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Abstract

In symmetric secure function evaluation (SSFE), Alice has an input x, Bob has an input
y, and both parties wish to securely compute f(x, y). We show several new results classifying
the feasibility of securely implementing these functions in several security settings. Namely, we
give new alternate characterizations of the functions that have (statistically) secure protocols
against passive and active (standalone), computationally unbounded adversaries. We also show a
strict, infinite hierarchy of complexity for SSFE functions with respect to universally composable
security against unbounded adversaries. That is, there exists a sequence of functions f1, f2, . . .
such that there exists a UC-secure protocol for fi in the fj-hybrid world if and only if i ≤ j.

The main new technical tool that unifies our unrealizability results is a powerful protocol
simulation theorem, which may be of independent interest. Essentially, in any adversarial setting
(UC, standalone, or passive), f is securely realizable if and only if a very simple (deterministic)
“canonical” protocol for f achieves the desired security. Thus, to show that f is unrealizable,
one need simply demonstrate a single attack on a single simple protocol.

1 Introduction

In the classical setting of secure two-party computation, Alice and Bob have private inputs x and
y respectively, and they want to jointly compute a common value f(x, y) in a secure way. Starting
from Yao’s millionaire’s problem [20], such symmetric secure function evaluation (SSFE) problems
have remained the most widely studied multi-party computation problems, in many security mod-
els. SSFE problems are fully specified by their associated function tables (i.e., a matrix M with
Mx,y = f(x, y)); studying this matrix can tell us everything about the corresponding SSFE prob-
lem. Despite this apparent simplicity, and several works carefully exploring SSFE problems, the
landscape of such problems has remained far from complete.

On “cryptographic complexity.” One expects different cryptographic tasks to have different
levels of cryptographic sophistication. For instance public-key encryption is more complex than
symmetric-key encryption. One indication of this is that in a computationally unbounded setting
one-time pads provide (a limited version of) symmetric-key encryption, but public-key encryption
is simply impossible. Impagliazzo and Rudich [8] provide a separation between the complexity of
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these two primitives by demonstrating another primitive (namely random oracles) which is suffi-
cient to realize (full-fledged) symmetric-key encryption, but not enough for public-key encryption
(in, say, a computationally unbounded setting). Our goal in this work is to understand such com-
plexity separations among 2-party SSFE functionalities (and more generally, among multi-party
computation functionalities).

The natural tool for comparing qualitative complexity of two tasks is a reduction. In the context
of cryptographic feasibility, the most natural reduction is a black-box security reduction — we say
that an SSFE functionality f reduces to another functionality g if it is possible to securely realize
f using calls to a trusted party that securely implements g. As in computational complexity, the
most fine-grained distinctions in complexity are made by considering the most restricted kinds of
reductions. In fact, fine-grained complexity distinctions often disappear when using more generous
reductions. In this work, we consider a very strong formulation of black-box security reduction:
universally composable security in computationally unbounded environments against active (and
adaptive) adversaries.

Our goal is to identify broad complexity classes of SSFE functionalities under this notion of
reduction. This involves identifying various functionalities that reduce to each other, and — this is
typically the more difficult part — establishing separations (non-reducibility) between functional-
ities. A complexity class can be understood by providing alternate (say combinatorial) characteri-
zations of the functionalities in the class. Another approach to understanding a class is to identify
a complete functionality, which provides a concrete embodiment of the complexity of all function-
alities in that class. Conversely, the inherent cryptographic qualities of a given functionality can
be understood by studying its “degree,” namely, the class of all functionalities that can be reduced
to it. We pursue all these approaches in this paper.

Finally, a systematic study of multi-party computation functionalities, under a stringent notion
of reduction, unifies several prior advances in different security models. In particular, the two main
classes that we identify and combinatorially characterize in this paper, which are downward-closed
under this reduction, correspond to realizability in weaker security models — standalone security
and passive security (a.k.a, semi-honest or honest-but-curious security). We emphasize that in
plotting these classes in our complexity map, we do not change our notion of reduction.

Our results only start to unveil the rich landscape of cryptographic complexity of multi-party
computation functionalities. We believe it will be of great theoretical — and potentially practical
— value to further uncover this picture.

1.1 Previous Work

Cryptographic complexity of multi-party computation functionalities (though not necessarily under
that name) has been widely studied in various security models. We restrict our focus mostly to
work on 2-party SSFE functions in computationally unbounded settings. Complexity questions
studied were limited to realizability (least complex), completeness (most complex) and whether
there exist functions of intermediate complexities.

Realizability. The oldest and most widely studied model for SSFE is security against passive
(honest-but-curious) adversaries. Chor and Kushilevitz [6] characterized SSFE functions with
boolean output. Beaver [2] and Kushilevitz [17] independently extended this to general SSFE
function, but restricted to the case of perfect security (as opposed to statistical security). These
characterizations were given in the standalone security model, but do extend to the the universal
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composition (UC) framework [4] that we use.
However, in the case of security against active (a.k.a malicious) adversaries, demanding com-

posability does affect realizability. The following hold for both computationally bounded and
unbounded settings. In the UC-setting, Canetti et al. [5] characterized securely realizable SSFE
functions as those in which the function is insensitive to one party’s input. Lindell [18] showed that
UC security is equivalent to concurrent self-composable security, for a class of functionalities that
includes SSFE. But Backes et al. [1] gave an example of a function that is realizable in the stan-
dalone setting, but not in the UC-setting. The problem of identifying all such functions remained
open.

Completeness. The question of completeness for SSFE was essentially settled by Kilian [12], who
showed that a function is complete if and only if it contains a generalized “or-minor.” This relies
on the completeness of the SFE functionality of oblivious transfer, a result originally proven in [10],
and proven in the UC setting in [9].1 The reduction in [12] was reconsidered in the UC setting by
[15].

Intermediate Complexities. In some security settings, there are only two distinct levels of com-
plexity: the realizable tasks and the complete tasks, with nothing in between. Indeed, such a
dichotomy holds in the case of asymmetric SFE (in which only one party receives any output),
both for passive [3] and active security [13],2 and also in the case of passive security for boolean
output SSFE [14]. In [19] it is conjectured that such a dichotomy holds for general functionalities
in a computationally bounded setting. However, there is no such simple dichotomy in the setting of
SSFE. Indeed the characterizations of complete and realizable SSFE functions [12, 5] leaves much
gap between them. Further, [2, 17, 14] give an example SSFE function which is neither complete
nor even passively realizable.

1.2 Our Results

A visual overview of our results is given in Figure 1.
First, we show that SSFE functions with perfect passive-secure protocols (as characterized

by Beaver and Kushilevitz) are exactly those with statistically secure, passive-secure protocols
(Theorem 3). They are also exactly the functions that are UC-realizable in the Fcom-hybrid world
— i.e., realizable against active adversaries in the UC framework, using calls to an ideal commitment
functionality (Theorem 4). Thus, Fcom exactly captures the difficulty of passively realizing SSFE
functions (it cannot be said to be complete, since it is not SSFE itself). We also show that the
perfectly secure deterministic protocols used by Kushilevitz achieve optimal round complexity, even
among randomized, statistically secure protocols (Corollary 2).

Next, we give an explicit and simple combinatorial characterization of the standalone-realizable
SSFE functions, as the uniquely decomposable functions which are “maximal” (Theorem 5). We call
such functions saturated functions. We also show that every SSFE function which is standalone-
realizable but not UC-realizable also has no protocol secure under concurrent self-composition
(Theorem 6), strengthening a negative result from [1], and yielding a much simpler proof of Lindell’s
characterization [18] for the special case of SSFE.

1The protocol in [10] is not UC-secure, but an extension presented in [11] is likely to be.
2[3] also considers a notion of active security for computationally bounded setting, and extends their dichotomy

using a stronger notion of realizability and a weaker, non-black-box notion of completeness; this result draws the line
between realizability and completeness differently from [13]. The dichotomy does not extend to the UC-setting.
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= self-concurrently realizable [18]

Figure 1: Cryptographic complexity of 2-party
SSFE

Finally, we focus our investigation on the
vast area between the two complexity extremes
of completeness and UC-realizability. We lever-
age ideas from passive security and standalone
security to obtain a new technique for obtain-
ing impossibility results in the UC framework.
Namely, we describe a purely combinatorial cri-
terion of two functions f , g (which has to do
with the round complexity of realizing f and g)
which implies that there is no UC-secure proto-
col for f that uses calls to an ideal functionality
for g. (Theorem 7).

We apply this new separation technique to
obtain several new results. We first demon-
strate an infinite hierarchy of complexity —
that is, SSFE functions g1, g2, . . . such that there
is a secure protocol for gi using calls to an ideal
gj if and only if i ≤ j (Corollary 8). We also
show that there is no complete function (com-
plete under our strong notion of reduction) for the class of standalone-realizable or passively re-
alizable SSFE functions (Corollary 9). Finally, we show that there exist SSFE functions with
incomparable complexities (Corollary 10), answering an open problem from [19].

We note that our characterizations of passive (Theorem 3) and standalone security (Theorem 5)
were also independently discovered by Künzler, Müller-Quade, and Raub [16]. They also extend
these results to a multi-party setting, and beyond the symmetric-output case.

About our techniques. The characterization of Beaver and Kushilevitz for passive security
gives very simple deterministic protocols for SSFE functions, which we call canonical protocols.
Our results demonstrate the special privilege of canonical protocols in the universe of SSFE. Our
main technical tool is Theorem 1, which strongly formalizes the intuition that every protocol for f
must disclose information in essentially the same order as the canonical protocol for f . Stated more
formally, for any secure protocol π for an SSFE function f , if the canonical protocol for f is unique
(up to some isomorphism), then the canonical protocol is “as secure as” π, in the UC simulation
sense. That is, for any adversary in the canonical-protocol-real-world, there is an adversary in
the π-real-world that achieves the same effect for all environments. Note that standalone security
and passive security can both be expressed as restrictions of the UC definitions, so our theorem is
applicable to a wide variety of security settings.

Using this powerful theorem, it is quite simple to demonstrate impossibility results for secure
realizability. Roughly speaking, an SSFE function f satisfying the above condition is realizable in
a given security model if and only if its canonical protocol achieves the desired security. Thus, to
show f is unrealizable, we simply describe a feasible attack against the (simple) canonical protocol.

We crucially use Theorem 1 as the unifying component when proving impossibility of secure
realization in the standalone (Theorem 5), concurrent self-composition (Theorem 6), and even UC
hybrid world settings (Theorem 7).
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2 Preliminaries

In this section we present some standard notions, and also introduce some concepts and definitions
used in our constructions and proofs.

MPC Problems and Secure Realization. Following the Universal Composition [4] frame-
work, a multi-party computation problem is defined by the code of a trusted (probabilistic, inter-
active) entity called a functionality. A protocol π is said to securely realize an MPC functionality
F , if for all (static) active adversaries, there exists a simulator such that for all environments,
|Pr[execF = 1] − Pr[execπ = 1]| ≤ ε(k), for some negligible function ε. Here k is the security
parameter that is an input to the protocol and simulator. execF denotes the environment’s output
distribution in the “ideal” execution: involving F , the environment, and the simulator; execπ

denotes the environment’s output in the “real” execution: involving an instance of the protocol,
the environment, and the adversary. Throughout this paper, we consider a UC model in which all
entities are computationally unbounded.

We also consider hybrid worlds, in which protocols may also have access to a particular ideal
functionality. In a G-hybrid world, parties running the protocol π can invoke up any number
of independent, asynchronous instances of G. Regular protocols could be considered to use the
(authenticated) communication functionality. If a protocol π securely realizes a functionality F in
the G-hybrid world, we shall write F v G. The v relation is transitive and reflexive, and it provides
our basis for comparing the complexity of various functionalities.

We also consider two common restrictions of the security model, which will prove useful in
our results. If we restrict the security definition to environments which do not interact with the
adversary during the protocol execution (i.e., simulators are allowed to rewind the adversary),
we get a weaker notion of security, called standalone security. If we restrict to adversaries and
simulators which receive an input from the environment and run the protocol honestly, we get
a different relaxation of security called passive security. Note that in this definition, simulators
must behave honestly in the ideal world, which means they simply pass the input directly to the
functionality.

Symmetric SFE Functionalities. In this paper we focus exclusively on classifying 2-party
symmetric secure function evaluation (SSFE) functionalities. An SSFE functionality Ff is param-
eterized by a function f : X × Y → Z, where X, Y, Z are finite sets.3 The functionality Ff simply
receives the inputs from the two parties, computes f on the inputs and sends the result to both the
parties. However, as is standard, we also allow the adversary to first receive the output and block
delivery if desired (see Figure 2). For convenience, we shall often use f and Ff interchangeably.

2.1 Structure of Functions and Protocols

We say that two functions are isomorphic if each one can be computed using a single call to the
other with no other communication (with only local processing of the inputs and output). That

3We restrict our attention to finite functions. In particular, the size of the domain of a function does not change
with the security parameter. This is in line with previous works. Further, in the computationally unbounded setting,
it is reasonable to have the ideal world not involve the security parameter. Nevertheless, all of our results can be
extended to the case where f ’s input domain is polynomially bounded in the security parameter. We can show that
this restriction is necessary for most of our results.
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• Wait for (and record) input x from Alice and input y from Bob.

• When both x and y have been received, if either party is corrupt, then send
(Output, f(x, y)) to the adversary.

• On input Deliver from the adversary, or if neither party is corrupt, send f(x, y) to
both Alice and Bob.

Figure 2: Functionality Ff : Symmetric Secure Function Evaluation of f with abort

is, Alice and Bob can independently map their inputs for f function to inputs for g, carryout the
computation for g, and then locally (using their private inputs) map the output of g to the output
of f (and vice-versa).

Definition 1 (Function Isomorphism, ∼=). Let f : X × Y → D and g : X ′ × Y ′ → D′ be two
functions. We say f ≤ g, if there exist functions IA : X → X ′, IB : Y → Y ′, MA : X ×D′ → D
and MB : Y × D′ → D, such that for any x ∈ X and y ∈ Y f(x, y) = MA(x, g(IA(x), IB(y))) =
MB(y, g(IA(x), IB(y))). If f ≤ g and g ≤ f then f ∼= g (f is isomorphic to g).

For example, the xor function
0 1
1 0

is isomorphic to the function
1 2
3 4

.

Definition 2 (Decomposable [2, 17]). A function f : X × Y → D is row decomposable if there
exists a partition X = X1 ∪ · · · ∪Xt (Xi 6= ∅), t ≥ 2, such that the following hold for all i ≤ t:

• for all y ∈ Y , x ∈ Xi, x′ ∈ (X \Xi), we have f(x, y) 6= f(x′y); and

• f
∣∣
Xi×Y

is either a constant function or column decomposable, where f
∣∣
Xi×Y

denotes the
restriction of f to the domain Xi × Y .

We define being column decomposable symmetrically with respect to X and Y . We say that f is
simply decomposable if it is either constant, row decomposable, or column decomposable.

For instance,
0 0
1 2

and
0 1
1 0

are decomposable, but
0 0
0 1

and
0 0 1
3 4 1
3 2 2

are not.

Note that our definition differs slightly from [2, 17], since we insist that row and column de-
composition steps strictly alternate. We say that a function f is uniquely decomposable if all of its

decompositions are equivalent up to re-indexing X1, . . . , Xt (Y1, . . . , Yt) at each step. Thus
0 0
1 2

is uniquely decomposable, but
0 1
1 0

is not.

Canonical protocols [2, 17]. If f is decomposable, then a canonical protocol for f is a deter-
ministic protocol defined inductively as follows:

• If f is a constant function, both parties output the value, without interaction.

• If f : X×Y → Z is row decomposable as X = X1∪· · ·∪Xt, then Alice announces the unique
i such that her input x ∈ Xi. Then both parties run a canonical protocol for f

∣∣
Xi×Y

.
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• If f : X × Y → Z is column decomposable as Y = Y1 ∪ · · · ∪ Yt, then Bob announces the
unique i such that his input y ∈ Yi. Then both parties run a canonical protocol for f

∣∣
X×Yi

.

It is a simple exercise to see that a canonical protocol is a perfectly secure protocol for f against
passive adversaries (cf. [2, 17]).

Normal form for protocols. For simplicity in our proofs, we will often assume that a protocol
is given in the following normal form:

1. At the end of the interaction, both parties include their outputs in the transcript as their
last message before terminating, so that each party’s output is a function of the transcript alone
(i.e., not a function of their input and random tape, etc.). Since both parties should receive the
same output, this is without loss of generality, even for standalone or UC security.

2. If u1, u2, . . . are the messages exchanged in a run of the protocol, then (u1, u2, . . .) can be
uniquely and unambiguously obtained from the string u1u2 · · · .

3. The honest protocol does not require the parties to maintain a persistent state besides
their private input (in particular, no random tape). Instead, the protocol is simply a mapping
P : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → [0, 1], indicating that if t is the transcript so far, and a party’s
input is x, then its next message is u with probability P (t, x, u). In other words, randomness can
be sampled as needed and immediately discarded. This requirement is without loss of generality
for computationally unbounded parties.4

Deviation revealing. In [19] it is shown that for a class of functionalities called “deviation
revealing”, if a protocol π is a UC-secure realization of that functionality, then the same protocol
is also secure against passive adversaries. Note that this property is not true in general for all SFE
functionalities. For example, the SFE where Alice gets no output but Bob gets the boolean-or of
both parties’ inputs is not passively realizable. However, the protocol where Alice simply sends her
input to Bob is UC-secure, since a malicious Bob can always learn Alice’s input in the ideal world
by choosing 0 as its input to the functionality. It turns out SSFE functions are deviation revealing.
We include an adapted version of the argument in [19]:

Lemma 1 ([19]). Let π be a UC-secure (perhaps in a hybrid world) or a standalone-secure protocol
for an SSFE f . Then π itself is a passive-secure protocol for f as well (in the same hybrid world
as π).

Proof. We show that, without loss of generality, the simulator for π maps passive real-world ad-
versaries to passive ideal-world adversaries. A passive adversary A for π is one which receives an
input x from the environment, runs π honestly, and then reports its view to the environment. Note
that the relevant kinds of environments comprise a special class of standalone environments, so
that even if π is only standalone secure, its security still holds with respect to the environments we
consider for passive security.

Suppose S is the simulator for A. In the ideal world, both parties produce output with over-
whelming probability, and so S must also allow the other party to generate output in the ideal
world with overwhelming probability. Thus with overwhelming probability, S must receive x from
the environment, send some x′ to the ideal functionality f , receive the output f(x′, y) and deliver
the output. Without loss of generality, we may assume S does so with probability 1.

4Note that because of this, security against adaptive corruption and static corruption are the same for this setting.

7



Suppose x′ is the input sent by S to f . If f(x, y) 6= f(x′, y) for some input y, then consider an
environment that uses y for the other party’s input. In this environment, the other party will report
f(x, y) in the real world, but f(x′, y) in the ideal world, so the simulation is unsound. Thus with
overwhelming probability, S sends an input x′ such that f(x, ·) ≡ f(x′, ·). We may modify S by
adding a simple wrapper which ensures that x (the input originally obtained from the environment)
is always sent to f . With overwhelming probability, the reply from f is unaffected by this change.
Conditioned on these overwhelming probability events, the output of the wrapped S is identical
to that of the original S. However, the wrapped S is a passive ideal-world adversary: it receives x
from the environment, sends x to f , and delivers the output.

3 Simulation of Canonical Protocol in a General Protocol

In this section, we develop our main new technical tool, the protocol simulation theorem. Through-
out the section we fix an SSFE f with domain X × Y , and fix a secure protocol π for f .

Definition 3. We say that x, x′, y, y′ forms a -minor (resp. -minor) in f if:

f(x, y) = f(x, y′)
6= 6=

f(x′, y) 6= f(x′, y′)

resp. if
f(x, y) 6= f(x, y′)

= 6=
f(x′, y) 6= f(x′, y′)


In the canonical protocol for a function that is entirely a -minor, Alice must completely reveal

her input before Bob reveals (anything about) his input. We show that, in general, this intuition
carries through for any protocol, with respect to any embedded or -minor. That is, there
must be a point at which Alice has completely made the distinction between two of her inputs, but
Bob has not made any distinction between two of his inputs.

Definition 4. Let Pr[u|x, y] denote the probability that π generates a transcript that has u as a
prefix, when executed honestly with x and y as inputs.

Let F be a set of strings that is prefix-free.5 Define Pr[F |x, y] =
∑

u∈F Pr[u|x, y]. We call F a
frontier if F is maximal – that is, if Pr[F |x, y] = 1 for all x, y. We denote as Dx,y

F the probability
distribution over F where u ∈ F is chosen with probability Pr[u|x, y].

Lemma 2 ( Frontiers). For all x 6= x′ ∈ X, there is a frontier F and negligible function ν such
that, for all y, y′ ∈ Y :

• if f(x, y) 6= f(x′, y), then SD
(
Dx,y

F ,Dx′,y
F

)
≥ 1− ν(k), and

• if x, x′, y, y′ form a -minor, then SD
(
Dx,y

F ,Dx,y′

F

)
,SD

(
Dx′,y

F ,Dx′,y′

F

)
≤ ν(k).

The full proof appears in Appendix A. Below we give a proof sketch.

Sketch. Suppose we have a protocol π in normal form. Its next message function depends only
on the appropriate party’s input and the transcript so far. For b ∈ {0, 1} and u ∈ {0, 1}∗, denote
by πA(ub, x) is the probability that Alice’s next message is b when running on input x and the
transcript so far is u. Define πB for Bob analogously. Suppose we run π on inputs x, y, where

5That is, no string in F is a proper prefix of another string in F .
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Alice sends the first message The probability of obtaining a transcript with a particular prefix
u = u1 · · ·un is (say n is even):

Pr[u|x, y] = πA(u1, x) · πB(u1u2, y) · πA(u1u2u3, x) · · ·πB(u1 · · ·un, y)

=

n/2∏
i=1

πA(u1 · · ·u2i−1, x)

n/2∏
i=1

πB(u1 · · ·u2i, y)

 = α(u, x)β(u, y)

where α(u, x) and β(u, y) are defined to be the parenthesized quantities, respectively.
Given x, x′ as in the lemma statement, and for a fixed parameter µ < 1, we define F as the

prefix-minimal6 elements of:{
u
∣∣∣ ∣∣α(u, x)− α(u, x′)

∣∣ ≥ µ[α(u, x) + α(u, x′)]
}

We note that F may not be a proper frontier — i.e., some protocol executions may never reach a
point that satisfies the condition on α(u, ·). However, these “bad” protocol executions happen only
with negligible probability, and thus can be safely ignored for the sake of this proof sketch.

Intuitively, F is constructed to be the first point (i.e., frontier of transcript prefixes) at which Bob
can “significantly” distinguish between Alice having x versus x′, where significance is parameterized
by µ.

Since each individual transcript in F significantly distinguishes between x and x′, then clearly
the overall transcript distribution over F also significantly distinguishes between x and x′. Thus
both SD

(
Dx,y

F ,Dx′,y
F

)
and SD

(
Dx,y′

F ,Dx′,y′

F

)
are “significant” (i.e., proportional to µ).

Next, since f(x, y) = f(x, y′), it must be that SD
(
Dx,y

F ,Dx,y′

F

)
is close to 0 by the security of π.

However, at the step in the protocol immediately before F is reached, Bob cannot yet “significantly”
distinguish between x and x′. Thus (at least intuitively), replacing x by x′ at this point elicits a
non-significant change in the transcript distribution. Thus, SD

(
Dx′,y

F ,Dx′,y′

F

)
is also close to 0.

The bounds obtained for both statistical distances depend on µ, and by setting µ as an ap-
propriate function of the protocol’s statistical error, both quantities can be made simultaneously
negligibly close to their desired values.

Our main protocol simulation theorem extends this intuition to show that the information
disclosed during a protocol must come in the same order as in the canonical protocol, provided
that the canonical protocol is unique. This restriction on the canonical protocol is necessary, since
different (non-isomorphic) canonical protocols for the same f can admit completely different kinds
of attacks (e.g., for the xor function, depending on which party speaks first).

Theorem 1 (Protocol Simulation). If f has a unique decomposition, then for any protocol π for f ,
the canonical protocol for f is “as secure as” π. That is, for every adversary attacking the canonical
protocol, there is an adversary attacking π which achieves the same effect in every environment.

Proof Sketch. The complete proof (given in Appendix B) involves a careful inductive generalization
of Lemma 2. Consider a step in the decomposition of X × Y , say X = X1 ∪ · · · ∪ Xk. Roughly,
if the function is uniquely decomposable, then for each i 6= j, there is a witnessing -minor

6That is, the set obtained by repeatedly removing elements from the set which have a proper prefix in the set.
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x, x′, y, y′ with x ∈ Xi, x′ ∈ Xj . Thus we may apply Lemma 2 to obtain a frontier with respect to
these inputs. We can combine these individual frontiers to obtain a frontier representing the entire
decomposition step X = X1∪· · ·∪Xk. We show inductively that the transcript distribution at this
combined frontier statistically reveals (in this case) which Xi contains Alice’s input, while at the
same is nearly independent of any further distinctions among either party’s inputs within X × Y .

Given such frontiers, the required simulation is fairly natural. The simulator’s job is to simulate
the canonical protocol to an adversary A, while interacting with the honest party in the protocol
π. The simulator S simply keeps track of the current step in the decomposition of f , and runs π
honestly with any representative input. Each time S reaches a frontier for a decomposition step
by the honest party, the transcript distribution at the frontier statistically determines with great
certainty which part of the decomposition the honest party’s input belongs to. Thus S can simulate
to A what the honest party would send next in the canonical protocol. Then the simulator receives
the adversary’s next move in the canonical protocol. S changes its own input for π to any input
consistent with the canonical protocol transcript so far, if necessary. Since the π-transcript so far is
nearly independent of such distinctions among the adversary’s input, it is indeed possible to swap
inputs to π at this point and maintain a sound simulation. It is also for this reason that we consider
protocols to be in a normal form, so that the protocol’s next-message function depends only on the
(currently considered) input and the transcript so far — i.e., not on any other persistent state.

Let R(π, x, y) denote the random variable indicating the number of rounds taken by π on inputs
x, y, and let R(f, x, y) denote the same quantity with respect to the canonical protocol for f (which
is deterministic).

Corollary 2. If f is uniquely decomposable, then its canonical protocol achieves the optimal round
complexity. That is, for every secure protocol π for f , we have E[R(π, x, y)] ≥ R(f, x, y)− ν, where
ν is a negligible function in the security parameter of π.

Proof. The proof of Theorem 1 constructs for π a frontier for each step in the decomposition of f
(corresponding to each step in the canonical protocol). By the required properties of the frontiers,
the transcript for π must visit all the relevant frontiers in order, one strictly after the next, with
overwhelming probability.

4 Characterizing Passive Security

In this section, we extend the characterization of Beaver [2] and Kushilevitz [?] to the case of
statistical security. We also show a new characterization of passive security in terms of the ideal
commitment functionality.

Theorem 3. f is decomposable if and only if f has a (statistically secure) passive-secure protocol.

Proof Sketch. (⇒) Trivial by the (perfect) security of canonical protocols.
(⇐) The complete proof appears in Appendix C. Suppose f is not a decomposable function.

Without loss of generality, we may assume that f is not even row- or column- decomposable at
the top level. We will show that any correct protocol for f can not also be a secure protocol for
f . In particular, we will show that there exists two inputs σ = (x, y) and σ′ = (x′, y′) such that
f(σ) = f(σ′) and an adversary can distinguish the two inputs based on the generated transcript
with significant advantage. This will break the security of the protocol.
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We will follow a frontier based approach and look for the first time where Alice or Bob releases
significant information about their input. Suppose at a node v on the frontier Alice has released
significant information about her input but Bob has not. We can partition Alice input set into
two sets Av and Āv = X \ Av such that all inputs in Av induce significantly different distribution
as compared to her inputs in Āv. More concretely, for any x1 ∈ Av and x2 ∈ Āv, we have
Pr[v|x1, y] significantly lower than Pr[v|x2, y], for any Bob input y ∈ Y . But we know that f is not
decomposable. So, there is x∗1 ∈ Av, x

∗
2 ∈ Āv, y

∗ ∈ Y such that f(x∗1, y
∗) = f(x∗2, y

∗). Thus at v,
the security of the protocol for f is compromised for input pairs: (x∗1, y

∗) and (x∗2, y
∗).

We show that in any correct protocol for f , Alice or Bob has to release information about their
input with high probability. And for every transcript where Alice or Bob releases some information
about their input, there exists a pair of inputs whose security is compromised by the protocol for f .
When the partition Av and Āv is suitably defined, we can apply a pigeon-hole argument and show
that the security for one such pair is compromised with significant probability in the protocol.

• On input (commit, x, P2) from party P1, send (committed, P1) to party P2, and re-
member x.

• On input reveal from party P1, if x has already been recorded, send x to party P2.

Figure 3: Commitment functionality Fcom

Theorem 4. f has a passive-secure protocol if and only if f has a UC-secure protocol in the
Fcom-hybrid world, where Fcom denotes the ideal commitment functionality defined in Figure 3.

Proof Sketch. (⇐) By Lemma 1, any UC-secure protocol π for a symmetric SFE f is also pas-
sively secure. There is a trivial passive-secure protocol for Fcom (the committing party sends
“committed” in the commit phase and sends the correct value in the reveal phase). We can
compose π with the passive-secure Fcom protocol to obtain a passive-secure protocol for f in the
plain model.

(⇒) We will give a general-purpose “compiler” from passive-secure protocols to the UC-secure
Fcom-hybrid protocols. Suppose π is a passive-secure protocol for f , in normal form. In fact, we
need to consider only the canonical protocol for f . Below we consider an arbitrary deterministic
protocol π. More details and an extension to the randomized case are given in Appendix D.

Suppose Alice’s input is x ∈ {1, . . . , n}, and let χ ∈ {0, 1}n be the associated characteristic
vector, where χi = 1 if and only if i = x. Alice commits to both χσ(1), . . . , χσ(n) and σ(1), . . . , σ(n)
for many random permutations σ. For each pair of such commitments, Bob will (randomly) ask
Alice to open either all of χσ(1), . . . , χσ(n) (and verify that χ has exactly one 1) or open all σ(i)
(and verify that σ is a permutation). Bob also commits to his own input in a similar way, with
Alice giving challenges. Then both parties simulate the π protocol one step at a time. When it is
Alice’s turn in π, she computes the appropriate next message m and sends it. For a deterministic
protocol, the next message function is a function of the transcript so far and the input. Given the
partial transcript so far t, both parties can compute the set Z = {x′ | π(t, x′) 6= m}; i.e., the set of
inputs for which the protocol instructs Alice to send a message other than m at this point. Then
Alice can open enough of her commitments to prove that χi = 0 for all i ∈ Z to prove that the
message b was consistent with her committed input and the honest protocol.

Note that much like the well-known GMW compiler [7], we convert an arbitrary passive-secure
protocol to a protocol secure in a stronger setting. In particular, we do not use the fact that the
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protocol realizes a functionality with symmetric, deterministic outputs. Thus the compiler may be
of more general interest. Unlike the GMW compiler, our compiler operates in an unbounded setting,
given ideal commitments. The GMW compiler relies on the existence of commitment protocols and
zero-knowledge proofs, while in an unbounded setting, commitment protocols are impossible and
zero-knowledge proofs are trivial.

5 Characterizing Standalone Security

From Lemma 1, we know that standalone-realizability for SSFE is a special case of passive-
realizability, and hence by Theorem 3, any standalone realizable SSFE must be decomposable. In
this section we identify the additional properties that exactly characterize standalone realizability.

Decomposition strategies. Fix some decomposition of an SSFE function f : X × Y → D. We
define an Alice-strategy as a function that maps every row decomposition step X0 = X1 ∪ · · · ∪Xt

to one of the Xi’s. Similarly we define a Bob-strategy for the set of column decomposition steps.
If A,B are Alice and Bob-strategies for f , respectively, then we define f∗(A,B) to be the subset
X ′ × Y ′ ⊆ X × Y obtained by “traversing” the decomposition of f according to the choices of A
and B.

The definition of f∗ is easy to motivate: it denotes the outcome in a canonical protocol for f ,
as a function of the strategies of (possibly corrupt) Alice and Bob.

Definition 5 (Saturation). Let f be a uniquely decomposable function. We say that f is saturated
if f ∼= f∗.

To understand this condition further, we provide an alternate description for it. For every
x ∈ X we define an Alice-strategy Ax such that at any row decomposition step X0 = X1 ∪ · · · ∪Xt

where x ∈ X0, it chooses Xi such that x ∈ Xi. (For X0 such that x 6∈ X0, the choice is arbitrary,
say X1.) Similarly for y ∈ Y we define a Bob-strategy By. Note that in the canonical protocol, on
inputs x and y, Alice and Bob traverse the decomposition of f according to the strategy (Ax, By),
to compute the set f∗(Ax, By) (where f is constant). If f is saturated, then all Alice strategies
should correspond to some x that Alice can use as an input to f . That is, for all Alice-strategies
A, there exists a x ∈ X such that for all y ∈ Y , we have f∗(A,By) = f∗(Ax, By); similarly each
Bob strategy B is equivalent to some By.

As an example,
0 1
2 3

is not uniquely decomposable.
0 1 1
2 3 2

is uniquely decomposable, but

not saturated. Finally,
0 1 1 0
2 3 2 3

is saturated.

Note that there is exactly one saturated function (up to isomorphism) for each decomposition
structure.

Theorem 5. f is standalone-realizable if and only if f is saturated.

Sketch. (⇐) To securely realize a saturated f , we use its canonical protocol. The simulator for an
adversary A is a rewinding simulator, which does the following: Without loss of generality, assume
A corrupts Alice. First fix a random tape ω for A, then for every Bob-strategy B, run the canonical
protocol against A (using random tape ω), effecting the strategy B. The choices of A at each step
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uniquely determine an Alice-strategy. By the saturation of f , A is equivalent to some Ax strategy,
and we use x as the adversary’s input to f . After receiving the output f(x, y), we simulate the
unique canonical protocol transcript consistent with f(x, y).

(⇒) In Appendix E, we prove the following lemma by induction on the number of steps in the
protocol:

Lemma 3. If π is a 2-party protocol whereby both parties agree on the output, then for any way of
coloring the possible outputs red and blue, π has one of the 4 properties:

1. A malicious Alice can force a red output and can force a blue output.
2. A malicious Bob can force a red output and can force a blue output.
3. Both a malicious Bob and malicious Alice are able to force a red output.
4. Both a malicious Bob and malicious Alice are able to force a blue output.

By Lemma 1, we have that f is passively realizable and thus decomposable. We can show that
if f is not uniquely decomposable, then there is a way to color its outputs red and blue so that
each of the 4 conditions of Lemma 3 for any protocol evaluating f is a violation of security. Thus
f must be uniquely decomposable.

Now, since f is uniquely decomposable, Theorem 1 implies that f is standalone-realizable if
and only if its canonical protocol is standalone secure. Suppose that f is not saturated. Then there
is a (without loss of generality) Alice-strategy A that corresponds to no Ax strategy. The strategy
A can be trivially effected by a malicious Alice in the canonical protocol. If Bob’s input is chosen
at random by the environment, then the same outcome can not be achieved by an ideal-world
adversary (who must send an input x to f). Thus the canonical protocol is standalone insecure; a
contradiction. Therefore f must be saturated.

6 Characterizing Concurrent Self-Composition

Backes et al. [1] showed that even a perfectly secure protocol with rewinding simulator cannot in
general be transformed into even a protocol secure under concurrent self-composition. Recall that
in concurrent self-composition, the environment initiates several protocol instances, but does not
interact with the adversary during their execution. The adversary also corrupts the same party
in all protocol instances. We are able to greatly strengthen their negative result to show that
concurrent attacks are the rule rather than the exception:

Theorem 6. If f is standalone-realizable but not UC-realizable, then f has no protocol secure
against concurrent self-composition.

Proof. A function f is UC-realizable if and only if it is decomposable with decomposition depth
1 [5]. Thus an f as in the theorem statement must be uniquely decomposable (by Theorem 5),
with decomposition depth at least 2. We show a concurrent attack against two instances of the
canonical protocol for f , which by Theorem 1 will imply that f is not realizable under concurrent
self-composition.

By symmetry, suppose Alice moves first in the canonical protocol, and let x, x′ be two inputs
which induce different messages in the first round of the protocol. Let y, y′ be two inputs which
induce different messages in the second round of the protocol when Alice has input x (thus f(x, y) 6=
f(x, y′)). We consider an environment which runs two instances of f , supplies inputs for Alice for
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the instances, and outputs 1 if Alice reports particular expected outputs for the two instances. The
environment chooses randomly from one of the following three cases:

1. Supply inputs x and x′. Expect outputs f(x, y′) and f(x′, y).
2. Supply inputs x′ and x, Expect outputs f(x′, y) and f(x, y′).
3. Supply inputs x and x. Expect outputs f(x, y) and f(x, y).
A malicious Bob can cause the environment to output 1 with probability 1 in the real world.

He waits to receive Alice’s first message in both protocol instances to determine whether she has x
or x′ in each instance. Then he can continue the protocols with inputs y or y′, as appropriate.

In the ideal world, Bob must send an input to one of the instances of f before the other (i.e.,
before learning anything about how Alice’s inputs have been chosen); suppose he first sends ŷ to
the first instance of f . If f(x, ŷ) 6= f(x, y), then with probability 1/3, he induces the wrong output
in case (3). But if f(x, ŷ) = f(x, y) 6= f(x, y′), then with probability 1/3, he induces the wrong
output in case (1). Similarly, if he first sends an input to the second instance of f , he violates either
case (2) or (3) with probability 1/3.

Put differently, UC-realizability is equivalent to concurrent-self-composition-realizability for
SSFE. This is in fact a special case of a theorem by Lindell [18], although our proof is much
more direct and requires only 2 instances of the protocol/functionality, as in [1].

7 Finer Complexity Separations

Finally, we develop a new technique for deriving separations among SSFE functions with respect
to the v relation, and apply the technique to concrete functions to inform the landscape of cryp-
tographic complexity.

Theorem 7. Let F be any (not necessarily SSFE) UC functionality with a passive-secure, m-round
protocol. Let f be an SSFE function with unique decomposition of depth n > m + 1.7 Then there
is no UC-secure protocol for f in the F-hybrid world; i.e., f 6v F .

Sketch. We use a modified version of Theorem 1. Suppose for contradiction that π is a protocol
for f in the F-hybrid world. By Lemma 1, π is also passive-secure in the same setting. Define π̂
to be the result of replacing each call to F in π with the m-round passive-secure protocol for F . π̂
is a passive-secure protocol for f in the plain setting. Say that an adversary behaves consistently
for a span of time if it runs the protocol honestly with an input that is fixed throughout the span.

We mark every π̂ transcript prefix that corresponds to a step in the F subprotocol, except for
the first step of that subprotocol. Intuitively, if a π̂-adversary behaves consistently during every
span of marked transcripts, then that adversary can be mapped to a π adversary that achieves the
same effect by interacting with F appropriately during these points.

Since f is uniquely decomposable, we describe a feasible adversary A attacking the canonical
protocol for f , and apply Theorem 1 to obtain an equivalent adversary S attacking π̂. Theorem 1
always constructs an adversary S that behaves consistently except for a small number of times
where it might swap its input. We will construct A so that S only needs to swap its input at most
once. If we can ensure that S will always be able to swap its input at an unmarked point in π̂,
then S behaves consistently during the marked spans, so we can obtain an adversary successfully
attacking π in the F-hybrid world, a contradiction.

7We remark that this condition can be tightened to n > m via a more delicate analysis.
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Suppose by symmetry that Alice goes first in the canonical protocol for f . Let x0, y0 be inputs
that cause the canonical protocol to take a maximum number of rounds, and let y1 be such that the
(unique) transcripts for x0, y0 and x0, y1 agree until Bob’s last message; thus f(x0, y0) 6= f(x0, y1).
Let x1 be an input for which Alice’s first message is different than for x0.

We consider an environment which chooses a random b← {0, 1} and supplies xb as Alice’s input.
It expects the adversary to detect and correctly report its choice of b. If b = 0, then the environment
chooses a random c← {0, 1}, and gives c to the adversary. The environment expects the adversary
to induce Alice to report output f(xb, yc). The environment outputs 1 if the adversary succeeds at
both phases (guessing b and inducing f(xb, yc) when b = 0). These conditions are similar to those
of a “split adversary” considered by [5]. In the ideal world, an adversary must choose an input for
f with no knowledge of Alice’s input, and it is easy to see that the adversary fails with probability
at least 1/4. On the other hand, a trivial adversary A attacking the canonical protocol for f can
always succeed.

Applying Theorem 1 to A will result in a S that considers n levels of frontiers in π̂ – one for
each step in the canonical protocol. S only needs to swap its input at most once (possibly from y0

to y1). By the choice of x0 and x1, S can make its decision to swap after visiting the first frontier.
Let k be the last round in which Bob moves, then k ∈ {n− 1, n}. By the choice of y0 and y1, S can
safely swap anywhere except after visiting the (k − 1)th frontier. It suffices for the transcript to
encounter an unmarked step in π̂ in this range. This is true with overwhelming probability, since
there is an unmarked step in every m ≤ k − 1 consecutive steps in the protocol, and the frontiers
are encountered in strict order with overwhelming probability,

Let gn : {0, 2, . . . , 2n} × {1, 3, . . . , 2n + 1} → {0, 1, . . . , 2n} be defined as gn(x, y) = min{x, y}.
It can be seen by inspection that gn has a unique decomposition of depth 2n. The corresponding
canonical protocol is the one in which Alice first announces whether x = 0, then (if necessary) Bob
announces whether y = 1, and so on — the “Dutch flower auction” protocols from [1].

Corollary 8. The functions g1, g2, . . . form a strict, infinite hierarchy of increasing v-complexity.
That is, gi v gj if and only if i ≤ j.

Proof. By Theorem 7, gi 6v gj when i > j. It suffices to show that gn v gn+1, since the v relation
is transitive. It is straight-forward to see that the following is a UC-secure protocol for gn in the
gn+1-hybrid world: both parties to send their gn-inputs directly to gn+1, and abort if the response
is out of bounds for the output of gn (i.e., 2n or 2n + 1). The simulator for this protocol crucially
uses the fact that the adversary can receive the output and then abort.

Corollary 9. There is no function f which is complete (with respect to the v relation) for the
class of passively realizable SSFE functions, or for the class standalone-realizable SSFE functions.

Proof. This follows from Theorem 7 and by observing that there exist functions of arbitrarily high
decomposition depth in both classes in question.

Corollary 10. There exist SSFE functions f, g whose complexities are incomparable; that is, f 6v g
and g 6v f .

Proof. If f is passively realizable but not standalone realizable, and g is standalone realizable, then
f 6v g, since the class of standalone security is closed under composition (at least when restricted to
SSFE functions with abort, where the only kind of composition possible is sequential composition).
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On the other hand, if g has a unique decomposition depth at least 2 larger than the decomposition
depth of f , then g 6v f , by Theorem 7.

One example of such a pair of functions is f = xor and g = g2 defined in Corollary 8.

Corollary 11. If g is uniquely decomposable, then g 6v xor.

Proof. The proof of Theorem 7 goes through with the following modifications: Suppose the adver-
sary attacking g plans to corrupt Alice. Then we will choose to replace the ideal xor functionality
with the canonical 2-round protocol in which Alice goes first. Thus every Alice turn in π̂ is a safe
time for the adversary to swap its input, so the argument goes through without consideration of
“behaving consistently” in certain places.

Combined with Corollary 10, we have that xor is incomparable to the entire {gi} hierarchy.

8 Conclusion and Open Problems

We have gained significant insight into the terrain of SSFE functions. However, there are regions
of complexity of SSFE functions that we do not fully understand. In particular, we have not
studied the class of incomplete functions which are not passive realizable. Nor have we attempted
fully characterizing which functions are reducible to which ones. Going beyond SSFE functions,
it remains open to explore similar questions for multi-party functionalities, for reactive functional-
ities, and (in the case of passive-security) for randomized functionalities. In the computationally
bounded setting, the “zero-one conjecture” from [19] — that all functionalities are either realiz-
able or complete — remains unresolved. It is also an intriguing problem to consider cryptographic
complexity of multi-party functionalities vis a vis the “complexity” of cryptographic primitives
(like one-way functions) that are required to realize them (in different hybrid worlds). In short,
our understanding of cryptographic complexity of multi-party functionalities is still quite limited.
There are exciting questions that probably call for a fresh set of tools and approaches.
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A Proof of Lemma 2

To prove Lemma 2, we first prove the following technical lemma, which relates the statistical
difference on a frontier to a function of the frontier’s prefixes.

Lemma 4. Let F be a frontier of partial transcripts in which Alice has just spoken, and let S be
the set of proper prefixes of elements in F , also where Alice has just spoken.

Then there exist constants cπ ≥ 0 and λ(v, y, y′) ≥ 0 for all v ∈ S such that:∑
u∈F

α(u, x)
∣∣β(u, y)− β(u, y′)

∣∣ = cπ +
∑
v∈S

α(v, x)λ(v, y, y′)

Proof. For clarity, assume that each message in the protocol is a single bit, and that the parties
strictly alternate rounds. The proof also holds for longer messages, but is more cumbersome.

Let S0 be the prefix-minimal elements of S (if Alice speaks first in the protocol, then S0 = {0, 1},
else take S0 = {ε}). We will define a sequence S0 ⊂ S1 ⊂ · · · ⊂ St inductively as follows.
Let L(Si) be the set of elements of Si that have no extensions in Si; that is, L(X) = {x ∈
X | (∀y) xy 6∈ X}. We define a pop operation on elements of L(Si) as follows. When we pop
an element u ∈ L(Si), we expand the partial transcript u by two moves in the protocol, setting
Si+1 = Si ∪ {u00, u01, u10, u11}. After some finite number of operations we reach St such that
L(St) = F .

We define the weight of a tree Si as:

w(Si) =
∑

u∈L(Si)

α(u, x)
∣∣β(u, y)− β(u, y′)

∣∣
Observe that w(St) = SD

(
Dx,y

F ,Dx,y′

F

)
. We define the quantity cπ = w(S0) ≥ 0. We define the

intermediate quantity δ(u, y, y′) = |β(u, y)− β(u, y′)|. Suppose the node v was popped in Si to
obtain Si+1. Then,

w(Si+1)− w(Si) = α(v00, x)δ(v00, y, y′) + α(v01, x)δ(v01, y, y′)
+ α(v10, x)δ(v10, y, y′) + α(v11, x)δ(v11, y, y′)− α(v, x)δ(v, y, y′)

Since v0 and v1 are nodes where Bob has just spoken, we get that δ(v00, y, y′) = δ(v01, y, y′) =
δ(v0, y, y′) and δ(v10, y, y′) = δ(v11, y, y′) = δ(v1, y, y′). Similarly, α(v0, x) = α(v1, x) = α(v, x).
By definition, we have α(v00, x)+α(v01, x) = α(v0, x) and α(v10, x)+α(v11, x) = α(v1, x). Using
these observation we get:

w(Si+1)− w(Si) = (α(v00, x) + α(v01, x)) δ(v0, y, y′)
+ (α(v10, x) + α(v11, x)) δ(v1, y, y′)− α(v, x)δ(v, y, y′)

= α(v0, x)δ(v0, y, y′) + α(v1, x)δ(v1, y, y′)− α(v, x)δ(v, y, y′)
= α(v, x)

[
δ(v0, y, y′) + δ(v1, y, y′)− δ(v, y, y′)

]
Define λ(v, y, y′) = δ(v0, y, y′)+δ(v1, y, y′)−δ(v, y, y′) and it is easy to see that λ(v, y, y′) ≥ 0. The
expression for w(St) telescopes, and we obtain the desired result:

w(St) = cπ +
∑
v∈S

α(x, v)λ(v, y, y′)
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Proof of Lemma 2. Suppose we have a protocol π in normal form, and let ε denote the simulation
error of π (i.e., the statistical difference between real- and ideal-world outputs). The next message
function depends only on the appropriate party’s input and the transcript so far. For b ∈ {0, 1}
and u ∈ {0, 1}∗, denote by πA(ub, x) is the probability that Alice’s next message is b when running
on input x and the transcript so far is u. Define πB for Bob analogously. Suppose we run π on
inputs x, y, where Alice sends the first message The probability of obtaining a particular transcript
prefix u = u1 · · ·un is (say n is even):

Pr[u|x, y] = πA(u1, x) · πB(u1u2, y) · πA(u1u2u3, x) · · ·πB(u1 · · ·un, y)

=

n/2∏
i=1

πA(u1 · · ·u2i−1, x)

n/2∏
i=1

πB(u1 · · ·u2i, y)

 = α(u, x)β(u, y)

where α(u, x) and β(u, y) are defined to be the parenthesized quantities, respectively.
Given x, x′ as above, and for a fixed µ < 1, to be defined later, we define the frontier F as the

prefix-minimal elements of:

{u | u is a complete transcript, or
∣∣α(u, x)− α(u, x′)

∣∣ ≥ µ(α(u, x) + α(u, x′))}

By “complete transcript”, we mean one on which the parties terminate and give output.
We partition F into Fgood ∪ Fbad, where Fgood are the elements u ∈ F which satisfy

|α(u, x)− α(u, x′)| ≥ µ(α(u, x)+α(u, x′)). Each element u ∈ Fbad therefore satisfies α(u, x)/α(u, x′) ≤
(1 + µ)/(1− µ).

Consider any y such that f(x, y) 6= f(x′, y). Let A ⊆ Fbad be the transcripts in Fbad which do
not induce output f(x, y) (all elements of Fbad are complete transcripts, and the output is a function
of the transcript alone). Similarly let B ⊆ Fbad be the transcripts in Fbad which do not induce
output f(x′, y). Thus Pr[A|x, y] and Pr[B|x′, y] must be at most ε. Observe that Fbad ⊆ A ∪ B.
Thus we have:

Pr[Fgood|x, y] = 1− Pr[Fbad|x, y] ≥ 1−
∑
u∈A

α(u, x)β(u, y)−
∑
u∈B

α(u, x)β(u, y)

≥ 1−
(

1 + µ

1− µ

)∑
u∈A

α(u, x)β(u, y)−
(

1 + µ

1− µ

)∑
u∈B

α(u, x′)β(u, y)

= 1−
(

1 + µ

1− µ

)
(Pr[A|x, y] + Pr[B|x′, y]) ≥ 1− 2

(
1 + µ

1− µ

)
ε

The same bound holds for Pr[Fgood|x′, y]. Now,

SD
(
Dx,y

F ,Dx′,y
F

)
=

1
2

∑
u∈F

∣∣α(u, x)− α(u, x′)
∣∣β(u, y) ≥ 1

2

∑
u∈Fgood

µ
(
α(u, x) + α(u, x′)

)
β(u, y)

=
µ

2

(
Pr[Fgood|x, y] + Pr[Fgood|x′, y]

)
≥ µ

(
1− 2

(
1 + µ

1− µ

)
ε

)
Now consider any y and y′ such that x, x′, y, y′ form a -minor. Since f(x, y) = f(x, y′), we must
have SD

(
Dx,y

F ,Dx,y′

F

)
≤ ε by the security of the protocol. Let S be the set of all proper prefixes of

elements F that correspond to points where Alice has just spoken. By Lemma 4, we can express
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the statistical difference at F in terms of a linear combination of α(v, x) values for v ∈ S. Since by
definition every v ∈ S satisfies α(v, x′)/α(v, x) ≤ (1 + µ)/(1− µ), we have:

SD
(
Dx′,y

F ,Dx′,y′

F

)
=

1
2

∑
u∈F

α(u, x′)
∣∣β(u, y)− β(u, y′)

∣∣ = 1
2

(
cπ +

∑
v∈S

α(v, x′)λ(v, y, y′)

)

≤ 1
2

(
cπ +

1 + µ

1− µ

∑
v∈S

α(v, x)λ(v, y, y′)

)
≤ 1

2

(
1 + µ

1− µ

)(
cπ +

∑
v∈S

α(v, x)λ(v, y, y′)

)

=
(

1 + µ

1− µ

)
SD
(
Dx,y

F ,Dx,y′

F

)
≤
(

1 + µ

1− µ

)
ε

Choosing µ = 1−
√

ε and defining ν = 5
√

ε, we get the desired bounds.

B Proof of Theorem 1

We now prove our main technical result, Theorem 1. First, we establish a convenient lemma:

Lemma 5. For frontiers F and G, let “[G ≺ F |x, y]” denote the event that when running the
protocol on inputs x, y, the transcript reaches G strictly before reaching F . Then

SD
(
Dx,y

F ,Dx′,y′

F

)
≤ SD

(
Dx,y

G ,Dx′,y′

G

)
+

1
2
(Pr[G ≺ F |x, y] + Pr[G ≺ F |x′, y′])

Proof. Partition F into F1 and F2, where F1 are the strings in F which are prefixes of strings in
G. Thus the distribution over the frontier F1 is a function of the distribution over the frontier G.
Then

SD
(
Dx,y

F ,Dx′,y′

F

)
=

1
2

∑
u∈F1

|α(u, x)β(u, y)− α(u, x′)β(u, y′)|+ 1
2

∑
u∈F2

|α(u, x)β(u, y)− α(u, x′)β(u, y′)|

≤ SD
(
Dx,y

G ,Dx′,y′

G

)
+

1
2

∑
u∈F2

(
α(u, x)β(u, y) + α(u, x′)β(u, y′)

)
= SD

(
Dx,y

G ,Dx′,y′

G

)
+

1
2
(
Pr[F2|x, y] + Pr[F2|x′, y′]

)
= SD

(
Dx,y

G ,Dx′,y′

G

)
+

1
2
(Pr[G ≺ F |x, y] + Pr[G ≺ F |x′, y′])

We can now prove Theorem 1. For simplicity, we restrict attention to the case where the decomposi-
tion of f is binary (that is, each row decomposition is X = X0∪X1 and each column decomposition
is Y = Y0 ∪ Y1), as that is all that is needed for our impossibility results, and the proof is much
simpler.

As before, let ε be the statistical error of the protocol π, let ν be the negligible error guaranteed
by Lemma 2, and define the quantity µi according to the recurrence µ0 = 2ε and µi+1 = 11ν +16µi.
Note that for fixed i, µi is negligible whenever ε and ν are negligible.

The bulk of the proof is in the following inductive lemma. For each step X × Y in the decom-
position of f , we will construct a frontier F (X, Y ) with the following property:

Lemma 6. Let d be the depth (number of decomposition steps) of the decomposition of f
∣∣
X×Y

. For
all x, x′ ∈ X and y, y′ ∈ Y , if (x, y) and (x′, y′) are in different parts of the next decomposition step
of f

∣∣
X×Y

, then SD
(
Dx,y

F (X,Y ),D
x′,y′

F (X,Y )

)
≥ 1− µd; otherwise, SD

(
Dx,y

F (X,Y ),D
x′,y′

F (X,Y )

)
≤ µd.
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Proof. We prove the claim inductively according to the decomposition of f . For X × Y such
that f is constant on X × Y , we define F (X, Y ) as the set of complete transcripts (i.e., those
on which the parties terminate and give output). By the security of the protocol, we have that
SD
(
Dx,y

F (X,Y ),D
x′,y′

F (X,Y )

)
≤ 2ε = µ0 for all x, x′ ∈ X and y, y′ ∈ Y .

Otherwise suppose that X × Y is further decomposed as X = X0 ∪X1 (the case for a column
decomposition is symmetric). Our first step is to pick representatives x0 ∈ X0 and x1 ∈ X1 so that
there are certain -minors involving x0 and x1, and we will be able to apply Lemma 2 directly.
We pick the representatives as follows:

If f is constant on X1 × Y , then we pick the representative x0 ∈ X0 arbitrarily. Otherwise,
suppose X1 × Y is decomposed as Y = Y0 ∪ Y1. This column decomposition Y0 ∪ Y1 is invalid for
X0×Y , since if it were valid, the decomposition of f would not be unique. Therefore there must be
an x0 ∈ X0, y ∈ Y0, y′ ∈ Y1 such that f(x0, y) = f(x0, y

′). We use this x0 as the representative for
X0. In this way, we have ensured that for any x1 ∈ X1, these values x0, x1, y, y′ form a -minor,
which (intuitively) witnesses the fact that the X = X0∪X1 decomposition must happen before the
Y = Y0 ∪ Y1 decomposition. The representative for X1 is chosen analogously.

Given these representatives x0, x1, we define F (X, Y ) to be the frontier given by Lemma 2 for
x0, x1. We refer to F (X, Y ) as F for short, and F (X0, Y ) as G.

We wish to show that for all x, x′ ∈ X0 and y, y′ ∈ Y , SD
(
Dx,y

F ,Dx′,y′

F

)
≤ µd (the analogous

claim for X1 is symmetric). If f is constant on X0 × Y , then the statistical difference is in fact at
most 2ε by the security of the protocol, and we are done. Otherwise, if X0 × Y is decomposed as
Y = Y0 ∪ Y1, there must be y0 ∈ Y0, y1 ∈ Y1 such that x0, x1, y0, y1 are a minor, by our choice
of x0, x1. Thus by Lemma 2, we have that SD

(
Dx0,y0

F ,Dx0,y1

F

)
≤ ν. However, inductively we also

have that SD
(
Dx0,y0

G ,Dx0,y1

G

)
≥ 1− µd−1. So by Lemma 5, Pr[F ≺ G|x0, y0] ≥ 1− 2(ν + µd−1).

Now, take any x ∈ X0, y ∈ Y0. We have inductively that SD
(
Dx,y

G ,Dx0,y0

G

)
≤ µd−1. Note that

the condition “F ≺ G” for a transcript can be determined by seeing only the transcript up to the
point G. This suggests a statistical test for distributions on G. Thus we must have∣∣∣Pr[F ≺ G|x, y]− Pr[F ≺ G|x0, y0]

∣∣∣ ≤ SD
(
Dx,y

G ,Dx0,y0

G

)
≤ µd−1.

Combining what we know, this implies that Pr[F ≺ G|x, y] ≥ 1 − (2ν + 3µd−1). An analogous
statement also holds for with Y1 in place of Y0.

Now take any x ∈ X0, y ∈ Y0. By Lemma 5, and the inductive hypothesis,

SD
(
Dx,y

F ,Dx0,y0

F

)
≤ SD

(
Dx,y

G ,Dx0,y0

G

)
+

1
2

(
Pr[G ≺ F |x0, y0] + Pr[G ≺ F |x, y]

)
≤ 2ν + 4µd−1

The same bound holds with y1 in place of y0 and Y1 in place of Y0.
Finally, combining everything, for any x, x′ ∈ X0, y ∈ Y0, and y′ ∈ Y1, we have by the triangle

inequality:

SD
(
Dx,y

F ,Dx′,y′

F

)
≤ SD

(
Dx,y

F ,Dx0,y0

F

)
+ SD

(
Dx0,y0

F ,Dx0,y1

F

)
+ SD

(
Dx0,y1

F ,Dx′,y′

F

)
≤ (2ν + 4µd−1) + ν + (2ν + 4µd−1) = 5ν + 8µd−1 ≤ µd

The case where y, y′ ∈ Y0 or y, y′ ∈ Y1 is shown in a similar way. This proves the first part of the
inductive claim.
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For the other part of the claim, since X = X0 ∪X1 is a valid row-decomposition of X × Y , we
know that f(x0, y) 6= f(x1, y) for every y ∈ Y . Thus SD

(
Dx0,y

F ,Dx1,y
F

)
≥ 1− ν by Lemma 2 and the

definition of F . By a similar triangle inequality argument, we have that for all x ∈ X0, x′ ∈ X1,
y, y′ ∈ Y :

SD
(
Dx,y

F ,Dx′,y′

F

)
≥ −SD

(
Dx,y

F ,Dx0,y
F

)
+ SD

(
Dx0,y

F ,Dx1,y
F

)
− SD

(
Dx1,y

F ,Dx′,y′

F

)
≥ 1− ν − 2(5ν + 8µd−1) ≥ 1− µd−1.

Given the previous lemma, we prove Theorem 1:

Proof of Theorem 1. Given such frontiers corresponding to each decomposition step, the required
simulation is natural. The simulator’s job is to simulate the canonical protocol to A, while interact-
ing with the honest party in the protocol π. The simulator S simply keeps track of a subdomain in
the decomposition of f , and runs π honestly with any representative input. Whenever it reaches the
next frontier for a decomposition step by the honest party, it does the following: By the definition
of the frontier it can determine (with only negligible error) which part of the decomposition the
honest party’s input belongs to, and simulate the next step in the canonical protocol to the adver-
sary. Then the simulator receives the adversary’s next move in the canonical protocol and changes
its own input for π accordingly, if necessary. After the last message of the canonical protocol, S
continues honestly running π until it terminates.

The simulation is perfect except for the following possible sources of error: (1) S may give an
incorrect guess for the honest party’s next canonical-protocol message; (2) when honestly executing
π with the honest party, S often changes its input; and (3) S may reach the frontiers in an
unexpected order. Events 1 and 3 both happen with negligible probability by the constructions of
the frontiers. Furthermore, conditioned on the frontiers being encountered in the expected order, S
only changes its input only at points where the transcript distribution is nearly independent of its
input. In other words, a transcript in which S changes its input, say from x to x′, is indistinguishable
from a transcript in which S had used x′ as its input the whole time. Thus with overwhelming
probability, the transcript seen by the honest party is indistinguishable from one in which S executes
π entirely honestly with an input that is consistent with the entire canonical-protocol transcript,
so the effect given by S (against π) is the same as that of A (against the canonical protocol).

C Proof of Theorem 3

Proof of Theorem 3. (⇐) Suppose f is an not decomposable. Without loss of generality, let us
assume that the function f is not decomposable at the top level itself, i.e.

1. For any partition A and Ā of Alice input set X, there exists Alice inputs x ∈ A and x′ ∈ Ā;
and Bob input y∗ such that f(x, y∗) = f(x′, y∗), and

2. For any partition A and Ā of Bob input set Y , there exists Bob inputs y ∈ A and y′ ∈ Ā;
and Alice input x∗ such that f(x∗, y) = f(x∗, y′).

Let the set of Alice and Bob input sets X and Y be m and n respectively. For any (1 − ν)
correct protocol for f , we will show that there exists a pair of inputs σ1 = (x, y) and σ2 = (x′, y′)
such that:
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1. x = x′ or y = y′,

2. f(σ1) = f(σ2), and

3. SD
(
Dσ1

L ,Dσ2
L

)
≥
(
1− 1

21/(m+n)

)
1−4mnν

4mn(m+n) , where L is the set of leaves in the transcript tree.

We know that the probability Pr[v|x, y] can be equivalently written as α(v, x)β(v, y). Starting
from the root of the transcript tree, expand a node v if:

1. For all Alice inputs x, x′, α(v, x) ≤ 2α(v, x′), and

2. For all Bob inputs y, y′, β(v, y) ≤ 2β(v, y′).

The set of nodes which are not expanded form a frontier F in the transcript tree. Let B ⊆ F
be the set of leaves where we kept on expanding and finally reached the leaves. So, for any pairs
of inputs σ, σ′ and τ ∈ B, we have Pr[τ |σ] ≤ 4 Pr[τ |σ′]. If Pr[τ |σ] > 0 for some input σ ∈ X × Y
then Pr[τ |σ̃] > 0 for all inputs σ̃ ∈ X × Y . Since, given a transcript τ the output corresponding
to it is fixed and f is not a constant function, there exists στ such that τ gives wrong answer for
the input στ . Now, we can show that the probability of generating any transcript in B given any
input σ is significantly small due to the correctness of the protocol:∑

τ∈B

Pr[τ |σ] ≤ 4
∑
τ∈B

Pr[τ |στ ]

≤ 4
∑

σ′∈X×Y

∑
τ∈Wσ′

Pr[τ |σ′] ≤ 4mnν

, where Wσ′ is the set of transcripts which provide wrong answer for the input σ′.
Any node v ∈ F \B either satisfies:

1. There exists Alice inputs x, x′ such that α(v, x) > 2α(v, x′) and for all Bob inputs y, y′ we
have β(v, y) ≤ 2β(v, y′), or

2. There exists Bob inputs y, y′ such that β(v, y) > 2β(v, y′) and for all Alice inputs x, x′ we
have α(v, x) ≤ 2α(v.x′).

Consider the case when v satisfies the first condition. Define Si as the set of Alice inputs x̃ such
that α(v, x̃) ≤ 2i/mα(v, x′). Let m′ be the minimum i such that Si is the set of all Alice inputs X.
Since α(v, x) > 2α(v, x′), we have m′ > m. There are at most m distinct sets possible. So, we can
define i∗ < m′ as the largest i such that Si = Si+1. We partition Alice inputs into two sets S = Si∗

and S̄ = X \ Si∗ . This partition satisfies the following two properties:

1. For any x1 ∈ S̄ and x2 ∈ S we have α(v, x1) > 21/mα(v, x2). This follows from the fact that
α(v, x2) ≤ 2i∗/mα(v, x′) and α(v, x1) > 2(i∗+1)/mα(v, x′). Intuitively, it implies that all Alice
inputs in one set look significantly different from all the inputs in the other set.

2. For any x1 ∈ S̄ and any Bob input y, we have Pr[v|x1, y] ≥ 1
4 maxσ Pr[v|σ]. This follows from

the fact that i∗ is the largest i such that Si = Si+1. So, 2α(v, x1) ≥ α(v, x̃) for any Alice
input x̃. And we know that 2β(v, y) ≥ β(v, ỹ) for any Bob input ỹ. Intuitively, it implies
that for all σ̃ ∈ S × Y , Pr[v|σ̃] is quite high.
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Since f is not decomposable, there exists x∗1 ∈ S̄ and x∗2 ∈ S and a Bob input y∗ such that:

1. f(x∗1, y
∗) = f(x∗2, y

∗),

2. Pr[v|x∗1, y∗] > 21/m Pr[v|x∗2, y∗] ≥ 21/(m+n) Pr[v|x∗2, y∗], and

3. Pr[v|x∗1, y∗] > 1
4 Pr[v|σ] for any input σ ∈ X × Y .

The last two properties are consequences of the definition of S̄ and S.
We say that the pair of inputs σ∗1 = (x∗1, y

∗) and σ∗2 = (x∗2, y
∗) witness the distinction at partial

transcript v. Similarly, we can also define “witness” when v satisfies the case: “There exists Bob
inputs y, y′ such that β(v, y) > 2β(v, y′) and for all Alice inputs x, x′ we have α(v, x) ≤ 2α(v, x′).”

Observe that there are at most mn(m + n) distinct witnesses. Pick any input σ ∈ X × Y and
consider the distribution of witnesses when we generate v ∈ F \B with probability Pr[v|σ]. There
exists L ⊆ F \B and witness σ1 and σ2 such that:

1.
∑

v∈L Pr[v|σ1] ≥ 1
4

∑
v∈L Pr[v|σ] ≥ 1−4mnν

4mn(m+n) , and

2. Pr[v|σ1] > 21/(m+n) Pr[v|σ2]

Now, it is immediate that for this choice of σ1 and σ2 we have SD
(
Dσ1

L ,Dσ2
L

)
≥
(
1− 1

21/(m+n)

)
1−4mnν

4mn(m+n) .
This implies that any (1−ν) correct protocol for f (which is not decomposable) can not be a secure
protocol, when m and n are constants.

D Proof of Theorem 4

The complete protocol is given in Figure 4, and we prove its security below in Lemma 7.

Lemma 7. If π is a passive-secure protocol for f , then the compiled version of π (Figure 4) is a
UC-secure protocol in the Fcom-hybrid world.

Proof. We describe the simulator for a corrupt Alice (the other case is symmetric). In the setup
phase, the simulator simulates Fcom to immediately extract the σ[i, j] and χ[i, j] commitments. It
then picks random bi challenges. If any of the bi will result in the adversary being “caught” in the
setup phase, then the simulator does not contact the ideal functionality for f . The simulator gives
random consistent values for party 2’s commitments in the setup phase, gives the bi challenges, and
then aborts after the adversary opens its commitments.

Otherwise, if the bi challenges would not cause an abort, the simulator will contact the ideal
functionality. We say that σ[i, ·] is valid if it is a permutation of {1, . . . , nx}. We say that χ[i, ·]
is valid if all but one of the values is zero. If for all i, either σ[i, ·] or χ[i, ·] are invalid (and yet
the bi challenges did not catch the adversary — an event which can happen only with probability
2−k), the simulator aborts. Otherwise consider an arbitrary i such that both σ[i, ·] and χ[i, ·] are
valid. Let x be the unique value such that χ[i, σ[i, x]] = 1. The simulator will send x to the ideal
functionality on behalf of the adversary, and receive f(x, y). It is finally the simulator’s task to
decide whether to deliver the output to honest Bob.

Given x and f(x, y), choose any y∗ such that f(x, y) = f(x, y∗). The simulator then proceeds
to simulate Bob honestly as if it had input y∗. The simulator can always allow Bob to open his
commitments consistently. If at any point the simulated Bob aborts, the simulation ends without
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Our protocol is essentially symmetric with respect to the two parties. We describe only the
behavior of Alice. We denote the parties’ input ranges as X = {1, . . . , nx} and Y = {1, . . . , ny},
respectively. The protocol’s security parameter is k.

Setup phase:

1. Choose random permutations σ1, . . . , σk of X. Let χ be the characteristic vector of x in
X. Commit to the values χ[i, j] = χσ−1

i (j) and σ[i, j] = σi(j) for i ≤ k and j ≤ nx.

2. Wait for Bob to similarly commit to his own χ′[i, j] and σ′[i, j] values.

3. Receive bi ∈ {0, 1} for i ≤ k. For each i, if bi = 0, then open each σ[i, j] commitment;
otherwise, open each χ[i, j] commitment.

4. Similarly, choose random bi ← {0, 1} for all i ≤ k and send them to Bob. For each i such
that bi = 0, expect σ′[i, j] to be opened and verify that they constitute a permutation
of {1, . . . , ny}, else abort. For each i such that bi = 1, expect each χ′[i.j] to be opened
and verify that all but one of them are equal to 0, else abort.

Then, for each step of π:

1. If this is a step where Alice sends a message, then let m be the message prescribed by π
protocol at this point. Let Z be the set of inputs which would have prescribed sending
a message other than m at this point in the protocol. Send m to Bob, and and for each
i ≤ k and j ∈ Z, open the commitments of σ[i, j] and χ[i, σi(j)] (= χj). (Half of these
commitments will already be opened).

2. If this is a step where Bob sends a message, then expect a next message m for the π
protocol simulation. Let Z be the set of inputs for Bob which would have prescribed that
Bob send message other than m at this point in the protocol. from party 2. For each
i ≤ k and j ∈ Z, expect σ′[i, j] to be opened (if not already). If any σ′[i, j] 6∈ {1, . . . , ny},
or if σ′[i, j] = σ′[i, j′] for any j 6= j′, then abort. Expect χ′[i, σ′[i, j]] to be opened to 0
(if not already), else abort.

When π terminates, terminate with the same output.

Figure 4: UC-secure compilation of passive-secure protocol π in the Fcom-hybrid world

delivering the output in the ideal world. If simulated Bob terminates successfully, the simulator
delivers the output. Note that the adversary cannot successfully deviate from the steps of π that
are inconsistent with having input x, by virtue of there being a consistent χ[i, ·] and σ[i, ·] uniquely
committed to x. If the adversary tries sending a bit in π inconsistent with its input, there will be no
way for it to consistently open this particular committing σ[i, ·] and χ[i, ·]. Since f(x, y) = f(x, y∗),
the steps of π simulated by the simulator must be statistically indistinguishable. Furthermore, the
commitments opened by the simulator are distributed identically as when Bob runs the protocol
with input y. By the security of π, the simulation is indistinguishable from the real-world interaction
(though with an added error probability of 2−k).

To compile a randomized protocol, we make each party commit to its random tape as well.
However, security only holds if the random tape is chosen uniformly. To ensure this, we use a
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coin-tossing-into-the-well approach. Let S be the possible space of (input, random tape) pairs. On
input x, Alice chooses a random tape r and “commits” to (x, r) by committing to many random
permutations and permuted characteristic vectors. For each pair of commitments, Bob randomly
asks Alice to completely open one or the other. Then Bob chooses another random tape s (for
Alice) and sends it to Alice. Now Alice runs each step of the protocol on x with random tape r⊕ s.
Both parties know s, so on Alice’s move, she sends the message m, then opens the commitments
corresponding to the (x′, r′) pairs such that the protocol prescribes sending a message other than
m on input x′ and random tape r′ ⊕ s.

E Proof of Theorem 5

Lemma 8. Let π be an arbitrary protocol for two parties to agree on a value in a domain Z with
probability 1. (That is, the outcome of the protocol is a function of the transcript.) Then, for every
partition Z = C ∪D, the protocol π falls into one of the following types:

• “A” if Alice has a strategy to force the outcome to be a value in C with probability 1, and a
strategy to force the outcome to be a value in D with probability 1.

• “B” if Bob has a strategy to force the outcome to be a value in C with probability 1, and a
strategy to the outcome to be a value in D with probability 1.

• “C” if both Alice and Bob have a strategy to force the outcome to be in C with probability 1.

• “D” if both Alice and Bob have a strategy to force the outcome to be in D with probability 1.

Proof. The proof is by induction on the maximum number of rounds in π, when π is described in
the normal form for protocols. If π has 0 rounds, π has a constant outcome. So for any partition
Z = C ∪D, π is a C-type or D-type protocol.

Assuming the inductive hypothesis to hold for protocols up to n − 1 rounds, we consider a
protocol π of n rounds. Suppose the first message is sent by Alice. Without loss of generality,
suppose the each message in the protocol is a single bit, and that the parties alternate rounds.
Then we define two protocols π0 and π1 which are defined as the protocols obtained by assuming
the first message in an execution of π to be 0 or 1, respectively. Now, by the inductive hypothesis,
π0 and π1 are one of the four types. We need to consider all combinations of possibilities, but up
to symmetries, there are only the following five cases:

1. If π0 is of A-type so is π, because Alice can first choose to send 0, and then follow the strategies
in π0.

2. If π0 is of B-type and π1 is of C-type, then π is of C-type: Alice can force a C outcome by
sending 1 and following her strategy in π1 after that; for Bob, in both π0 and π1 he has a
strategy to force the outcome to be in C, one of which he will be able to follow after the first
message from Alice.

3. If both π0 and π1 are of B-type, then π is of B-type.

4. If π0 is of C-type and π1 is of D-type, then π is of A-type.

5. If both π0 and π1 are of C-type then π is of C-type.
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Lemma 9. If f is an SSFE function that is decomposable but not uniquely decomposable, then there
is a partition of the range of f as Z = C ∪D such that Alice has no x such that ∀y, f(x, y) ∈ C,
and Bob has no y such that ∀x, f(x, y) ∈ D.

Proof. Below, in Claim 1, we show that if f has two distinct decompositions, then there is a
decomposition of f that contains a step X ′× Y ′ ⊆ X × Y where f

∣∣
X′×Y ′ is both row- and column-

decomposable. Without loss of generality, we may assume that in every decomposition step, say
X = X0 ∪X1, the set of outputs f(X0, Y ) is disjoint from that of f(X1, Y ). Renaming the outputs
of a function in this way results in a function that is isomorphic to the original function.

We show by induction on the depth of this decomposition that the outputs of f can be colored
as C and D in the desired way. For a function f which is both row- and column-decomposable,
say as X × Y = (X1 ∪ · · · ∪Xm) × (Y1 ∪ · · · ∪ Yn), we color the outputs of f as a “checkerboard”
— that is, if (x, y) ∈ Xi × Yj where i + j is odd, then we color f(x, y) with C (and color D if i + j
is even). In this way, since m,n ≥ 2, the condition of the lemma holds for f .

Otherwise, suppose f is row-decomposable as X×Y = (X1∪· · ·∪Xn)×Y , and some f
∣∣
Xi×Y

can
be colored to satisfy the condition of the lemma. Then we color the outputs of Xi × Y inductively
as above, and color all other outputs in X × Y as C. Similarly, if f is column-decomposable, then
we inductively color part of its domain and color the other outputs D. Inductively, the condition
of the lemma holds with this coloring.

Claim 1. If f has two distinct decompositions, then there is a decomposition of f that contains a
step X ′ × Y ′ ⊆ X × Y where f

∣∣
X′×Y ′ is both row- and column-decomposable.

Proof. Take any two distinct decompositions, and consider the first level at which they differ.
Without loss of generality, assume that they differ at the very first step. If one decomposition of f
starts with a row-decomposition step and the other starts with a column-decomposition step, then
we are done. Otherwise, f is decomposable in two different ways, startying with (by symmetry) two
different row-decomposition steps; say, X = (X1∪· · ·∪Xm) = (X ′

1∪· · ·∪X ′
n), with {X1, . . . , Xm} 6=

{X ′
1, . . . , X

′
n}. Then by symmetry, there must be some Xi and X ′

j such Xi ∩X ′
j and Xi ∩X ′

j are
both non-empty. One can easily verify that Xi × Y can be row-decomposed starting with the step
Xi = (Xi ∩X ′

j) ∪ (Xi \X ′
j). In particular, this implies that f is not constant over Xi × Y . Since

Xi × Y appears in one of the two valid row-decompositions of f , and f is not constant over this
domain, and row- and column- decomposition steps must alternate, we have that Xi × Y is also
column-decomposable.

The above lemmas establish one direction of Theorem 5, as outlined in the proof sketch in
Section 5. By Lemma 8, for all ways to color the outputs of f , there are corresponding adversarial
strategies to force a certain color of output, in the real-world protocol execution. However, by
Lemma 9, there is a way to color the outputs of a non-uniquely-decomposable function f in such
a way that no ideal-world strategy can accomplish the same effect.
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