

Kus89. Eyal Kushilevitz. Privacy and communication complexity. In FOCS, pages
416–421. IEEE, 1989.

MOPR11. Hemanta K. Maji, Pichayoot Ouppaphan, Manoj Prabhakaran, and Mike
Rosulek. Exploring the limits of common coins using frontier analysis of
protocols. In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in
Computer Science, pages 486–503. Springer, 2011.

MPR09. Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of
multi-party computation problems: The case of 2-party symmetric secure
function evaluation. In Omer Reingold, editor, TCC, volume 5444 of Lecture
Notes in Computer Science, pages 256–273. Springer, 2009.

PR08. Manoj Prabhakaran and Mike Rosulek. Cryptographic complexity of multi-
party computation problems: Classifications and separations. In David
Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Sci-
ence, pages 262–279. Springer, 2008.

Wit76. Hans S. Witsenhausen. The zero-error side information problem and chro-
matic numbers (corresp.). IEEE Transactions on Information Theory,
22(5):592–593, 1976.

WW06. Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In
Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in
Computer Science, pages 222–232. Springer, 2006.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS,
pages 162–167. IEEE Computer Society, 1986.

A Proof of Lemma 1

Proof: We shall show the following implications: (1) ⇒ (3) ⇒ (2) ⇒ (1).
In fact, first we shall show (2) ⇔ (3) because this result gives a local test to
check whether a graph is product distribution graph or not, which could be of
independent interest.
Proof of (2) ⇒ (3): Let G(F) be the graph of functionality F and {U1, . . . , Un}
and {V1, . . . , Vn} be the partition of the left and right partite sets of the con-
nected components. The only interesting case is when there exists a k ∈ [n]
such that u0, u1 ∈ Uk and v0, v1 ∈ Vk; otherwise wt(u0, v0)wt(u1, v1) = 0 =
wt(u0, v1)wt(u1, v0) and condition 3 holds trivially. Let pu and qv be the distri-
butions over U and V respectively and ck be the distribution over the connected
components of G(F). Now, we have: wt(u0, v0)wt(u1, v1) = pu0

qv0×pu1
qv1 / c

2
k =

pu0
qv1 × pu1

qv0 / c
2
k = wt(u0, v1)wt(u1, v0).

Proof of (3) ⇒ (2): Let Uk and Vk be the partite sets of the k-th component of
the graph. Let W be the sum of weights on all edges of the graph and Wk be the
sum of weights of edges in the k-th component. We define ck as the distribution
over the partitions such that probability of k ∈ [n] is Wk/W . We represent the
weight of the edge between i and j node as wt(i, j). The probability distribution
over the edges is wt∗(i, j) = wt(i, j)/W . We define the weight of the node i ∈ U as
pi =

∑
j′∈V wt(i, j′)/W . It is easy to observe that pi is a probability distribution

over U . Similarly, define the probability of j ∈ V as qj =
∑
i′∈U wt(i′, j)/W .

Now, consider i ∈ Uk and j ∈ Vk and evaluate the expression pi × qj/ck:

pi × qj/ck =

∑
j′∈V

wt(i, j′)

×(∑
i′∈U

wt(i′, j)

)
× 1

WkW

=

∑
j′∈Vk

wt(i, j′)

×(∑
i′∈Uk

wt(i′, j)

)
· 1

WkW

=
∑

(i′,j′)∈Uk×Vk

wt(i, j′)wt(i′, j)
1

WkW

=
∑

(i′,j′)∈Uk×Vk

wt(i, j)wt(i′, j′)
1

WkW

= (wt(i, j)/W)× (Wk/Wk) = wt∗(i, j)

Finally, we show the equivalence of F being simple with the other two state-
ments. In the following, we shall represent the kernel of F as K.
Proof of (1) ⇒ (3): Suppose we are given a local protocol πF which securely
realizes F in the K hybrid. By definition, parties invoke K with the same input
as their input for F ; and this protocol is passive, standalone and UC secure.
Consider the experiment where x $←X and y $←Y . We shall condition our analysis
on the output of K being k in the real protocol, when inputs to Alice and Bob
are x and y. The probability that Alice outputs a is denoted by p̃k(x, a), since πF

is a local protocol. Similarly, the probability that Bob outputs b is represented
by q̃k(y, b).

Let ck be the probability that K gives k as output to both parties when x $←X
and y $← Y . Note that ck is the sum of weights on edges in the k-th component
in G(F). The probability of edge joining u = (x, a) and v = (y, b) in the real
world execution is w̃t(u, v) = ck × p̃k(u)q̃k(v), for every u ∈ Uk and v ∈ Vk.

By security of the protocol, we can claim that:8∣∣w̃t(u, v) − wt(u, v)
∣∣ ≤ negl(κ)

⇔ |ckp̃k(u)q̃k(v) − wt(u, v)| ≤ negl(κ)

Consider drawing an edge from G(F) with probability equal to the weight
on the edge. Let pk(u) be the probability that Alice’s node is u = (x, a), con-
ditioned on the event that an edge in the kth component is selected. Formally,
pk(u) =

∑
v′∈Vk

wt(u, v′)/ck. Similarly, we define qk(v) =
∑
u′∈Uk

wt(u′, v)/ck.
By security of the protocol, we can claim that |p̃k(u), pk(u)| ≤ negl(κ) and
|q̃k(v), qk(v)| ≤ negl(κ). Here we use union bounds over Vk and Uk respectively.

Thus, we can conclude that

|ckpk(u)qk(v) − wt(u, v)| ≤ negl(κ)

Note that the function wt(·, ·) assigns values which are integral multiples
of 1/|X × Y ×R|. Therefore, ck, pk(u) and qk(v) are also integral multiples of
1/|X × Y ×R|. So, if ckpk(u)qk(v) is not equal to wt(u, v), then

|ckpk(u)qk(v) − wt(u, v)| ≥ 1

|X × Y ×R|
which is non-negligible

Thus, we can conclude that wt(u, v) = ckpk(u)qk(v) and this trivially satisfies
condition 3 (alternately, interpret pk(u)ck as the distribution over U and qk(v)ck
as the distribution over V).
Proof of (2) ⇒ (1): Let the distribution over U and V be pu and qv respectively;
and the distribution over the connected components be ck. From the product
distribution guarantee we have wt(u, v) = pu · qv/ck.

1. Computing F in K hybrid (Protocol πF): We provide the algorithm for Alice;
and Bob’s algorithm is symmetrically defined. On input x, Alice sends x to
K setup and receives the connected component k as output. Given x and k
there is distribution over her output dx,k(a) as induced by the edges in the
k-th component of G(F). She locally samples her outcome according to this
distribution. Formally, the probability of her output being a is:

p(x,a)∑
(x,a′)∈Uk

p(x,a′)

8 Since F is a finite functionality, the probability of an edge in G(F), when evalu-
ated with random input, is at least 1/|X × Y ×R|. Thus, significant fraction of the
soundness error in a particular edge propagates as soundness error in the overall
experiment where x

$←X and y
$← Y .

2. Computing K in F hybrid (Protocol πK): Again, we provide Alice’s algo-
rithm. On input x, Alice sends x to F setup and receives her output a.
Given (x, a) there is a unique k such that the node (x, a) lies in the k-th
component of G(F). Alice outputs k.

Below we prove the security of these protocols. For simplicity, we shall assume
that in the first protocol (and in the simulation for the second) it is possible to
sample an outcome exactly according to a requisite distribution. In general this is
not true (for instance, when the probabilities involved have binary infinite binary
expansions). But this assumption can be removed by carrying out the sampling
to within an exponentially small error (using polynomially many coins); this
affects the security error only by an exponentially small amount.

Proofs for Protocol πF : Let us argue the correctness of the protocol. Define
Wx,y(k) as the weight of edges in k-th component of G(F) when Alice and
Bob inputs are x and y respectively; and Wx,y =

∑
k∈[n]Wx,y(k). Consider

the event that the edge connecting (x, a) and (y, b) in G(F) lies in the k-th
connected component. In both real and ideal worlds the probability of this event
is Wx,y(k)/Wx,y. Now, we shall analyze the probability of joint distribution of
(x, a) and (y, b) conditioned on this event. Let Ux,k be the subset of the k-th
connected component’s left partite set which have Alice input x. Similarly, define
Vy,k. The probability of the edge connecting u = (x, a) and v = (y, b) in the ideal
world is:

wt(u, v)

Wx,y(k)

The probability of the edge connecting u and v in the real world is:

pu∑
u′∈Ux,k

pu′
× qv∑

v′∈Vy,k
qv′

=
wt(u, v)

Wx,y(k)

This shows that the protocol πF is perfectly correct.
For security, we shall construct a simulator for Alice. Malicious Bob’s case

is analogous. When malicious Alice is invoked with inputs x, she sends x̃ to K.
The simulator, who is implementing the setup K, forwards x̃ to the external F
functionality. It receives an outcome ã from the external functionality. Next, the
simulator sends the connected component in G(F) which contains the vertex
(x̃, ã). Simulation is perfect because the probability of malicious Alice seeing k̃
in real and ideal work is exactly Wx̃,y(k̃)/Wx̃,y.

Proofs for Protocol πK: The correctness of the protocol is trivial. Both in the
real and ideal world, the probability of k being the output when Alice and Bob
have inputs x and y respectively is Wx,y(k)/Wx,y.

For security, we shall construct a simulator for malicious Alice. When ma-
licious Alice is invoked with inputs x, she sends x̃ to F . The simulator, who
is implementing the setup F , forwards x̃ to the external K functionality and
receives the connected component k̃ from the external functionality. It samples
a node ũ = (x̃, ã) from Ux̃,k̃ according to the distribution pũ and sends ã as the

output of F . The simulation is perfect (up to sampling exactly with the requi-
site probabilities) because the probability of malicious Alice seeing ã in the real
world is: ∑

v′∈Vy,k̃
wt(ũ, v′)

Wx̃,y

While the probability of the same event in the simulation is:

Wx̃,y(k̃)

Wx̃,y
× pũ∑

u′∈Ux̃,k̃
pu′

=
Wx̃,y(k̃)

Wx̃,y
×

ck
∑
v′∈Vy,k̃

wt(ũ, v′)

ck
∑

(u′,v′)∈Ux̃,k̃×Vy,k̃
wt(u′, v′)

=
Wx̃,y(k̃)

Wx̃,y
×

∑
v′∈Vy,k̃

wt(u, v′)

Wx̃,y(k̃)

This is identical to the previous expression. �

B Special Cases of Simple SFE

For the special case (possibly randomzied) SSFE functionalities, note that each
connected component in the graph of an SSFE functionality has the same output
value z. So we observe that Kilian’s condition that ∃x0, x1, y0, y1, z such that

Pr[f(x0, y0) = z] > 0; and Pr[f(x0, y1) = z] > 0; and
Pr[f(x0, y0) = z] · Pr[f(x1, y1) = z] 6= Pr[f(x1, y0) = z] · Pr[f(x0, y1) = z].

can be rephrased as follows: there exists some connected component in the graph
of the functionality that is not a product distribution, or equivalently, the func-
tionality is not simple. In terms of the above values x0, x1, y0, y1, z, this com-
ponent (with output z) has nodes (x0, z), (y0, z), (x0, z), (x1, z). They are con-
nected because the edges ((x0, z), (y0, z)) and ((x0, z), (y1, z)) are present, and
(x1, z) is connected with them either by the edge ((x1, z), (y0, z)) or by the edge
((x1, z), (y1, z)) (i.e., it is not the case that Pr[f(x1, y1) = z] = Pr[f(x1, y0) =
z] = 0). This connected component is not a product distribution, because if it
were, then Pr[f(x0, y0) = z] Pr[f(x1, y1) = z] = pA(x0, z)pA(x1, z)pB(y0, z)pB(y1, z) =
Pr[f(x1, y0) = z] Pr[f(x0, y1) = z], for some functions pA and pB .

To see the simplification in the case of deterministic SFE, note that in the
graph of a deterministic SFE, a connected component must be a complete bi-
partite graph to have a product distribution. So, to not be a product graph,
there must be two distinct nodes (x, a), (x′, a′) on the left and two nodes (y, b),
(y′, b′) on the right such that there are edges ((x, a), (y, b)), ((x, a), (y′, b′)),
((x′, a′), (y, b)), but the edge ((x′, a′), (y′, b′)) is not present. That is, there are
inputs x 6= x′ for Alice and y 6= y′ for Bob9 such that fA(x, y) = fA(x, y

′),
fB(x, y) = fB(x

′, y) and (fA(x
′, y′), fB(x

′, y′)) 6= (fA(x
′, y), fB(x, y

′)) (i.e., ei-
ther fA(x′, y) 6= fA(x

′, y′) or fB(x, y′) 6= fB(x
′, y′) or both). That is the tuple

(x, x′, y, y′) is an OT-core.
9 If x = x′, then a = fA(x, y) = fA(x

′, y) = a′ and (x, a) and (x′, a′) are not distinct;
similarly if y = y′ then b = b′.

	A Unified Characterization of Completeness and Triviality for Secure Function Evaluation

