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Abstract:
Which computational complexity assumptions are inherent to cryptography? We present a broad framework to
pose and investigate this question.

We first aim to understand the “cryptographic complexity” of various tasks, independent of any computational
assumptions. In our framework the cryptographic tasks are modeled as multi-party computation functionalities.
We consider a universally composable secure protocol for one task given access to another task as the most
natural complexity reduction between the two tasks. Some of these cryptographic complexity reductions are
unconditional, others are unconditionally non-existent, but the vast majority appear to depend on computational
assumptions; it is this relationship with computational assumptions that we study.

In our detailed investigation of large classes of 2-party functionalities, we find that every reduction we are able
to classify turns out to be unconditionally true or false, or else equivalent to the existence of one-way functions
(OWF) or of semi-honest (equivalently, standalone-secure) oblivious transfer protocols (sh-OT). This leads us to
conjecture that there are only a small finite number of distinct (i.e., black-box separable) computational assump-
tions that are inherent among the infinite number of different cryptographic reductions in our framework.

On moving to 3-party functionalities, there does exist a natural computational assumption, distinct from the OWF
and sh-OT assumptions (namely, the existence of a key agreement protocol) that manifests itself as a cryptographic
complexity reduction (in our setting, in a private communication task, the eavesdropper is considered a third party).
We point out that the cryptographic complexity of functionalities with three or more parties is little understood in
general, and may lead us to new distinct computational assumptions.

If indeed only a few computational complexity assumptions manifest in this framework, we propose that they are
of an extraordinarily fundamental nature, since the framework contains a large variety of cryptographic tasks, and
was formulated without any regard to any of the prevalent computational complexity assumptions.
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1 Introduction
Cryptographic tasks, in a broad sense, specify con-

trolled access to information. Here, “controlled access”
stands for a possibly complex combination of access to
learning information and access to influencing informa-
tion in the system. A cryptographic task involves allow-
ing access in certain senses, while disallowing access in
other senses. The question of whether such a task can
be realized (by software/computational means) roughly
parallels the central questions in the theory of computa-
tional complexity, namely whether there exist problems
which are easy in some sense (say, in NP) while hard in
other senses (say, not in P).

However, cryptographic properties of interest are
much more numerous and diverse compared to compu-
tational properties of interest (e.g., space, time, amount
of randomness, etc. in various computational models).
For instance, in Secure Function Evaluation (SFE), the
kind of access to information provided by one function
could be very different from that provided by another.
This motivates a systematic approach to understanding
the different qualitative senses of “cryptographic com-
plexity.” We layout an emerging map of cryptographic
complexity, showcasing the diversity of cryptographic
complexity classes (with no reference to computational
complexity).

A striking picture emerges on relating these cryp-
tographic complexity classes to questions in computa-
tional complexity. The gap in cryptographic complexity
between two classes can be characterized by the “com-
putational complexity assumption” that one class col-
lapses into the other. We study several such collapses
and exactly characterize these gaps in terms of “stan-
dard” computational complexity assumptions. Despite
the wide variety in cryptographic complexity, the com-
putational complexity assumptions relating the collapse
of different pairs of classes appear to come from a very
small class of standard assumptions. Following the in-
fluential work of Impagliazzo and Rudich [IR89] and
further work by Gertner et. al [GKM+00], three “dis-
tinct” computational assumptions are well recognized:
the existence of one-way functions, key-agreement and
(stand-alone) oblivious transfer. Incidentally these are
the only assumptions that have appeared in our frame-
work corresponding to cryptographic complexity gaps
that we have studied so far. This naturally raises the
question whether there are other such fundamental com-
putational assumptions related to cryptographic com-
plexity.1

1Indeed various other complexity assumptions (like, say the exis-
tence of enhanced trapdoor permutations) are widely used as funda-
mental assumptions, but it seems unlikely that they will be equivalent
to high-level cryptographic tasks (defined independent of computa-
tional complexity aspects). One could argue that while intuitive and
extremely useful, such an assumption may not be essential to cryp-
tography.

• We propose a broad (though not necessarily ex-
haustive) framework for a theory of “cryptographic
complexity” (i.e., complexity of cryptographic
properties) based on secure multi-party computa-
tion [YAO82, GMW87]. Then, we relate the gaps
in cryptographic complexity of MPC functionali-
ties to assumptions in computational complexity.
That is, we relate each pair of functionalities to the
assumption that one functionality reduces to the
other. This gives a framework for formally iden-
tifying computational complexity assumptions as
“intrinsic” to cryptography.
• We examine several pairs of cryptographic com-

plexity classes and for each such pair, find standard
computational complexity assumptions equivalent
to the assumption that one class collapses to an-
other. Combined with other recent results, this
gives a fairly complete picture for gaps among
most of the “familiar” cryptographic tasks. Inter-
estingly, the only complexity assumptions that we
encounter here are the three mentioned above (ex-
istence of one-way functions, key agreement pro-
tocols and stand-alone OT protocols).

• Large tracts in the cryptographic complexity land-
scape remain unexplored. We do not have much
understanding of the complexity gaps between
classes in these regions and elsewhere, or among
classes within these regions. We conjecture that
some of these gaps correspond to new fundamen-
tal complexity assumptions, that have not been dis-
covered yet.
However, for the case of 2-party functionalities,
we conjecture that despite the fact that there are
infinitely many levels of cryptographic complex-
ity, there are only a finite number of computational
complexity assumptions corresponding to the gaps
among them.

The Framework.
The seminal work of Goldreich, Micali and Wigder-

son [GMW87] on secure multi-party computation intro-
duced an idealization of cryptographic tasks in terms
of a trusted party, or an ideal functionality. An ideal
functionality is an arbitrary program (possibly state-
ful, possibly randomized), to be executed privately by
an external entity that can be trusted by all parties.
This provides an extremely versatile language for cap-
turing a great variety of kinds of controlled access to
information, by simply defining various behaviors for
the trusted entity — i.e., various functionalities. Fur-
ther, this idealization of the cryptographic task is sepa-
rate from computational complexity considerations (in-
stead, the security definition involves specifying indis-
tinguishability from this idealization, and all computa-
tional aspects are confined to this specification). The
later, more refined treatments, like Canetti’s Universal
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Composition framework [CAN01] follow the same pat-
tern.

To study the cryptographic content of these tasks,
then, is to study the complexity of these ideal func-
tionalities. Here, it is not the computational complex-
ity of the ideal functionalities (time or space required
by the ideal functionality) that is of interest. Rather, as
mentioned above, we will be more interested in vari-
ous qualitatively different types of functionalities. To
develop a formal notion of complexity, we define re-
ductions that capture the relevant cryptographic aspects.
The natural notion of reduction among functionalities
(without involving any computational complexity as-
pects) is the following. A functionality F is said to
reduce to G (denoted by F v G), if there exists a pro-
tocol that securely realizes F using access to G. Here,
the stricter the definition of secure realization used, the
tighter the notion of reduction will be.2 We shall use the
strong security definition of the Universal Composition
framework [CAN01] in a computationally unbounded
environment. We shall consider an active adversary, but
in a static corruption model. This turns out to be a robust
choice which strikes a good balance: while UC security
is a powerful lens to expose subtle differences in crypto-
graphic qualities of different functionalities which dis-
appear under weaker security definitions (like, security
in a stand-alone setting), it still allows for a rich col-
lection of reductions.3 In Section 6 we briefly propose
extensions to the basic framework.

Questions.
In this work our central concern is with the set of

assumptions of the form F vPPT G for all pairs of func-
tionalities (F ,G). Some of these “assumptions” are un-
conditionally true, with the security of the reduction
holding even in the statistical setting. Further, some
of these assumptions are unconditionally false, no mat-
ter what computational assumption is made; the pairs
(F ,G) for which this happens have an explicit charac-
terization [CKL03, PR08A]. But most of the assump-
tions F vPPT G are unresolved, their fate depending on
computational complexity results.

1) Maximal and Minimal Assumptions.
The first question is whether there is a “maximal” or

“minimal” one among these (unresolved) assumptions.
That is, among these assumptions, is there:
• (a maximal assumption) an assumption F∗ vPPT

G∗ such that it implies F vPPT G for all such pairs

2Studying the landscape of functionalities using a strict reduction
can be compared to zooming into a map to distinguish between dif-
ferent elements in the map; but if one zooms in too close – uses too
strict a reduction – then virtually each element appears isolated.

3The strong impossibility results [CAN01, CKL03, PR08A] for UC
security are sometimes misinterpreted as saying that UC secure re-
ductions are rare. On the contrary, many powerful reductions — in-
cluding the completeness of Oblivious Transfer [KIL89] (simplified
in [IPS08]) — are UC secure reductions.

(F ,G)?
• (a minimial assumption) an assumption F̂ vPPT Ĝ

such that (F vPPT G ∧ F 6vSTAT G) =⇒ F̂ vPPT

Ĝ?
The first of these questions was recently answered in
[MPR09A], where it was shown that indeed such pairs
do exist: FOT vPPT FCOM is one such pair, where FOT

is the oblivious-transfer functionality and FCOM is the
commitment functionality. A more familiar form of
this assumption is that there exists a stand-alone se-
cure oblivious-transfer protocol (sh-OT assumption).
In other words, the sh-OT assumption is a maximal as-
sumption in our framework.

However the question of the minimal assumption re-
mains open. We conjecture that there indeed is a mini-
mal assumption and that it in fact corresponds the exis-
tence of one-way functions. Some of the results below
represent support for this conjecture. In particular we
show that for several interesting pairs (F ,G), F vPPT G
is indeed equivalent to the existence of one-way func-
tions (OWF).

2) Intermediate Assumptions.
Assuming OWF assumption is indeed the mini-

mal assumption of the form F vPPT G, one can
ask if there are “intermediate” assumptions between
OWF assumption and sh-OT assumption. Here, by
as assumption being intermediate, we mean that there
exists a black-box separation in the sense of [IR89,
GKM+00], that separates it from both OWF assumption
and sh-OT assumption.

Indeed, [GKM+00] shows that the existence of a se-
cret communication protocol is an intermediate assump-
tion. It is easy to see that their result extends to the UC
secure reduction of a secret communication function-
ality to a public communication functionality). In our
framework we find it convenient to work with function-
alities which do not communicate with the adversary
when all the parties are honest (called regular function-
alities in [PR08A]). So this particular reduction appears
only when we consider multi-party functionalities with
three or more parties. For the case of 2-party (regular)
functionalities, one could conjecture that all assump-
tions of the form F vPPT G are in fact equivalent to
either OWF assumption or sh-OT assumption (or are
unconditionally true or false). This would be supported
by all the results derived in this work. However, since
our techniques — as well as our intuition — do not seem
to apply to 2-party functionalities of a certain range
of cryptographic complexity (i.e., in terminology intro-
duced later, neither “complete,” nor “passive-trivial”),
we do not put forward such a conjecture. On the con-
trary, at this point, we consider it quite possible that
for certain 2-party functionalities F and G, the assump-
tion F vPPT G can be black-box separated from both
OWF assumption and sh-OT assumption.
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Moving to 3-party functionalities already provides us
one such intermediate assumption. But our understand-
ing of multi-party functionalities with 3 or more parties
is very limited. (Note that our map in Figure 1 is only
for 2-party functionalities.) We consider it highly likely
that several other intermediate assumptions can be dis-
covered as gaps among functionalities with more than
two parties.

Our Results.
While we consider our main contribution in this work

to be the framework itself and the questions raised
above, we also present several results aimed at resolv-
ing these questions. The new results here are of the form
that (for various pairs of functionalities (F ,G)), F vPPT

G implies sh-OT assumption or OWF assumption. This
is complemented by our recent results [MPR09A] show-
ing several reductions (i.e., UC secure protocols) un-
der either sh-OT assumption or OWF assumption. To-
gether, we obtain the equivalence between assumptions
of the form F vPPT G and either sh-OT assumption or
OWF assumption.

Firstly, we identify a cryptographic complexity class
— namely, the class of “exchange-like” functionalities
— which essentially captures the ability of two par-
ties to engage in the simultaneous exchange4 of their
inputs (drawn from finite input domains). We show
that if any exchange-like functionality is to be useful in
securely realizing more functionalities in the PPT set-
ting than in the computationally unbounded, then the
sh-OT assumption must hold. In particular, this implies
that if a 1-bit exchange functionality can be used to UC
securely realize a 2-bit exchange functionality, then in
fact, the 1-bit exchange functionality can be used to UC
securely realize every functionality.

We also show that several reductions among
“passive-trivial” functionalities (i.e., functionalities that
can be securely realized, statistically, againt passive
adversaries) of differing cryptographic complexity, are
equivalent to the OWF assumption.

While these results go to show that the computational
complexity assumptions falling out of our framework
(which encompasses a large variety of functionalities)
are not as numerous as one may have a priori expected,
we conjecture that there are “new” computational com-
plexity assumptions that are hiding in this framework.
Our main theorems and conjectures are presented in
Section 3.

Related Works.
Until recently, most work in secure multi-party

computation focused on the extremes of complexity;
namely, classifying the functionalities that are triv-
ially realizable (using only a communication chan-

4Here simultaneity only refers to the input independence (Alice
should not be able to choose her input based on Bob’s input, and vice
versa), and not to any notion of fairness.

nel) and those which are complete. Such classifi-
cations have been found for a wide variety of secu-
rity models (i.e., reduction strengths) and subclasses
of functionalities [GMW87, BGW88, KIL88, CCD88,
CK89, BEA89, KUS89, KIL91, KIL00, CKL03, PR08C,
KMQ08, IPS08].

Beimel et al. [BMM99] address a similar question as
here, relating cryptographic complexity of MPC func-
tionalities and computational complexity assumptions.
But they consider computational complexity assump-
tions only of the form that a functionality is standalone-
trivial. Restricted to a special class of SFE function-
alities, they show that there is only one such assump-
tion (other than being unconditionally true), namely the
sh-OT assumption.

Recently [MPR09B] demonstrated infinitely many
distinct, intermediate levels of cryptographic com-
plexity under computationally unbounded UC se-
curity reductions. On the contrary, assuming
sh-OT assumption, the state of affairs is totally differ-
ent — [MPR09A] show that in this setting, every (de-
terministic, finite) functionality is either trivial or com-
plete. In independent work, [? ] show that under
sh-OT assumption, the “common random string” func-
tionality (or in our framework of finite functionalities,
the coin-tossing functionality FCOIN) is complete.

Impagliazzo and Luby [IL89] showed that several
important cryptographic primitives are equivalent to the
OWF assumption. Following the approach there, we
also rely on the fact that a weaker primitive called distri-
butionally one-way functions yield OWFs. In [DG03],
Damgård and Groth showed that if FCOM vPPT FCOIN

then the sh-OT assumption holds. This is subsumed
by our results regarding exchange-like functionalities
(Theorem 1), but in fact contains one of the ideas that is
used in (the simpler of) our constructions.

In considering the existence of OWF, key-agreement
and sh-OT as distinct computational assumptions, we
rely on the black-box separation results from [IR89,
GKM+00]. We refer to such separations in our conjec-
tures, which predict more such distinct computational
assumptions coming out of our framework. However,
for the formal statement of our results (which merely
show that various reductions are equivalent to one of
these assumptions), such a separation is not essential.

2 Technical Preliminaries
We write F v G to denote that there exists a UC-

secure protocol for F in the G-hybrid world. More
specifically, we use the subscripts vPPT and vSTAT to
indicate that the protocol is secure against PPT adver-
saries and computationally unbounded adversaries, re-
spectively.

Definition 1. A functionality is a secure function eval-
uation (SFE) functionality if it waits for inputs x ∈ X
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complete
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passive trivial
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Figure 1: A map of various cryptographic complexity classes
(of 2-party SSFE functionalities)

from Alice and y ∈ Y from Bob (for some finite sets X
and Y ) and then sends fA(x, y) to Alice and fB(x, y) to
Bob. If either party is corrupt, the output for that party
is first delivered; if it allows, the output to the other
party is also delivered.

We say that the functionality is symmetric SFE
(SSFE) if fA = fB .

Note that if neither party is corrupt, the functionality
does not interact with the adversary. (Such functionali-
ties were called regular functionalities in [PR08A].)

Several specific functionalities have important roles
in our results. FOT, FCOM, andFCOIN denote the standard
1-out-of-2 oblivious transfer (OT) functionality, bit-
commitment functionality, and coin-tossing functional-
ity, respectively. FCC denotes a bit “cut-and-choose”
functionality, which is an SSFE whose function table is
0 2
1 2 . That is, Alice provides a bit, and Bob can choose
whether or not to learn it, and Alice learns Bob’s choice.

We denote by F i×j
EXCH the SSFE functionality in which

Alice gives input x ∈ [i], Bob gives input y ∈ [j], and
both parties learn (x, y). We call functionalities of this
form exchange functions. The cryptographic sophisti-
cation of an exchange function is that it enforces in-
puts to be chosen independently (though we make no
requirement for fairness in learning the output). The
special case F2×2

EXCH is isomorphic to the boolean-XOR
SSFE functionality.

Definition 2. We say that two SFE functionalities are
isomorphic if one can be obtained from the other by
repeatedly adding/removing duplicate or redundant in-
puts, permuting a party’s inputs, relabeling a party’s
outputs for one of its inputs, and reversing the roles of
Alice and Bob.

By redundant input, we mean an input x that always
induces the same output for the other party as another

input x′, but where the output when using x′ always
uniquely determines the output when using x.

2.1 Passive Security, Previous Work
We will find useful some of the well-known results

from the theory of passive security:

Definition 3 (Decomposable [KUS89, BEA89]). An
SSFE functionality F : X × Y → Z is row decom-
posable if there exists a partition X = X1 ∪ · · · ∪ Xk

(Xi 6= ∅), k ≥ 2, such that the following hold for all
i ≤ k:
• for all y ∈ Y , x ∈ Xi, x′ ∈ (X \ Xi), we have
F(x, y) 6= F(x′y); and

• F
∣∣
Xi×Y

is either a constant function or column
decomposable, where F

∣∣
Xi×Y

denotes the restric-
tion of F to the domain Xi × Y .

We define being column decomposable symmetrically
with respect to X and Y . We say that F is simply de-
composable if it is either constant, row decomposable,
or column decomposable.

We define a decomposition tree of f to be the nat-
ural representation of the decomposition of f , where
each node of the tree is associated with some subdo-
main X ′ × Y ′ ⊆ X × Y , and the children of a node
correspond to the partitioning of the domain induced by
the row or column decomposition step.

If F is decomposable, then a canonical protocol for
f is a deterministic protocol defined inductively as fol-
lows [KUS89]:
• If F is a constant function, both parties output the

output value of F , without interaction.
• If F is row decomposable as X = X1 ∪ · · · ∪Xk,

then party 1 announces the unique i such that its
input x ∈ Xi. Then both parties run a canonical
protocol for F

∣∣
Xi×Y

.
• IfF is column decomposable as Y = Y1∪· · ·∪Yk,

then party 2 announces the unique i such that its
input y ∈ Yi. Then both parties run a canonical
protocol for F

∣∣
X×Yi

.
Note that the canonical protocol could alternately be de-
fined as a traversal from root to leaf of F’s decomposi-
tion tree. It is a simple exercise to see that a canonical
protocol is a perfectly secure protocol forF against pas-
sive adversaries.

3 The Cryptographic Complexity Land-
scape

In this section we present our results connecting
cryptographic complexity classes and computational as-
sumption. Before doing that, first we need to describe
various cryptographic complexity classes, defined in-
dependent of any computational complexity concerns.
(Some of these classes were identified in [MPR09B].)
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Then, in Section 3.2 we list the connections with com-
putational assumptions that we have proven, and that we
conjecture.

3.1 Some Cryptographic Complexity Classes
In this work we consider only finite functionalities

— namely, functionalities which are finite state (possi-
bly randomized) machines, with finite input and output
alphabets. (See Section 6 for a brief discussion.) How-
ever, the total space of functionalities – including reac-
tive and randomized functionalities – is still far from be-
ing well-understood. As such, we shall go about explor-
ing two-party deterministic, non-reactive functionalities
for most part, and describe the extensions we have for
more general functionalities, when possible. (However,
we do closely consider certain randomized functionali-
ties – like coin-flipping, and certain reactive functional-
ities – like commitment.)

In this section we identify a few major classes of
two-party symmetric secure function evaluation (SSFE)
functionalities. SSFE functionalities, starting with
the original Millionaire’s Problem proposed by Yao
[YAO82], are perhaps the most well-studied class of
two-party functionalities. We present our results on
computational assumptions by relating them to these
cryptographic complexity classes. (Further details of
these classes, and examples, are given in Appendix A.)

The classes listed below, except the first two, are
“downward closed” with respect to vSTAT. That is, if
G is a functionality in a class and F vSTAT G then F
also falls in the same class. (The first one is “upward
closed.”) These classes are graphically represented in
Figure 1.
Complete Functionalities. These are SSFE functional-
ities that are statistically “complete.” That is, for all G in
this class, and all functionalities F , F vSTAT G. Kilian
[KIL91] gave a combinatorial characterization for these
functionalities, as the evaluation of functions containing
an “OR-minor” (also called embedded OR).
Unclassified Functionalities. Among incomplete
SSFE functionalities, we leave a set of functionalities
as “unclassified.” These are functionalities which are
neither complete, nor passive-trivial (see next class).
Passive-Trivial Functionalities. These are SSFE func-
tionalities securely realizable against a passive (a.k.a
honest-but-curious, or semi-honest) adversary in a com-
putationally unbounded environment. For SSFE func-
tionalities, such functions have an explicit combinato-
rial characterization, namely that they are evaluations
of what are called “decomposable” functions [KUS89,
BEA89, MPR09B, KMQR09]. An alternate characteriza-
tion for this class was given in [MPR09B]: F is passive-
trivial iff F vSTAT FCOM, where FCOM is the commit-
ment functionality.
Exchange-Like Functionalities. This is a important
sub-class of passive-trivial functionalities defined to be

the class of functionalities that reduce to a simultaneous
exchange functionality. That is, F is in this class iff
there exists an integer i such that F vSTAT F i,i

EXCH.
Exchange-Free Functionalities. This is the class of
SSFE functionalities to which no non-trivial exchange
functionality can be statistically reduced. That is, a
functionality G is in this class iff F2,2

EXCH 6vSTAT G.
A useful combinatorial property of exchange-free

SSFE functionalities which are passive-trivial is that
they are evaluations of functions whose function tables
are “uniquely decomposable,” as defined in [MPR09B].
(However, being uniquely decomposable does not nec-
essarily mean that the SFE is exchange-free.)
Standalone-Trivial Functionalities. These are SSFE
functionalities securely realizable against a stand-alone
adversary in a computationally unbounded environ-
ment. SSFE functionalities in this class were combina-
torially characterized in [KMQR09, MPR09B]. They are
passive-trivial and it turns out they are all exchange-free
functionalities.

An important example of an SSFE in this class (and
indeed the simplest non-trivial one) is FCC– the evalu-
ation of the “cut-and-choose” function 0 2

1 2 – in which
Bob can choose to learn Alice’s input or not (and Alice
learns Bob’s choice).
Trivial Functionalities. These are SSFE functionali-
ties securely realizable against a general adversary in a
computationally unbounded environment, using proto-
cols which only rely on (private) communication chan-
nels.5 These functionalities are isomorphic to evalua-
tion of functions with a one-dimensional function-table
(that is, one of the parties has a fixed input). This also
corresponds to the intersection of the classes exchange-
like and exchange-free.

3.2 Relating Cryptographic Complexity Gaps to
Computational Complexity Assumptions

Recall that our interest is in “assumptions” of the
form F vPPT G, where F and G are arbitrary, finite
functionalities. Among two-party functionalities, all the
reductions we have been able to classify fall into one of
four kinds (this leaves out several reductions that we
have not been able to classify):

1. Reductions that are unconditionally true (even rel-
ative to arbitrary computational oracles).

2. Reductions equivalent to the OWF assumption.
3. Reductions equivalent to the sh-OT assumption.
4. Unconditionally false reductions.
If F is non-trivial and G is trivial (as defined in

Section 3.1), then F vPPT G is unconditionally false,
no matter what computational complexity results may
hold. (This is a consequence of the impossibility re-
sults in [CKL03, PR08A].) Recent results in [MPR09A]

5Recall that in our model functionalities — including communi-
cation channels — interact only with the parties. A channel with an
eavesdropper is modeled as a 3-party functionality.
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show that all other assumptions of the form F vPPT G
are implied by the sh-OT assumption. Thus the remain-
ing question is to find how strong an assumption is im-
plied by F vPPT G (for pairs for which it is not un-
conditionally false). Note that the space of finite func-
tionalities is infinite, and a priori one might expect a
large number of, if not infinitely many, assumptions
that can be black-box separated from each other. In-
deed, such a phenomenon is not without precedence: in
[GKM+00] for instance, an infinite hierarchy of com-
plexity assumptions related to cryptographic protocols
is derived. However, the assumptions in such an infinite
hierarchy tend to have quantitative differences, and may
not relate to conceptual differences. On the other hand,
the above assumptions (the OWF assumption and the
sh-OT assumption) are conceptually different.

In our framework, we hope to discover “all” con-
ceptually different computational assumptions related
to cryptographic complexity.

Conjecture 1 (Quantization of Computational Assump-
tions.). There are only finitely many assumptions of the
form F vPPT G, where F and G are two-party func-
tionalities, that can be black-box separated from each
other.

We believe that there are several such new assump-
tions to be discovered. But we conjecture that we need
to look beyond the more familiar functionalities to dis-
cover them:

Conjecture 2. Assumptions of the form F vPPT G,
where F and G are two-party SSFE functionalities that
do not belong to the class of unclassified functionalities
(see Section 3.1), fall into one of the four classes above.

We present significant progress towards proving the
above conjecture. Note that we are looking to prove
that the assumptions F vPPT G are equivalent to the
OWF assumption or the sh-OT assumption, unless they
can be shown to be unconditionally true or false. One
part of showing the equivalence is to show that the
OWF assumption or the sh-OT assumption yields such
reductions, presumably by giving explicit protocols.
This was carried out in [MPR09A].

Proposition 1 (Based on results in [MPR09A].). The
assumption F vPPT G is:
• unconditionally true (i.e., F vSTAT G) if G is com-

plete or if F is trivial;
• unconditionally false, if G is trivial and F is non-

trivial;
• equivalent to the sh-OT assumption if G is com-

plete and F is passive-trivial;
• implied by the sh-OT assumption if G is not trivial;
• implied by the OWF assumption if G is not

exchange-like and F is passive-trivial.

In this work, the focus is on showing the converse,
that for various pairs (F ,G), F vPPT G implies the
OWF assumption or the sh-OT assumption.

Reductions equivalent to the sh-OT assumption
We completely characterize pairs (F ,G) among

SSFE functionalities that are not unclassified, for which
F vPPT G is equivalent to the sh-OT assumption.

Theorem 1. Let G be a non-trivial exchange-like
SSFE functionality. For any SSFE functionality F
such that F 6vSTAT G, we have F vPPT G ⇐⇒
sh-OT assumption.

Among SSFE functionalities that are not unclas-
sified, the only pairs which are equivalent to the
sh-OT assumption are the (F ,G) in the above theo-
rem, and those in Proposition 1 (item 3). For each of
the other pairs, either the assumption is uncondition-
ally true or unconditionally false, or is implied by the
OWF assumption (by Proposition 1, item 5).

As a first step in proving the above result we con-
sider the question of whether exchanging a single-bit (or
equivalently theFXOR functionality) reduces to the coin-
tossing functionality FCOIN, and show that FXOR vPPT

FCOIN is equivalent to the sh-OT assumption. We con-
struct an sh-OT protocol from a protocol πFCOIN for
FXOR, in which the sender and receiver will run π, with
the receiver simulating FCOIN; the receiver will either
run the simulator for π or the actual protocol π itself,
depending on whether or not it wants to learn the bit be-
ing input by the sender. The protocol π will be truncated
at a random point so that there is a higher chance that
the simulator would have extracted but the actual party
in the protocol would not have learned the bit yet. This
gives a weak oblivious transfer which can be amplified
to a full-fledged sh-OT protocol.

A similar (though technically more involved) argu-
ment works for arbitrary F and exchange-like G (in-
stead of FXOR and FCOIN). Further, Theorem 1 extends
to the case of reactive exchange-like functionalities, as
well. Analysis of arbitrary reactive functionalities was
introduced in [MPR09A], and we build on the analysis
there, to characterize exchange-like reactive functional-
ities.

Reductions equivalent to the OWF assumption
Given Proposition 1 and Theorem 1, Conjecture 2 is

equivalent to the following conjecture.

Conjecture 3. For any two passive-trivial SSFE func-
tionalities F and G, either F vSTAT G, or F vPPT G
implies the OWF assumption.

That is, we would like to prove that the
OWF assumption is indeed minimal for conditional
reductions, at least among passive-trivial functional-
ities. While this may sound obvious, proving such
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a conjecture turns out not to be easy. Essentially,
assuming that the OWF assumption does not hold, one
must show attacks on any protocol purportedly carrying
out such a reduction. We obtain the following results,
to partially confirm the above conjecture.

Theorem 2. For every standalone-trivial functional-
ity G, and every passive-trivial functionality F that is
not standalone-trivial, F vPPT G is equivalent to the
OWF assumption.

Theorem 3. For every passive-trivial SFE functional-
ity G, there are infinitely many standalone-trivial SFE
functionalities F such that F vPPT G is equivalent to
the OWF assumption.

3.3 Beyond 2-Party Functionalities
The set of two-party functionalities, as we considered

above, is quite rich, but still omits some very important
and familiar kinds of cryptographic tasks. In particular,
the classical task of secret communication, is modeled
as a functionality with three parties, Alice, Bob and Eve,
and is not captured by any of the two-party functional-
ities.6 Let us denote the 3-party private channel func-
tionality (in which the third party learns only that the
channel was invoked, when the first party sends a mes-
sage to the second party, by FPVT. In contrast, let FPUB

be the a 3-party public-channel functionality, in which
the message from the first party is received by both the
other parties (though if the first party is corrupt, it is
allowed to send different messages to the two others).
The assumption in question is FPVT vPPT FPUB.

A key-agreement protocol, as considered in [IR89,
GKM+00], yields such a reduction. This assumption,
corresponding to secrecy against third-party eavesdrop-
pers, seems to be of a different flavor than any assump-
tion arising out of cryptographic complexity of 2-party
functionalities (wherein there is no external adversary).

Conjecture 4. For any pair of two-party functionali-
ties F ,G, the assumption F vPPT G can be black-box
separated (a la [IR89, GKM+00]) from the assumption
FPVT vPPT FPUB.

A first step to studying the assumptions arising of
3-party functionalities would be to understand various
cryptographic complexity classes (based on statistical
reductions). However, even the class of trivial SFE
functions is not well-understood in this case. [PR08B,
Appendix. B] includes a few “trivial” 3-party func-
tionalities, which are securely realizable using proto-
cols that involve more than a single message. These
functionalities are either “aggregated” functionalities

6Recall that our functionalities do not communicate wiith the ad-
versary when all parties are honest. This convention requires model-
ing corrupt parties explicitly, in the protocol and in the functionality.
Hence secret communication corresponds to a 3-party functionality.

(in which the first two parties have an input, and only
the third party receives an output) or “disseminated”
(in which the third party has an input and the first two
parties receive (possibly different) outputs). The exam-
ples of realizable functionalities given in [PR08B] are
“aggregated XOR,” “aggregated OR,” “disseminated
XOR” and “disseminated OR.” (Disseminated XOR is
simply a broadcast, in which the output of the two par-
ties receiving outputs is guaranteed to be x and y such
that x = y. Even more interestingly, in disseminated
OR, the output for the two parties are two bits x and y
such that it is guaranteed that x ∨ y = 1.) These proto-
cols are statistically secure in the FPVT-hybrid model.

Given the variety of cryptographic functionalities that
exist in the 3-party scenario, we conjecture that there is
at least one “undiscovered assumption” corresponding
to a reduction among 3-party functionalities.

Conjecture 5. There exist 3-party functionalities F ,
G, such that the assumption F vPPT G can be
black-box separated (a la [IR89, GKM+00]) from
OWF assumption, sh-OT assumption and FPVT vPPT

FPUB.

4 Reductions Equivalent to the OWF As-
sumption

Our results in this section build on the technique in
[MPR09B] that was used to derive the following separa-
tion in cryptographic complexity.

Theorem 4 ([MPR09B]). Let F and G be SSFE func-
tionalities. If F has unique decomposition depth n and
G has decomposition depth m < n, then F 6vSTAT G.

In [MPR09B], Theorem 4 is proven by attacking any
purported protocol π for F in the G-hybrid world.

First, they show (for plain protocols, not in any hy-
brid world) that for every adversary A that attacks the
canonical protocol for F , there is a corresponding ad-
versary A′ that attacks π, achieving the same effect
in all environments. (Indeed, any functionality whose
decomposition depth is at least 2 has a simple attack
against its canonical protocol that violates security in
the UC sense.) Intuitively, the protocol π must reveal
information in the same order as the canonical protocol.
More formally, at every point during the canonical pro-
tocol (say, a partial transcript t), there is a corresponding
“frontier” in π — a maximal set of partial transcripts of
π. If two inputs both induce transcript t in the canonical
protocol (recall that it is a deterministic protocol), then
they also induce statistically indistinguishable distribu-
tions on partial transcripts at the frontier. But if the two
inputs do not both induce transcript t in the canonical
protocol, then at the frontier they induce distributions
on partial transcripts that have statistical distance almost
1. Then the adversary A′ runs the protocol π honestly,
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except for occasionally “swapping” its effective input
at one of these frontiers. The properties of the frontiers
assure that such a swap will only negligibly affect the
outcome of the interaction.

Next, to attack a protocol π in the G-hybrid world,
they imagine a plain protocol π̂ which is π composed
with the canonical protocol for G. The plain protocol
π̂ has frontiers for each step of the canonical protocol
(equivalently, step of the decomposition). In our setting,
there are more frontiers in π̂ than there are rounds in the
canonical protocol for G, so not all the frontiers can be
contained entirely within the G-subprotocols. Thus an
adversary attacking π can behave honestly in all inter-
actions with the ideal G, and still encounter a frontier at
which to “swap” its effective input (i.e., outside of the
G-subprotocols in π̂). Indeed, there is an attack against
F in which an adversary need only encounter one such
frontier, so the protocol π is not secure.

Leveraging one-way functions.
While these frontier-based attacks from [MPR09B]

are formulated for computationally unbounded adver-
saries, we show below that they can in fact be carried
out under the assumption that one-way functions do not
exist. In other words, that if a reduction exists between
particular functions, then the OWF assumption is true.

These frontier-based attacks require unbounded com-
putation because computing the frontier involves com-
puting global statistical properties about the protocol —
namely, the probability that the protocol assigns to var-
ious partial transcripts on different inputs. The attacks
are otherwise effecient, so given access to an oracle that
can compute these probabilities, the attack can be eas-
ily effected. In fact, these quantities need not be com-
puted exactly for the attacks to violate security. Thus we
will describe how to compute the appropriate quantities
given that OWFs do not exist.

In [IL89], it is shown that the OWF assumption is
implied by the much weaker assumption that distribu-
tionally one-way functions exist. Thus if OWFs do not
exist, then no function is distributionally one-way: for
every efficient function f and polynomial p, there is an
efficient algorithm that on input y samples close to uni-
formly (within 1/p statistical difference) from the set
f−1(y). We define a function related to the given proto-
col, and use the ability to sample its preimage to obtain
a good estimate of the desired probabilities.

Theorem 5. If F has unique decomposition depth
n and G is non-trivial with unique decomposition
depth m < n, then F vPPT G is equivalent to the
OWF assumption.

Proof. First, if G is uniquely decomposable, then
FCOM v G under the OWF assumption, by the argu-
ment in [MPR09A]. Then, F vSTAT FCOM since F is
passive-trivial [MPR09B]. The non-trivial direction is
to show that F vPPT G implies OWF assumption.

As described above, the attack against a protocol π
for F in the G-hybrid world is based on frontiers in the
protocol. For a partial transcript u and inputs x for Alice
and y for Bob, the probability that the protocol gener-
ates u as the prefix of its transcript can be expressed as
α(u, x)β(u, y), where each of the two terms depends on
only one party’s input.

The frontiers used in the attack are then all defined in
terms of the following quantity:

η(u, x0, x1) =
|α(u, x0)− α(u, x1)|
α(u, x0) + α(u, x1)

or the symmetric quantity with respect to the roles of
Alice & Bob. Intuitively, η(u, x0, x1) measures how
correlated the transcript u is to Alice’s input being
x0 versus x1. In fact, the entire frontier-based attack
can be carried out in polynomial time given an oracle
that answers questions of the form “Is η(u, x0, x1) ≥
1 − ν(k)?”, where ν is a certain negligible function in
the security parameter. If instead the oracle can an-
swer questions of this form where ν(k) = 1/kc for a
chosen constant c, then the adversary’s attack may fail
with at most an extra 1/poly factor. All the attacks from
[MPR09B] demonstrate that the real and ideal worlds
can be distinguished with constant bias, so they can in-
deed tolerate this additional 1/poly slack factor. Thus it
suffices to show how to implement such an oracle.

We compute η(u, x0, x1) as follows: First, Consider
the function f(x, rA, y, rB , i) = (τ, x), where τ is the
first i bits of the transcript produced by the protocol
when executed honestly on inputs (x, y), where rA and
rB are the random tapes of Alice and Bob, respectively.
We use the guarantee of no distributionally one-way
functions to sample from f−1(u, x0) and f−1(u, x1).
If both preimages are empty, then the protocol never
generates u as a partial transcript on inputs x0 or x1. If
only one is empty, then η(u, x0, x1) = 1.

Otherwise, assume u is indeed a possible partial tran-
script for both x0 and x1 (i.e., the protocol assigns pos-
itive probability to u when Alice has inputs x0 or x1).
Our previous sampling of f−1 has yielded an input y∗

such that u is a possible partial transcript when execut-
ing π on inputs (x0, y

∗). Thus u is also a possible partial
transcript on inputs (x1, y

∗). Now define:

g(x, rA, y, rB , i) =

{
(τ, y) if x ∈ {x0, x1}
⊥ otherwise

We now sample n times from g−1(u, y∗). Let ni be the
number of times the sampled preimage included xi as
the first component. Then |n0−n1|/n is an estimate of
η(u, x0, x1). By setting n to be a sufficiently large poly-
nomial in the security parameter, we can ensure that the
estimate is within an additive factor 1/kc of the actual
value, with high probability.
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Theorem 6. If F is passive-trivial but not standalone-
trivial and G is standalone-trivial but not UC-trivial,
then F vPPT G is equivalent to the OWF assumption.

Proof. The fact that F vPPT G under the
OWF assumption is by the same argument as in
the previous proof.

For the other direction, suppose π is a secure pro-
tocol for F in the G-hybrid world. Standalone secure
protocols for SFE functionalities are closed under com-
position. Thus we have a standalone-secure protocol π′

for F without any trusted party.
Being passive-trivial, F is surely decomposable, and

we consider two cases. When F is uniquely decom-
posable, then [MPR09B] showed that in the unbounded
setting, for every adversary A attacking the canonical
protocol, there is an adversaryA′ attacking π′ such that
no environment can distinguish between the two inter-
actions. When F is uniquely decomposable but not
standalone-trivial, there is a simple attack against the
canonical protocol for F that violates standalone secu-
rity with constant probability. Thus translating this at-
tack into an efficient (assuming that OWF assumption is
false) attack on π′ using the techniques described in the
previous proof, we see that π′ is not standalone-secure;
a contradiction.

On the other hand, if F is not uniquely decom-
posable, then FXOR vSTAT F via a simple protocol.
As such, by composing several protocols, we obtain a
standalone-secure protocol π for FXOR. Consider an in-
teraction using π in which the honest party choses an
input at random. We describe an attack that can be car-
ried out assuming that the OWF assumption is false,
which biases the honest party’s output towards 0 by a
noticeable amount:

At each partial transcript u, consider η(u, 0, 1)
(which measures the transcript’s bias towards Alice’s
input 0 or 1, defined in the previous proof) At the be-
ginning of the protocol, the value of this function is 0,
and at the end of the protocol, it is negligibly close to
1 with overwhelming probability since the protocol re-
sults in Bob learning Alice’s input.

Similarly, define η′(u, 0, 1) as a transcript’s bias to-
wards Bob’s input. By symmetry, with probability at
least 1/2, the partial transcript achieves η(u, 0, 1) > 1/2
before it achieves η′(u, 0, 1) > 1/2. Thus an attack
for Bob is to discover via the sampling procedure de-
scribed above the first point at which η(u, 0, 1) > 1/2
but η′(u, 0, 1) ≤ 1/2. At that point, Bob switches his
input to match Alice’s, in order to bias the output to-
wards 0. Bob reaches such a point with probability at
least 1/2, Since η′(u, 0, 1) ≤ 1/2, the correctness of the
protocol implies that Bob’s output will be 0 with over-
whelming probability. Thus this attack successfully bi-
ases the output towards 0 with bias 1/4 minus some in-
verse polynomial in the security parameter.

5 Reductions Equivalent to the sh-OT As-
sumption

Definition 4. Let F be an SFE functionality. We say
that F is exchange-like if F = F i×j

EXCH for some i, j.

Lemma 1 ([MPR09A]). If F is not exchange-like, then
either FOT vSTAT F or FCC vSTAT F .

The proof is a simple combinatorial characterization.
If F is not exchange-like, then it contains one of two
kinds of 2 × 2 minors. One of these minors yields an
unconditional FOT protocol, due to a result of [KMQ08].
The other kind of minor yields an elementary protocol
for FCC.

Our main classification involving exchange-like
functionalities is the following:

Theorem 7. If G is exchange-like and non-trivial, then
either F vSTAT G, or F vPPT G is equivalent to the
sh-OT assumption.

Proof. From [MPR09A], we have that G is vPPT-
complete under the sh-OT assumption, since it is non-
trivial. Thus F vPPT G under the sh-OT assumption.

For the other direction, we break the proof into two
parts, depending on the status of F . These are carried
out in the following two lemmas.

Lemma 2. IfF is not exchange-like, and G is exchange-
like and non-trivial, then F vPPT G implies the
sh-OT assumption.

Proof. Given that F vPPT G, we directly construct a
passive secure protocol for FOT. From Lemma 1, we
have that either FOT vSTAT F or FCC vSTAT F . Thus
either FOT vPPT G or FCC vPPT G by the universal com-
position theorem.

In the first case, FOT has the property that any UC-
secure protocol for FOT (even in a hybrid world) is also
itself a semi-honest-secure protocol [PR08A]. G also
has a semi-honest-secure protocol (namely, its canon-
ical protocol since it is decomposable). Composing
these two protocols yields a semi-honest (plain) proto-
col for FOT.

In the other case, suppose π is the secure protocol
for FCC in the G-hybrid world. Recall that FCC has a
function table 0 2

1 2 , which we interpret as Alice sending
a bit (top row or bottom row), Bob choosing whether
or not to recieve it (left column or right column), and
Alice learning Bob’s choice (whether or not the output
was 2). We directly use π to construct a semi-honest
FOT protocol as follows, with Alice acting as the OT
sender (with inputs x0, x1) and Bob the receiver (with
input b):
• The parties instantiate two parallel instances of π,

with Alice acting as the sender. Since there is no
access to an external G, Bob will simulate Alice’s
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interface with instances of G— that is, Alice will
send her G inputs directly to Bob, and he will give
simulated responses from instances of G. Alice
sends bit x0 in the first instance, and x1 in the sec-
ond instance, running the protocol honestly.
• In protocol instance (1 − b), Bob carries out the

simulation of G-instances and the π protocol com-
pletely honestly. He runs the π protocol on the in-
put that does not reveal Alice’s input.

• In protocol instance b, Bob honestly runs the UC
simulator for π, treating Alice as the adversary
(including simulating Alice’s interface with G-
instances). At some point, the simulator extracts
Alice’s bit xb to send to FCC. Bob continues run-
ning the simulator as if FCC responded with output
2. When the interaction completes, Bob outputs
xb.

By the UC security of π, Alice’s view is computation-
ally independent of b (i.e., she cannot distinguish an
interaction with π’s simulator from an interaction in
which the receiver and G are honest). Bob correctly
learns xb, and we must argue that he has no advantage
guessing x1−b. If all G-instances were external to the
(1 − b) interaction as ideal functionalities, then the se-
curity of π would imply that Bob has no advantage in
guessing x1−b after running the protocol with the in-
put that does not reveal Alice’s bit. Being an exchange
function, G has the property that Bob always learns all
of Alice’s inputs. Thus Alice can send her G-inputs di-
rectly to Bob, without any affect on the security of the
protocol. This is exactly what happens in the (1 − b)
interaction.

For the case where F is exchange-like, we com-
pletely characterize when F vPPT G is equivalent to the
sh-OT assumption.

Lemma 3. Let F and G be exchange-like, so with-
out loss of generality, F = F i×j

EXCH and G = F i′×j′

EXCH .
Then if i ≤ i′ and j ≤ j′, or if i ≤ j′ and j ≤ i′,
then F vSTAT G. Otherwise, F vPPT G is implies the
sh-OT assumption.

Proof. The protocol to show F vSTAT G is elementary.
To perform an i × j exchange using G, simply place G
in the appropriate send inputs directly to G (with Alice
and Bob exchanged if necessary). Each party aborts if
the other party provided an input to the i′× j′ exchange
which was out of bounds for an i × j exchange. The
security of this protocol is straight-forward.

We sketch here the main ideas behind proving the
other direction. The full proof is given in the ap-
pendix. For simplicity, suppose that F = F i×i

EXCH and
G = F (i−1)×(i−1)

EXCH .
Suppose we have a protocol π demonstrating F vPPT

G. The role of the simulator for π is to first extract the
input of a corrupt party, send it to F in the ideal world,

and then continues to simulate π consistently given the
output from F .

Again for simplicity, suppose that the simulator for
a passively corrupt Alice always extracts during round
rA.7 Then through rA − 1 rounds of the simulation,
Alice’s view is independent of Bob’s input. If Bob’s
input is random (uniform in [i]), then after round rA,
Alice cannot guess Bob’s input with probability greater
than ζ = (i − 1)/i, since there are only i − 1 possible
responses from the simulated G that the simulator can
give to complete the round. By the soundness of the
simulation, an honest Alice cannot predict Bob’s input
with probability greater than ζ+negl(k) after rA rounds
of an honest interaction with Bob. Similarly, if the sim-
ulator for a passively corrupt Bob always extracts dur-
ing round rB , then an honest Bob cannot predict Alice’s
random input with probability greater than ζ + negl(k)
after rB rounds of an honest interaction with Alice.

By symmetry, suppose that rA ≤ rB . Then a semi-
honest protocol for a weak variant of OT is as follows:
• Alice chooses two random elements x0, x1 ∈ [i]

and runs two instances of the protocol π with these
respective inputs, for rA rounds.
• Bob’s input is a choice bit b ∈ {0, 1}, and in the

bth interaction with π, Bob runs the simulator for
π against Alice (including simulating her interface
with instances of G). In the (1−b) interaction, Bob
runs the π protocol honestly on a fixed input, and
also honestly simulates all instances of G. After
rA rounds, the b-interaction successfully extracts
xb, which Bob outputs.

By the security of the protocol π, Alice cannot distin-
guish between the b and (1−b) instances. In the (1−b)
instance, Bob runs the protocol honestly against Alice
for rA ≤ rB rounds, and as such, cannot predict x1−b

with probability greater than ζ + negl(k). Using a stan-
dard amplification technique (Appendix D), we can ob-
tain a full-fledged OT protocol in which Bob has no ad-
vantage in predicting x1−b.

The main proof is more involved in several ways.
First, the case where the dimensions of F and G are
incomparable requires a more careful analysis. Second,
rA and rB need not be fixed rounds, but may be random
variables. In this case, the parties must essentially guess
min{rA, rB}. Still, we can obtain a weak OT proto-
col in which Bob has noticeable uncertainty about x1−b,
and which is therefore amenable to amplification.

Using an analogous approach, we also show the fol-
lowing in the appendix:

7If a round begins with a call to the external functionality G, then
the round concludes when the parties receive their output from this
external functionality. Extracting during round r means that the sim-
ulator extracts after seeing the adversary’s input to the external func-
tionality, and before delivering the corresponding output.
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Lemma 4. F2×2
EXCH v FCOIN is equivalent to the

sh-OT assumption.

5.1 Extension to Reactive Functionalities
In Appendix C, we extend all of the results in this

section to a large class of reactive functionalities —
namely, those functionalities which can be modelled as
a finite state machine. We note that this class of func-
tionalities also includes those which do not give sym-
metric output to the two parties.

6 Expanding the Framework
The framework that we have presented is quite gen-

eral thanks to the general nature of functionalities.
However, there are several dimensions in which this
framework can be extended, leading to possibly further
computational complexity assumptions to appear. We
mention a few such extensions in Appendix E.

Briefly, one could consider a larger variety of func-
tionalities — “fair” functionalities, randomized func-
tionalities — etc. Also, one could consider alternate
notions of reductions, both weaker and stronger than
what we have employed. It will indeed be interesting if
a computational complexity assumption manifests un-
der one of these extensions, but not within the specific
instantiation of the framework we have considered. An-
other possible extension is to consider inifinite function-
alities (as opposed to finite state functionalities with fi-
nite input/output alphabet); in this case it is likely that a
large continuum of complexity assumptions are gener-
ated in this framework. It is an interesting challenge to
carry out this extension to infinite functionalities with-
out sacrificing the conceptual clarity of the set of com-
plexity assumptions produced by the framework.
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A Some Cryptographic Complexity
Classes

In this section we identify a few major classes of
two-party symmetric secure function evaluation (SSFE)
functionalities. SSFE functionalities, starting with
the original Millionaire’s Problem proposed by Yao
[YAO82], are perhaps the most well-studied class of
two-party functionalities. Several questions regarding
the cryptographic complexity of 2-party SSFE func-
tionalities (with respect to vSTAT) were addressed in
[MPR09B] based on which the following classifications
can be carried out. (But some of the classes below, like
“exchange-like” functionalities are introduced here, as
they have special significance when connections with
computational complexity assumptions are considered.)

The classes listed below, except the first two, are
“downward closed” with respect to vSTAT. That is, if
G is a functionality in a class and F vSTAT G then F
also falls in the same class. (The first one is “upward
closed.”) These classes are graphically represented in
Figure 1.
Complete Functionalities. These are functionalities
that are statistically “complete.” That is, for all G
in this class, and all functionalities F , F vSTAT G.
Based on the completeness of the oblivious transfer
functionality [KIL88] (which remains true with respect
to the reduction vSTAT as well [KIL89, IPS08]), Kilian
[KIL91] gave a combinatorial characterization for com-
plete SSFE functionalities, as the evaluation of func-
tions containing an “OR-minor” (also called embedded
OR). Indeed, an example of an SSFE functionality in
this class is SFEOR where OR is the function 0 1

1 1 .
Unclassified Functionalities. Among incomplete func-
tionalities, we leave a set of functionalities as “unclassi-
fied.” These are functionalities which are neither com-
plete, nor passive-trivial (see next class). We know
that this class is not empty: the SSFE functionality

corresponding to the evaluation of the function
1 1 2
4 0 2
4 3 3

is known to fall into this category [BEA89, KUS89,
KKMO00]. These functions do have a combinatorial
characterization in terms of minors — they contain an
“undecomposable” minor [BEA89, KUS89], but no OR
minor. However, we call these functionalities unclas-
sified as we have little insight into their cryptographic
properties or different sub-classes.
Passive-Trivial Functionalities. These are functional-
ities securely realizable against a passive (a.k.a honest-
but-curious, or semi-honest) adversary in a computa-
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tionally unbounded environment. For SSFE functionali-
ties, such functions have an explicit combinatorial char-
acterization, namely that they are evaluations of what
are called “decomposable” functions [KUS89, BEA89,
MPR09B, KMQR09].

An important example in this class (though not an
SFE functionality) is the commitment functionality, de-
noted by FCOM. [MPR09B] show that FCOM gives a
complete characterization for the SFE functionalities
in this class, in the sense for an SFE functionality F ,
F vSTAT FCOM iff F is passive-trivial.
Exchange-Like Functionalities. This is a important
sub-class of Passive-Trivial functionalities defined to be
the class of functionalities that reduce to a simultane-
ous exchange functionality. That is, F is in this class
iff there exists an integer i such that F vSTAT F i,i

EXCH.
It turns out that among SSFE functionalities, exchange-
like functionalities are “isomorphic” to F i,j

EXCH for some
integers i and j. As it turns out, the cryptographic
complexity gaps within this class and across this class
are equivalent to sh-OT. Further, among passive-trivial
functionalities, all the results we derive point to the con-
jecture that these are the only reductions that require
sh-OT. This class can be naturally extended to reactive
or randomized functionalities, with the same definition,
and our results regarding sh-OT assumption extend to
them as well.
Exchange-Free Functionalities. This is the class of
functionalities to which no non-trivial exchange func-
tionality can be statistically reduced. That is, a function-
ality G is in this class iffF2,2

EXCH 6vSTAT G. All standalone-
trivial functionalities (see the next class) are of this kind.
But there are other functionalities too: for instance,
1 1 2
3 4 3 (not standalone-trivial) and

1 1 2
4 0 2
4 3 3

(an unclassified

functionality) can be shown to be exchange-free.
A useful combinatorial property of exchange-free

SSFE functionalities which are passive-trivial is that
they are evaluations of functions whose function tables
are “uniquely decomposable,” as defined in [MPR09B].
(However, being uniquely decomposable does not nec-
essarily mean that the SFE is exchange-free: an exam-

ple is the function
1 1 2
5 0 2
4 3 3

.)

Standalone-Trivial Functionalities. These are func-
tionalities securely realizable against a stand-alone ad-
versary in a computationally unbounded environment.
SSFE functionalities in this class were combinatorially
characterized in [KMQR09, MPR09B] They are passive-
trivial and it turns out they are all exchange-free func-
tionalities. An important example of an SSFE in this
class – and indeed the simplest non-trivial one – is
the evaluation of the “cut-and-choose” function 0 1

0 2 ,
in which Bob can choose to learn Alice’s input or
not (and Alice learns Bob’s choice). There is a sim-
ple standalone-secure protocol for this functionality (in

which Bob first sends his input to Alice, and if nec-
essary Alice sends her input to Bob); however there
is no UC secure protocol for this functionality. An-
other example of a standalone-trivial functionality is
1 1 2 2
3 4 3 4 . (In contrast, as mentioned above, 1 1 2

3 4 3 is
not standalone-trivial, though it is passive-trivial and
exchange-free.)
Trivial Functionalities. These are functionalities se-
curely realizable against a general adversary in a com-
putationally unbounded environment, using protocols
which only rely on (private) communication channels.8

Essentially, these functionalities have a simple protocol
in which one party sends a single message to the other
party. Among SSFE functionalities, these are isomor-
phic to evaluation of functions with a one-dimensional
function-table (that is, one of the parties has a fixed in-
put). This also corresponds to the intersection of the
classes exchange-like and exchange-free. (An instance
of a non-trivial randomized function which is exchange-
like and exchange-free is FCOIN, the coin-flipping func-
tionality.)

B Details for the Proof of Theorem 7
In this section we complete the proof of Theorem 7

outlined in the main body. What remains to be shown
are the details of Lemma 3 — namely, that if the dimen-
sions of one exchange functionF are not “smaller” than
the dimensions of another exchange function G, then
F vPPT G implies the sh-OT assumption.

We develop the proof in several parts. First,
to introduce our approach to proving separa-
tions involving exchange functions, we show that
F2×2

EXCH vPPT FCOIN implies sh-OT assumption.
Then we show that F i×j

EXCH vPPT F (i−1)×(j−1)
EXCH

implies the sh-OT assumption, and finally that
F i×j

EXCH vPPT F i′×j′

EXCH implies the sh-OT assumption,
where min{i′, j′} < i, j ≤ max{i′, j′}. These two
cases suffice to prove the desired characterization.

B.1 Reduction to FCOIN.
Lemma 5. F2×2

EXCH vPPT FCOIN implies the
sh-OT assumption.

Proof. Let π be a secure protocol for F2×2
EXCH in the

FCOIN-hybrid world. We will transform π to obtain a se-
cure protocol for FOT against semi-honest adversaries.

Let sB be the random variable denoting the round in
which the simulator extracts from a passively corrupt
Alice and sends her input to F2×2

EXCH. Fix any passive
adversarial strategy for Alice which outputs a guess of
Bob’s input at each step of the protocol, and define tA as
the random variable denoting the round when this guess

8Recall that in our model functionalities — including communi-
cation channels — interact only with the parties. A channel with an
eavesdropper is modeled as a 3-party functionality.
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Protocol for a weak variant of FOT. Alice has inputs
x0, x1 ∈ {0, 1}, and Bob has input b ∈ {0, 1}.

1. Alice runs two instances of the protocol π with
Bob, using inputs x0 and x1, respectively.

2. Bob picks a random r ∈ [r(κ)], where r(κ) is
a polynomial bound on the number of rounds in
π.

3. In the bth instance of π, Bob runs the simula-
tor for π against Alice (including simulating her
interface with instances of FCOIN), and halts the
interaction after the rth round of π.

4. In the (1− b) instance of π, Bob runs the π pro-
tocol honestly with Alice on a fixed input (say,
0), and also honestly simulates all instances of
FCOIN for Alice. Bob halts the interaction after
the rth round of π.

5. If the simulator has extracted xb, then Bob out-
puts it. Otherwise, he asks Alice for (x0, x1),
and she sends it to him.

Figure 2: Weak oblivious transfer protocol, using any secure
protocol π for F2×2

EXCH in the FCOIN-hybrid world.

is correct with probability at least ζ = 3/4 (where the
probability is over the randomness independent of Al-
ice’s view), when interacting with the simulator. By
the definition of the simulation, Alice’s view is com-
pletely independent of Bob’s input through the first sB

rounds (even in the presence of an ideal FCOIN). Thus
tA ≥ sB + 1, and in particular, E[tA] ≥ E[sB ] + 1.

Now consider running this passive adversarial strat-
egy for Alice against an honest Bob in the actual pro-
tocol execution, instead of against the simulator. We
define uA to be the random variable denoting the first
round in which Alice’s guess is correct with probabil-
ity at least ζ. By the security of π, these two inter-
actions must be indistinguishable to this Alice strat-
egy, thus |E[uA] − E[tA]| < ε/ζ = ε′, where ε is
the negligible simulation error of the protocol. Thus
E[uA] ≥ E[sB ] + 1− ε′.

Similarly we can define uB and sA and conclude that
E[uB ] ≥ E[sA]+1−ε′. Then, either E[uA] ≥ E[sA]+
1− ε′, or E[uB ] ≥ E[sB ]+1− ε′; otherwise we would
get that E[uA] < E[sA] + 1− ε′ ≤ E[uB ] < E[sB ] +
1− ε′.

By symmetry, we assume that E[uB ] ≥ E[sB ] + 1−
ε′. In other words, in an interaction with an honest Al-
ice, the simulator will, on average, extract Alice’s input
earlier than any passive Bob could guess Alice’s input
with probability at least ζ.

Now consider the protocol given in Figure 2. First,
since Alice cannot distinguish a simulated instance of π
from an honest execution of π, Alice has no advanatage
in predicting Bob’s bit b. Thus the protocol gives com-
plete privacy for Bob.

Then a passively corrupt Bob in this protocol can

guess Alice’s input x1−b correctly with probability at
most

Pr[sB ≤ r < uB ]ζ + (1− Pr[sB ≤ r < uB ])
= 1− (1− ζ) Pr[sB ≤ r < uB ]
≤ 1− (1− ζ)E[uB − sB ]/r(κ)
≤ 1− (1− ζ)(1− ε′)/r(κ)

by the definition of uB . Or, in other words, Bob’s guess
is incorrect with probability at least (1−ζ)(1−ε′)/r(κ),
which is an inverse polynomial in the security parame-
ter. In Appendix D, we show how a weak FOT protocol
with this security property can be amplified to give a
full-fledged (semi-honest) FOT protocol.

B.2 Reductions Between Exchange Functions
We first establish a convenient technical lemma:

Lemma 6. For each j ∈ [i], let Dj be a probability
distribution over the elements {m1, . . . ,mi−1}. Now
consider the following experiment: Choose j ∈ [i] in
random, and then output a sample according to Dj .

The probability of correctly predicting j given only
the output of this procedure is at most (i− 1)/i.

Proof. Let pu,v be the probability of sampling message
mv when using Du. So, we have:

i−1∑
v=1

pu,v = 1 for all u ∈ [i]

Let qv,u be the probability of outputting u after seeing
message v. So, we have:

i∑
u=1

qv,u = 1 for all v ∈ [i− 1]

The probability of being correct is:

ζ =
∑i

u=1

∑i−1
v=1 pu,vqv,u

i

This is maximized if qv,u = αupu,v . Therefore, ζ ≤Pi
u=1 αv

Pi−1
v=1 p2

u,v

i ≤
Pi−1

u=1 αu

i = i−1
i

Before we prove the general result, let us prove an
intermediate result

Lemma 7. Let i ≥ 3. Then F i×i
EXCH vPPT F (i−1)×(i−1)

EXCH

implies the sh-OT assumption.

Proof. The proof is very similar to that of the previous
lemma. However, now that the purported protocol π can
use F (i−1)×(i−1)

EXCH , we must consider information about
the parties’ inputs that is exchanged via the ideal func-
tionality.

Note that in the proof of the previous lemma,
we would obtain a suitable weak OT protocol (i.e.,
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amenable to amplification) even if ζ is at most 1 − 1
poly

in the security parameter
Consider ζ = c + i−1

i , where c > 0 is any con-
stant. As before, we let sB be the round during which
the simulator extracts from a passively corrupt Alice.
Thus, Alice may send an input to her interface of
F (i−1)×(i−1)

EXCH , then the simulator will send the extracted
input to F i×i

EXCH, receive the output, and then complete
the round by simulate the response of the simulated
F (i−1)×(i−1)

EXCH functionality to Alice.
The simulator will complete the round by simulating

a response fromF (i−1)×(i−1)
EXCH , which will be an element

of [i − 1]. At the start of round sB , Alice’s view is in-
dependent of the honest Bob’s input y ∈ [i] to F i×i

EXCH.
There are only i−1 possible responses the simulator can
provide after receiving y from the ideal F i×i

EXCH function-
ality. So after round sB is complete, Alice cannot guess
y with probability greater than (i − 1)/i < ζ, where
ν(·) is negligible. Since tB is defined as the first point
at which Alice can guess Bob’s input with probability
at least ζ, we have tB ≥ sA + 1.

Similarly we can conclude that tA ≥ sB + 1. Rest of
the proof is identical to the proof mentioned above.

Finally we move to our general result.

Lemma 8. Let i, j, i′, j′ be such that (i > i′ or j > j′)
and (i > j′ or j > i′). Then F i×j

EXCH vPPT F i′×j′

EXCH implies
the sh-OT assumption.

Proof. The proof is very similar to that of the previous
lemma. However, now that the purported protocol π can
useF i′×j′

EXCH , we must consider information about the par-
ties’ inputs that is exchanged via the ideal functionality.

Note that in the proof of the previous lemma,
we would obtain a suitable weak OT protocol (i.e.,
amenable to amplification) even if ζ is 1− 1

poly in the se-
curity parameter, and one of {E[tB − sB ], E[tA− sA]}
is at least 1

poly in the security parameter.

Case 1: (max{i, j} > max{i′, j′}): Suppose i ≥ j
and i > i′ ≥ j′ and Bob feeds input from [i] into the
ideal functionality. We define ζ = c + i−1

i . Now we
define sB and tA as we had done earlier. Similar to the
argument in the previous lemma we get that tA ≥ sB+1
(because i − 1 ≥ i′ ≥ j′). It is always the case that
tB ≥ sA. So, we get the condition that tA ≥ sB +
1 and tB ≥ sA.

In general we can say that:

(tA ≥ sB and tB ≥ sA + 1), or
(tB ≥ sA and tA ≥ sB + 1)

These conditions imply that:

E[uA] ≥ E[sA] +
(

1
2
− ε′

)
, or

E[uB ] ≥ E[sB ] +
(

1
2
− ε′

)
Observe that in our weak OT construction, all we

needed was that E[uA−sA] or E[uB−sB ] is 1
poly in the

security parameter. So, we can continue with our weak
OT construction as we had mentioned earlier.

Case 2: (min{i′, j′} < i, j ≤ max i′, j′): Observe
that even if for some polynomial λ(·) we have:(

E[tA] ≥ E[sB ] and E[tB ] ≥ E[sA] +
1

λ(κ)

)
, or(

E[tB ] ≥ E[sA] and E[tA] ≥ E[sB ] +
1

λ(κ)

)
we can use the approach mentioned above to get the
weak OT protocol. So, we just need to consider the case
when E[tB ] ∈

[
E[sA], E[sA] + 1

λ(κ)

)
and E[tA] ∈[

E[sB ], E[sB ] + 1
λ(κ)

)
, where λ(·) is a suitably cho-

sen large polynomial.
In this case, we will prove that:

1. Pr(tB ≥ sB + 1) or Pr(tA ≥ sA + 1) is ≥ 1
5

2. |Pr(uA = i)− Pr(tA = i)|,
|Pr(uB = i)− Pr(tB = i)| are both ≤ 1

ρ(κ)

for any polynomial ρ
These will imply that our weak OT construction will
work in this case as well.

Now, we show that the above mentioned proper-
ties hold. If E[tB ] ∈

[
E[sA], E[sA] + 1

λ(κ)

)
and

E[tA] ∈
[
E[sB ], E[sB ] + 1

λ(κ)

)
, then with probabil-

ity ≥ 1 − 2
λ(κ)n we will have the event that tB = sA

and tA = sB . Consider the set of rounds S where
tA = sB . Similarly define T to be the set of rounds
where tB = sA. WLOG, we can assume that Alice
uses i′ side of FXOR(i′×j′) only in even rounds and the
j′ side of the FXOR(i′×j′) only in odd rounds. So, we
conclude that the sets S and T are mutually disjoint.

Let xS(i) be the probability of the event tA = sB ≤ i
happens. Similarly define xT (i) as the probability of
the event tB = sA ≤ i happens. Initially xS(0) =
xT (0) = 0 and xS(n) = xT (n) = 1 − 2

λ(κ)n . So
look at the first i such that xS(i) or xT (i) becomes
≥ 1

2

(
1− 2

λ(κ)n

)
. Observe that at any given round

only xS(i) or xT (i) changes. WLOG assume that xS(i)
reaches the threshold first. Then since yS(i) could
not have changed at this round, we get that yS(i) ≤
1
2

(
1− 2

λ(κ)n

)
. Then we see that with probability ≥(

1
2 −

1
λ(κ)n

)2

≥ 1
4 −

2
λ(κ)n ≥

1
5 , we have the event

that sB ≤ tB − 1.
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Now, all we need to show is that Pr(uB = i) and
Pr(tB = i) are 1/poly-close. We pick a suitable poly-
nomial ρ. We run an honest execution of the proto-
col against a simulator for Alice. We can estimate
Pr(tB = i) within 1

ρ additive error in polynomial time.
Similarly, we run an honest execution of the protocol
against honest Alice. We can estimate Pr(uB = i)
within 1

ρ additive error in polynomial time.
If |Pr(tB = i)− Pr(uB = i)| > 3

ρ , then we can cre-
ate a polynomial time distinguisher which distinguishes
between the real and ideal world. So, for every round
i ∈ [r(κ)], |Pr(tB = i)− Pr(uB = i)| ≤ 3

ρ .
Given the guarantee that, for all i ∈ [r(κ)],

|Pr(tB = i)− Pr(uB = i)| ≤ 3
ρ and Pr(sB ≤ tB −

1) ≥ 1
5 , the construction given earlier gives us a weak

OT.

C Reactive Exchange-Like Functionali-
ties

In this section we extend the results of Section 5 to a
large class of reactive functionalities. Namely, the fol-
lowing:

Definition 5. A deterministic finite functionality (DFF)
is a functionality with a finite set of internal states Q,
whose behavior is as follows:

1. Set the internal state q to the distinguished start
state q0 ∈ Q.

2. Wait for inputs x ∈ X from Alice and y ∈ Y from
Bob, where X, Y are finite input sets.

3. If δ(q, x, y) is defined, then send “delayed out-
puts” fA(q, x, y) to Alice and fB(q, x, y) to Bob,
where δ, fA, fB are deterministic functions.

4. Set q ← δ(q, x, y) and repeat from step 2.

To reason about the behavior of reactive functional-
ities, we follow [MPR09A, ROS09] and develop a way
of saying that one input x “achieves the same effect” as
another input x′, in the context of a reactive function-
ality. Intuitively, this happens when every behavior that
can be induced by sending x at a certain point can also
be induced by sending x′ instead, and thereafter appro-
priately translating subsequent inputs and outputs. We
can define this formally in terms of the UC security def-
inition:

Definition 6 (Dominating Inputs). LetF be a DFF, and
let x, x′ ∈ X be inputs for Alice. We say that x dom-
inates x′ in the first round of F , and write x ≥A x′, if
there is a secure protocol for F in the F-hybrid setting,
where the protocol for Bob is to run the dummy proto-
col (as Bob), and the protocol for Alice has the property
that whenever the environment provides input x′ for Al-
ice in the first round, the protocol instead sends x to the
functionality in the first round.

We define domination for Bob inputs analogously,
with the roles of Alice and Bob reversed. Note that the
definition requires that any behavior of F that is possi-
ble when Alice uses x′ as her first input can also be in-
duced in an online fashion by using x as her first input
(and subsequently translating inputs/outputs according
to some strategy). Domination is reflexive and transi-
tive.

Definition 7 (Simple States). Let F be a DFF, and let q
be one of its states. We define F [q] as the functionality
obtained by modifying F so that its start state is q.

We say that q is a simple state if:
• The input/output behavior of F at state q —

(fA(q, ·, ·), fB(q, ·, ·)) — is (isomorphic to) an ex-
change function; and
• For all Alice inputs x, x′ ∈ X such that

fB(q, x, ·) ≡ fB(q, x′, ·), there exists an Alice in-
put x∗ ∈ X such that x∗ ≥A x and x∗ ≥A x′ in
F [q]; and

• For all Bob inputs y, y′ ∈ Y such that
fA(q, ·, y) ≡ fA(q, ·, y′), there exists a Bob input
y∗ ∈ Y such that y∗ ≥B y and y∗ ≥B y′ in F [q].

Suppose q is a simple state. Then we can define x
q∼

x′ if fB(q, x, ·) ≡ fB(q, x′, ·). The relation
q∼ induces

equivalence classes over X . When q is a simple state,
then within each such equivalence class, there exists at
least one input x∗ which dominates all other members
of its class. For each equivalence class, we arbitrarily
pick a single such input x∗ and call it a master input for
state q. Similarly we define master inputs for Bob by
exchanging the roles of Alice and Bob.

Definition 8. Let F be a DFF, We say that a transition
is safe if it leaves a simple state q on inputs (x, y), where
x and y are both master inputs for state q.

C.1 Exchange-Like Definition
Our generalization of exchange-like functionalities is

in terms of these automata-theoretic properties.

Definition 9 (Exchange-like). We say that a DFF F is
exchange-like if no non-simple state in F is reachable
via a sequence of safe transitions from F’s start state.

We justify the use of the term “exchange-like” in
the following lemma. Namely, exchange-like function-
alities are equivalent to a collection of several (non-
reactive) exchange functions.

Lemma 9. Let 〈F1, . . . ,Fn〉 be a DFF which in the
first round accepts input k ∈ [n] from Alice, outputs k
to Bob, and then simulates Fk.

If a DFF G is exchange-like, then G is equivalent (un-
der vSTAT reductions) to some 〈F i1×j1

EXCH , . . . ,F in×jn
EXCH 〉.
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Proof sketch. Given G, we first define a related func-
tionality R(G) which is simply G with all non-safe tran-
sitions deleted. Then using an argument almost iden-
tical to [MPR09A], we have that G v R(G) v G (see
the following lemmas). Intuitively, for these functional-
ities, the parties can be made to use only “master” inputs
without loss of generality.

Now for each reachable state q in R(G), its in-
put/output function at that state is an iq × jq exchange
function. Let F = 〈F iq×jq

EXCH | q ∈ Q〉; then the pro-
tocol for R(G) using access to F is for both parties to
do the following: Maintain the current state q, and in
each round, instantiate a new instance of F and ensure
that Alice sends input q to F (Bob aborts otherwise).
Then use F again to perform the input/output function
of G. The output of F uniquely determines both party’s
inputs, and thus the next value of G’s internal state q, so
we repeat.

To show that F v R(G), for each reachable state q in
R(G), let (x1, y1), . . . , (xn, yn) be a sequence of inputs
that leaves R(G) in state q. The protocol forF is to have
Alice first send her input q to Bob. Then both parties
send the corresponding input sequence to R(G) to place
it in state q. Either party can determine from its view
whether the other party has input the correct sequence.
If this is not the case, then the parties abort. Otherwise,
they send their next round inputs to R(G) directly and
use the output as their own output (after normalizing the
inputs/outputs to [iq]× [jq]).

To complete the proof sketched above, we now de-
scribe the construction of a “normalized” version R(F)
of an exchange-like functionality F . We first define an
intermediate functionality:

Definition 10. We define r(F) to be the functionality
which runs F , except that in the first round only, it al-
lows only safe transitions to be taken (i.e., transitions
on master inputs only). r(F) can be written as a copy
of F plus a new start state. The new start state of r(F)
duplicates all the safe transitions of F’s start state.

Observation 8. If a safe transition was just taken in
F , then Alice (resp. Bob) can uniquely determine Bob’s
(resp. Alice’s) input in the previous round and the cur-
rent state of F , given only the previous state of F and
Alice’s (resp. Bob’s) input and output in the previous
round.

Proof. We will show that Alice has no uncertainty
about which master input Bob used, thus no uncertainty
about the resulting state of F . If a safe transition was
just taken from q, then q was a simple state and its as-
sociated SFE (fA(q, ·, ·), fB(q, ·, ·)) is isomorphic to an
exchange function. Note that our definition of dominat-
ing inputs subsumes the definition of redundant inputs
in the context of function isomorphism.

Thus if y, y′ are distinct master inputs for Bob, then
fA(q, ·, y) 6≡ fA(q, ·, y′). As such, for any master input
x for Alice, fA(q, x, y) 6= fA(q, x, y′). Alice has no
uncertainty about which master input Bob used. This
argument is symmetric for Bob as well.

Lemma 10. If the start state of F is simple, then
r(F) v F v r(F). Furthermore, if q is reachable from
the start state of F via a safe transition, then F [q] v F .

Proof. The protocol for r(F) v F is the dummy pro-
tocol, since r(F) implements simply a subset of the
behavior of F . Simulation is trivial unless in the first
round, the corrupt party (say, Alice) sends an input x
to F which is not a master input for q0. The simulator
must send the corresponding master input x∗ (from the
q0∼ equivalence class of x) in the ideal world, and then
it uses the translation protocol guaranteed by the defini-
tion of x∗ ≥A x to provide a consistent view to Alice
and induce correct outputs for Bob.

Similarly, the protocol for F v r(F) is simply the
dual of the above protocol. On input x in the first round,
Alice sends x∗ to r(F), where x∗ is the master input
from the

q0∼-equivalence class of x. Thereafter, Alice
runs the protocol guaranteed by the fact that x∗ ≥A x.
Bob’s protocol is analogous. Simulation is a trivial
dummy simulation, since any valid sequence of inputs
to r(F) in the real world also produces the same out-
come in the F-ideal world (r(F) implements a subset
of the behavior of F).

Note that in r(F), the added start state has no incom-
ing transitions; thus (r(F))[q] = F [q] if q is a state
in F . So to show F [q] v F , it suffices to show that
(r(F))[q] v r(F). Suppose q is reachable in F from
the start state via safe transition on master inputs x∗, y∗.
The protocol for F [q] is for Alice and Bob to send x∗

and y∗ to r(F), respectively, as a “preamble”. Each
party can determine with certainty, given their input and
output in this preamble, whether r(F) is in state q (since
only safe transitions can be taken from the start state of
r(F)). If the functionality is not in q, then the parties
abort. Otherwise, the functionality is r(F) in state q as
desired, so the parties thereafter run the dummy proto-
col. Simulation is trivial – the simulator aborts if the
corrupt party does not send its specified input (x∗ or
y∗) in the preamble; otherwise it runs a dummy simula-
tion.

The claim used in the proof of Lemma 9 is the fol-
lowing:

Lemma 11. Let R(F) be F with all non-safe transi-
tions removed. Then F v R(F) v F .

Proof. First we show that F v R(F). We prove a
stronger claim; namely that if q is safely reachable (i.e.,
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reachable from the start state by a sequence of safe tran-
sitions) in F , then F [q] v (R(F))[q]. To prove this
stronger claim, we construct a family of protocols π̂q,
for every such q.

First, let πq denote the protocol guaranteed byF [q] v
r(F [q]) (Lemma 10). Then the protocol π̂q is as fol-
lows:

1. Run πq to interact with the functionality.
2. After the first round, we will have sent an input

to the functionality and received an output. As-
suming that the functionality was (R(F))[q], use
the first round’s input/output to determine the next
state q′ (Observation 8)

3. Continue running πq, but hereafter, instead of let-
ting it interact directly with the functionality, we
recursively instantiate π̂q′ . We let our πq instance
interface with π̂q′ , which we let interact directly
with the functionality.

The protocol is recursive, and after k rounds, must
maintain a stack depth of size k. We prove by induc-
tion on k that π̂q is a secure protocol for F [q] using
(R(F))[q], against environments that run the protocol
for k ≥ 0 steps. The claim is trivially true for k = 0.

Note that simulation is trivial if either party is cor-
rupt. Such an adversary is running the protocol interact-
ing with (R(F))[q], which is a subset of the functional-
ity F [q]. Thus the simulator is a dummy simulator. It
suffices to show that the output of the protocol is correct
(indistinguishable from the ideal interaction) when both
parties are honest.

In the first round, both parties are running πq, inter-
acting with (R(F))[q]. Although πq is designed to in-
teract with r(F [q]), the behavior of both these function-
alities is identical in the first round (including the next-
state function). Thus the first round of outputs is cor-
rect, by the security of πq. For the same reason, step 2
of π̂q correctly identifies the next state q′ of (R(F))[q].
Clearly (R(F))[q][q′] = (R(F))[q′], so after step 1 of
the protocol, the functionality is identical to a fresh in-
stantiation of (R(F))[q′]. At the same time, we also
instantiate a fresh instance of π̂q′ to interact with this
functionality. By the inductive hypothesis, hereafter πq

is interacting with an interface that is indistinguishable
from an ideal interaction with F [q′]. However, an ex-
ternal functionality which behaves like R(F)[q] in the
first round, then after transitioning to state q′ behaves
like F [q′], is simply the functionality r(F [q]). In other
words, the entire protocol π̂q is indistinguishable from
running πq on r(F [q]). By definition of πq, this is indis-
tinguishable from an ideal interaction with F [q] itself.

The protocol for R(F) v F is the dual of the
above protocol. The protocol is the dummy protocol,
and the simulator recursively uses the protocols πq as
above.

C.2 Main Classification
We now prove the main result regarding exchange-

like functionalities, that is:

Theorem 9. Let F and G be DFFs. If G is exchange-
like and non trivial, then either F vSTAT G, or F v G
is equivalent to the SHOT assumption.

We split the proof into two parts, depending on
whether F itself is also exchange-like.

When F is exchange-like
For the case where both F and G are exchange-like,

we prove a simple combinatorial characterization for
when F v G, which generalizes our result for SFE
functionalities. Namely, F vSTAT G if and only if every
exchange contained in F can “fit inside” an exchange
contained in G. Otherwise, the existence of a secure
protocol is equivalent to the sh-OT assumption. More
formally:

Lemma 12. Let S and T be finite subsets of Z2. Say
that S ≤ T if for every (i, j) ∈ S, there exists (i′, j′) ∈
T such that i ≤ i′ ∧ j ≤ j′ or i ≤ j′ ∧ j ≤ i′.

Let F = 〈F i×j
EXCH | (i, j) ∈ S〉 and G = 〈F i×j

EXCH |
(i, j) ∈ T 〉. Then if S ≤ T , then F vSTAT G, and if S 6≤
T , then F v G is equivalent to the sh-OT assumption.

The proof is a straight-forward generalization of our
characterization for SFE. Since every exchange-like
DFF is equivalent to such a collection of exchanges, this
establishes the main result for DFFs as well.

When F is not exchange-like.
We describe how any non-exchange-like functional-

ity can be used to unconditionally realize FCOM. The
argument here is reproduced directly from [MPR09A,
ROS09] with minimal modification (corresponding to
our looser definition of simple states).

In [MPR09A, ROS09], the following property about
dominating inputs is given:

Lemma 13 ([MPR09A, ROS09]). LetF be a DFF. Then
there is an environment Z0 with the following proper-
ties:
• Z0 sends a constant number of inputs to F ,
• Z0 choses inputs for both parties at random,
• Z0 always outputs 1 when interacting with two

parties running the dummy protocol on an instance
of F ,

• For every x, x′ ∈ X , if x 6≥A x′, then Z0 has a
constant probability of outputting 0 when interact-
ing with an Alice protocol that sends x instead of
x′ in the first round.

Using this fact, we obtain the following claim, used
in the proof of main theorem:

Lemma 14. If a non-simple state in F is reachable via
a sequence of safe transitions from F’s start state, then
either FCOM v F or FOT v F or FCC v F .
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Proof. Without loss of generality (by Lemma 10) we
assume that the start state of F is non-simple.

First, suppose the start state q0 of F is non-simple
because its input/output behavior in the first round is
not an exchange function. Then in the F-hybrid set-
ting we can easily securely realize the SFE functional-
ity G = (fA(q0, ·, ·), fB(q0, ·, ·)), by the simple dummy
protocol. Even though F may keep in its memory arbi-
trary information about the first-round inputs, the infor-
mation can never be accessed since honest parties never
send inputs to F after its first round, and F waits for
inputs from both parties before giving any output. Thus
G v F . By Lemma 1, we have that either FOT v F or
FCC v F in this case.

Otherwise, assume that the input/output behavior in
the first round is an exchange function SFE, and that q0

is non-simple for one of the other reasons in the defini-
tion of simple states. The two cases are symmetric, and
we present the case where Alice can commit to Bob.
Suppose there are Alice inputs x∗0, x

∗
1 ∈ X such that

fB(q0, x
∗
0, ·) ≡ fB(q0, x

∗
1, ·), but for all x ∈ X , either

x 6≥A x∗0 or x 6≥A x∗1. Intuitively, this means that F
binds Alice to her choice between inputs x∗0 and x∗1 —
there are behaviors of F possible when her first input is
x∗b , which are not possible when her first input is x∗1−b.
We formalize this intuition by using the first input round
of F to let Alice commit a bit to Bob.

Recall the “complete” environment Z0 from
Lemma 13, and suppose it runs for m rounds and has
a distinguishing probability p > 0. Our protocol for
FCOM is to instantiate N = 2dlog1−p 0.5eκ = Θ(κ)
independent instances of F , where κ is the security
parameter. We will write Fi to refer to the ith instance
of F . The protocol is as follows:

1. (Commit phase, on Alice input (COMMIT, b),
where b ∈ {0, 1}) Alice sends x∗b to each Fi. For
each i, Bob sends a random yi1 ∈ Y to Fi and
waits for output fB(q0, yi1, x

∗
0) = fB(q0, yi1, x

∗
1).

If he receives a different input, he aborts. Other-
wise, he outputs COMMITTED.

2. (Reveal phase, on Alice input REVEAL) Alice
sends b to Bob. For each i, Alice sends her in-
put/output view of Fi to Bob (x∗b and the first-
round response from Fi). If any of these reported
views involve Alice sending something other than
x∗b to Fi, then Bob aborts. Otherwise, Bob sets
xi1 = x∗b for all i.

3. For j = 2 to m:
(a) Bob sends Alice a randomly chosen xij ∈ X .

Alice sends xij to Fi.
(b) Bob sends a randomly chosen input yij ∈ Y

to Fi.
(c) For each i, Alice reports to Bob her output

from Fi in this round.
4. If for any i, Alice’s reported view or Bob’s

outputs from Fi does not match the (deter-

ministic) behavior of F on input sequence
(xi1, yi1), (xi2, yi2), . . ., then Bob aborts. Other-
wise, he outputs (REVEAL, b).

When Bob is corrupt, the simulation is to do the follow-
ing for each i: When Bob sends yi1 to F in the com-
mit phase, simulate Fi’s response as fB(q0, x

∗
0, yi1) =

fB(q0, x
∗
1, yi1). In the reveal phase, to open to a bit

b, simulate that Alice sent Bob x∗b and the view that
is consistent with that input: fA(q0, x

∗
b , yi1). Main-

tain the corresponding state qi of Fi after seeing inputs
(x∗b , yi1). Then when Bob sends xij to Alice and yij to
Fi, simulate that Fi gave the correct output to Bob and
that Alice reported back the correct output from Fi that
is consistent with F receiving inputs xij , yij in state qi.
Each time, also update the state qi according to those
inputs. It is clear that the simulation is perfect.

When Alice is corrupt, the simulation is as follows:
The simulator faithfully simulates each instance of F
and the behavior of an honest Bob. If at any point, the
simulated Bob aborts, then the simulation aborts. Sup-
pose Alice sends x̃i1 to each Fi in the commit phase,
and that the simulation has not aborted at the end of
the commit phase. If the majority of x̃i1 values satisfy
x̃i1 ≥A x∗0, then the simulator sends (COMMIT, 0) to
FCOM; otherwise it sends (COMMIT, 1). Note that by
the properties of F , each x̃i1 cannot dominate both x∗0
and x∗1. Let b be the bit that the simulator sent to FCOM.

If the simulated Bob ever outputs (REVEAL, b), then
the simulator sends REVEAL to FCOM. The simulation
is perfect except for the case where the simulated Bob
outputs (REVEAL, 1 − b) (in this case, the real world
interaction ends with Bob outputting (REVEAL, 1 − b),
while the ideal world interaction aborts). We show that
this event happens with negligible probability, and thus
our overall simulation is statistically sound.

Suppose Alice sends b′ = 1 − b at the beginning
of the reveal phase. Say that an instance Fi is bad if
x̃i1 6≥A x∗1−b. Note that at least half of the instances of
Fi are bad. When an instance Fi is bad, Z0 can distin-
guish with probability at least p between the cases of F
receiving first input x̃i1 and x∗1−b from Alice. However,
in each instance of Fi, Bob is sending random inputs
to Alice (who sent x̃i1 as the first input to Fi), sending
random inputs himself to Fi, obtaining his own output
and Alice’s reported output from Fi in an on-line fash-
ion, and comparing the result to the known behavior of
F (when x∗1−b is the first input of Alice). This is ex-
actly what Z0 does in the definition of x̃i1 ≥A x∗1−b, so
Bob will detect an error with probability p in each bad
instance. In the real world, Bob would accept in this re-
veal phase with probability at most (1−p)−N/2 ≤ 2−κ,
which is negligible as desired.

Lemma 15. If G is exchange-like and non-trivial, and
F is not exchange-like, then F v G is equivalent to the
sh-OT assumption.
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Proof. From [MPR09A], we have that G is v-complete
given the sh-OT assumption, and thus F v G. The
main challenge is proving that F v G implies the
sh-OT assumption.

Since F is not exchange-like, then either FOT v F ,
FCC v F , or FCOM v F . Thus, by the universal compo-
sition theorem we assume that we have a secure proto-
col for either FCC, FOT, or FCOM using G. The cases in-
volvingFCC andFOT have been addressed already in the
proof of the characterization for non-reactive exchange-
like functionalities.

Thus we describe the case where FCOM v G via pro-
tocol π. It is similar to the proof of the case involv-
ing FCC for non-reactive functionalities. Without loss
of generality, we assume that G is simply a collection of
exchange functions, as in Lemma 9. The semi-honest
protocol for FOT is as follows, with Alice the sender
(having inputs x0, x1) and Bob the receiver (having in-
put b):
• The parties instantiate two parallel instances of π,

with Alice acting as the sender. Since there is no
access to an external G, Bob will simulate Alice’s
interface with instances of G— that is, Alice will
send her G inputs directly to Bob, and he will give
simulated responses from instances of G. Alice
commits to bit x0 in the first instance, and x1 in the
second instance. Alice honestly runs π and halts
after the commitment phase finishes.
• In protocol instance (1 − b), Bob carries out the

simulation of G-instances and the π protocol com-
pletely honestly.

• In protocol instance b, Bob honestly runs the UC
simulator for π, treating Alice as the adversary
(including simulating Alice’s interface with G-
instances). At the end of the commitment phase,
the simulator extracts Alice’s bit xb, which Bob
outputs.

By the UC security of π, Alice’s view is computation-
ally independent of b (i.e., she cannot distinguish an
interaction with π’s simulator from an interaction in
which the receiver and G are honest). Bob correctly
learns xb, and we must argue that he has no advan-
tage guessing x1−b. If all G-instances were external to
the (1 − b) interaction as ideal functionalities, then the
security of π would imply that Bob has no advantage
in guessing x1−b after the commitment phase. Being
a collection of exchange functions, G has the property
that Bob always learns all of Alice’s inputs. Thus Alice
can send her G-inputs directly to Bob, without loss of
generality. This is exactly what happens in the (1 − b)
interaction.

D Oblivious Transfer Amplification
We first establish the following convenient technical

lemma:

Lemma 16 (Noisy Channel Bounds). Consider a noisy
channel C, which either forwards an input element x ∈
ZN unchanged with probability q, and otherwise re-
places it uniformly chosen element from ZN \ {x}.

Suppose a string s = s1 . . . sk ∈ Zk
N is passed

through C, and t = t1 . . . tk is the result. Then the prob-
ability that

∑k
i=1 ti =

∑k
i=1 si is at most

1
N

+ exp
(
− 1

N
− (1− q)k

(N − 1)

)
.

Proof. Without loss of generality, suppose that∑k
i=1 si = 0. Consider the following polynomial:

f(x) =
(

q +
1− q

N − 1
x + . . .

1− q

N − 1
xN−1

)k

Observe that the probability that
∑k

i=1 ti = 0 is given
by the following expression:

∑
λ∈Z

[xλN ]f(x) =
∑n−1

i=0 f(ωi)
N

,

where 1, ω, . . . , ωN−1 are distinct roots of zN = 1. We
can evaluate the expression in the following manner:

1
N

N−1∑
i=0

f(ωi) =
1
N

N−1∑
i=0

Nq − 1
N − 1

+
1− q

N − 1

N−1∑
j=0

ωij

k

=
1
N

+
(N − 1)

(
Nq−1
N−1

)k

N

=
1
N

+
(

1− 1
N

) (
1− 1− q

N − 1

)k

≤ 1
N

+ exp
(
− 1

N
− (1− q)k

(N − 1)

)
We now define our variant of a weak Oblivious Trans-

fer (OT) and how it can be amplified to obtain the con-
ventional one-out-of-two OT.

Similar to the definition of (p, q)-OT used in
[DKS99], we introduce a notion of a weak OT.

Definition 11 (q-weak-OT). A q-weak-OT is a protocol
that satisfies the following conditions:
• The sender has inputs (x0, x1) ∈ Z2

N . The receiver
has input b ∈ {0, 1} to the functionality and re-
ceives xb as output.

• A passively corrupt sender has no advantage in
guessing the bit b.

• No passively corrupt receiver can guess x1−b with
probability greater than q, when the sender’s in-
puts are random.
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Thus, 1
N -weak-OT is a standard OT with sender input

set ZN .
We can amplify a q-weak-OT using an algorithm

taken from [DKS99].

Definition 12 (R-Reduce). R-Reduce(k,W) is defined
as the following protocol, whereW is a weak-OT.

1. Let (x0, x1) ∈ Z2
N be the input of the sender; and

b ∈ {0, 1} be the input of the receiver.
2. The sender generates random (x0i, x1i) ∈ Z2

N , for
i ∈ [k]. Let r0 =

∑k
i=1 x0i and r1 =

∑k
i=1 x1i.

The sender sends z0 = x0 + r0 and z1 = x1 + r1

to the receiver
3. Both parties execute W , k times with input

(x0i, x1i) ∈ Z2
N for the sender and input b for the

receiver.
4. The receiver outputs xb = zb − (

∑k
i=1 xb,i).

Lemma 17. If W is a q-weak-OT, then R-
Reduce(k,W) is a ( 1

N + ν(q, k))-weak-OT, where:

ν(q, k) ≤ exp
(
− 1

N
− (1− q)k

(N − 1)

)
Proof. We consider the probability that the receiver can
successfully guess x1−b. Let s = s1 . . . sk ∈ Zk

N be
chosen uniformly at random.Suppose we are given a
string t1 . . . tk ∈ Zk

N which has the property that ti = si

with probability q. Observe that if ti is wrong, it adds an
error si−ti which is uniformly random over ZN . So, in
general with probability q it either adds 0 error; or adds
a random error from the set ZN \ {0} with probability
(1−q)/(N−1). Then, using Lemma 16, the probability
that

∑k
i=1 si =

∑k
i=1 ti is at most:

1
N

+ exp
(
− 1

N
− (1− q)k

(N − 1)

)
Thus, if q ≤ 1 − 1

poly(κ) , then R-Reduce(κ/(1 −
q),W) is a full-fledged 1-out-of-2 OT protocol.

E Expanding the Framework
The framework that we have presented is quite gen-

eral thanks to the general nature of functionalities.
However, there are several dimensions in which this
framework can be extended, leading to possibly further
computational complexity assumptions to appear. We
mention a few such extensions below.
Using Infinite Domain/Memory Functionalities. In
this paper, we have confined ourselves to “finite” func-
tionalities (which are finite state machines with finite
input/output alphabets). One could instead consider the
more general class, with infinite alphabets and/or infi-
nite state space. On the positive side, this allows model-
ing “object-oriented” cryptography which involves such
concepts as encryption and signatures (as opposed to

“service-oriented” cryptography which is more natural
in the setting of multi-party computation). Note that
currently, the sh-OT assumption and the assumption
that a key-agreement protocol exists, do not specify
the number of rounds of these protocols. Indeed a 2-
round key-agreement protocol is a public-key encryp-
tion scheme and a 2-round sh-OT protocol is a compu-
tational version of the so-called dual-mode encryption
scheme.9

On the other hand, this considerably complicates
things: for instance, Proposition 1 does not hold any
more. [MPR09A] points out an (infinite domain) func-
tionality G such that G is not trivial, but say FOT vPPT G
does not hold under the sh-OT assumption. It is likely
that several intermediate assumptions, like in the hierar-
chy of assumptions presented in [GKM+00] will mani-
fest in this framework. A similar complication was en-
countered in [HNRR06]. We leave it is an interesting
challenge to extend the framework to include infinite
functionalities, but without sacrificing the economy and
conceptual clarity of the set of complexity assumptions
produced by the framework.
Using Alternate Reductions. If we use a different
notion of reduction in place of vPPT, the assumption
F vPPT G will change its meaning. While it is not
clear if any reasonable notion of reduction will give
a larger set of assumptions when all pairs (F ,G) are
considered, it certainly is true that for specific pairs
(F ,G) the assumption becomes different. The variants
one could consider weaker notions of security like se-
curity against passive (semi-honest) or standalone ad-
versaries, or stronger notions of security like simultane-
ous security against passive and active adversaries, or
against adaptive adversaries. One could also consider
tighter non-standard reduction notions derived by im-
posing constraints on the protocols carrying out the re-
ductions, like constant round complexity, for instance.
Another example is to restrict to protocols which use
a given functionality in only one direction (with say,
Alice and Bob in the protocol playing fixed roles, say
sender and receiver respectively, when interacting with
the given functionality).

It will indeed be interesting if a computational com-
plexity assumption manifests when using some other
(meaningful) notions of reduction, but not the one we
use.
More Functionalities. In this work, we restricted our-
selves to a large, but restricted class of functionalities.
In particular, our functionalities are not “fair”: they al-

9Here, a dual-mode encryption scheme is a public-key encryption
scheme, in which there is an alternate mode to generate a public-key
(which remains indistinguishable from a key generated in the normal
mode) such that the semantic security of the encryption is retained
even given the randomness used in key generation. Dual mode en-
cryption introduced in [PVW08, KN08] is stronger in that the alter-
nate mode is required to result in a public-key such that a ciphertext
produced using that key is statistically independent of the message.
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low the adversary to learn the output and then decide
whether to deliver the output or not, to the other party.
Another class we considered only briefly is that of ran-
domized functionalities. These classes of functionali-
ties are understood only in bits and pieces. A system-
atic study of their cryptographic complexities remains
an open problem.
Special Pairs. Finally, we mention that when consid-
ering some of the above extensions, it might be inter-
esting to consider (only) special pairs of functionalities,
where the reduction may have extra meaning. For in-
stance, when restricting protocols to use a given 2-party
functionality F in only one direction, it is particularly
interesting to consider reducing the functionality F−1

which reverses the roles of its parties. Another inter-
esting question is of “parallel repetition” which consid-
ers reducing F t, a synchronous repetition of t copies of
F , to the functionality F (wherein the protocol is al-
lowed to use multiple asynchronous copies of F). For
instance, F t

COIN reduces toFCOIN unconditionally, but by
Theorem 1 we know that a parallel repetition of F2,2

EXCH

reduces to F2,2
EXCH iff the sh-OT assumption holds.
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