
Attribute-Based Signatures

Hemanta K. Maji∗ Manoj Prabhakaran∗ Mike Rosulek†

Abstract

We introduce Attribute-Based Signatures (ABS), a versatile primitive that allows a party to sign a
message with fine-grained control over identifying information. In ABS, a signer, who possesses a set
of attributes from the authority, can sign a message with a predicate that is satisfied by his attributes.
The signature reveals no more than the fact that a single user with some set of attributes satisfying the
predicate has attested to the message. In particular, the signature hides the attributes used to satisfy the
predicate and any identifying information about the signer (that could link multiple signatures as being
from the same signer). Furthermore, users cannot collude to pool their attributes together.

We give a general framework for constructing ABS schemes, then show several practical instantia-
tions based on groups with bilinear pairing operations, under standard assumptions. We describe several
practical problems that motivated this work, and how ABS can be used to solve them.

∗Department of Computer Science, University of Illinois, Urbana-Champaign. {hmaji2,mmp}@uiuc.edu. Supported by
NSF grants CNS 07-16626 and CNS 07-47027.

†Department of Computer Science, University of Montana. mikero@cs.umt.edu.

1 Introduction

Alice, a finance manager in a big corporation, while going through her company’s financial records, has
learned about a major international scandal. She decides to send these records to a major newspaper,
retaining her anonymity, but with a proof that she indeed has access to the records in question. It turns
out that several people, due to a combination of reasons, may have access to these records: those in the New
York, London or Tokyo office who are either finance managers associated with project Skam, or internal
auditors. Alice considers using a ring signature [28] to endorse her message anonymously, but realizes that
it is infeasible not only because of the large number of people involved, but also because she does not know
who these people are. She realizes she cannot use a group signature [15] either, because the set of people
Alice needs to refer to here is idiosyncratic to her purposes, and may not have been already collected into
a group.1 She is also aware of mesh signatures [10], but mesh signatures provide no way to convince the
newspaper that the financial record was endorsed by a single person, not, say, a programmer in the New
York office colluding with an internal auditor in the Smalltown office.

Alice’s needs in this story reflect the challenges in a system where the roles of the users depend on the
combination of attributes they possess. In such systems, users obtain multiple attributes from one or more
attribute authorities, and a user’s capabilities in the system (e.g., sending or receiving messages, access
to a resource) depend on their attributes. While offering several advantages, attribute-based systems also
present fundamental cryptographic challenges. For instance, suppose Alice wants to simply send a message
to the above group of people using an “attribute-based messaging” system; then to provide end-to-end
secure communication, it must be possible for her to encrypt a message using attribute-keys (rather than
individual users’ keys). Recently cryptographic tools have emerged to tackle some of these challenges for
encryption [31, 18, 3, 34]. In this work, we provide a solution for authentication, which among other things,
will let Alice in the above example leak the financial records anonymously, but with the appropriate claim
regarding her credentials.

Why attribute-based signatures?

The kind of authentication required in an attribute-based system differs from that offered by digital
signatures, in much the same way public-key encryption does not fit the bill for attribute-based encryption.
An attribute-based solution requires a richer semantics, including anonymity requirements, similar to
signature variants like group signatures [15], ring signatures [28], and mesh signatures [10]. The common
theme in all these signature primitives is that they provide a guarantees of unforgeability and signer
anonymity. A valid signature can only be generated in particular ways, but the signature does not reveal
any further information about which of those ways was actually used to generate it.

More specifically, group and ring signatures reveal only the fact that a message was endorsed by one
of a list of possible signers. In a ring signature, the list is public, chosen by the signer ad hoc, and given
explicitly. In a group signature, the group must be prepared in advance by a group manager, who can revoke
the anonymity of any signer. In mesh signatures, a valid signature describes an access structure and a list
of pairs (mi, vki), where each vki is the verification key of a standard signature scheme. A valid mesh
signature can only be generated by someone in posession of enough standard signatures σi, each valid under
vki, to satisfy the given access structure.

In this work we introduce attribute-based signatures (ABS). Signatures in an ABS scheme describe
a message and a predicate over the universe of attributes. A valid ABS signature attests to the fact that
“a single user, whose attributes satisfy the predicate, endorsed the message.” We emphasize the word
“single” in this informal security guarantee; ABS signatures, as in most attribute-based systems, require

1Even if a group exists, the group manager could identify Alice as the informant.

1

that colluding parties not be able to pool their attributes together.2 Furthermore, attribute signatures do not
reveal more than the claim being made regarding the attributes, even in the presence of other signatures.

Ring and group signatures are then comparable to special cases of ABS, in which the only allowed
predicates are disjunctions over the universe of attributes (identities). Only one attribute is required to satisfy
a disjunctive predicate, so in these cases collusion is not a concern. As in ring signatures, ABS signatures
use ad hoc predicates. Mesh signatures allow more fine-grained predicates, but do not provide hiding of
signature data that would be needed in an ABS scheme. A straight-forward application of mesh signatures
as an ABS scheme would either allow collusion (as in the previous example, a New York programmer
colluding with a Smalltown auditor to satisfy the “New York auditor” predicate) or allow signatures to be
associated with a pseudonym of the signer (thus linking several signatures as originating from the same
signer).

Applications

Attribute-based signatures have natural applications in many systems where users’ capabilities depend on
possibly complex combinations of attributes. ABS is a natural choice for simple authentication in such
systems. One of our motivations for developing such schemes comes from the authentication requirements
in an Attribute-Based Messaging (ABM) system. In addition to the “leaking secrets” application described
above, in Section 7 we also identify applications in trust negotiation systems.

Overview of Our Results

We introduce the concept of Attribute-Based Signatures (ABS) as a powerful primitive with several
applications and several efficient instantiations. Our main technical contributions in this work are the
following:
• A formal security definition for ABS, that includes the guarantees of unforgeability (even in the

presence of collusion) and privacy for the signer.
• A general framework for constructing ABS schemes. The ingredients that go into this framework are

a “credential bundle scheme” and a non-interactive proof of credential ownership that can be bound to a
message. The credential bundle must have the property that multiple users should not be able to collude
and combine their credentials. The proof system must have some zero-knowledge-like guarantee so that
the signature does not leak information about the signer’s attributes. Based on this framework we present
multiple constructions, which provide a spectrum of trade-offs between security and efficiency.
1. A credential bundle can be easily constructed from an arbitrary digital signature scheme, and the requisite
proof system can be constructed from any non-interactive witness-indistinguishable (NIWI) argument
scheme for proving membership in arbitrary NP-languages. Thus based on these standard primitives, our
framework gives a conceptually simple ABS scheme. This yields the best security guarantee among the
schemes we present, since the security can be based on any enhanced trapdoor permutation, a well-studied
cryptographic primitive. However, in terms of efficiency and compactness this scheme is the worst.
2. Using certain digital signature schemes that use bilinear-pairings, we can use the NIWI scheme by Groth
and Sahai [20] to carry out the proofs. We give two such instantiations, one using a signature scheme by
Boneh and Boyen [7] and one using a signature scheme by Waters [33]. The two instantiations achieve
different trade-offs in terms of sizes of the signature and the public-key. (Each of these instantiations
have two further variants, depending on the computational assumption used to instantiate the Groth-
Sahai NIWI argument system.) These two schemes are relatively practical, with the number of group

2Note that for attribute-based encryption, if collusion is allowed there are fairly easy solutions; but for ABS, even after allowing
collusion (for instance by considering all users to have the same identity while generating keys), the residual primitive is essentially
a mesh signature, which is already a non-trivial cryptographic problem.

2

elements in the signatures or public-key growing linearly in the security parameter. The security guarantee
is reasonably strong, comparable to that of other recent attribute-based cryptographic schemes based on
hardness assumptions related to bilinear-pairings.
3. By building a credential bundle scheme directly (instead of using a digital signature scheme) we can
obtain further efficiency improvements. In particular, we obtain a scheme with a constant number of group
elements in the signature and public-key (independent of the security parameter, and depending only on the
size of the claim-predicate). This is a couple of orders of magnitude more efficient than the above schemes,
but the security of the credential bundle scheme we use is based on non-standard assumptions.
• We present a practical ABS scheme suitable for high throughput systems. This construction deviates

from our framework of credential bundles and proof of credential ownership. In this scheme we do employ
a credential bundle scheme (same as the one in the last item above), but use a novel randomization technique
to blind the actual attributes. This gives the best efficiency among our schemes. However, the security of this
scheme is proven in the heuristic generic-group model (augmented to handle groups with bilinear pairings).
• One of the most striking features of our construction is that it is very easily amenable to natural

multi-authority settings. We describe practical considerations related to such a deployment.
• We show how our techniques can be used to add simulation-extractability to the Groth-Sahai proof

system, several orders of magnitude more efficiently than the only other comparable scheme, constucted by
Groth in [19].

Which among the above schemes will suit an application will depend on the specific efficiency and
security requirements in the system. In all these schemes, the privacy is unconditional, and it is only the
unforgeability that depends on computational assumptions. Within a large enterprise setting (with pre-
authenticated users) where the threat of forgery may be limited but the volume of signatures may be large,
the final scheme may be the most suited. In more susceptible systems with a high security requirement, one
of the schemes based on the Groth-Sahai proof systems maybe more suitable (at the expense of efficiency).
The choice also depends on whether the application demands high-volume real-time performance (as in a
messaging system) or involves only offline signing and verification (for instance when a secret is leaked to
a newspaper).

All of our instantiations depend on expressing the attribute predicate as a monotone-span program,
which is the state of the art for attribute-based cryptography [18, 3, 34]. We remark that unlike in many
constructions of attribute-based encryption schemes, we achieve “full security” in all our constructions.
That is, we do not weaken the definition in the manner of “selective-ID” security. Nor do we need to
limit our construction to a small universe of attributes. Indeed, attributes can be arbitrary strings in all our
instantiations: given a collision-resistant hash function, an a priori unbounded attribute universe can be
used.

Further Related Work

Groups with bilinear pairings have been used recently to construct identity-based (e.g., [9]) and attribute-
based encryption schemes [31, 18, 3]. Non-interactive zero-knowledge proofs (including identity-based
proofs) have previously been used in the context of efficient constructions of signature primitives [1, 22, 11,
19].

A very useful tool in our instantiations is the Groth-Sahai non-interactive proof system [20]. In a
precursor to that work, Groth [19] introduced a (much less efficient) zero-knowledge proof system, which
enjoyed the stronger simulation-extractability property (which we improve upon in this work).

Khader [24, 23] proposes a notion called attribute-based group signatures. This primitive hides only the
identity of the signer, but reveals which attributes the signer used to satisfy the predicate. It also allows a
group manager to identify the signer of any signature (which is similar to the semantics of group signatures
[15]); in contrast we require signer privacy to hold against everyone, including all authorities.

3

A preliminary (unpublished) version of this work [27] introduced the definition of ABS, and gave an
efficient construction that is secure in the generic group model. Subsequently Li and Kim [25] gave an ABS
scheme whose security relies on the computational Diffie-Hellman assumption in groups with bilinear maps.
Their construction is limited to attribute-predicates which are solely conjunctions of attributes (hence privacy
is required only for the identity of the signer and not for the attributes used in satisfying the predicate), is
restricted to a “selective” unforgeability definition, and (unless random oracles are used) supports only a
small universe of attributes. Guo and Zeng [21] also gave a construction of a signature scheme based on
attribute policies, but their definition of security did not include any privacy for the signer.

Binding a non-interactive proof to a message, as we do, is also a feature of identity-based proofs [22],
in which every proof is bound to some identity, and proofs under one identity cannot be used to forge proofs
under a different identity (even of the same statement). Indeed, such ID-based proofs have been used to
construct signature-like primitives; however the construction from [22] does not have all the properties we
need.

Another related concept is the widely studied notion of anonymous credentials [14]. Anonymous
credential systems are designed to allow users to prove that they possess a particular attribute (or more
generally, a conjunction of attributes), whereas ABS considers more general predicates of attributes.
However, anonymous credential systems are also incomparable to ABS schemes, because the goal of
anonymous credential systems is to provide a user with anonymity against multiple colluding attribute
authorities, typically having the side-effect of allowing users to pool their attributes. We leave it for future
work to formulate a primitive reconciling the anonymity requirements of anonymous credentials with the
guarantees of an ABS scheme.

A related primitive (but much simpler than ABS) is identity-based signatures (IBS) [32]. It is well-
known that a simple scheme using traditional certificates realizes IBS, but dedicated schemes aimed at
achieving better efficiency have been widely studied. We refer the reader to a comprehensive survey by
Bellare et al. [2] for more details.

Supporting multiple attribute-authorities is crucial to many attribute-based systems. There has been
much interest on this aspect for attribute-based encryption schemes Chase et al. [12, 13].

2 Preliminaries

2.1 Groups with Bilinear Pairings

Let G,H,GT be cyclic (multiplicative) groups of order p, where p is a prime. Let g be a generator of G,
and h be a generator of H. Then e : G×H→ GT is a bilinear pairing if e(g, h) is a generator of GT , and
e(ga, hb) = e(g, h)ab for all a, b. We review several standard cryptographic assumptions in such groups:

Definition 1 (q-SDH assumption [7]). Let G, H, and GT be as above. The q-Strong Diffie-Hellman (q-SDH)
assumption holds in (G,H) if, given the elements (g, gx, gx2

, . . . , gxq
, h, hx) ∈ Gq+1 × H2, for random

choice of x ← Zp and random generators g ∈ G, h ∈ H, it is computationally infeasible to compute any

pair of the form
(
c, g

1
x+c
)
∈ Zp ×G.

Definition 2 (SXDH assumption [20]). Let G, H, and GT be as above. The Symmetric External Diffie-
Hellman (SXDH) assumption holds in (G,H) if the standard Decisional Diffie-Hellman (DDH) assumption
holds simultaneously in G and H.

Definition 3 (DLIN assumption [8]). Let G, H, and GT be as above, but with G = H. The Decision-Linear
(DLIN) assumption holds in G if, given the elements (gx, gy, grx, gsy, gt) ∈ G5, for a random choice of
x, y, r, s← Zp, it is computationally infeasible to determine whether t = r + s or t is random in Zp.

4

2.2 Monotone Span Programs

Let Υ : {0, 1}n → {0, 1} be a monotone boolean function. A monotone span program for Υ over a field F
is an `× t matrix M with entries in F, along with a labeling function a : [`]→ [n] that associates each row
of M with an input variable of Υ, that, for every (x1, . . . , xn) ∈ {0, 1}n, satisfies the following:

Υ(x1, . . . , xn) = 1 ⇐⇒ ∃~v ∈ F1×` : ~vM = [1, 0, 0, . . . , 0]
and (∀i : xa(i) = 0⇒ vi = 0)

In other words, Υ(x1, . . . , xn) = 1 if and only if the rows of M indexed by {i | xa(i) = 1} span the vector
[1, 0, 0, . . . , 0].

We call ` the length and t the width of the span program, and `+ t the size of the span program. Every
monotone boolean function can be represented by some monotone span program, and a large class do have
compact monotone span programs. In particular, given a circuit expressed using threshold gates, with the i-
th gate being an

(
`i
ti

)
threshold gate, it is easy to recursively construct a monotone span program with length∑

i(`i − 1) + 1 and width
∑

i(ti − 1) + 1.

2.3 Non-Interactive Proofs

We refer the reader to [20] for detailed definitions of non-interactive witness-indistinguishable (NIWI)
proofs, but give a brief overview of the necessary definitions here. A NIWI scheme is comprised of the
following main algorithms:
• NIWI.Setup: Outputs a reference string crs.

• NIWI.Prove: On input (crs; Φ;x), where Φ is a boolean formula and Φ(x) = 1, outputs a proof π.

• NIWI.Verify: On input (crs; Φ;π), outputs a boolean.
The completeness requirement is that NIWI.Verify(crs; Φ; NIWI.Prove(crs; Φ;x)) = 1, if Φ(x) = 1
(i.e., x is a witness for Φ). The (perfect) witness indistinguishability requirement is that the distributions
NIWI.Prove(crs; Φ;x1) and NIWI.Prove(crs; Φ;x2) are identical when x1 and x2 are witnesses for Φ. For
the soundness/proof of knowledge requirement, we require the following additional algorithms:
• NIWI.SimSetup: Outputs a simulated reference string crs and trapdoor ψ.

• NIWI.Extract: On input (crs, ψ; Φ;π), outputs a witness x.
We require that the crs output by NIWI.SimSetup is indistinguishable to that of NIWI.Setup. Fur-
ther, we require that for every (crs, ψ) ← NIWI.SimSetup, if NIWI.Verify(crs; Φ;π) = 1 then
NIWI.Extract(crs, ψ; Φ;π) outputs a valid witness for Φ, with overwhelming probability.

3 Attribute-Based Signatures

We present the formal definitions of attribute-based signatures (ABS). An overview of how ABS can be used
in an attribute-based system can be found in Appendix A

Let A be the universe of possible attributes. A claim-predicate over A is a monotone boolean function,
whose inputs are associated with attributes of A. We say that an attribute set A ⊆ A satisfies a claim-
predicate Υ if Υ(A) = 1 (where an input is set to be true if its corresponding attribute is present in A).

Definition 4 (ABS). An Attribute-Based Signature (ABS) scheme is parameterized by a universe of possible
attributes A and message space M, and consists of the following four algorithms.
• ABS.Setup: Outputs public parameters PK and master key MK.

5

• ABS.KeyGen: On input (MK,A ⊆ A), outputs a signing key SKA.3

• ABS.Sign: On input (PK,SKA,m ∈M,Υ), where Υ(A) = 1, outputs a signature σ.

• ABS.Ver: On input (PK,m,Υ, σ), outputs a boolean value.

Definition 5 (Correctness). We call an ABS scheme correct if for all (PK,MK) ← ABS.Setup,
all messages m, all attribute sets A, all signing keys SKA ← ABS.KeyGen(MK,A), all claim-
predicates Υ such that Υ(A) = 1, and all signatures σ ← ABS.Sign

(
PK,SKA,m,Υ

)
, we have

ABS.Ver(PK,m,Υ, σ) = 1.

We present two formal definitions that together capture our desired notions of security. Slightly weaker
security requirements may also be useful for most applications, but we use the stronger ones because our
constructions satisfy them and because they are much easier to work with.

Definition 6 (Perfect Privacy). An ABS scheme is perfectly private if, for all (PK,MK) ← ABS.Setup,
all attribute sets A1,A2, all SK1 ← ABS.KeyGen(MK,A1), SK2 ← ABS.KeyGen(MK,A2),
all messages m, and all claim-predicates Υ such that Υ(A1) = Υ(A2) = 1, the distributions
ABS.Sign(PK,SK1,m,Υ) and ABS.Sign(PK,SK2,m,Υ) are equal.

If the perfect privacy requirement holds, then a signature does not leak which set of attributes or signing
key was used to generate it. This holds even if the adversary is unbounded and has access to the signer’s
private keys.

We slightly overload notation and write ABS.Sign(MK,m,Υ) (i.e., with the master key MK instead
of PK and SKA) to denote the following procedure: first, run SKA ← ABS.KeyGen(MK,A) for any
arbitrary A satisfying Υ; then output the result of ABS.Sign(PK,SKA,m,Υ). For convenience in the
experiment below we use ABS.Sign(MK, ·, ·) to generate signatures requested by the adversary. This is
reasonable when the scheme satisfies perfect privacy, since any other way of letting the adversary obtain
signatures will result in the same distribution.

Definition 7 (Unforgeability). An ABS scheme is unforgeable if the success probability of any polynomial-
time adversary in the following experiment is negligible:

1. Run (PK,MK)← ABS.Setup and give PK to the adversary.

2. The adversary is given access to two oracles: ABS.KeyGen(MK, ·) and ABS.Sign(MK, ·, ·).
3. At the end the adversary outputs (m∗,Υ∗, σ∗).

We say the adversary succeeds if (m∗,Υ∗) was never queried to the ABS.Sign oracle, and
ABS.Ver(PK,m∗,Υ∗, σ∗) = 1, and Υ∗(A) = 0 for all A queried to the ABS.KeyGen oracle.

Thus any signature which could not have been legitimately made by a single one of the adversary’s
signing keys is considered a forgery. Note that we do not consider it a forgery if the adversary can produce
a different signature on (m,Υ) than the one he received from the signing oracle.

4 Constructing ABS Schemes

In this section we present our general framework for constructing an ABS scheme.
3For simplicity, we treat the signing key as a monolithic quantity. However, in our construction the signing key consists of

separate components for each attribute in A, and the ABS.Sign algorithm needs only as much of SKA as is relevant to the claim-
predicate.

6

4.1 Credential Bundles

We introduce a new generic primitive called credential bundles, which we use in our ABS constructions.
Credential bundles model the intuitive requirements of publicly verifiable attributes that resist collusion.

Definition 8 (Credential bundle scheme). A credential bundle scheme is parameterized by a message space
M, and consists of the following three algorithms.
• CB.Setup: Outputs a verification key vk and a secret key sk.

• CB.Gen: On input (sk, {m1, . . . ,mn} ⊆M), outputs a tag τ and values σ1, . . . , σn.

• CB.Ver: On input (vk,m, (τ, σ)), outputs a boolean value.
The scheme is correct if, for all (τ, σ1, . . . , σn) ← CB.Gen(sk,m1, . . . ,mn), we have
CB.Ver(vk,mi, (τ, σi)) = 1 for all i.

Clearly by excluding some of the σi’s from an existing bundle, one can generate a new bundle on a
subset of attributes. Our main security definition requires that taking a subset of a single bundle is the only
way to obtain a new bundle from existing bundles; in particular, attributes from several bundles cannot be
combined.

Definition 9. A credential bundle scheme is secure if the success probability of any polynomial-time
adversary in the following experiment is negligible:

1. Run (vk, sk)← CB.Setup, and give vk to the adversary.

2. The adversary is given access to an oracle CB.Gen(sk, ·).
3. At the end the adversary outputs (τ∗, (m∗

1, σ
∗
1), . . . , (m

∗
n, σ

∗
n)).

We say the adversary succeeds if CB.Ver(vk,m∗
i , (τ

∗, σ∗i)) = 1 for all i ≤ n, and if no superset of
{m∗

1, . . . ,m
∗
n} was ever queried to the CB.Gen oracle.

From any unforgeable plain digital signature scheme we can easily construct a credential bundle scheme
in which the bundle is a collection of signatures of messages “τ‖mi”, where each mi is the name of an
attribute and τ is an identifier that is unique to each user. Conversely, when a credential bundle scheme is
restricted to singleton sets of messages, its unforgeability definition is equivalent to normal digital signature
unforgeability. Despite this equivalence under black-box reductions, the syntax of credential bundles more
closely models our desired semantics for ABS.

4.2 A Framework for ABS

Our main construction is given in Figure 1. At a high level, to sign a message m with claim-predicate
Υ, the signer proves that she possesses either a credential bundle containing either sufficient attributes to
satisfy Υ, or a “pseudo-attribute” identified with the pair (m,Υ). Since ABS.KeyGen never gives out
bundles involving these pseudo-attributes, the proof is convincing that the signer satisfied Υ. However, in
the security reduction, the pseudo-attribute provides a mechanism to bind the NIWI proof to a message and
give simulated signatures.

Theorem 1. Given a NIWI argument of knowledge scheme and any secure credential bundle scheme
(equivalently, any digital signature scheme), the construction in Figure 1 is a secure ABS scheme. Further,
if the NIWI argument is perfectly hiding, the ABS scheme is perfectly private.

Proof. Perfect privacy follows directly from the perfect witness hiding of the NIWI scheme, which our ABS
scheme instantiates using the perfectly hiding setup.

Assuming that the NIWI scheme is sound, we show that any adversary A that violates ABS unforge-
ability can be converted into an adversary A∗ that violates the security of the underlying credential bundle

7

Let A be the desired universe of ABS attributes. Let A′ denote a space of pseudo-attributes, where
A ∩A′ = ∅. For every message m and claim-predicate Υ we associate a psuedo-attribute am,Υ ∈ A′. Let
CB be a secure credential bundle scheme, with message space A ∪ A′, and let NIWI be a perfect NIWI
proof of knowledge scheme. Our ABS construction is as follows:

ABS.Setup: Run crs ← NIWI.Setup and (vk, sk) ← CB.Setup. Publish PK = (crs, vk) and set
MK = sk.

ABS.KeyGen(MK,A): Ensure that A contains no pseudo-attributes. Then output the result of
CB.Gen(sk,A).

ABS.Sign(PK,SKA,m,Υ): Assume that Υ(A) = 1. Parse SKA as (τ, {σa | a ∈ A}). Υ is a formula
over formal variables A. Define Υ̃ := Υ∨am,Υ, where am,Υ ∈ A′ is the pseudo-attribute associated
with (m,Υ). Thus, we still have Υ̃(A) = 1. Let {a1, . . . , an} denote the attributes appearing in Υ̃
and let Φ(vk,m,Υ) denote the following boolean expression:

∃ τ, σ1, . . . , σn : Υ̃
({
ai

∣∣ CB.Ver
(
vk, ai, (τ, σi)

)
= 1
})

= 1 (1)

For each i, set σ̂i = σai from SKA if it is present, and to any arbitrary value otherwise (since then
its value does not matter). Compute π ← NIWI.Prove

(
crs; Φ(vk,m,Υ); (τ, σ̂1, . . . , σ̂n)

)
. Output

π as the ABS signature.

ABS.Ver(PK,m,Υ, π): Output the result of NIWI.Verify(crs; Φ(vk,m,Υ);π).

Figure 1: General framework for an ABS scheme.

scheme, with comparable advantage. Let A∗ simulate a copy of A, and do the following in the bundle
security experiment:

Receive from the experiment vk and run (crs, ψ) ← NIWI.SimSetup. Give PK = (crs, vk) to A.
Whenever A makes a queryA ⊆ A to the ABS.KeyGen oracle, forward it to the CB.Gen oracle and return
the result.

WheneverAmakes a query (m,Υ) to the ABS.Sign oracle, request from the CB.Gen oracle a singleton
bundle for the pseudo-attribute associated with (m,Υ). Use the result as a witness to generate a NIWI proof
of Φ(vk,m,Υ) to use as the simulated ABS signature.

Whenever A outputs a valid forgery (m∗,Υ∗, π∗), use NIWI.Extract with the trapdoor ψ to extract a
witness for Φ(vk,m∗,Υ∗). Extraction succeeds with overwhelming probability, thus we obtain a bundle
that contains the pseudo-attribute associated with (m∗,Υ∗) or sufficient attributes to satisfy Υ∗. By the
definition of ABS forgery, no ABS signature was ever simulated for (m∗,Υ∗), and no signing key was ever
generated for an attribute set that satisfies Υ∗. Thus the extracted bundle constitutes a valid bundle forgery.

By applying the security of the NIWI scheme in a straight-forward series of hybrids (first replace
legitimate signatures with simulated signatures, then replace NIWI.Setup with NIWI.SimSetup), we see
that the advantage ofA∗ in the unforgeability game is comparable to that ofA in the ABS forgery game.

From this theorem and the constructions in [29, 16], we see that polynomial-time ABS schemes exist
if enhanced trapdoor permutations exist. Of course, the bulky framework of zero-knowledge proofs of NP-
statements makes such a construction impractical. In the next sections we describe specific instantiations
that are quite practical.

8

4.3 Practical Instantiation 1

Our first practical instantiation uses Groth-Sahai proofs [20] as the NIWI component and Boneh-Boyen
signatures [6] as the credential bundle component. One notable feature of this choice is that attributes in the
scheme are simply Boneh-Boyen signatures on messages of the form “userid‖attr”.

This instantiation requires cyclic groups of prime order equipped with bilinear pairings (Section 2.1).
The Groth-Sahai system can prove satisfiability of pairing-product equations in such groups, and the main
challenge in this instantiation is expressing the logic of the claim-predicate and the Boneh-Boyen signature
verification in this limited vocabulary. We identify Z∗

p with the universe of attributes, where p is the size of
the cyclic group used in the scheme.4

Boneh-Boyen signatures We briefly review the Boneh-Boyen digital signature scheme [7]. As before, we
suppose there is a bilinear pairing e : G × H → GT , where G and H have prime order p, and where g is a
generator of G, and h is a generator of H. The scheme, described below, is strongly unforgeable under the
q-SDH assumpion (Definition 1).
DS.KeyGen: Choose random b, c, d← Zp and compute B = gb, C = gc, D = gd. The verification key is

(B,C,D) ∈ G3, and the signing key is (b, c, d) ∈ (Zp)3.

DS.Sign(sk,m ∈ Zp): Choose random t← Zp; output σ =
(
h1/(b+cm+dt), t

)
∈ H× Zp.

DS.Ver(vk,m, σ = (S, t)): Output 1 if e(BCmDt, S) = e(g, h), and 0 otherwise.

Expressing the Non-Interactive Proof using Pairing Equations We use the notation introduced in
Figure 1. We must show how the statement Φ(vk,m,Υ) (equation 1) can be efficiently encoded in the
Groth-Sahai system when the credential bundles use Boneh-Boyen signatures.

Groth-Sahai proofs work by first giving a commitment to the values of the witness, and then proving that
the commited values satisfy given pairing equations. Suppose we commit to a group element Z (where the
group G or H will be clear from context), then we will let 〈Z〉 denote the formal variable corresponding to
that commitment. Thus, we express the statements to be proven as pairing equations whose formal variables
we will write in the 〈Z〉 notation.

Suppose the modified predicate Υ̃ has a canonical monotone span program M of size `×t, where the ith
row corresponds to the a(i)-th attribute mentioned in Υ̃. To establish Φ(vk,m,Υ), we prove the following
equation, which implies it:

∃ τ, σ1, . . . , σn, v1, . . . , vn : ~vM = [1, 0, . . . , 0]

∧
∧̀
i=1

[
vi 6= 0⇒ CB.Ver(vk, aa(i), (τ, σa(i))) = 1

]
Then, in addition to τ, {σi}, we will have the signer commit to the vector ~v which can be canonically
computed from his satisfying assignment of Υ̃.

This new boolean expression is a conjunction of two kinds of clauses: The first has the form ∃~v : ~vM =
[1, . . . , 0]. To prove it, we commit to the values gvi and prove the following pairing equations (for each
j ∈ [t]): ∏̀

i=1

e(〈gvi〉 , hMi,j) =

{
e(g, h) if j = 1
e(g0, h) otherwise

4More precisely A ∪ A′ ⊆ Z∗
p where A′ is the universe of pseudo-attributes. As is standard, the universe of (pseudo-)attributes

can be extended to {0, 1}∗ by applying a collision-resistant hash with range Z∗
p.

9

The other clauses have the form ∃ τ, σ, v :
[
v 6= 0 ⇒ CB.Ver(vk,m, (τ, σ)) = 1

]
. When we use

Boneh-Boyen signatures as the instantiation of credential bundles, these clauses can be simplified to

∃ τ, σ, v :
[
v 6= 0⇒ DS.Ver(vk, τ‖m,σ) = 1

]
where DS.Ver is the Boneh-Boyen signature verification.

It is crucial that the proof is a proof of knowledge, so the simulator can extract the credential bundles.
Thus we commit to τ and t bitwise, since they are elements of Zp and could not otherwise be efficiently
extracted in the Groth-Sahai scheme. In this way, the extractor can extract the bits and reconstruct the
entire witness τ and t.5 Let (τ, σ = (S, t), v) be a witness to the above expression. Express τ bitwise as
τ =

∑
i τi2

i. Then τ‖m may be identified with a number m2|τ | +
∑

i τi2
i. Similarly, interperet t bitwise

as t =
∑

i ti2
i.

Using the same notation as before, we can prove satisfiability of the clause as follows. We commit to
each ti and τi in both groups, as gti , hti , gτi , hτi , and then first prove that each is indeed a single bit, using
the following pairing equations for all i:

e(
〈
gti
〉
, h) = e(g,

〈
hti
〉
); e(〈gτi〉 , h) = e(g, 〈hτi〉);

e(
〈
gti
〉
,
〈
hti
〉
) = e(

〈
gti
〉
, h); e(〈gτi〉 , 〈hτi〉) = e(〈gτi〉 , h).

Next, observe that the pairing equation e(BCτ‖mDt, Sv) = e(gv, h) is logically equivalent to the
expression v 6= 0 ⇒ DS.Ver(vk, τ‖m, (S, t)) = 1, which we need to prove. However, the prover cannot
directly compute BCτ‖mDt or Sv given the committed values. Thus the prover commits to some additional
intermediate values Sv ∈ H and Cτ , Dt ∈ G, and proves the following equations:

e(
〈
Dt
〉
, h) =

∏
i e(D

2i
,
〈
hti
〉
); e(〈gv〉 , 〈S〉) = e(g, 〈Sv〉);

e(〈Cτ 〉 , h) =
∏

i e(C
2i
, 〈hτi〉);

e(〈gv〉 , h) = e(BC2|τ |m, 〈Sv〉) e(〈Cτ 〉 , 〈Sv〉) e(
〈
Dt
〉
, 〈Sv〉).

Note that since m and |τ | are public, all the coefficients in these equations can be publicly computed. This
completes the description of how we encode the required logic into the Groth-Sahai proof system.

There are two instantiations of the Groth-Sahai proof system over prime order groups, based on the
DLIN and SXDH assumptions, both of which are suitable for our purposes. Using these we obtain the
following:

Theorem 2. Under the q-SDH and either DLIN or SXDH assumptions, there is an ABS scheme supporting
claim-predicates represented as monotone span programs, with signatures consisting of O(ks) group
elements,6 where s is the size of the monotone span program.

4.4 Practical Instantiation 2

We can also instantiate our framework using the same approach as above, but with the signature scheme of
Waters [33]. Signatures in Waters’ scheme do not include any elements of Zp. This fact allows us to avoid
the inefficiency of committing to many components of the Boneh-Boyen signatures in a bitwise fashion.
Furthermore, Waters signatures are secure under the much weaker BDH assumption, which is implied by
the assumptions required for Groth-Sahai proofs. Thus this instantiation does not require the additional q-
SDH assumption. However, as a tradeoff, the Waters instantiation requires larger public parameters: a linear
(in the security parameter) number of group elements (Appendix B), not the constant number of group
elements needed by the Boneh-Boyen instantiation.

5We remark that the proof need not be a proof of knowledge with respect to ~v, so it was safe to use these values directly in Zp.
6A more detailed analysis of this instantiation’s efficiency is given in Appendix B.

10

Waters signatures We briefly review the Waters digital signature scheme [33]. As before, we suppose
there is a bilinear pairing e : G × H → GT , where G and H have prime order p, and where g is a random
generator of G, and h is a random generator of H (it is important that g and h are chosen independently at
random, in the case where G = H).
DS.KeyGen: Choose random a, v0, . . . , vn ← Zp and compute A = ha, Vi = gvi . The verification key is

(A, V0, . . . , Vn), and the signing key is ga ∈ G.

DS.Sign(sk,m ∈ Zp): Choose random r ← Zp. Set

σ1 =

(
V0

n∏
i=1

V mi
i

)r

ga; σ2 = hr

where mi is the ith bit of m. Output σ = (σ1, σ2) ∈ G×H.

DS.Ver(vk,m, σ = (σ1, σ2)): Output 1 if

e

(
V0

n∏
i=1

V mi
i , σ2

)
e(g,A) = e(σ1, h)

and output 0 otherwise.
The Waters scheme is strongly unforgeable under the BDH assumpion, which is implied by either of the
SXDH or DLIN assumptions (see [33]).

Expressing the Non-Interactive Proof using Pairing Equations We use the same approach as above
to express the desired logic using pairing equations. The only significant difference is in how we encode
clauses of the form

∃ τ, σ, v :
[
v 6= 0⇒ DS.Ver(vk, τ‖m,σ) = 1

]
where DS.Ver is now the Waters signature verification.

Since the Waters scheme treats τ‖m bitwise, we must commit to τ bitwise, as before (m is an attribute
name, and therefore public in all of our proof clauses). In this way, we ensure that the extractor can extract
the bits and reconstruct the entire witness τ .

Let (τ, σ = (σ1, σ2), v) be a witness to the above expression. Express τ bitwise as τ = τ1 · · · τk and m
as m1 · · ·mk. As before, we commit to τi in both groups, as gτi , hτi , and then first prove that each is indeed
a single bit. This is done exactly as in the previous instantiation.

Next, observe that the pairing equation

e

(
V0

k∏
i=1

V τi
i

k∏
i=1

V mi
k+i, σ2

)
e(gv, A) = e(σ1, h

v)

is logically equivalent to the desired expression [v 6= 0 ⇒ DS.Ver(vk, τ‖m, (σ1, σ2)) = 1], provided that
the prover sets σ2 = h0 when v = 0.

The prover cannot directly compute
∏

i V
τi
i given the committed values. Thus we let the prover commit

11

to this intermediate value, and prove consistency via the following equations:

e

(〈
k∏

i=1

V τi
i

〉
, h

)
=

k∏
i=1

e(Vi, 〈hτi〉);

e(〈σ1〉 , 〈hv〉) = e

(
V0

k∏
i=1

V mi
k+i, 〈σ2〉

)

· e

(〈
k∏

i=1

V τk
i

〉
, 〈σ2〉

)
e(〈gv〉 , A).

Note that sincem,A,B, Vi are public, all the coefficients in these equations can be publicly computed. Thus
we have:

Theorem 3. Under either the DLIN or SXDH assumptions, there is an ABS scheme supporting claim-
predicates represented as monotone span programs, with signatures consisting of O(k+ s) group elements,
where s is the size of the monotone span program.

4.5 Practical Instantiation 3

In Figure 2 we present a credential bundle scheme based on weak Boneh-Boyen signatures [6] that avoids
some of the inefficiencies of standard Boneh-Boyen and Waters signatures. Namely, the entire credential
bundle consists of elements of the group H, and no exponents in Zp. While this credential bundle no longer
consists of standard digital signatures on messages of the form “userid‖attr”, the credential bundles no
longer induce any dependence on the security parameter k in the ABS instantiation.

Assume there is a bilinear pairing e : G×H→ GT , where G and H have prime order p, and where g is a
generator of G, and h is a generator of H.

CB.Setup: Choose random b, c ← Zp and compute B = gb, C = gc. The verification key is
(B,C) ∈ G2, and the signing key is (b, c) ∈ (Zp)2.

CB.Gen(sk,m1, . . . ,mn ∈ Zp): Choose a random x ← Zp. Set τ = (hx, hx/c) ∈ H2. For each i,
compute σi = hx/(b+mi) ∈ H. Output (τ, σ1, . . . , σn).

CB.Ver(vk,m, (τ, σ)): Parse τ as (X,Xc). Output 1 if X 6= h0 and e(C,Xc) = e(g,X) = e(Bgm, σ);
otherwise output 0.

Figure 2: Simpler Credential Bundle Construction Used in Scheme 3

In Appendix C, we prove that this credential bundle construction is unforgeable in the generic group
model.7 Thus, we have:

Theorem 4. Using Groth-Sahai proofs and the credential bundle scheme in Figure 2 yields an ABS scheme
supporting claim-predicates represented as monotone span programs, with signatures consisting of O(s)
group elements, where s is the dimensions of the monotone span program.

7However, we also note that this construction is similar in many respects to the weak Boneh-Boyen signature scheme presented
in [6], which is statically unforgeable. Indeed, we can show that under a concrete assumption similar to q-SDH, our credential
bundle scheme is similarly unforgeable when the adversary’s signature queries in the experiment are made statically. A credential
bundle scheme with such security implies an ABS scheme with similar static unforgeability (where both signing key and signature
oracle requests are made statically).

12

4.6 Practical Instantiation 4

We now present an ABS scheme which is our most practical. Signatures in the scheme consist of exactly
s+2 group elements, where s is the size of the claim-predicate’s monotone span program. This scheme does
not use the Groth-Sahai proof system; we use our own randomization techniques to blind the attributes that
are used in signing. Our approach is motivated by the construction of mesh signatures [10], but incorporates
the efficient credential bundles of the previous construction, as well as the concept of “pseudo-attributes”
to bind a message to the signature. In Appendix D, we give a high-level motivation of the details of this
scheme. Below we give a description of the construction:

This construction supports all claim-predicates whose monotone span programs have width at most tmax,
where tmax is an arbitrary parameter. We treat A = Z∗

p as the universe of attributes, where p is the size of
the cyclic group used in the scheme.8

ABS.Setup: Choose suitable cyclic groups G and H of prime order p, equipped with a bilinear pairing
e : G × H → GT . Choose a collision-resistant hash function H : {0, 1}∗ → Z∗

p. Choose random
generators:

g, C ← G; h0, . . . htmax ← H.

Choose random a0, a, b, c← Z∗
p and set:

A0 = ha0
0 ; Aj = ha

j and Bj = hb
j (∀j ∈ [tmax]).

The master key is MK = (a0, a, b). The public key PK is a description of the groups G,H and their
pairing function, as well as:

(H, g, h0, . . . , htmax , A0, . . . , Atmax , B1, . . . , Btmax , C)

ABS.KeyGen: On input MK as above and attribute set A ⊆ A, Choose random generator Kbase ← G.
Set:

K0 = K
1/a0

base ; Ku = K
1/(a+bu)
base (∀u ∈ A)

The signing key is then:
SKA = (Kbase,K0, {Ku | u ∈ A}).

ABS.Sign: On input (PK,SKA,m,Υ) such that Υ(A) = 1, first convert Υ to its corresponding monotone
span program M ∈ (Zp)`×t, with row labeling u : [`] → A. Also compute the vector ~v that
corresponds to the satisfying assignment A. Compute µ = H(m‖Υ).

Pick random r0 ← Z∗
p and r1, . . . r` ← Zp and compute:

Y = Kr0

base; Si = (Kvi

u(i))
r0 · (Cgµ)ri (∀i ∈ [`]);

W = Kr0
0 ; Pj =

∏̀
i=1

(AjB
u(i)
j)Mij ·ri (∀j ∈ [t]).

We note that the signer may not have Ku(i) for every attribute u(i) mentioned in the claim-predicate.
But when this is the case, vi = 0, and so the value is not needed. The signature is:

σ = (Y,W, S1, . . . , S`, P1, . . . , Pt)

8As always, the universe of attributes can be further extended to {0, 1}∗ by applying a collision-resistant hash having range Z∗
p.

For simplicity of presentation, we do not include this modification.

13

ABS.Ver: On input (PK, σ = (Y,W, S1, . . . , S`, P1, . . . , Pt),m,Υ), first convert Υ to its corresponding
monotone span program M ∈ (Zp)`×t, with row labeling u : [`] → A. Compute µ = H(m‖Υ). If
Y = 1, then output reject. Otherwise check the following constraints:

e(W,A0)
?= e(Y, h0)∏̀

i=1

e
(
Si, (AjB

u(i)
j)Mij

)
?=

{
e(Y, h1) e(Cgµ, P1), j = 1
e(Cgµ, Pj), j > 1,

for j ∈ [t]. Return accept if all the above checks succeed, and reject otherwise.

In Appendix D.1, we provide the detailed proof of security, which is carried out in the generic group
model.

Theorem 5. In the generic group model, there is an ABS scheme supporting claim-predicates represented
as monotone span programs, with signatures consisting of s + 2 group elements, where s is the size of the
monotone span program.

5 Multiple Attribute-Authorities

Our first two intantiations of ABS (indeed, our general framework) can be easily extended for use in
an environment with multiple attribute authorities. Except in a centralized enterprise setting, a single
user would acquire her attributes from different authorities (e.g., different government agencies, different
commercial services she has subscribed to, different social networks she is registered with and so on).
These different attribute authorities may not trust each other, nor even be aware of each other. Indeed,
some attribute authorities may be untrustworthy, and this should not affect the trustworthiness of attributes
acquired from other authorities, or of ABS signatures involving trustworthy attributes.

Apart from these mutually distrusting attribute authorities, there should be some entity to set up the
various public parameters of the signature scheme itself. We call this entity the signature trustee. A
signature trustee does not have to trust any attribute authority. The attribute authorities use only the public
keys from the signature trustee. As long as the signature trustee is trusted, then the ABS signatures are
secure.

Our main change in multi-authority ABS syntax is to separate the key material into pieces originating
from different authorities. For concreteness, we describe the proposed usage for our pairing-based instan-
tiations. In this case, the signature trustee provides the Groth-Sahai reference string as well as a digital
signature verification key, for use with the scheme’s “pseudo-attributes.” Attribute authorities each publish
digital signature verification keys, and give out attributes as signatures on messages of the form “userid‖attr”.
We assume that all attribute authorities have a mechanism for agreeing on each user’s userid (say, an email
address).

Finally, the claim-predicate in the ABS signature must carry the identity of the attribute-authorities
who own the various attributes (possibly as meta-data attached to the attribute description). Given this
information, the statement Φ used in the Groth-Sahai proof can be modified to refer to the appropriate
digital signature verification keys corresponding to each attribute, including the pseudo-attribute. In fact,
different attribute authorities need not even agree on a digital signature scheme for their attributes (though
all parties must agree on the cryptographic groups G and H); one attribute authority might choose Boneh-
Boyen signatures, while another might choose Waters signatures. If one attribute authority’s signatures
are compromised, then an ABS verifier should not give much importance to attributes from that authority.
However, the ABS signatures themselves are still valid (in that they indeed attest to the given claim-predicate
being satisfied) as long as the trustee is uncorrupted.

14

In Appendix E, we present formal security definitions for multi-authority ABS. The unforgeability
definition is modified to account for the case where some of the attribute authorities are corrupt. The
unforgeability requirement is then with respect to an uncorrupted signature trustee and attributes from
uncorrupted attribute authorities.

6 Simulation-Extractable Identity-Based NIZK

Our technique of augmenting a NIWI proof with a digital signature scheme can be used to make any
NIWI argument of knowledge into a simulation-extractable, identity-based NIZK argument of knowledge.
Identity-based NIZK was defined in [22] as a NIZK proof with an associated identity. The soundness
definition requires that seeing a proof under one identity does not help one to construct proofs under another
identity (even proofs of the same statement).

Simulation-soundness [30], informally, requires that seeing a simulated proof does not help one to
violate the soundness property of a proof system. In the case of proofs (or arguments) of knowledge, the
corresponding notion is termed “simulation-extractability.” We are interested in incorporating simulation-
extractability into identity-based NIZK arguments of knowledge. We note that the identity-based NIZK
from [22] is not simulation-sound.

Theorem 6. Any statement provable in via Groth-Sahai proofs can be made an identity-based, simulation
extractable, NIZK argument of knowledge, with overhead linear in the number of variables (independent of
the number of constraints).

The complete proof is given in Appendix F, and follows a similar approach as in our ABS instantiations:
At a high level, we augment the common reference string of the Groth-Sahai system to include a Waters
digital signature verification key.9 Then to prove Φ under identity id, the prover proves using the NIWI that
he either has a witness for Φ or a valid digital signature on message (id,Φ). The resulting scheme is only
an argument (not proof) of knowledge, since unbounded parties may forge the digital signature.

This transformation results in simulation-extractable proofs which are several orders of magnitude more
efficient than the only other comparable scheme, constucted by Groth in [19].

7 Applications

We identify several natural applications of ABS schemes; with more comprehensive details given in
Appendix G.

Attribute-based messaging Attribute-Based Messaging, or ABM, (e.g., [4]) provides an example of a
quintessential attribute-based system. In an ABM system, messages are addressed not by the identities of
the recipients, but by a predicate on users’ attributes which the recipients must satisfy. The users need
not be aware of each other’s identities or attributes. To provide end-to-end message privacy (against users
whose attributes do not satisfy the sender’s policy), one can use ciphertext-policy attribute-based encryption,
as proposed by Bethencourt, Sahai and Waters [3]. However, there was no satisfactory way to achieve
authentication (i.e., for the receiver to verify that the sender also satisfied a particular policy) in an ABM
system until now. Existing cryptographic technology, including certificates and mesh signatures, would not
provide an adequate level of anonymity for the senders while simultaneously preventing collusions.

9We choose Waters signatures because the cryptographic assumption required by Waters signatures is already implied by the
assumption required for the Groth-Sahai proofs. A similar construction can be done with Boneh-Boyen signatures, but the additional
q-SDH assumption is required.

15

In a typical ABM system, a certain degree of authorization is required to send messages to certain groups
of users. That is, an attribute-based access control mechanism must decide whether to allow a messaging
attempt from a sender, depending on both the attributes of the sender and the attribute-based address attached
to the message. ABS can be used to authenticate a sender to the ABM system itself (as opposed to the
scenario above, where the sender was authenticating to the message recipient). As the messaging system
can publicly verify the ABS signature, this solution eliminates the need for the messaging system to query
the attribute database to determine the sender’s authorization. Indeed, the messaging system need not know
the sender’s identity at all.

Finally, because our construction is so readily suited for multi-authority settings, ABS is a natural
choice for inter-domain ABM systems. However, there are many engineering and cryptographic challenges
involved in other aspects of a truly inter-domain ABM system. For example, Chase’s proposal [12] for
multi-authority attribute-based encryption (originally for the schemes in [31, 18], but can be extended to the
one in [3]) requires all the attribute-authorities to share secret keys with a central authority, thereby requiring
the central authority to trust all the attribute authorities. In contrast, our ABS system requires no such trust
between the signature trustee and attribute authorities. As such, ABS is much better suited to practical
inter-domain attribute-based systems than its encryption counterparts.

Attribute-based authentication and trust-negotiation ABS can also be used as a more general fine-
grained authentication mechanism. For instance, when a user requests access to a resource in a server,
the server can give its access policy along with a random challenge string. The client can then generate a
session key for (private-key) communication, generate an ABS signature of (challenge, sessionkey) under
the server’s policy, and send these to the server on an encrypted channel. Thereafter, the client and server
can communicate using the shared session key. This simple protocol is robust even against a man in the
middle.

This technique can be extended to multiple rounds as a simple trust negotiation protocol, in which two
parties progressively reveal more about their attributes over several rounds of interaction. Several recent
works also consider cryptographic approaches to trust negotiation that give more privacy to users than is
achieved when they simply take turns revealing their attributes [26, 17]. Instead of these techniques, ABS
can provide a sophisticated way to reveal partial information about one’s attributes that is natural for this
setting. Being able to bind a message to such a proof about one’s attributes, as ABS permits, also allows
one to protect the trust negotiation from outside attack, using an approach as above. At each step of the
negotiation, the active party can choose an “ephemeral key” for secure (private-key) communication and
sign it using ABS. This approach prevents a man-in-the-middle attacks by an adversary who has enough
attributes to intercept the first few steps of the negotiation.

Leaking secrets The classical application for which the notion of ring-signatures was developed by Rivest,
Shamir and Tauman [28] is “leaking secrets,” that we used as the motivating example in the opening of
this paper. Ring signatures support only claim-predicates which are disjunctions. Mesh signatures are an
extension of this concept which allow more sophisticated claim-predicates, but permit multiple parties to
pool their attributes (atomic signatures). This is not necessarily the intended semantics in natural secret-
leaking environment. ABS, on the other hand, provides the semantics that a single user (not a coalition)
whose attributes satisfy the stated predicate attests to the secret.

Acknowledgement

We thank Amit Sahai for several useful discussions and collaboration during a part of this work.

16

References

[1] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions,
simplified requirements, and a construction based on general assumptions. In E. Biham, editor,
EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 614–629. Springer, 2003.

[2] M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based identification and
signature schemes. Journal of Cryptology, 22(1):1–61, January 2009. Preliminary version appeared in
Eurocrypt 2004.

[3] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In IEEE
Symposium on Security and Privacy, pages 321–334, 2007.

[4] R. Bobba, O. Fatemieh, F. Khan, C. A. Gunter, and H. Khurana. Using attribute-based access control
to enable attribute-based messaging. In ACSAC, pages 403–413. IEEE Computer Society, 2006.

[5] R. Bobba, O. Fatemieh, F. Khan, A. Khan, C. Gunter, H. Khurana, and M. Prabhakaran. Attribute
based messaging: Access control and confidentiality. Manuscript (under submission), 2008.

[6] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In M. K. Franklin,
editor, CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 443–459. Springer, 2004.

[7] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Camenisch,
editors, EUROCRYPT, volume 3027 of Lecture Notes in Computer Science, pages 56–73. Springer,
2004.

[8] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. K. Franklin, editor, CRYPTO,
volume 3152 of Lecture Notes in Computer Science, pages 41–55. Springer, 2004.

[9] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput.,
32(3):586–615, 2003.

[10] X. Boyen. Mesh signatures. In M. Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in
Computer Science, pages 210–227. Springer, 2007.

[11] X. Boyen and B. Waters. Compact group signatures without random oracles. In S. Vaudenay, editor,
EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 427–444. Springer, 2006.

[12] M. Chase. Multi-authority attribute based encryption. In S. P. Vadhan, editor, TCC, volume 4392 of
Lecture Notes in Computer Science, pages 515–534. Springer, 2007.

[13] M. Chase and S. S. M. Chow. Improving privacy and security in multi-authority attribute-based
encryption. In E. Al-Shaer, S. Jha, and A. D. Keromytis, editors, ACM Conference on Computer
and Communications Security, pages 121–130. ACM, 2009.

[14] D. Chaum. Security without identification: Transaction systems to make big brother obsolete.
Commun. ACM, 28(10):1030–1044, 1985.

[15] D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT, pages 257–265, 1991.

[16] A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without interaction. In 33rd
FOCS, pages 427–436. IEEE Computer Society Press, 1992.

17

[17] K. B. Frikken, J. Li, and M. J. Atallah. Trust negotiation with hidden credentials, hidden policies, and
policy cycles. In NDSS. The Internet Society, 2006.

[18] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access
control of encrypted data. In A. Juels, R. N. Wright, and S. D. C. di Vimercati, editors, ACM
Conference on Computer and Communications Security, pages 89–98. ACM, 2006.

[19] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures.
In X. Lai and K. Chen, editors, ASIACRYPT, volume 4284 of Lecture Notes in Computer Science,
pages 444–459. Springer, 2006.

[20] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In N. P. Smart,
editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 415–432. Springer,
2008.

[21] S. Guo and Y. Zeng. Attribute-based signature scheme. In International Conference on Information
Security and Assurance, pages 509–511. IEEE, 2008.

[22] J. Katz, R. Ostrovsky, and M. O. Rabin. Identity-based zero knowledge. In C. Blundo and S. Cimato,
editors, SCN, volume 3352 of Lecture Notes in Computer Science, pages 180–192. Springer, 2004.

[23] D. Khader. Attribute based group signature with revocation. Cryptology ePrint Archive, Report
2007/241, 2007. http://eprint.iacr.org/2007/241.

[24] D. Khader. Attribute based group signatures. Cryptology ePrint Archive, Report 2007/159, 2007.
http://eprint.iacr.org/2007/159.

[25] J. Li and K. Kim. Attribute-based ring signatures. Cryptology ePrint Archive, Report 2008/394, 2008.
http://eprint.iacr.org/2008/394.

[26] N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. Distributed Computing, 17(4):293–
302, 2005.

[27] H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures: Achieving attribute-privacy
and collusion-resistance. Cryptology ePrint Archive, 2008. http://eprint.iacr.org/.

[28] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd, editor, ASIACRYPT, volume
2248 of Lecture Notes in Computer Science, pages 552–565. Springer, 2001.

[29] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proc. 22nd STOC,
pages 387–394. ACM, 1990.

[30] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
FOCS, pages 543–553, 1999.

[31] A. Sahai and B. Waters. Fuzzy identity-based encryption. In R. Cramer, editor, EUROCRYPT, volume
3494 of Lecture Notes in Computer Science, pages 457–473. Springer, 2005.

[32] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53, 1984.

[33] B. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor,
EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer, 2005.

18

[34] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure
realization. Cryptology ePrint Archive, Report 2008/290, 2008. http://eprint.iacr.org/
2008/290.

19

A Using ABS

Attribute-based signatures are just a cryptographic primitive fully defined by the above described algorithms
and the security and correctness guarantees. To be useful in a system, ABS has to be used appropriately.
Here we describe the typical usage scenario for ABS.

For the sake of expositional clarity, in this section we consider a setting with a single authority who sets
up the system parameters and public keys, and also issues private keys for each user, for each of the user’s
attributes.10

Mapping Attributes Before describing the operation of the system, we need to relate the attributes as
used in ABS with the attributes that occur in a real-life system. In a typical system one encounters attributes
which have a name and optionally a value. For instance a user may possess an attribute named age, with
a numerical value 25. On the other hand, some attributes may not have any value attached to them; for
instance a user could possess an attribute named student. ABS, as described above, supports only the latter
kind of attributes. Nevertheless, since the names supported by ABS are free-form strings, one could encode
a (name, value) pair into a single string using an appropriate (standardized) encoding scheme.

But it is not enough to encode the attributes; one must also translate the predicates involving the
(name, value) pair into predicates in terms of the encoded string. The above encoding is sufficient if the
predicates involve only equality conditions. But for numerical attributes, other comparisons (like “≥”, “≤”)
are also important. This can be taken care of by representing a single numerical attribute by a few value-less
attributes, as has been already pointed out in [18, 3]. We remark that at the cost of increasing the number
of value-less attributes used (thereby increasing private-key size of the user), one can reduce the size of the
predicate representing a comparison condition, leading to faster operations (signing and verification, in our
case).

Another issue regarding mapping real-life attributes to ABS attributes relates to attribute expiry and
revocation issues. As discussed below, the collusion-resistance property of ABS provides suitable flexibility
to support revocation. But the exact manner in which this flexibility is used is a design decision that trades
off efficiency and security parameters.

Typical System with ABS In the single authority setting, the authority first runs the algorithm ABS.Setup
to generate a global key pair for the scheme, and publishes the public key PK. This public-key will be
picked up by all users who need to create or verify signatures in the system.

Later, each user visits the authority to obtain private keys corresponding to her attributes. Let A ⊆ A
be the set of attributes that the authority wants to give to this user. Then the authority runs ABS.KeyGen to
generate a signing key SKA corresponding to the set of attributes possessed by that user.

After this, parties can sign and verify messages without further interaction with the authority. As long
as the authority is uncorrupted, the unforgeability guarantee holds. Further, even if the authority is corrupt,
the perfect privacy guarantee holds for the signer.11

Changing Attributes In the scenario above the authority issued a single key SKA for the set of attributes
A. Once issued this attribute set is never changed. This is usually not satisfactory. There are two possible
solutions that ABS offers.

10We do not consider the technical issues of how the authority establishes the identity of a user before handing it any keys. Also,
we consider it the authority’s prerogative to determine which attributes should be given to each requesting user.

11Of course, if the authority wishes to reveal the user’s attributes, it can; but irrespective of what the authority reveals, the signer
has the guarantee that creating a signature reveals no further information about its attributes (beyond the fact that its attributes
satisfied the claim-predicate).

20

When a user’s attribute set changes, the authority can reissue an entire new set of signing keys, generated
via ABS.KeyGen. This is akin to establishing a new user with new set of attributes. By the collusion-
resistance the user cannot combine keys in the new set with keys in the old set (or any other set for that
matter). The user can of course still create signatures using the old set of attributes, so the attributes should
be designed to include expiry information if the system requires revoking the old attributes.

Alternately, if the user simply acquires new attributes, it is not necessary to issue a totally new key set.
Though not apparent from the syntax presented above, in fact our ABS construction allows the authority to
augment a key SKA to SKA∪A′ . (The syntax for this operation is made explicit in our definitions for multi-
authority ABS, where keys are issued for one attribute at a time.) To allow for augmenting signing keys with
new attributes, the authority could either maintain some state per user (to remember the randomness used
to generate the key SKA), or provide a signed certificate of some public randomness that the user can keep
and must bring back when requesting each new attribute, or more practically use a pseudorandom function
such as AES to obtain this randomness as a function of the user’s identity. In the latter case, the authority
only needs to remember just one additional pseudorandom function seed (or AES key).

B Efficiency of Instantiations 1 and 2

Instantiation 1: Boneh-Boyen We simplify the following efficiency analysis by noting that n ≤ `.
The proof requires `(5 + 4k) variables: for each i ∈ [`], the prover must commit to gvi , S, Svi , Dt, Cτ

as well as all k of the bits of τ, t in both groups (if G = H, then only `(5 + 2k) variables are needed).
There are t + 4`k quadratic Zp equations (these are equations where both the variables and the

coefficients have known discrete logs): t to perform the matrix multiplication and 4`k to establish
τj , ti ∈ {0, 1}. The t matrix multiplication equations are of a special form (all variables are in G) that
some instantiations of Groth-Sahai can optimize. When G = H, 2`k of these equations are not needed.

There are 3` multi-scalar product equations (these are equations where all variables and coefficients in
one of the two groups have known discrete logs): for each i ∈ [`], the equations involving S, Dt, and Cτ .

Finally, there are ` pairing-product equations (the most general form supported by Groth-Sahai): the
equations that verify the main pairing equation for each i ∈ [`].

Depending on the instantiation of Groth-Sahai used (based on either the SXDH or DLIN assumptions),
the entire size of the ABS signature (measured in number of group elements) is given in the following table:

of group elts SXDH DLIN (G = H)
(5 + 4k)` vars 10`+ 8`k 15`+ 6`k

t+ 4`k quadratic 2t+ 16`k 2t+ 12`k
3` multi-scalar 18` 27`
` pairing-prod 8` 9`
signature size 36`+ 2t+ 24`k 51`+ 2t+ 18`k

We remark that the most efficient Groth-Sahai proof instantiation uses a composite subgroup decision
problem, but working in a prime order subgroup of unknown size within a composite order group is
incompatible with our approach. First, users must be able to compute ~v and matrix M given a description of
Υ and a satisfying assignment. This may not always be possible if the linear algebra is in a field of unknown
size. Second, Boneh-Boyen signatures are only known to be useful in groups of prime order.

Instantiation 2: Waters Again we simplify the following efficiency analysis by noting that n ≤ `.
The proof requires 5`+ 2k + 1 variables: Each of the k bits of τ , in both groups (unless G = H), plus

the product
∏

i V
taui
i , which is shared among several clauses. Then for each i ∈ [`], the prover must commit

to gvi , hvi , σ1, σ2, A
vi .

21

There are t + 2k + ` quadratic Zp equations (these are equations where both the variables and the
coefficients have known discrete logs): t to perform the matrix multiplication, 2k to establish τj ∈ {0, 1},
and ` to ensure consistency between gvi and hvi . The t matrix multiplication equations are of a special
form (all variables are in G) that some instantiations of Groth-Sahai can optimize. When G = H, the 2k
equations involving τj are not needed.

There are `+1 multi-scalar product equations (these are equations where all variables and coefficients in
one of the two groups have known discrete logs): one equation involving eachAvi , and one overall involving∏

i V
τi
i .

Finally, there are ` pairing-product equations (the most general form supported by Groth-Sahai): the
equations that verify the main pairing equation for each i ∈ [`].

Depending on the instantiation of Groth-Sahai used (based on either the SXDH or DLIN assumptions),
the entire size of the ABS signature (measured in number of group elements) is given in the following table:

of group elts SXDH DLIN (G = H)
5`+ 2k + 1 vars 10`+ 4k + 2 15`+ 3k + 3
t+ 2k + ` quad 2t+ 8k + 4` 2t+ 6k + 3`

`+ 1 multi-scalar 6`+ 6 9`+ 9
` pairing-prod 8` 9`
signature size 28`+ 2t 36`+ 2t

+ 12k + 8 + 9k + 12

Compared to the instantiation using Boneh-Boyen signatures, this instantiation is much more efficient.
Each Boneh-Boyen signature involves bitwise operations on an element of Zp, but Waters signatures avoid
this, thus eliminating the dominating O(nk) factor in the total Groth-Sahai proof size. We note that this
improvement comes at the cost of having O(k) group elements in the verification key, instead of O(1)
group elements as in the Boneh-Boyen instantiation.

C Notes on Instantiation 3

Given our general framework (Theorem 1), to complete the security proof of the instantiation in Section 4.5
(Theorem 4.5), it is enough to prove the security of the Credential Bundle scheme it uses.

First we recall the Credential Bundle scheme. Below, let G and H be two groups with a bilinear pairing
e : G×H→ GT . Let g, h be generators of G and H respectively.

CB.Setup: Pick b, c← Z∗
p. Let sk = (b, c). Let vk = (g, h,B = hb, C = hc).

CB.Gen(sk,m1, . . . ,mn): Pick a random x ∈ Z∗
p. Compute τ = (gx, gx/c) and σi = g

x
b+mi , for all

i ∈ [n].

CB.Ver(vk,m, (τ, σ)): Let the signature for m1, . . . ,mn be τ = (X,Y) and σ1, . . . , σn. We accept, if the
signature passes all the following checks:

• X 6= 1,

• e(X,h) = e(Y,C), and

• e(σi, Bh
mi) = e(X,h), for all i ∈ [n].

Lemma 1. The credential bundle scheme above is secure in the generic group model.

22

Proof. WLOG we can assume that H = G, because this can only help the adversary. Suppose the adversary
queries q times and its i-th request for credentials was on the messages {mi,1, . . . ,mi,n(i)}, where i ∈ [q].
Let the i-th credential received by the adversary be:(

gxi , gxi/c
)
, g

xi
b+mi,1 , . . . , g

xi
b+mi,n(i) (2)

For any generic-group adversary, we consider a modified security experiment, carried out by a simulator
as follows. For each group element seen or created by the adversary, this simulator keeps track of its discrete
logarithm by means of multivariate rational functions in the following indeterminate formal variables:

Σ = {b, c} ∪ {xk : k ∈ [q]}

The simulation associates each group element with some rational function. For each distinct rational
function in its collection, it chooses a random distinct representation f and gives it to the adversary as the
encoding of that particular group element. The functions are associated with the group elements in the
simulation as follows:

1. Public key components generated by CB.Setup:

(a) 1, representing g

(b) b, representing gb

(c) c, representing gc

2. Signatures given out by CB.Gen:

(a) xi, representing gxi

(b) xi/c, representing gxi/c

(c) xi/(b+mi,j), representing gxi/(b+mi,j)

3. Queries to the generic group oracle:

(a) When the adversary asks for the group operation to be performed on α, β (specified by their
encodings), where the group elements are associated with function Fα, Fβ , associate with the
result the function Fα + Fβ .

(b) When the adversary asks for a group element α (specified by its encoding) to be raised to the
power d, where α is associated with function Fα, associate with the result the function dFα.

The simulator returns a distinct handle for each group element that is associated with a distinct
function over the formal variables.

We note that in the actual experiment, the values of the formal variables are chosen uniformly at random
in Z∗

p. Two distinct functions may in that case evaluate to the same value. The simulation is faithful to the
standard interaction in a generic group, except in the event that two of the distinct functions evaluate to the
same value on a random assignment to the formal variables. For any two distinct function of the form listed
above, the probability of this happening is at most O(

∑
i∈[q] n(i))/p, since we can multiply both functions

by the common denominator c
∏

i∈n(i):j∈[n(i)](b + mi,j) to obtain distinct multivariate polynomials with
total degree at most O(

∑
i∈[q] n(i)). Since this probability is negligible, we ignore this case.

Now the adversary outputs a frogery τ∗ = (gx∗ , gy∗) and σ∗1 = gz∗1 , . . . , σ∗n = gz∗n for m∗
1, . . . ,m

∗
n.

23

If the adversary succeeds with non-negligible probability, then the two sides of the following set of
constraints are functionally equivalent (otherwise, using the argument mentioned above, these constraints
are satisfied with negligible probability):

x∗ 6= 0
x∗ = cy∗

z∗j (b+m∗
j) = x∗, for j ∈ [n]

Let Lin(Γ) be the set of all multilinear polynomials over the set of terms Γ with coefficients in Zp. Let
Hom(Γ) ⊂ Lin(Γ) be the subset of homogeneous polynomials (those with a zero constant coefficient).

Let us define

Γ = {b, c} ∪ {xi/c|i ∈ [q]} ∪ {xi/(b+mi,j)|i ∈ [q], j ∈ [n(i)]} (3)

It is easy to see that x∗, y∗, z∗j ∈ Lin(Γ), for j ∈ [n].
Since y∗c = x∗ ∈ Lin(Γ), we get y∗ ∈ Lin({x1/c, . . . , xq/c}) and x∗ ∈ Hom({c, x1, . . . , xq}).

Observe that z∗j (b+m∗
j) = x∗, hence [c]x∗ = 0. So, we can conclude that:

x∗ ∈ Hom({x1, . . . , xq})
y∗ ∈ Hom({x1/c, . . . , xq/c})
z∗j ∈ Hom({xi/(b+mi,j)|i ∈ [q], j ∈ n(i)})

Since x∗ 6= 0, there exists i0 such that [xi0]x
∗ 6= 0. Hence coefficient of xi0

b+m∗
j

in z∗j is not 0. Thus,

m∗
j ∈ {mi0,1, . . . ,mi0,n(i0)}. We can conclude that

{m∗
j |j ∈ [n]} ⊆

⋂
i∈[q]

{mi,j |[xi]x∗ 6= 0, j ∈ [n(i)]} (4)

This shows that any adversary can forge credentials by only removing elements from previous queries,
except with negligible probability.

Non-interactive proof via pairing equations. To incorporate the credential bundle scheme from Figure 2
into our general framework, we use the same Groth-Sahai techniques as in the previous section. Thus it
suffices to show how statements of the form ∃ τ, σ, v :

[
v 6= 0 ⇒ CB.Ver(vk,m, (τ, σ)) = 1

]
can be

proven about this attribute bundle scheme using Groth-Sahai proofs.
First, we note that any bundle ((X,Xc), {σa | a ∈ A}) can in fact be rerandomized as

((Xr, (Xc)r), {(σa)r | a ∈ A}), where r is chosen randomly in Z∗
p. Thus without loss of generality,

we assume that each signature is generated with a freshly random bundle.
To prove the statement in question, we give out X and Xc in the clear (since an adversary in our

experiment can always freely obtain a random X,Xc subject to (Xc)c = X). The verifier can check
X 6= 1 and check e(C,Xc) = e(g,X). Then we also commit to σv and gv and prove the following pairing
equations:

e(Bgm, 〈σv〉) = e(〈gv〉 , X); e(〈gv〉 , 〈σ〉) = e(g, 〈σv〉)

Efficiency. The proof sends 2 group elements in the clear, and then uses 3` variables: for each i ∈ [`], the
prover must commit to gvi , σi, σ

vi
i .

There are t quadratic Zp equations used to carry out the matrix multiplication. Again, these are of a
special form (all variables are in G) that some instantiations of Groth-Sahai can optimize.

24

There are ` multi-scalar product equations: those equations comparing σ to σv.
Finally, there are ` pairing-product equations: those that involve Bgm.
Depending on the instantiation of Groth-Sahai used (based on either the SXDH or DLIN assumptions),

the entire size of the ABS signature (measured in number of group elements) is given in the following table:

of group elements SXDH DLIN
2 sent in the clear 2 2

3` variables 6` 9`
t quadratic eqns 2t 2t

` multi-scalar eqns 6` 9`
` pairing-product eqns 8` 9`

total signature size 20`+ 2t+ 2 27`+ 2t+ 2

D Notes on Instantiation 4

Our construction from Section 4.6 is perhaps the best choice in a typical attribute-based system, especially
if the system already involves attribute-based encryption schemes whose security is proven in the generic-
group model. We make a few notes about the efficiency and extensions of the scheme.

Delegation This scheme supports delegation of attributes in a natural way. Suppose a party has a signing
key for A, say, (Kbase,K0, {Ku | u ∈ A}). Then for any A′ ⊆ A, when choosing random r ← Z∗

p, the
quantity ((Kbase)r, (K0)r, {(Ku)r | u ∈ A′}) is a valid, correctly distributed signing key for attribute set
A′.

Probabilistic Verification Using a standard technique, signatures in this scheme can be verified proba-
bilistically with only ` + 4 pairings instead of `t + 2, at the cost of additional exponentiations and a very
small probability of false positives.

To probabilistically verify a signature, proceed as in the normal verification algorithm, but replace
the final t checks with the following random one: Choose random r1, . . . rt ← Z∗

p, and check the single
constraint: ∏̀

i=1

e

Si,

t∏
j=1

(AjB
u(i)
j)Mij ·rj

 ?= e(Y, hr1
1) e

Cgµ,

t∏
j=1

P
rj

j

This is essentially a random linear combination of the t original constraints. Legitimate signatures pass such
a check with probability 1, while invalid signatures pass with probability at most 1/p.

Efficiency The total public key data consists of 3(tmax + 1) group elements, which we emphasize is
independent of the number of possible attributes in the system. Signatures have linear size, consisting of
`+ t+2 group elements, where ` and t are the dimensions of the claim-predicate’s monotone span program.
Signing can be done using a maximum of 2w + `(1 + 2t) + 3 exponentiations in G and H , where w is the
minimum number of attributes needed for the signer to satisfy Υ.

D.1 Security Proof

In this section we prove Theorem 5, by showing that Scheme 4 is a secure ABS scheme in the generic group
model. Note that in this scheme the signature indeed has s + 2 elements (where, by definition, the size of
the monotone span program s = `+ t). We break the security proof into the following two lemmas.

25

Lemma 2. Scheme 4 is a correct (Definition 5) and perfectly private (Definition 6) ABS scheme.

Proof. Correctness can be seen by straight-forward substitutions. To prove perfect privacy it suf-
fices to show that for any claim-predicate Υ and any attribute set A that satisfies Υ, the output of
ABS.Sign(PK,SKA,m,Υ) is uniformly distributed among signatures σ, subject to the constraint that
ABS.Ver(PK,m,Υ, σ) = 1. For σ = (Y,W, S1, . . . , Sn, P1, . . . , Pt) it is easy to see that for any setting
of Y 6= 1 and S1, . . . , Sn, there is a unique value of W,P1, . . . , Pt for which the signature successfully
verifies. We conclude by observing that Y and S1, . . . , Sn output by ABS.Sign are distributed uniformly in
their respective domains and that the signature output by ABS.Sign successfully verifies.

Lemma 3. Scheme 4 is unforgeable (Definition 7) in the generic group model.

Proof. We first observe that the distribution AltSign(MK,m,Υ) can be sampled in the following way:
Let M ∈ (Zp)l×t be the monotone span program for Υ, with row labeling u : [l]→ A; let µ = H(m‖Υ).

1. Pick random s1, . . . , sl ← Zp and y ← Z∗
p

2. For all j ∈ [t], compute

pj =
1

(c+ µ)

[
l∑

i=1

si(a+ u(i)b)Mi,j − yzj

]
,

where ~z = [1, 0, . . . , 0].

3. Output σ = (gy, gy/a0 , gs1 , . . . , gsl , hp1
1 , . . . , h

pt
t)

It is straight-forward to check that this distribution matches AltSign(MK,m,Υ). WLOG, we assume that
in the security experiment, responses to signature queries are generated in this way.

We now proceed with the proof of unforgeability, following the standard approach for generic groups.
Using arguments similar to the ones provided in Appendix C we assume that the groups G and H

coincide. Suppose, the adversary outputs a purported forgery signature σ∗ on a policy Υ∗ and message
m∗ such that (m∗,Υ∗) 6= (m(q),Υ(q)) for all q. Let M∗ ∈ Zl∗×t∗

p be the corresponding monotone
span program with row labeling u∗(·). Let µ∗ = H(m∗‖Υ∗), and suppose the signature has the form
σ∗ = (gy∗ , gw∗

, gs∗1 , . . . , gs∗
l∗ , gp∗1 , . . . , gp∗

t∗).
To be a forgery, we need y∗ 6= 0, and w∗ = y∗/a0, and

l∗∑
i=1

s∗i M
∗
i,j(a+ u∗(i)b)∆j = y∗zj∆j + (c+ µ∗)p∗j (∀j ∈ [t∗])

WLOG we can assume that these constraints are functionally satisfied. The rest of our proof proceeds by
assuming these constraints are functionally equivalent, and eventually obtaining a contradiction: that there
exists a k0 ∈ [n] such that Υ(Ak0) = 1. In other words, the adversary could have generated a signature
legitimately with the signing key for Ak0 , and thus the output is not a forgery.

We know that y∗, w∗, s∗1, . . . , s
∗
l∗ , p

∗
1, . . . , p

∗
t∗ ∈ Lin(Γ), where

Γ ={1, a0,∆0, c} ∪ {∆j , a∆j , b∆j | j ∈ [tmax]}
∪ {xk, xk/a0, xk/(a+ bu) | k ∈ [n], u ∈ Ak}

∪ {s(q)i , y(q), w(q), p
(q)
j | q ∈ [ν], i ∈ [l(q)], j ∈ [t(q)]}

26

The rest of our analysis proceeds by comparing terms in these constraints. We can show that the multilinear
functions given by the adversary’s forgery cannot contain terms of certain kinds. Since y∗ = w∗a0, we get
that:

y∗ ∈ Hom
(
{∆0a0} ∪ {xk : k ∈ [n]} ∪ {y(q) : q ∈ [ν]}

)
It is easy to see that ∆j |(c+ µ∗)p∗j and hence ∆j |p∗j . So,

p∗j ∈ Hom
(
{∆j ,∆ja,∆jb} ∪ {p(q)

j : q ∈ [ν]}
)

Consider j0 such that zj0 6= 0. Then suppose y∗ has a ∆0a0 term. Then there is a ∆0a0∆j0 monomial
in y∗zj∆j0 . This monomial cannot occur in (c + µ∗)p∗j0 , nor can it occur in

∑l∗

i s
∗
i Mi,j0(a + u∗(i)b)∆j0 ,

since all monomials from the sum have a factor of a or b. Hence,

y∗ ∈ Hom
(
{xk : k ∈ [n]} ∪ {y(q) : q ∈ [ν]}

)
Suppose p∗j has ∆j term. Then the right hand side contributes monomials ∆j and b∆j . Because y∗

has no constant term, y∗zj∆j can not contribute a ∆j monomial. And similar to above,
∑l∗

i s
∗
i Mi,j(a +

u∗(i)b)∆j can not contribute a monomial with ∆j alone, hence

p∗j ∈ Hom
(
{∆ja,∆jb} ∪ {p(q)

j : q ∈ [ν]}
)

Suppose p∗j has a p(q)
j term. Then on the right hand side we will have a contribution of (c + µ∗)p∗j ,

producing a term with a factor of (c + µ∗)/(c + µ(q)). Since µ∗ 6= µ(q) for any q, this is a proper rational.
No setting of y∗ or {s∗i }i∈[l∗] can yield terms in the final equation with a factor of (c + µ∗)/(c + µ(q)).
Hence:

p∗j ∈ Hom ({∆ja,∆jb})

Consider j0 such that zj0 6= 0. Now, y∗ can not have a y(q) term, because neither (c + µ∗)p∗j0 nor∑l∗

i s
∗
i Mi,j0(a+ u∗(i)b)∆j0 can contribute a monomial of this form. Hence:

y∗ ∈ Hom ({xk : k ∈ [n]})

Finally we conclude that:

p∗j ∈ Hom ({∆ja,∆jb}) and y∗ ∈ Hom({xk : k ∈ [n]})

Observe that any term which appears in y∗ must also be contributed from the left hand side, to make the
expression equal. So, we can split s∗i into two parts; one whose terms involve xk variables, and one which
does not. Let

s∗i = t∗i (Xi) + δ∗(Γ \Xi)

where Xi =
{

xk
(a+u∗(i)b) : u(i) ∈ Ak, k ∈ [n]

}
. Observe that t∗i ∈ Hom(Xi), and satisfies the following

equation for all j ∈ [t]:
l∗∑

i=1

t∗i M
∗
i,j(a+ u∗(i)b) = y∗zj

Consider any xk0 such that it has a non-zero coefficient in y∗. Construct v∗i , for i ∈ [l], by defining

v∗i =
1

[xk0]y∗

[
xk0

a+ u∗(i)b

]
t∗i

where the [x]π notation denotes the coefficient of the term x in π. We see that v∗ is a vector of constant
coefficients which satisfies the equation v∗M∗ = [z1 . . . zt] = [1, 0 . . . , 0]. Further, in every position where
v∗i 6= 0, the set Ak0 surely contained the attribute u∗(i). By the properties of the monotone span program, it
must be the case that Υ∗(Ak0) = 1, and thus the signature is not a forgery.

27

E Multiple Attribute Authorities

When an attribute-based system is in an enterprise setting (say, an attribute-based messaging system for
communications within a corporation), there would be a single authority issuing attributes to the users and
setting up the ABS scheme. However, for many practically interesting settings, it is important to allow users
to obtain attributes from different attribute authorities who may not trust each other, or may not even be
aware of each other. Indeed, some of the attribute authorities may be corrupt, and this should not affect the
attributes issued by other authorities.

As a simple illustrative example, suppose Alice wishes to anonymously publish an anecdote on user
experience in online social networks. To give credibility to her story she decides to use the following claim
to endorse her message:

(Facebook user for 2 years AND Has 100 Facebook friends)
OR (Has 100 Orkut friends AND Participated in 100 Orkut discussion forums)
OR ((Princeton professor OR Yale professor) AND Expert on online social networks).

Alice wants to endorse her anecdote using this claim, without having to reveal how she satisfies
the claim. These attributes are owned by different attribute authorities like Facebook, Orkut, Princeton
University, Yale University and the American Sociological Association, who may not trust each other, or
may not even be aware of each other. Nor might all these authorities trust a common central agency. To
satisfy the claim Alice may need to use attributes she acquired from different authorities, say Yale and
the ASA. To make matters more challenging, Alice may have never interacted with Facebook’s attribute-
authority, and yet she wishes to use an arbitrary attribute string from Facebook as part of her claim.

In the following we extend the notion of ABS to such a multi-authority setting. Then in Appendix E.2
we will illustrate how Alice can use multi-authority ABS to solve her problem.

In a multi-authority ABS scheme, apart from (mutually distrusting) attribute authorities, there needs to
be an entity to set up the various public parameters of the signature system. We call this entity the signature
trustee. However, we shall require that the signature trustee does not have to trust any attribute authority.
In particular, the attribute authorities use only the public keys from the signature trustee.

Finally, we shall also allow there to be multiple signature trustees. In this case, the attribute authorities
would issue attribute keys to a user for all the signature trustees she wishes to work with. Here, an attribute
authority or a signer need not trust the signature trustee.

Below we give a summary of the modifications in the syntax and security definitions of the ABS
primitive for the multi-authority setting, followed by the formal definition.

Modified syntax. Our main changes in syntax involve separating the key material into pieces originating
from different authorities. Further, the syntax must now include new safety checks on the key material, since
(a) the authorities depend on the user to provide key material from the trustees, and (b) the users no longer
consider all authorities as trusted entities.

The claim-predicates in the signatures are now required to carry the identity of the attribute-authorities
who own the various attributes (possibly as meta-data attached to the attribute description). Note that if
for any attribute appearing in the claim-predicate the verifier uses a different attribute-authority than what
the signer used, the verification will simply fail. So it is in the interest of the signer to point to the correct
attribute-authorities.

Definition 10 (Multi-Authority ABS). A multi-authority ABS scheme consists of the following algo-
rithms/protocols:

ABS.TSetup: The signature trustee runs the algorithm ABS.TSetup which produces a trustee public key
PK and trustee secret key TSK. The trustee publishes PK and stores TSK.

28

ABS.TRegister: When a user with user id uid registers with the signature trustee, the trustee runs
ABS.TRegister(TSK, uid) which outputs a public user-token τ . The trustee gives τ to the user.

ABS.ASetup: An attribute authority who wishes to issue attributes runs ABS.ASetup(PK) which outputs
an attribute-authority public key APK and an attribute-authority secret key ASK. The attribute
authority publishes APK and stores ASK.

ABS.KeyGen: When an attribute authority needs to issue an attribute u ∈ A to a user uid,
first it obtains (from the user) her user-token τ , and runs a token verification algorithm
ABS.TokenVerify(PK,uid, τ). If the token is verified, then it runs ABS.KeyGen(ASK, τ, u)
which outputs an attribute key Ku. The attribute authority gives Ku to the user.

The user checks this key using ABS.KeyCheck(PK,APK, τ,Ku) and accepts this attribute key only
if it passes the check.

ABS.Sign: A user signs a message m with a claim-predicate Υ, only if there is a set of attributes A such
that Υ(A) = 1, the user has obtained a set of keys {Ku | u ∈ A} from the attribute authorities, and
they have all passed ABS.KeyCheck. Then the signature σ can be generated using

ABS.Sign
(
PK, {APKauth(u) | u ∈ AΥ}, τ, {Ku | u ∈ A},m,Υ

)
.

Here auth(u) stands for the authority who owns the attribute u (as described in u), and AΥ is the set
of attributes appearing in Υ. (m,Υ, σ) can be given out for verification.

ABS.Ver: To verify a signature σ on a message m with a claim-predicate Υ, a user runs

ABS.Ver
(
PK, {APKauth(u) | u ∈ AΥ},m,Υ, σ

)
which outputs a boolean value, accept or reject.

Security Definitions The security definitions are now a little more elaborate to accommodate for the
different cases corresponding to different entities (signers, verifiers, attribute-authorities and signature-
trustees) being corrupt.

The privacy requirement is formulated as a perfect information-theoretic property: for every PK,
m, and Υ, the output distribution of ABS.Sign(PK, {APKauth(u) | u ∈ AΥ}, ·, ·,m,Υ) is the same no
matter which τ , and attribute signing keys {Ku} are used, as long as the keys {Ku} have all passed
ABS.KeyCheck. In other words, there is a (computationally infeasible) procedure AltSign such that
AltSign(PK,m,Υ, {APKauth(u) | u ∈ AΥ})) is distributed exactly as a valid signature on m with claim-
predicate Υ.

The unforgeability definition is modified to account for the case where some of the attribute authorities,
and some signature trustees are corrupt. The unforgeability requirement is with respect to an uncorrupted
signature trustee (whose setup is carried out by the experimenter in the security experiment).

Definition 11. A multi-authority ABS scheme is unforgeable if the success probability of every polynomial-
time adversary is negligible in the following experiment:

1. Run (PK, TSK) ← ABS.TSetup. The adversary is given PK and access to the
ABS.TRegister(TSK, ·) oracle.

2. The adversary can ask for honest attribute authorities to be instantiated using ABS.ASetup.
For each of these, the adversary receives only the public key APK and gets access to a
ABS.KeyGen(ASK, ·, ·) oracle. The adversary can also instantiate (corrupt) attribute author-
ities and publish public keys for them.

29

3. The adversary gets access to the alternate signing oracle AltSign(PK, ·, ·, ·).
4. At the end the adversary outputs (m,Υ, σ).
Let Auid be the set of u ∈ A such that the adversary queried the ABS.KeyGen oracle on (uid, u).

Let A0 be the set of possible attributes corresponding to corrupt attribute authorities. Then the adversary
succeeds if σ verifies as a valid signature on (m,Υ), and (m,Υ) was never queried to the signing oracle,
and Υ(A0 ∪ Auid) = 0 for all uid queried to the ABS.TRegister oracle.

E.1 Construction

All our constructions generalize to the multi-authority setting. In the case of Schemes 1, 2 and 3, recall that
the credential-bundles are implemented as signatures by the attribute authority on (nonce,attribute) pairs. In
the multi-authority setting each attribute authority publishes their own signature verification key. The nonce
will be derived deterministically (using a collision-resistant hash function) from the identity uid of the user,
so that all authorities agree on the same nonce. The signature trustee publishes its own signature verification
key and a CRS for the NIWI argument of knowledge. The NIWI system will be used to prove possession
of sufficient attributes (valid signatures, under different verification keys) or a signature on the (message,
predicate) pair under the the verification key of the signature trustee. With this modification, the rest of the
construction is almost identical to that in the case of the single authority setting.

Our final scheme, which is secure in the generic group model, also extends to the multi-authority setting.
Below we sketch in more detail the modifications required for this.

ABS.TSetup: Here the signature trustee selects the cyclic groups G and H , generators g, C, h0, . . . , htmax ,
hash function H, and A0 = ha0

0 , as in the single-authority setting. In addition, it generates a
signature key-pair (TSig, TV er) for a (conventional) digital signature scheme. The private key is
TSK := (a0, TSig), and the public key is PK := ((G,H),H, g, A0, h0, . . . , htmax , C, TV er).

ABS.TRegister: Given uid, draw at random Kbase ← G. Let K0 := K
1/a0

base , where a0 is retrieved from
TSK. Output τ := (uid,Kbase,K0, ρ) where ρ is (conventional) signature on uid‖Kbase using the
signing key TSig (also retrieved from TSK).

ABS.ASetup: Choose a, b ← Zp and compute Aj = ha
j , Bj = hb

j for j ∈ [tmax]. The private key is
ASK := (a, b) and the public key is APK := {Aj , Bj | j ∈ [tmax]}.

ABS.KeyGen: The token verification ABS.TokenVerify(PK,uid, τ) verifies the signature contained in τ
using the signature verification TV er in PK. ABS.KeyGen(ASK, τ, u) extracts Kbase from τ , and
using (a, b) from ASK, computes Ku := K

1/(a+bu)
base .

The keyKu can be checked for consistency using ABS.KeyCheck(PK,APK, τ,Ku), which checks
that e(Ku, AjB

u
j) = e(Kbase, hj) for all j ∈ [tmax], where Aj and Bj are from APK.

ABS.Sign, ABS.Ver: These algorithms proceed verbatim as before, except where (AjB
u(i)
j) is used

(corresponding to the attribute u(i) associated with the ith row of the monotone span program), we
use AijB

u(i)
ij where Aij and Bij are Aj and Bj from APK (as described in ABS.ASetup above)

published by the authority auth(u(i)) who owns the attribute u(i).

In the above construction we used a τ which contained a certificate from the signature trustee binding
Kbase to uid. The need for this certificate can be avoided if we derive Kbase as Kbase = R(uid), where
R : {0, 1}∗ → G is a hash function modeled as a random oracle. We use a random oracle because it is
important that users have no advantage in computing the discrete logarithms of their Kbase values. This
eliminates the need for a user to present the token to the attribute authorities, and the need for token

30

verification, because the attribute authorities could themselves derive the Kbase. We stress that in our
construction, we do not employ a random oracle anywhere, except for this optional efficiency improvement.

E.2 Using Multi-Authority ABS

As described above, ABS can support multiple, mutually independent (and possibly distrusting) agents who
can set up their own signature infrastructure, and multiple agents who can issue their own attributes to users.
To illustrate how ABS operates in such a setting, we return to the example introduced in the beginning of this
section. Recall that Alice wishes to endorse her message with a claim which includes attributes owned by
different attribute authorities like Facebook, Orkut, Princeton University, Yale University and the American
Sociological Association. Alice needs to choose one or more signature trustees under whose system she
will provide the signatures. Suppose Alice is aware that most of her potential readers use Google or the
Department of Motor Vehicles (DMV) as trusted signature-trustees. Then Alice can go about endorsing her
story as follows:

1. Alice registers herself with Google and the DMV (using ABS.TRegister). These trustees would use
their idiosyncratic ways to bind the user with a user ID. For instance the DMV could use the user’s
driver’s licence number and Google could use the user’s social security number. Alice gets two tokens
τGoogle and τDMV this way. We stress that the tokens issued by the trustees are public. As such it is
not important for the trustees to verify the identity of a user while registering.

2. Alice happens to be a professor at Yale, and is certified by the American Sociological Association
as an expert on online social networks. To obtain appropriate attributes, first she approaches Yale’s
attribute authority, and presents her tokens from Google and the DMV. For Yale to be able to issue
her attributes under these trustees, Yale needs to have the trustee’s public-keys. Further, Yale should
be satisfied that Alice is indeed the person who possesses the user ID mentioned in the tokens. We
shall assume that the Yale can verify the social security number and licence number of all Yale faculty.
After verifying Alice’s identity and the tokens she presented, using Google and DMV’s trustee public-
keys, Yale can issue corresponding attribute keys on the attribute “Professor at Yale” (for simplicity
we ignore the fact that Alice is untenured, and Yale would only issue an attribute saying Professor at
Yale in 2008). Similarly the American Sociological Association will issue Alice keys for the attribute
“Expert on online social networks” under the two trustees. Again, the ASA will need to be able to
verify Alice’s social security number and driver’s licence for this, and have access to Google and the
DMV’s public trustee keys.

3. Alice has already registered herself with Google and the DMV and obtained her tokens. Later, when
she has prepared her anecdote — which we shall denote simply by m — she can decide what claim to
attach to it. As mentioned above, she decides on the claim (which we shall call Υ) involving additional
attributes owned by the attribute authorities Facebook, Orkut and Princeton (from whom she does not
have any attributes). Using her attributes from Yale and the American Sociological Association, she
can successfully prepare a pair of signatures σGoogle and σDMV on m using Υ. For this she will need
access to the public keys of Facebook, Orkut and Princeton (but need not have interacted with them
otherwise). In describing Υ, each attribute is clearly marked as owned by the corresponding attribute
authority, so that a verifier knows which public keys are to be used. Further, σGoogle and σDMV include
the information that the signature trustee for that signature is Google and the DMV respectively.

4. Suppose Alice has anonymously published (m,Υ, σGoogle, σDMV) on the internet. A user in India
who trusts Google (but does not know if DMV can be trusted) can verify σGoogle and be convinced that
the message was endorsed by someone possessing adequate attributes as claimed. For this she should

31

have access to the public keys issued by all the attribute authorities (Facebook, Orkut, Princeton, Yale
and the American Sociological Association).

As an orthogonal issue, this user might believe that Princeton University’s attribute authority has been
hacked, and an attribute from that authority should not be trusted. In this case she does not attach any
significance to the part of the claim (Professor at Princeton OR Professor at Yale).

In this example, Alice herself need not have trusted all the signature trustees. Indeed, she could be
concerned that Google is interested in knowing who signed the message, or which attributes were used to
sign them. Further, Orkut’s attribute authority could be colluding with Google’s signature trustee. But even
so, the perfect privacy guarantee assures Alice that her signature does not contain any information other than
the message and the claim-predicate (and other public information).

Finally, we point out that it is important to use user IDs (social security number or licence number)
which cannot be shared among multiple individuals. To see this, suppose Google used an e-mail address as
the user ID. Also suppose Alice and her friend Bob shared the e-mail address alice.and.bob@gmail.com .
Yale could verify that the e-mail address indeed belongs to Alice. But, meanwhile Bob, who happens to be
a professional chess player, can get an attribute Top-100 Chess Player from the World Chess Federation,
also under the same user ID and token from Google, because the World Chess Federation verifies that the
user ID indeed belongs to Bob. Thus, if they could share a user ID, Alice and Bob would be able to pool
their attributes together and endorse messages claiming to have attributes satisfying Professor at Yale AND
Top-100 Chess Player.

F Simulation-Extractable Identity-Based NIZK and ABS

General construction of ID-NIZK Below follows a formal description of the simulation extractable
identity-based NIZK scheme (ID-NIZK for short) outlined in Section 6:

ID-NIZK.Setup: Run crs← ID-NIZK.Setup and (vk, sk)← DS.KeyGen. Publish crs′ = (crs, vk).

ID-NIZK.SimSetup: Run (crs, ψ) ← ID-NIZK.SimSetup and (vk, sk) ← DS.KeyGen. Publish
crs′ = (crs, vk), and use ψ′ = (ψ, sk) as the trapdoor.

ID-NIZK.Prove(crs′; Φ; id;w): Define Φ′
vk,id := ∃ w, σ : Φ(w) ∨ DS.Ver(vk, µ, σ) = 1, where µ is an

encoding of (id,Φ). Output the result of NIWI.Prove(crs; Φ′
vk,id;w).

ID-NIZK.Verify(crs′; Φ; id;π): Define Φ′
vk,id as above, then output the result of NIWI.Verify(crs; Φ′

vk,id;π).

ID-NIZK.Extract(crs′, ψ′, π): Output the result of NIWI.Extract(crs, ψ;π).

ID-NIZK.Simulate(crs′, ψ′; id; Φ): Define Φ′
vk,id as above, then compute σ ← DS.Sign(sk, µ = (id,Φ)).

Output the result of NIWI.Prove(crs; Φ′
vk,id;σ).

Now we argue that the above construction indeed gives an ID-NIZK.
First, the crs′ output by ID-NIZK.Setup is indistinguishable from that of ID-NIZK.SimSetup, directly

by the security of NIWI.Setup, NIWI.SimSetup. Next, simulated proofs are indistinguishable from
legitimate proofs by the witness indistinguishability of NIWI.Prove.

Finally, we must show that if an adversary has access to an oracle for ID-NIZK.Simulate and outputs a
valid (verifying) proof π∗ on Φ∗ under id∗, where (id∗,Φ∗) have never been queried to ID-NIZK.Simulate,
then ID-NIZK.Extract outputs a witness for Φ∗ with overwhelming probability. This is easy to see by
simulating such an experiment within the signature scheme’s unforgeability experiment. Each time a
simulated proof is needed, we request a signature on (id,Φ) and use it to generate a simulated signature.
By the correctness of NIWI.Extract, when the adversary outputs π∗, we obtain a witness for (Φ∗)′vk,id∗ with

32

overwhelming probability. This is either a witness for Φ∗, or a signature on (id∗,Φ∗). However, the latter
would constitute a signature forgery, thus with overwhelming probability we do in fact obtain a witness for
Φ∗, as desired.

Finally, to prove Theorem 6, we describe an efficient application of the above construction, using Groth-
Sahai proofs and Waters signatures. Groth-Sahai proofs are zero-knowledge only for statements that can be
expressed (perhaps after adding extra variables) as pairing equations of the form:∏

i e(Xi, Bi)
∏

j e(Aj ,Yj)
∏

i,j e(Xi,Yj)γij = e(g, h)

where Xi,Yj are the formal variables, and Ai, Bj , γij are public coefficients.
Suppose (A, V0, . . . , Vn) is the Waters public key, and let (σ1, σ2) ∈ G × H be a candidate signature.

Our approach is to develop a proof of the following statment:∏
i

e(X β
i , Bi)

∏
j

e(Aj ,Yβ
j)
∏
i,j

e(X β
i ,Y

β
j)γij

× e(V ∗, σ1−β
2) e(g1−β, A) = e(gβ, h) e(σ1, h

1−β)
∧ β ∈ {0, 1}

In the above expression, V ∗ = V0
∏

i V
µi
i , a public coefficient when µ is known. This new statement says

that either the original statement was satisfied, or (σ1, σ2) is a valid signature on µ, as desired. We can rewrite
any term of the form e(C, z1−β) as e(C, z) ·e(C−1, zβ), and thus we must commit to additional values: each
X β

i and Yβ
j , as well as gβ, hβ, σ1, σ

β
1 , σ2, σ

β
2 . We prove the expression above, using the commitments to

these values.
Finally, we add additional pairing equations to prove that β ∈ {0, 1}. First, equations e(

〈
gβ
〉
,
〈
hβ
〉
) =

e(
〈
gβ
〉
, h) and e(

〈
gβ
〉
, h) = e(g,

〈
hβ
〉
). We must also prove that the commitments to X β

i ,Y
β
j , σ

β
1 , σ

β
2 are

consistent with β, using equations of the form:

e(〈Xi〉 ,
〈
hβ
〉
) = e(

〈
X β

i

〉
, h); e(

〈
gβ
〉
, 〈Yj〉) = e(g,

〈
Yβ

j

〉
).

We note that this transformation can be applied to every pairing equation in the Groth-Sahai proof, re-using
the same β, σ1, σ2, and shared X β

i ,Y
β
j variables. Thus the overhead of the transformation is linear in the

number of variables, and independent of the number of pairing equations proven on those variables.

G Applications

G.1 Attribute-Based Messaging

Attribute-Based Messaging or ABM (e.g. [4]) provides an example of a quintessential attribute-based system
which demands new cryptographic primitives for achieving its natural security goals. In an ABM system,
the set of users to whom a message is addressed is not specified by their identities, but by an “attribute-
based address”: that is, a predicate on the attributes, such that the intended receivers are the users whose
attributes satisfy the predicate. An ABM system can also ensure that only users whose attributes satisfy
certain conditions can send messages to certain other users. All this must be facilitated without requiring
the users to be aware of each other’s identities or attributes.

End-to-End guarantees in ABM The goals of an ABM system can be achieved using trusted entities.
But as in other communication systems, the users may require an end-to-end guarantee on these properties,
independent of the entities involved in delivering the messages. That is, (1) senders would like to encrypt

33

their messages so that only users with appropriate attributes can decrypt them, and (2) receivers would like
to verify signatures on messages such that only users with appropriate attributes could have signed them;
the signer should not be forced to reveal more details about its attributes or identity than what is relevant to
the receiver. Note that here the users would be willing to trust the authority that issues the attributes, as a
compromised attribute-authority could give all attributes to any user, thereby rendering the above guarantees
meaningless.12

The first of these issues can be elegantly handled using attribute-based encryption: in particular the
ciphertext-policy attribute-based encryption of Bethencourt, Sahai and Waters [3] provides just the right
cryptographic tool. Their implementation of this encryption scheme was integrated into the ABM system of
Bobba et al. [5] and demonstrated to be practical.

However, the second issue of authentication did not have a satisfactory solution until now. To
highlight some of the issues involved, we point out shortcomings of some natural proposals using existing
cryptographic tools:
• Using certificates: For each attribute that a user has, the attribute authority gives the user a new

signing key and a certificate binding the attribute to the corresponding signature verification key. Then, to
sign a message using her attributes, a user simply signs it using the signing key from the attribute authority
and presents (a subset of) the certificates it received.
This achieves the goal of users not having to be a priori aware of other users or their attributes. But this
“solution” has at least two drawbacks. First, the user has to reveal (a subset of) its attributes, rather than
just some predicate of the attributes. Second, even though the user’s identity is not directly revealed by the
signature, multiple signatures can be linked together as coming from the same user.
• Using mesh signatures: To allow signing with non-trivial predicates of attributes, one could consider

using the recently developed tool of mesh-signatures [10]. This does indeed provide a perfect privacy
guarantee. However, this approach fails a crucial unforgeability requirement: multiple users can pool their
attributes together and create signatures which none of them could have by themselves produced.
• As a “fix” to the above collusion problem, one might consider using disjoint attribute universes for

different parties. This would indeed prevent collusion, and would still retain the privacy guarantee that
the signature does not reveal how the claim-predicate was satisfied. However this is also not a satisfactory
solution, as it allows multiple signatures to be identified as being generated by the same user.

Using an ABS scheme simultaneously overcomes all these problems, and achieves (a) perfect privacy
and unlinkability, and (b) collusion resistant unforgeability. In integrating ABS into ABM, the message
path of the ABM need not be altered. But in the attribute keying path, during registration the users should
obtain keys for signing and verification as well (in addition to keys for encryption and decryption). An
implementation would follow the description in Section A.

ABS for Access Control in ABM As suggested above, the primary application of ABS in an ABM system
would be to obtain end-to-end authentication guarantees. But in addition, ABS could be used by the system
to implement access control: a typical ABM system will require that messages to some addresses be not
delivered unless the sender has attributes satisfying a certain policy. That is, an attribute-based access
control mechanism must decide whether to allow a messaging attempt from a sender or not, depending on
the attributes of the sender and the attribute-based address of the message.

In the current implementations this is achieved by the sender authenticating itself to a central server
in the message path, who then consults the attribute database to determine whether the sender’s attributes
satisfy the requisite predicate. This requires this central server having access to the user’s identity as well as

12In an ABM system, the entities in the message path are significantly more vulnerable than the attribute authority, because they
need to stay online and be involved in every message delivery. The attribute authority interacts with users only when issuing them
attributes.

34

attributes. This in general is not considered a serious issue, because anyway the attribute database has to be
queried for obtaining the list of recipients.

However, it is possible that the attributes of the receivers used in the addresses are not the same (and may
not be as sensitive) as the attributes of the sender used to determine access privileges. In such a scenario,
using ABS can completely eliminate the need to query the database regarding the more sensitive attributes.
Instead, for each message, a sender can decide what predicate regarding its attributes is to be revealed, then
sign the message with that predicate using ABS. A server in the message path can ensure that the claimed
predicate satisfies the system’s sending policy, and if the signature verifies, deliver the message. Note that
since this signature verification can be carried out using public keys, it can be done at one of the many points
in the message path, instead of at a centralized server.

In a complex ABM system one might require the senders to include two ABS tags with every message
— one intended for the message delivery agents, and one for the end recipient. The former would typically
involve a claim-predicate that is independent of the contents of the message, and simpler (and hence faster
to verify). The signature intended for the receiver could be dependent on the message and more complex;
note that this signature is verified by the individual users locally, without putting load on central servers.

ABS for inter-domain ABM There are several engineering and cryptographic challenges in implementing
a truly inter-domain ABM system. Neither the current implementations of ABM nor attribute-based
encryption schemes known today fully support multiple attribute authorities (so that a user can use attributes
from different attribute-authorities in the same message). For instance, Chase’s proposal [12] for multi-
authority attribute-based encryption (originally for the schemes in [31, 18], but can be extended to the one
in [3]) requires all the attribute-authorities to share secret keys with a central authority, thereby requiring the
central authority to trust all the attribute authorities.

Remarkably, however, the multi-authority version of our ABS scheme is readily amenable to a full-
fledged inter-domain setting. There can be multiple attribute-authorities and signature-trustees who need
not trust each other. It is safe for a signer to produce signatures using keys from untrusted trustees, and it
is possible to form signatures involving attributes from multiple (untrusted) attribute-authorities; the verifier
needs to trust just one of the signature-trustees used.

G.2 Other Applications

ABS offers a unique combination of features that makes it suitable for several other scenarios as well. We
point out a few potential applications. These are only meant to illustrate different possibilities of ABS, and
not claimed to be solutions for these problems in their most general setting.

Attribute-Based Authentication Consider a server which allows clients to connect to it and carry out
transactions depending only on the client’s attributes. A client who wishes to carry out a transaction may
wish to reveal only minimal information about its identity of attributes as required by the system policy. ABS
provides an immediate solution: to establish an authenticated session, the server sends a unique session-
id to the client. The client responds to the server over an encrypted channel with an ABS signature on
(session-id, session-key), where session-key consists of freshly generated keys for symmetric-key encryption
(with semantic security) and MAC. After verifying the ABS signature, the server grants the client access
depending on the claim-predicate of the ABS tag. All further communication in the session is carried out
using the session-key.

Leaking Secrets The classical application for which the notion of ring-signatures was developed by
Rivest, Shamir and Tauman [28] is “leaking secrets.” In a ring signature the signer can endorse a message and

35

attach a claim that it is one of the identities (or attributes, in our case) in some set. This is indeed an instance
of ABS, with a particularly simple class of claim-predicates, namely disjunctions. Mesh signatures [10] are
an extension of this concept that allow a rich class of claim-predicates (the same class of claim-predicates
supported in our construction). However, when allowing this larger class of predicates an issue arises which
is not present in the ring signature setting — namely, the possibility of multiple users colluding to pool their
attributes together. Note that when restricted to disjunction, having any one attribute is enough to satisfy the
claim, and pooling attributes does not allow a coalition to satisfy any new disjunctions. But for any claim-
predicate other than a disjunction, collusion can indeed help. In [10] collusion is considered legitimate:
indeed attributes there are considered to be individual identities, and multiple users must collude to obtain
multiple attributes.

ABS goes beyond mesh signatures and provides collusion-resistance. (If certain groups of users must be
allowed to collude, an ABS scheme would treat them as a single user; indeed if there is only one user in the
system, an ABS scheme degenerates to a mesh signature scheme.) In that sense ABS is a more appropriate
generalization of ring signatures to complex claim-predicates in many settings.

The semantics of leaking a secret with an ABS signature is that a single entity who has attributes
satisfying a certain claim has endorsed the message. Here it is important that the ABS allows claims to
be in terms of some arbitrary attributes chosen by the signer (presumably designed to obscure their identity),
as well as some attributes the signer might indeed possess.

Trust Negotiations Trust-negotiation between two parties is a well-studied problem in the setting of an
attribute-based system. From a theoretical point of view, the problem is a special case of secure two-party
computation. However much of the research on this problem focuses on obtaining very efficient solutions
when possible. A standard approach to such an efficient protocol is a carefully designed sequence of rounds
in which the two parties progressively reveal more and more of their attributes. At its simplest, this can
mean simply revealing one or more of one’s own attributes in a verifiable manner. However, several recent
works also consider cryptographic approaches to trust negotiation that give more privacy to users than is
achieved when they simply take turns revealing their attributes [26, 17]. ABS permits a sophisticated way
to reveal partial information about one’s attributes that is natural for this setting: one party can prove to the
other party that her attributes satisfy some complex predicate.

Being able to bind a message with such a proof about one’s attributes, as ABS permits, allows for a
robust turn-based trust negotiation protocol. At every step of the negotiation, there is an “ephemeral key”
for secure communication (private-key encryption and MAC). At each step, the active party picks a new
ephemeral key, signs it using ABS with the claim that he or she wants to reveal at that step, and sends
it securely (using the ephemeral key from the previous step) to the other party, who verifies the signature.
Using new ephemeral keys at each step prevents man-in-the-middle attacks by an adversary who has enough
attributes to carry out only the first few steps of the negotiation.

36

