Computational Hardness of Optimal Fair
Computation: Beyond Minicrypt

Abstract. Secure multi-party computation allows mutually distrusting
parties to compute securely over their private data. However, guarantee-
ing output delivery to honest parties when the adversarial parties may
abort the protocol has been a challenging objective. As a representative
task, this work considers two-party coin-tossing protocols with guaran-
teed output delivery, a.k.a., fair coin-tossing.

In the information-theoretic plain model, as in two-party zero-sum games,
one of the parties can force an output with certainty. In the commitment-
hybrid, any r-message coin-tossing protocol is 1/y/r-unfair, i.e., the ad-
versary can change the honest party’s output distribution by 1/4/7 in the
statistical distance. Moran, Naor, and Segev (TCC-2009) constructed
the first 1/r-unfair protocol in the oblivious transfer-hybrid. No further
security improvement is possible because Cleve (STOC-1986) proved
that 1/r-unfairness is unavoidable. Therefore, Moran, Naor, and Segev’s
coin-tossing protocol is optimal. However, is oblivious transfer necessary
for optimal fair coin-tossing?

Maji and Wang (CRYPTO-2020) proved that any coin-tossing protocol
using one-way functions in a black-box manner is at least 1//r-unfair.
That is, optimal fair coin-tossing is impossible in Minicrypt. Our work fo-
cuses on tightly characterizing the hardness of computation assumption
necessary and sufficient for optimal fair coin-tossing within Cryptoma-
nia, outside Minicrypt. Haitner, Makriyannia, Nissim, Omri, Shaltiel,
and Silbak (FOCS—2018 and TCC—2018) proved that better than 1/4/r-
unfairness, for any constant r, implies the existence of a key-agreement
protocol.

We prove that any coin-tossing protocol using public-key encryption (or,
multi-round key agreement protocols) in a black-box manner must be
1/+/r-unfair. Next, our work entirely characterizes the additional power
of secure function evaluation functionalities for optimal fair coin-tossing.
We augment the model with an idealized secure function evaluation of
f, a.k.a., the f-hybrid. If f is complete, that is, oblivious transfer is
possible in the f-hybrid, then optimal fair coin-tossing is also possible
in the f-hybrid. On the other hand, if f is not complete, then a coin-
tossing protocol using public-key encryption in a black-box manner in
the f-hybrid is at least 1//r-unfair.

Keywords: Fair computation, Optimal fair coin-tossing, Cryptomania, Black-
box separation, Hardness of computation results, Secure function evaluation
functionalities.



1 Introduction

Secure multi-party computation [75, 32] allows mutually distrusting parties to
compute securely over their private data. However, guaranteeing output delivery
to honest parties when the adversarial parties may abort during the protocol
execution has been a challenging objective. A long line of highly influential works
has undertaken the task of defining security with guaranteed output delivery
(i.e., fair computation) and fairly computing functionalities [34, 11, 35, 10, 1, 5,
40, 3, 60, 4, 2, 14]. This work considers the case when honest parties are not in
the majority. In particular, as is standard in this research, the sequel relies on
the representative task of two-party secure coin-tossing, an elegant functionality
providing uncluttered access to the primary bottlenecks of achieving security in
any specific adversarial model.

In the information-theoretic plain model, one of the parties can fix the coin-
tossing protocol’s output (using attacks in two-player zero-sum games, or games
against nature [65]). If the parties additionally have access to the commitment
functionality (a.k.a., the information-theoretic commitment-hybrid), an adver-
sary is forced to follow the protocol honestly (otherwise, the adversary risks
being identified), or abort the protocol execution prematurely. Against such ad-
versaries, referred to as fail-stop adversaries [20], there are coin-tossing proto-
cols [12, 13, 6, 19] where a fail-stop adversary can change the honest party’s
output distribution by at most O(1/4/7), where r is the round-complexity of the
protocol. That is, these protocols are O(1/+/7)-insecure. In a ground-breaking
result, Moran, Naor, and Segev [61] constructed the first secure coin-tossing
protocol in the oblivious transfer-hybrid [67, 68, 25| that is O(1/r)-insecure.
No further security improvements are possible because Cleve [19] proved that
O(1/r)-insecurity is unavoidable; hence, the protocol by Moran, Naor, and Segev
is optimal.

l HSecure Construction ‘Adversarial Attack
In General:
Pessiland constant-unfair [3§]
Fail-stop Adversary: Fail-stop Adversary:
1/+/r-unfair [20]
.. One-way Functions: .
Minicrypt 1/\/r-unfair [12, 13, 6, 19] 1/+/r-unfair [59]
Public-key Encryption: 1/+/F-unfair [This work]
Cryptomania PKE + f-hybrid, f 7+ OT: 1/+/r-unfair [This work]
Oblivious Transfer: .
1/r-unfair [61] 1/r-unfair 19]

Fig. 1. The first column summarizes of the most secure fair coin-tossing protocols in
Impagliazzo’s worlds [43]. Corresponding to each of these worlds, the second column
has the best attacks on these fair coin-tossing protocols.



Incidentally, all fair computation protocols (not just coin-tossing, see, for
example, [34, 11, 35, 10, 1, 5, 40, 3, 60, 4, 2, 14]) rely on the oblivious transfer
functionality to achieve O(1/r)-insecurity. A fundamental principle in theoretical
cryptography is to securely realize cryptographic primitives based on the minimal
computational hardness assumptions. Consequently, the following question is
natural.

Is oblivious transfer necessary for optimal fair computation?

Towards answering this fundamental research inquiry, recently, Maji and
Wang [59] proved that any coin-tossing protocol that uses one-way functions
in a black-box manner [45, 69, 7] must incur §2(1//r)-insecurity. This result
proves the qualitative optimality of the coin tossing protocols of [12, 13, 6, 19]
in Minicrypt [43] because the commitment functionality is securely realizable by
the black-box use of one-way functions [62, 63, 39]. Consequently, the minimal
hardness of computation assumption enabling optimal fair coin-tossing must be
outside Minicrypt.

Summary of our results. This work studies the insecurity of fair coin-
tossing protocols outside Minicrypt, within (various levels of) Cryptomania [43].
Our contributions are two-fold.

1. First, we generalize the (fully) black-box separation of Maji and Wang [59]
to prove that any coin-tossing protocol using public-key encryption in a fully
black-box manner must be £2(1//r)-insecure.

2. Finally, we prove a dichotomy for two-party secure (possibly, randomized out-
put) function evaluation functionalities. For any secure function evaluation
functionality f, either (A) optimal fair coin-tossing exists in the information-
theoretic f-hybrid, or (B) any coin-tossing protocol in the f-hybrid, even
using public-key encryption algorithms in a black-box manner, is £2(1/+/r)-
insecure.

Our hardness of computation results hold even for a game-theoretic definition
of fairness as well (which extends to the stronger simulation-based security def-
inition). Section 1.1 summarizes our contributions. As shown in Figure 1, our
results further reinforce the widely-held perception that oblivious transfer is
necessary for optimal fair coin-tossing. Our work nearly squeezes out the entire
remaining space left open in the state-of-the-art after the recent breakthrough
of [59], which was the first advancement on the quality of the attacks on fair
coin-tossing protocols since [20] after almost three decades. However, there are
fascinating problems left open by our work; Section 6 discusses one.

Positioning the technical contributions. Information-theoretic lower-
bounding techniques that work in the plain model and also extend to the f-
hybrid are rare. Maji and Wang [59] proved that optimal coin-tossing is impossi-
ble in the information-theoretic model even if parties can access a random oracle.
This work extends the potential-based approach of [59] to f-hybrid information-
theoretic models, such that oblivious transfer is impossible in the f-hybrid and
parties additionally have access to a public-key encryption oracle.



Fig. 2. The Kushilevitz Function, where Alice holds input = € {0, 1,2} and Bob holds
input y € {0, 1,2}. For example, the output is zo if z = 0 and y € {0,1}.

For the discussion below, consider f to be the Kushilevitz function (see Fig-
ure 2). One cannot realize this function securely in the information-theoretic
plain model even against honest-but-curious adversaries [51, 9, 57, 50]. Fur-
thermore, oblivious transfer is impossible in the f-hybrid [47, 48]. The char-
acterization of the exact power of making ideal f-invocations is not entirely
well-understood.

Invocations of the ideal f-functionality are non-trivially useful. For exam-
ple, one can realize the commitment functionality in the f-hybrid model [58]
(even with Universally Composable (UC) security [15, 16] against malicious ad-
versaries). The f-functionality is also known to securely implement other secure
function evaluation functionalities as well [71]. All these functionalities would
otherwise be impossible to securely realize in the plain model [17, 52, 66]. Con-
sequently, it is plausible that one can even implement optimal fair coin-tossing
without implementing oblivious transfer in the f-hybrid model.

Our technical contribution is an information-theoretic lower-bounding tech-
nique that precisely characterizes the power of any f-hybrid vis-a-vis its ability
to implement optimal fair coin-tossing. The authors believe that these techniques
shall be of independent interest to characterize the power of performing ideal
f-invocations in general.

1.1 Owur Contribution

This section provides an informal summary of our results and positions our
contributions relative to the state-of-the-art. To facilitate this discussion, we need
to introduce a minimalistic definition of coin-tossing protocols. An (r, X)-coin-
tossing protocol is a two-party r-message interactive protocol where parties agree
on the final output € {0, 1}, and the expected output of an honest execution of
the protocol is X. A coin-tossing protocol is e-unfair if one of the parties can
change the honest party’s output distribution by € (in the statistical distance).

Maji and Wang [59] proved that the existence of optimal coin-tossing pro-
tocols is outside Minicrypt [43], where one-way functions and other private-
key cryptographic primitives exist (for example, pseudorandom generator [44,
41, 42], pseudorandom function [30, 31], pseudorandom permutation [55], sta-
tistically binding commitment [62], statistically hiding commitment [63, 39],



zero-knowledge proof [33], and digital signature [64, 70]). Public-key crypto-
graphic primitives like public-key encryption, (multi-message) key-agreement
protocols, and secure oblivious transfer protocol are in Cryptomania [45] (out-
side Minicrypt). Although the existence of a secure oblivious transfer protocol
suffices for optimal fair coin-tossing, it was unknown whether weaker hardness of
computation assumptions (like public-key encryption and (multi-message) key-
agreement protocols [28]) suffice for optimal fair coin-tossing or not. Previously,
Haitner, Makriyannis, Nissim, Omri, Shaltiel, and Silbak [37, 36|, for any con-
stant 7, prove that r-message coin-tossing protocols imply key-agreement proto-
cols, if they are less than 1/4/r-insecure.
Result I. Towards this objective, we prove the following result.

Corollary 1 (Separation from Public-key Encryption). Any (r, X)-coin-
tossing protocol that uses a public-key encryption scheme in a fully black-box
manner is 2(X (1 — X)/+/r)-unfair.

We emphasize that X may depend on the message complexity r of the protocol,
which, in turn, depends on the security parameter. For example, consider an
ensemble of fair coin-tossing protocols with round complexity r and expected
output X = 1/r. This result shows a fail-stop adversary that changes the honest
party’s output distribution by 1/73/2 in the statistical distance.

This hardness of computation result extends to the fair computation of any
multi-party functionality (possibly with inputs) such that the output has some
entropy, and honest parties are not in the majority (using a standard partition
argument). At a high level, this result implies that relying on stronger hardness of
computation assumptions like the existence of public-key cryptography provides
no “fairness-gains” for coin-tossing protocols than only using one-way functions.

This result’s heart is the following relativized separation in the information-
theoretic setting (refer to Theorem 5). There exists an oracle PKE,, [56] that
enables the secure public-key encryption of n-bit messages. However, we prove
that any (r, X)-coin-tossing protocol where parties have oracle access to the
PKE,, oracle (with polynomial query complexity) is 2(X (1 — X)/+/r)-unfair.
This relativized separation translates into a fully black-box separation using
by-now-standard techniques in this field [69]. Conceptually, this black-box sepa-
ration indicates that optimal fair coin-tossing requires a hardness of computation
assumption that is stronger than the existence of a secure public-key encryption
scheme.

Gertner, Kannan, Malkin, Reingold, and Vishwanathan [28] showed that the
existence of a public-key encryption scheme with additional (seemingly innocu-
ous) properties (like the ability to efficiently sample a public-key without know-
ing the private-key) enables oblivious transfer. Consequently, our oracles realiz-
ing public-key encryption must avoid any property enabling oblivious transfer
(even unforeseen ones). This observation highlights the subtlety underlying our
technical contributions. For example, our set of oracles permit testing whether
a public-key or cipher-text is valid or not. Without this test, oblivious transfer
and, in turn, optimal fair coin-tossing is possible. Surprisingly, these test oracles
are also sufficient to rule out the possibility of oblivious transfer.



Since public-key encryption schemes imply key agreement protocols, our re-
sults prove that optimal fair coin-tossing is black-box separated from key agree-
ment protocols as well.

Result II. Let f: X x Y — RZ be a two-party secure symmetric function
evaluation functionality, possibly with randomized output. The function takes
private inputs z and y from the parties and samples an output z € Z according
to the probability distribution py(z|z,y). The information-theoretic f-hybrid is
an information-theoretic model where parties have additional access to the (un-
fair) f-functionality.! As an aside, we highlight that the fair f-hybrid (where
the adversary cannot block output delivery to the honest parties), for any f
where both parties influence the output, straightforwardly yields perfectly or
statistically secure fair coin-tossing protocol.?

Observe that if f is the (symmetrized) oblivious transfer functionality,® then
the Moran, Naor, and Segev protocol [61] is an optimal fair coin-tossing protocol
in the (unfair) f-hybrid. More generally, if f is a functionality such that there is
an oblivious transfer protocol in the f-hybrid, one can emulate the Moran, Naor,
and Segev optimal coin-tossing protocol; consequently, optimal coin-tossing ex-
ists in the f-hybrid. Kilian [48] characterized all functions f such that there
exists a secure oblivious transfer protocol in the f-hybrid, referred to as com-
plete functions.

Our work explores whether a function f that is not complete may enhance
the security of fair coin-tossing protocols.

Corollary 2 (Dichotomy of Functions). Let f be an arbitrary 2-party sym-
metric function evaluation functionality, possibly with randomized output. Then,
exactly one of the following two statements holds.

! The functionality delivers the output to the adversary first. If the adversary wants, it
can abort the protocol and block the output delivery to the honest parties. Otherwise,
if the adversary wants, it can permit the delivery of the output to the honest parties
and continue with the protocol execution.

Suppose f = XOR. In a fair f-hybrid, the adversary cannot block the output deliv-
ery to the honest parties. So, parties input random bits to the f-functionality and
agree on the output. This protocol has O-insecurity. A similar protocol (using a de-
terministic extractor for independent small-bias sources) can extract the fair output
from any f where both parties have influence on the output distribution. Consider
the following “collaborative randomness generation” followed by “extraction” pro-
tocol. (a) Invoke (in parallel) a bidirectional influence functionality multiple times
with random inputs. The output of each invocation in mot entirely determined by
one of the parties. Consequently, these samples have average min-entropy. (b) Non-
interactively, parties use these fair output samples to extract this entropy to obtain
the (common) fair coin toss (using convolution/XOR, or traversal of an appropriate
expander graph).

In the symmetrized oblivious transfer functionality, the sender has input (xo,x1) €
{0,1}?, and the receiver has input (b,7) € {0,1}”. The symmetric oblivious transfer

functionality returns x, @ r to both the parties. If the receiver picks r & {0,1}, then
this functionality hides the receiver’s choice bit b from the sender.



1. For all v € N and X € [0,1], there exists an optimal (r, X)-coin-tossing
protocol in the f-hybrid (a.k.a., O(1/r)-unfair protocol).

2. Any (r, X)-coin-tossing protocol that uses public-key encryption protocols in
a black-box manner in the f-hybrid is 2(X (1 — X)/\/7)-unfair.

For example, Corollary 1 is implied by the stronger version of our result by
using a constant-valued f, a trivial function evaluation. For more details, refer
to Theorem 6. In our model, we emphasize that parties can perform an arbitrary
number of f-invocations in parallel in every round.

Let us further elaborate on our results. Consider a function f that has a
secure protocol in the information-theoretic plain model, referred to as triv-
ial functions. For deterministic output, trivial functions’ full characterization
is known [51, 9, 57, 50]. For randomized output, the characterization of trivial
functions is a long-standing open problem.* Observe that trivial functions are
definitely not complete; otherwise, a secure oblivious transfer protocol shall exist
in the information-theoretic plain model, which is impossible. For every ¢t € N,
there are functions f; such that any secure protocol for f; requires ¢ rounds
of interactive communication in the information-theoretic plain model. For the
randomized output case, the authors know of functions such that |X| = |Y| =2
and |Z] = (¢t + 1) that need t-round protocols for secure computation, which is
part of ongoing independent research. Compiling out the fi-hybrid using such
a t-round secure computation protocol allows only for an ©(X (1 — X)/v/rt)-
insecurity, which yields a useless bound for ¢ = £2(r). Consequently, compiling
out the trivial functions is inadequate.

It is also well-known that functions of intermediate complexity exist [51, 9,
57, 50], which are neither complete nor trivial (for example, the Kushilevitz func-
tion, refer to Figure 2). In fact, there are randomized functions of intermediate
complexity such that |X| = |Y| =2 and |Z| = 3 [24]. For example,

1 ((18,18,18) (36,12,6)
54 \ (21,3,30) (42,2,10))

Our result claims that even an intermediate function f is useless for optimal
fair coin-tossing; it is as useless as one-way functions or public-key encryption.
Therefore, our results’ technical approach must treat each f-hybrid invocation as
one step in the protocol. We highlight that the intermediate functions are useful
in securely realizing other non-trivial functionalities as well [58, 71]. However,
for fair coin-tossing, they are useless.

Before we move ahead, the authors feel that it is instructive to elaborate on
what our paper does not prove. Let f be an intermediate function, and “sh-f”
represents the hardness of computation assumption that there exists a semi-
honest secure protocol for function f. We do not rule out the possibility that
sh-f implies optimal coin-tossing protocols. Our result only proves that the f-
hybrid cannot help construct optimal coin-tossing protocols. The existence of a
protocol for an intermediate f may have significantly additional implicit conse-
quences, which may, in turn, imply optimal coin-tossing protocol construction.

4 Even for perfect security, the characterization of randomized trivial functions is open.



In particular, such a result would imply the separation of sh-f and sh-OT, which
is one of the most fundamental open problems in this field.® Refer to Section 6
for further elaboration.

1.2 Prior Works

Deterministic secure function evaluation. In this paper, we focus on two-party
secure function evaluation functionalities that provide the same output to the
parties. Consider a deterministic function f: X x Y — Z. The unfair ideal
functionality implementing f takes as input z and y from two parties and delivers
the output f(z,y) to the adversary. The adversary may choose to block the
output delivery to the honest party, or permit the delivery of the output to the
honest party.

In this document, we consider security against a semi-honest information-
theoretic adversary, i.e., the adversary follows the protocol description honestly
but is curious to find additional information about the other party’s private in-
put. There are several natural characterization problems in this scenario. The
functions that have perfectly secure protocols in the information-theoretic plain
model, a.k.a., the trivial functions, are identical to the set of decomposable func-
tions [51, 9]. For every t € N, there are infinitely many functions that require
t-rounds for their secure evaluation. Interestingly, relaxing the security from per-
fect to statistical security, does not change this characterization [57, 50].

Next, Kilian [47] characterized all deterministic functions f that enable obliv-
ious transfer in the f-hybrid, the complete functions. Any functions that has an
“embedded OR-minor” (refer to Definition 4) is complete. Such functions, intu-
itively, are the most powerful functions that enable general secure computation
of arbitrary functionalities.

The sets of trivial and complete functions are not exhaustive (for |Z] >
3 [18, 49]). There are functions of intermediate complexity, which are neither
trivial nor complete (see, for example, Figure 2). The power of the f-hybrid, for
an intermediate f, was explored by [71] using restricted forms of protocols.

Randomized secure function evaluation. A two-party randomized function
f(z,y): X xY — RZ is a function that, upon receipt of the inputs x and
y, samples an output according to the distribution ps(z|z,y) over the samples
space Z. Kilian [48] characterized all complete randomized functions. Any func-
tion that has an “embedded generalized OR-minor” (refer to Definition 4) is

5 For an insight into some of the bottlenecks encountered for this problem, consider an
oracle that allows the computation of f using t interactive rounds. If f is a function
where both parties influence the output, then there exists a round where one party
can predict the final output with 1/¢ additional advantage than the other party. The
primary origin of the non-triviality is the fact that the oblivious transfer protocol
can prescribe the parties to partially run the oracle-protocol evaluating f up to this
round. This additional advantage in output prediction of one party, for example,
may be amplified into an oblivious transfer protocol using the techniques of [23].
Consequently, this problem is extremely subtle and one of the most challenging
open problems in this field.



complete. Recently, [24] characterized functions with 2-round protocols. Beyond
these characterization, not much is known in the literature and most fundamen-
tal characterization problems in this field are essentially open. However, there is
sufficient evidence that the landscape of randomized secure function evaluation
is extremely rich and fascinating. For example, even when |X| = |Y| = 2 the
authors know of functions (with |Z| = (¢ + 1)) that require ¢ rounds of commu-
nication, for any ¢ € N. Furthermore, even for |X| = |Y| = 2 and |Z| = 3, there
are random function evaluations that are of intermediate complexity [24].

In the field of black-box separation, the seminal work of Impagliazzo and
Rudich [45] first proposed the notion of black-box separation between crypto-
graphic primitives. Since then, there has been many influential works [72, 74,
28, 27, 29, 26, 69] in this line of research. Below, we elaborate on a few works
that are most relevant to us.

Firstly, for the fair coin-tossing in the random oracle model, the work of
Dachman-Soled, Lindell, Mahmoody, and Malkin [21] showed that when the
message complexity is small, random oracle can be compiled away and hence is
useless for fair coin-tossing. In another work, Dachman-Soled, Mahmoody, and
Malkin [22] studied a restricted type of protocols that they called “function-
oblivious” and showed that for this particular type of protocols, random oracles
cannot yield optimal fair coin-tossing. Recently, Maji and Wang [59] resolved
this problem in the full generality. They showed that any r-message coin-tossing
protocol in the random oracle model must be £2(1/4/r)-unfair.

In a recent work of Haitner, Nissim, Omri, Shaltiel, and Silbak [37] and
Haitner, Makriyannis, and Omri [36], they proved that, for any constant r, the
existence of an r-message fair coin-tossing protocol that is more secure than
1/4/r implies the existence of (infinitely often) key agreement protocols.

1.3 Technical Overview

In this section, we present a high-level overview of our proofs. We start by
recalling the proofs of Maji and Wang [59].

Before we begin, we need to introduce the notion of Alice and Bob’s defense
coins. At any instance of the protocol evolution, Alice has a private defense coin
€ {0, 1}, referred to as the Alice defense coin, which she outputs if Bob aborts
the protocol. Similarly, Bob has a Bob defense coin. When Alice prepares a
next message of the protocol, she updates her defense coin. However, when Bob
prepares a next message of the protocol, Alice’s defense coin remains unchanged.
Analogously, Bob updates his defense coin when preparing his next messages in
the protocol.

Abstraction of Magi and Wang [59] Technique. Consider an arbitrary fair coin-
tossing protocol 7@ where Alice and Bob have black-box access to some oracle
O. In their setting, O is a random oracle. Let  and X be the message complexity
and the expected output of this protocol. They used an inductive approach to
prove this protocol is (¢ - X(1 — X)/+/r)-insecure as follows (c is a universal
constant).
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Fig. 3. An intuitive illustration of the approach of Maji and Wang [59].

For every possible first message of this protocol, they consider two attacks
(refer to Figure 3). Firstly, parties can attack by immediately abort upon this
first message. Secondly, parties can defer their attack to the remaining sub-
protocol, which has only r — 1 messages. Suppose when the first message is m;,
the remaining sub-protocol has expected output x;. Additionally, the expectation
of Alice and Bob defense is a; and b;. The effectiveness of the first attack is
precisely

|zi — ail + |zi — bil,

where |z; — a;| is the change of Alice’s output if Bob aborts, and analogously,
|x; — b;] is the change of Bob’s output if Alice aborts. On the other hand, by the
inductive hypothesis, we know the effectiveness of the second attack is at least

c-xi(1—a;)/Vr—1.
Now, they employed the results of [46] (refer to Imported Lemma 1) and show

that the maximum of these two quantities is lower bounded by

% (@i — @) + (20— an)? + (20— bi)?) .
Define potential function &(z,a,b) := (1 — x) + (x — a)? + (z — b)2. Maji
and Wang noted that if Jensen’s inequality holds, i.e.,
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then the proof is complete. This is because the overall effectiveness of the attack
is lower bounded by
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> X(1-X).
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To prove Equation 1, they noted that @(z, a,b) could be rewritten as
d(z,a,b) =z + (x —a — b)* — 2ab.

Observe that z and (z — a — b)? are convex functions, and hence Jensen’s in-
equality holds. The only problematic term is ab. To resolve this, they noted that
suppose we have the following guarantee.

Conditioned on the partial transcript,
Alice private view and Bob private view are (close to) independent.

Then we shall have E[a;b;] ~ E[a;] E[b;] (refer to Claim 1).° Consequently,

Equation 1 shall hold land the prZ)of is done.

Note that the argument thus far is oblivious to the fact that the oracle in
use is a random oracle. For any oracle O, if we have the guarantee above, this
proof will follow.

In particular, when the oracle in use is the random oracle, Maji and Wang
observed that, standard techniques (namely, the heavy querier [8]) do ensure
that Alice private view and Bob private view are (close to) independent. This
completes their proof.

Ezxtending to f-hybrid. When f is a complete function, one can build oblivious
protocol in the f-hybrid model and, consequently, by the MNS protocol [61],
optimal fair coin-tossing does exist in the f-hybrid model.

On the other hand, if f is not complete, Kilian [48] showed that f must satisfy
the cross product rule (refer to Definition 4). This implies that conditioned on
the partial transcript, which includes ideal calls to f, Alice and Bob private view
are (perfectly) independent (refer to Lemma 3). Therefore, the proof strategy of
Maji and Wang [59] is applicable.

Ezxtending to Public-key Encryption. Our proof for the public-key encryption
follows from the ideas of Mahmoody, Maji, and Prabhakaran [56]. First, we
define a collection of oracles PKE,, (refer to Section 5.1), with respect to which
public-key encryption exists. To prove that optimal fair coin-tossing protocol
does not exist, it suffices to ensure that Alice and Bob private view are (close to)
independent. However, since with the help of PKE,, oracle, Alice and Bob can
agree on a secret key such that a third party, Eve, who sees the transcript and
may ask polynomially many queries to the oracle, cannot learn any information
about the key. It is impossible to ensure the independence of the private views
by only invoking a public algorithm.

To resolve this, [56] showed that one could compile any protocol 7 in the
PKE,, oracle to be a new protocol «’ in the PKE,, oracle where parties never

5 In particular, if Alice private view and Bob private view are perfectly independent,
we shall have E [a:b;] = E [a:] E [b:].
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query the decryption oracle (refer to Imported Theorem 1). This compiler satis-
fies that given a local view of Alice (resp., Bob) in protocol 7, one could simulate
the local view of Alice (resp., Bob) in protocol 7’ and vice versa. Therefore, in-
stead of considering a fair coin-tossing protocol in the PKE,, oracle model, one
could consider a fair coin-tossing protocol in the PKE,, oracle model where par-
ties never query the decryption oracle. And [56] showed that, when the parties
do not call the decryption oracle, there does exist a public algorithm, namely the
common information learner, who can find all the correlation between Alice and
Bob (refer to Imported Theorem 2). And conditioned on the partial transcript
with the additional information from the common information learner, Alice and
Bob private view are (close to) independent. Therefore, we can continue with
the proof-strategy of Maji and Wang [59].

2 Preliminaries

For a random function f: X — Y, we shall use f(z;s) for f evaluated with input
x and randomness s.

We use uppercase letters for random variables, (corresponding) lowercase
letters for their values, and calligraphic letters for sets. For a joint distribution
(A, B), A and B represent the marginal distributions, and A x B represents
the product distribution where one samples from the marginal distributions A
and B independently. For two random variables A and B distributed over a
(discrete) sample space £2, their statistical distance is defined as SD (A, B) := 1.
> wenlPr[A = w] = Pr[B = w]|.

For a sequence (Xi,Xa,...), we use X<; to denote the joint distribution
(X1, Xs,...,X;). Similarly, for any (z1,z2,...) € 21 x 25 x---, we define
<= (T1,Z2,...,2;) € 21 X 29 %+ - x ;. Let (M1, Ma, ..., M,) be a joint dis-
tribution over sample space §21 X £25 X - - - X {2,., such that for any i € {1,2,...,n},
M; is a random variable over £2;. A (real-valued) random variable X; is said to be
M<; measurable if there exists a deterministic function f: 21 x---x §2; = R such
that X; = f(My,..., M;). A random variable 7: 2 x --- x £, — {1,2,...,r}
is called a stopping time, if the random variable 1.<; is M<; measurable, where
1 is the indicator function. For a more formal treatment of probability spaces,
o-algebras, filtrations, and martingales, refer to, for example, [73].

The following inequality shall be helpful for our proof.

Theorem 1 (Jensen’s inequality). If f is a multivariate convex function,
then E[f (X)} >f (E {)_(1 ) , for all probability distributions X over the domain
of

In particular, f(x,y,2) = (x —y — 2)? is a tri-variate convex function where
Jensen’s inequality applys.

3 Fair Coin-tossing Protocol in the f-hybrid Model

Let f: X XY — Z be an arbitrary (possibly randomized) function. As standard
in the literature, we shall restrict to f such that the input domain X and Y and
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the range Z are of constant size. A two-party protocol in the f-hybrid model is
defined as follows.

Definition 1 (f-hybrid Model [15, 53]). A protocol between Alice and Bob
in the f-hybrid model is identical to a protocol in the plain model except that
both parties have access to a trusted party realizing f. At any point during the
execution, the protocol specifies which party is supposed to speak.

— Alice/Bob message. If Alice is supposed to speak, she shall prepare her
next message as a deterministic function of her private randomness and the
partial transcript. If Bob is supposed to speak, his message is prepared in a
similar manner.

— Trusted party message. At some point during the execution, the protocol
maght specify that the trusted party shall speak next. In this case, the protocol
shall also specify a natural number £, which indicates how many instances of
f should the trusted party compute. Alice (resp., Bob) will prepare her inputs
Z=(x1,...,2¢) (resp., ¥ = (y1,...,y¢)) and send it privately to the trusted
party. The trusted party shall compute (f(z1,y1),..., f(xe,y¢)) and send it
as the next message.

In this paper, we shall restrict to fail-stop adversarial behavior.

Definition 2 (Fail-stop Attacker in the f-hybrid Model). A fail-stop at-
tacker follows the protocol honestly and might prematurely abort. She might de-
cide to abort when it is her turn to speak. Furthermore, during the trusted party
message, she shall always receive the trusted party message first and, based on
this message, decide whether to abort or not. If she decides to abort, this action
prevents the other party from receiving the trusted party message.

In particular, we shall focus on fair coin-tossing protocols in the f-hybrid
model.

Definition 3 (Fair Coin-tossing in the f-hybrid Model). An (X, r)-fair
coin-tossing in the f-hybrid model is a two-party protocol between Alice and Bob
in the f-hybrid model such that it satisfies the following.

— Xy-Expected Output. At the end of the protocol, parties always agree on
the output € {0,1} of the protocol. The expectation of the output of an honest
execution is Xo € (0,1).

— r-Message Complexity. The total number of messages of the protocol is
(at most) r. This includes both the Alice/Bob message and the trusted party
message.

— Defense Preparation. Anytime a party speaks, she shall also prepare a
defense coin based on her private randomness and the partial transcript. Her
latest defense coin shall be her output when the other party decides to abort.
To ensure that parties always have a defense to output, they shall prepare a
defense before the protocol begins.
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— Insecurity. The insecurity is defined as the maximum change a fail-stop
adversary can cause to the expectation of the other party’s output.

For any (randomized) functionality f, Kilian [48] proved that if f does not
satisfy the following cross product rule, f is complete for information-theoretic
semi-honest adversaries. That is, for any functionality g, there is a protocol in
the f-hybrid model that realizes g, which is secure against information-theoretic
semi-honest adversaries. In particular, this implies that there is a protocol in the
f-hybrid model that realizes oblivious transfer.

Definition 4 (Cross Product Rule). A (randomized) functionality f: X x
Y — Z is said to satisfy the cross product rule if for all xg,x1 € X, yo,y1 € YV,
and z € Z such that

Pr[f(zo,y0) = 2] >0 and Pr[f(z1,y0) = 2] > 0,

we have

Pr(f(xo,v0) = 2] - Pr[f(z1,31) = 2] = Pr[f(z1,90) = 2] - Pr[f (20, y1) = 2].

We recall the MNS protocol by Moran, Naor, and Segev [61]. The MNS
protocol makes black-box uses of the oblivious transfer as a subroutine to con-
struct optimal-fair coin-tossing protocols. In particular, their protocol enjoys
the property that any fail-stop attack during the oblivious transfer subroutine is
an entirely ineffective attack. Therefore, the MNS protocol, combined with the
results of Kilian [48], gives us the following theorem.

Theorem 2 ([48, 61]). Let f be a (randomized) functionality that is complete.
For any Xo € (0,1) and r € N*, there is an (Xo, r)-fair coin-tossing protocol in
the f-hybrid model that is (at most) O(1/r)-insecure against fail-stop attackers.

Remark 1 (On the necessity of the unfairness of f). We emphasize that it is
necessary that in the f-hybrid model, f is realized unfairly. That is, the adver-
sary receives the output of f before the honest party does. If f is realized fairly,
i.e., both parties receive the output simultaneously, it is possible to construct
perfectly-secure fair coin-tossing. For instance, let f be the XOR function. Con-

sider the protocol where Alice samples x & {0, 1}, Bob samples y & {0,1}, and
the trusted party broadcast f(z,y), which is the final output of the protocol.
Trivially, one can verify that this protocol is perfectly-secure.

Intuitively, the results of Kilian [48] and Moran, Naor, and Segev [61] showed
that when f is a functionality that does not satisfy the cross product rule, a
secure protocol realizing f can be used to construct optimal-fair coin-tossing.

In this work, we complement the above results by showing that when f is a
functionality that does satisfy the cross product rule, a fair coin-tossing protocol
in the f-hybrid model is (qualitatively) as insecure as a fair coin-tossing protocol
in the information-theoretic model. In other words, f is completely useless for
fair coin-tossing. Our results are summarized as the following theorem.
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Theorem 3 (Main Theorem for f-hybrid). Let [ be a randomized function-
ality that is not complete. Any (Xo,r)-fair coin-tossing protocol in the f-hybrid

model is (at least) Q(w)—insecure.

4 Proof of Theorem 3

4.1 Properties of Functionalities

Let f be a functionality that satisfies the cross product rule. We start by ob-
serving some properties of f. Firstly, let us recall the following definition.

Definition 5 (Function Isomorphism [57]). Let f: X xY — Z and g: X X
Y — Z' be any two (randomized) functionalities. We say f < g if there exist
deterministic mappings Mpa: X x Z' — Z and Mg: Y x Z' — Z such that, for
allx € X, y €Y, and randomness s,

Ma (2, 9(7,y;5)) = Mg (y, 9(7,y; 5))

and

We say f and g are isomorphic (i.e., f = g)if f < g and g < f.

Intuitively, f and g are isomorphic if securely computing f can be realized
by one ideal call to g without any further communication and vise versa. As an

example, the (deterministic) XOR functionality [g (1)} is isomorphic to [g é]
Given two isomorphic functionalities f and g, it is easy to see that there is a
natural bijection between protocols in the f-hybrid model and g-hybrid model.

Lemma 1. Let f and g be two functionalities such that f = g. For every fair
coin-tossing protocol  in the f-hybrid model, there is a fair coin-tossing protocol
7' in the g-hybrid model such that

— 7w and ' have the same message complezity v and expected output X.
— For every fail-stop attack strategy for w, there exists a fail-stop attack strategy
for @' such that the insecurities they cause are identical and vice versa.

Proof (Sketch). Given any protocol 7 in the f-hybrid model between A and B,
consider the protocol 7’ in the g-hybrid model between A’ and B’. In 7/, A’
simply simulates A and does what A does. Except when the trusted party sends
the output of g, A’ uses the mapping M to recover the output of f and feeds it
to A. B’ behaves similarly. Easily, one can verify that these two protocols have
the same message complexity and expected output. Additionally, for every fail-
stop adversary A* for 7, there is a fail-stop adversary (A*)/ for 7’ that simulates
A* in the same manner, which deviates the output of Bob by the same amount.

We are now ready to state our next lemma.
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Lemma 2 (Maximally Renaming the Outputs of f). Let f: X XY — Z
be a (randomized) functionality that is not complete. There exists a functionality
fli X xY — Z' such that f = f' and f' satisfies the following strict cross
product rule. That is, for all xg,z1 € X, yo,y1 €Y, and 2’ € Z', we have

Pr(f'(z0,90) = 2] - Prf'(x1,91) = 2] = Pr[f'(x1,90) = 2] - Pr[f" (w0, 31) = 2'].

Following the example above, the XOR functionality [? é] satisfies the cross

product rule, i.e., XOR is not complete, but it does not satisfy the strict cross
product rule since

Pr[XOR(0,0) = 1] - Pr[XOR(1, 1) = 1] # Pr[XOR(1,0) = 1] - Pr[XOR(0, 1) = 1].

On the other hand, functionality [g }3} is isomorphic to XOR and does satisfy the

strict cross product rule.

Proof (Proof of Lemma 2). We shall rename the output of f as follows. For all
z € Z, define

S, ={(z,y):xe X, ye ¥, Pr[f(z,y) = z] > 0}.

By the cross product rule, we know that there does not exist xg,x1 € X and
Yo, y1 € Y such that

(‘r()vyo)?(x()ayl)?(xlvyo) G‘SZ but (‘Tlayl) ¢SZ

Therefore, we can always partition S, as a collection of combinatorical rectangles.
That is, there exists subsets X7,..., Ay C X and Vq,...,Vr C Y such that

14
S.=J X x i,
=1

and
V1§Z<j§£ XiﬁXj:Q) and yiﬂyj:@.

Now define randomized functionality f': X x Y — Z’ as follows. Given input
x and y with randomness s, let z = f(z,y;s). Let ¢ be the index such that
(z,y) € X; x V;. Define

flzyss) =20,
Here, 2" is an (arbitrarily picked) distinct output.

It is trivial to verify that, given f’(x,y), Alice and Bob can recover the
same sample, which is identically distributed as f(z,y). On the other hand,
given private input x (resp., y) and a sample of f(z,y), Alice (resp., Bob) can
recover a sample of f/(z,y). Additionally, they shall always recover the same
sample, which is identically distributed as f’(x,y). This proves that f and f’
are isomorphic.
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Next, we verify that f’ satisfies the strict cross product rule. Given any
T, € X, yo,y1 €V, and 2() € Z', if either 2o ¢ X; or x1 ¢ Aj, it is trivially
true. Similarly, if either yo ¢ ); or y1 ¢ ), it is also trivial. Otherwise, when
both zg,z; € X; and yg,y1 € Vi, strict cross product rule follows from cross
product rule.

This completes the proof.

By Lemma 1, the insecurity of a fair coin-tossing protocol in the f-hybrid
model is identical to a fair coin-tossing protocol in the f’-hybrid model when
f = f’. Therefore, in the rest of this section, without loss of generality, we
shall always assume f is maximally renamed according to Lemma 2 such that it
satisfies the strict cross product rule.

4.2 Notations and the Technical Theorem

Let 7 be an (X, r)-fair coin-tossing protocol in the f-hybrid model. We shall use
RA and RB to denote the private randomness of Alice and Bob. We use random
variable M; to denote the i*" message of the protocol, which could be either an
Alice/Bob message or a trusted party message. Let X; be the expected output
of the protocol conditioned on the first ¢ messages of the protocol. In particular,
this definition is consistent with the definition of Xj.

For an arbitrary i, we consider both Alice aborts and Bob aborts the i*"
message. Suppose the i*” message is Alice’s message. Alice abort means that she
aborts without sending this message to Bob. Conversely, Bob abort means he
aborts in his next message immediately after receiving this message. On the other
hand, if this is a trusted party message, then both a fail-stop Alice and a fail-
stop Bob can abort this message. This prevents the other party from receiving
the message. We refer to the defense output of Alice when Bob aborts the it"
message as Alice’s i*" defense. Similarly, we define the i*" defense of Bob. Let D
(resp., DB) be the expectation of Alice’s (resp., Bob’s) i!" defense conditioned
on the first ¢ messages.

Now, we are ready to define our score function.

Definition 6. Let m be a fair coin-tossing protocol in the f-hybrid model with
message complexity r. Let T be a stopping time. Let P € {A,B, T} be the party
who sends the last message.” We define the score function as follows.

Score (m,7) 1= B[Lirsryv(pza) - [Xr = DP| + Lirryv(pey - [ X- = D2|].

The following remarks, similar to [46, 59], provide additional perspectives
toward this definition.

Remark 2.
1. In the information-theoretic plain model, for every message of the protocol,
one usually only consider the attack by the sender of this message. The attack
by the receiver, who may abort immediately after receiving this message,

7 We use A, B, and T to stand for Alice, Bob, and the trusted party, respectively.
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usually is ineffective. This is because the sender is not lagging behind in terms
of the progress of the protocol. However, in the f-hybrid model, we have
trusted party messages, which reveal information regarding both parties’
private randomness. Therefore, both parties’ defenses may lag behind, and
both parties’ attacks could be effective. Hence, in our definition of the score
function, for every message we pick in the stopping time, we consider the
effectiveness of both parties’ attacks.

. The last message of the protocol is a boundary case of the above argument.
Suppose Alice sends the last message of the protocol, Bob does not have
the opportunity to abort after receiving this message. Similarly, if this is a
Bob message, Alice cannot attack this message. On the other hand, if the
last message is a trusted party message, then both parties could potentially
attack this message. This explains the indicator function in our definition.

. Finally, given a stopping time 7* that witnesses a high score. We can always
find a fail-stop attack strategy that deviates the expected output of the other
party by i - Score (m,7*) in the following way. For Alice, we shall partition
the stopping time 7* by considering whether X, > DB or not. Similarly,
we partition 7* for Bob. These four attacks correspond to either Alice or
Bob favoring either 0 or 1. The quality of these four attacks sums up to
be Score (7, 7*). Hence, one of these four fail-stop attacks might be at least
1 - Score (m, 7*) effective.

The score function measures the effectiveness of a fail-stop attack corresponds

to a stopping time 7. We are interested in the effectiveness of the most devas-
tating fail-stop attacks. This motivates the following definition.

Definition 7. Let w be a fair coin-tossing protocol in the f-hybrid model. Define

Opt (7) := max Score (7, 7).

Now, we are ready to state our main theorem, which shows that the most

devastating fail-stop attack is guaranteed to achieve a high score. In light of the
remarks above, Theorem 4 directly implies Theorem 3.

Theorem 4. For any (Xo,r)-fair coin-tossing protocol 7 in the f-hybrid model,
we have

where I, 1=

Opt (m) > I - Xo (1 — Xo),
v2-1

T

4.3 Inductive Proof of Theorem 4

In this section, we shall prove Theorem 4 by using mathematical induction on
the message complexity r. Let us first state some useful lemmas.

Firstly, we note that in the f-hybrid model, where f is a (randomized) func-

tionality that satisfies the strict cross product rule, Alice view and Bob view are
always independent conditioned on the partial transcript.
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Lemma 3 (Independence of Alice and Bob view). For any i and partial
transcript m<;, conditioned on this partial transcript, the joint distribution of
Alice and Bob private randomness is identical to the product of the marginal
distribution. That is,

SD< (RA RP)|M<; =m<; , (R*M<; =m<;) x (R®|M<; = mgi)) =0.

In particular, this lemma implies the following claim.

Claim 1 Let w be an arbitrary fair coin-tossing protocol in the f-hybrid model.
Suppose there are £ possible first messages, namely, m§1)7m§2)7 . ,mgz), each
happens with probability p™), p@ ... p® . Suppose conditioned on the first mes-
sage being My = m(li), the expected defense of Alice and Bob are d?’(i) and d?’(i)

respectively. Then we have

L
Zp(i) . d?»(’)d?(l) _ Dé . D(l)a

=1

Lemma 3 and Claim 1 can be proven in a straightforward manner. Hence, we
defer them to Supporting Material A. Finally, the following lemma from [46]
shall be helpful as well.

Imported Lemma 1 ([46]) For all P € [0,1] and Q € [0,1/2], if P and Q

satisfy that
P

< -
@= 1+ P2’
then for all x,c, B € [0,1], we have

max (P-z(1 —z), |x—a|+|m—5|)ZQ-(m(l—x)+(x—a)2+(x—5)2).

In particular, for any integer r > 1, the constraints are satisfied, if we set P = I,
and Q = I'y41, where I := 4/ @

Base case: r = 1 We are now ready to prove Theorem 4. Let us start with
the base case. In the base case, the protocol consists of only one message. Recall
that the last message of the protocol is a boundary case of our score function.
It might not be the case that both parties can attack this message. Hence, we
prove it in different cases.

Case 1: Alice message. Suppose this message is an Alice message. In this case,
we shall only consider the attack by Alice. By definition, with probability Xg,
Alice will send a message, conditioned on which the output shall be 1. And with
probability 1 — X, Alice will send a message, conditioned on which the output
shall be 0. On the other hand, the expectation of Bob’s defense will remain the
same as Df. Therefore, the maximum of the score shall be

Xo-|1 - DE|+ (1 - Xo) - [0 — DE|,
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which is
> Xo (1 - Xo).

In particular, this is
>I-Xo(1-Xp).

Case 2: Bob message. This case is entirely analogous to case 1.
Case 3: Trusted party message. In this case, we shall consider the effectiveness

of the attacks by both parties. Suppose there are ¢ possible first message by
the trusted party, namely, mgl),mf), . ,mgz), each happens with probability
pM,p®@ . p® . Conditioned on first message being M; = mgz), the output of

the protocol is xgi). We must have zgi) € {0, 1} since the protocol has ended and
parties shall agree on the output. Furthermore, let the expected defense of Alice

and Bob be d?’(i) and dlB’(i). Therefore, the maximum of the score will be

S0 (4 -] - ).

‘We have

4
Z (). (‘x@ _ di‘*(” )
=1

14
>3 0. (xgw (1= o) + (o - d;\,u))Q + (o - d?,u))Q)
=1
(Since acgi) €{0,1})

=30 (xy) + (o) a0~ POV dlrs,u))

(Identity Transformation)

4
>Xo+ (Xo — DN = DB)* = 3" p@ - 2ap V)
i=1

(Jensen’s inequality on convex function F(z,y,z) = (z —y — 2)?)

=X+ (Xo — D — DB)* — 2D} - DB (Claim 1)
=Xo (1 — Xo) + (X0 — D@)2 + (Xo — DE)2 (Identity Transformation)
>Xo (1 - Xo)

>I' - Xo (1 — Xo)

This completes the proof of the base case.

Inductive Step Suppose the statement is true for message complexity r. Let 7

be an arbitrary protocol with message complexity r+ 1. Suppose there are ¢ pos-

sible first messages, namely, mgl), m?), e ,mﬁ’f), each happens with probability
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pM p@ . p® . Conditioned on first message being M; = mgi), the output of

the protocol is acgi) and the expected defense of Alice and Bob are d?’(i) and
dlB’(i) respectively. Note that conditioned on the first message being M; = mgi),
the remaining protocol 7(?) becomes a protocol with expected output acgi) and
message complexity r. By our inductive hypothesis, we have

ot () 2 1,9 (120

On the other hand, we could also pick the first message mgi) as our stopping
time, which yields a score of

‘xgn D)

+ ’a:(ll) — dlB’(i) .

Therefore, the stopping time that witnesses the largest score yields (at least) a
score of
max (Fr . xgi) (1 — wgl)) , )

>0 (xgi) (1 _ xgz‘)) 4 (xgz') _ di\’(i))z N (xgi) B d?(i))z)

(Imported Lemma 1)

NONIpNO)

Therefore, Opt (7) is lower bounded by
~ (i) (i) ORI NON RO RI-NOM
Zp(l) RASSE <$1 (1_‘%1' ) + (xl —dy ) + (xl —dy ) )
i=1

¢ . . . . N 2 . .
IS0 (mgn b (o) -0 - BOY zdi‘*md?(”)
i=1

(Identity Transformation)

¢
>l - <X0 +(Xo - DA = DB) =3 p0. 2d/f’(l)d'13’(l)>
i=1
(Jensen’s inequality on convex function F(xz,y,z2) := (v —y — 2)?)

T - (Xo + (Xo— DA — DB)* —2DA. DE) (Claim 1)
2 2
=1+ (Xo (1= Xo) + (Xo - D) + (Xo - DE)*)
(Identity Transformation)
>l Xo (1 - Xo)
This completes the proof of the inductive step.

5 Black-box uses of Public-key Encryption is Useless for
Optimal Fair Coin-tossing
In this section, we prove that public-key encryption used in a black-boxed manner

shall not enable optimal fair coin-tossing. Our objective is to prove the existence
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of an oracle, with respect to which public-key encryption exists, but optimal fair
coin-tossing does not.

5.1 Public-key Encrytion Oracles

Let n be the security parameter. We follow the work of [56] and define the
following set of functions.

— Gen: {0,1}" — {0,1}*". This function is a random injective function.

— Enc: {0,1}*" x{0,1}" — {0, 1}*". This function is uniformly randomly sam-
pled among all functions that are injective with respect to the second input.
That is, when the first input is fixed, this function is injective.

— Dec: {0,1}" x {0,1}*" — {0,1}" U {L}. This function is the uniquely de-
termined by functions Gen and Enc as follows. Dec takes as inputs a secret-
key sk € {0,1}" and a ciphertext ¢ € {0,1}*". If there exists a message
m € {0,1}" such that Enc(Gen(sk), m) = ¢, define Dec(sk,c) := m. Other-
wise, define Dec(sk,c) := L. Note that such message m, if exists, must be
unique, because Enc is injective with respect to the second input.

— Testy: {0,1}*" — {0,1}. This function is uniquely determined by function
Gen. It takes as an input a public-key pk € {0, 1}3". If there exists a secret-
key sk € {0,1}" such that Gen(sk) = pk, define Test;(pk) := 1. Otherwise,
define Test; (pk) := 0.

— Testy: {0,1}*" x {0,1}*™ — {0,1}. This function is uniquely determined by
function Enc. It takes as inputs a public-key pk € {0, 1}3" and a ciphertext
¢ € {0,1}*". If there exists a message m such that Enc(pk,m) = ¢, define
Testy(pk, ¢) := 1. Otherwise, define Testy(pk, c¢) := 0.

We shall refer to this collection of oracles the PKE oracle. Trivially, the
PKE oracle enables public-key encryption. We shall prove that it does not en-
able optimally-fair coin-tossing. We remark that it is necessary to include the
test functions Test; and Tests. Otherwise, it can be used to construct oblivious
transfer protocols against semi-honest adversaries [28, 54|, which can be further
used to construct optimally-fair coin-tossing protocols [61].

5.2 Owur Results
We shall prove the following theorem.

Theorem 5 (Main theorem for PKE Oracle). There exists a universal
polynomial p(-,-,-,-) such that the following holds. Let w be any fair coin-tossing
protocol in the PKE oracle model, where Alice and Bob make at most m queries.
Let X be the expected output, and r be the message complexity of w. There exists
an (information-theoretic) fail-stop attacker that deviates the expected output of

the other party by (at least)
Xo(1—Xo
9] (0 ( ) ) .

\/,F
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This attacker shall ask at most p (n, m,r, ﬁ) additional queries.

It is instructive to understand why Theorem 3 does not imply Theorem 5. One
may be tempted to model the public-key encryption primitive as an idealized
secure function evaluation functionality to prove this implication. The idealized
functionality for public-key encryption delivers sender’s message to the receiver,
while hiding it from the eavesdropper. So, the “idealized public-key encryption”
functionality is a three-party functionality where the sender’s input is delivered
to the receiver; the eavesdropper has no input or output. This idealized effect
is easily achieved given secure point-to-point communication channels, which
we assume in our work. The non-triviality here is that our result is with re-
spect to an oracle that implements the public-key encryption functionality. An
oracle for public-key encryption is not necessarily used just for secure message
passing. Section 6 has a discussion elaborating the difference between an “ideal
functionality” and an “oracle implementing the ideal functionality.”

Remark 3. As usual in the literature [21, 22, 59|, we shall only consider instant
protocols. That is, once a party aborts, the other party shall not make any
additional queries to defend, but directly output her current defense coin. We
refer the reader to [21] for justification and more details on this assumption.

In fact, our proof technique is sufficient to prove the following stronger the-
orem.

Theorem 6. There exists a universal polynomial p(-,-,-,-) such that the follow-
ing holds. Let f be any (randomized) functionality that is not complete. Let m
be any fair coin-tossing protocol in the f-hybrid model where parties have access
to the PKE oracle model. Assume Alice and Bob make at most m queries. Let
Xo be the expected output, and r be the message complexity of w. There exists
an (information-theoretic) fail-stop attacker that deviates the expected output of
the other party by (at least)

(2155

This attacker shall ask at most p (n, m,r, M) additional queries.

Our proof strategy is similar to that of [56]. It consists of the following two
steps.

1. Given a protocol in the PKE oracle model, we shall first convert it into a
protocol where parties do not invoke the decryption queries. By Imported
Theorem 1 proven in [56], we can convert it in a way such that the insecurity
of these two protocols in the presence of a semi-honest adversary is (almost)
identical. In particular, this ensures that the insecurity of fair coin-tossing
protocol in the presence of a fail-stop adversary is (almost) identical.
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2. Next, we shall extend the results of [59], where they proved a fair coin-tossing
protocol in the random oracle model is highly insecure, to the setting of PKE
oracles without decryption oracle. Intuitively, The proof of [59] only relied on
the fact that in the random oracle model, there exists a public algorithm [§]
that asks polynomially many queries and decorrelate the private view of Alice
and Bob. Mahmoody, Maji, and Prabhakaran [56] proved that (summarized
as Imported Theorem 2) the PKE oracles without the decryption oracle
satisfies the similar property. Hence, the proof of [59] extends naturally to
this setting.

Together, these two steps prove Theorem 5. The first step is summarized in
Section 5.3. The second step is summarized in Section 5.4.

5.3 Reduction from PKE Oracle to Image Testable Random Oracle

A (keyed version of) image-testable random oracles is a collection of pairs of
oracles (R*®Y, T*®) parameterized by a key, such that for every key, the following
holds.

— R {0,1}" — {0,1}*" is a randomly sampled injective function.

— T%: {0,1}*" — {0,1} is uniquely determined by function R as follows.
Define T*® () := 1 if there exists an o € {0,1}" such that R*Y(a) = 8.
Otherwise, define 7% (3) = 0.

Observe that the PKE oracle without the decryption oracle Dec is exactly
a (keyed version of) image-testable random oracles with the keys drawn from
{L}U{0,1}%" If the key is L, it refers to the pair of oracles (Gen, Test, ). If the
key € {0,1}%", it refers to the pair of oracles (Enc(key, -), Testy(key, -)). We shall
refer to the PKE oracle without the decryption oracle Dec as ITRO.

We shall use the following imported theorem, which is implicitly proven in
[56].

Imported Theorem 1 ([56]) There exists a universal polynomial p(-,-) such
that the following holds. Let w be a fair coin-tossing protocol in the PKE oracle
model. Let Xy and r be the expected output and message complexity. Suppose
Alice and Bob ask (at most) m queries. For any € > 0, there exists a fair coin-
tossing protocol ' in the ITRO model such that the following holds.

— Let X{; and v’ be the expected output and message complexity of 7'. Then,
' =r and | X) — Xo| <e.

— Parties asks at most p(m,1/€) queries in protocol 7'.

— For any semi-honest adversary A’ for protocol 7', there exists a semi-honest
adversary A for protocol w, such that the view of A is e-close to the view of
A’. And vice versa. In particular, this implies that if ™ is a-insecure. w is
(at least) (a0 — €)-insecure.
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The intuition behind this theorem is the following. To avoid the uses of
decryption oracle, parties are going to help each other decrypt. In more detail,
suppose Alice generates a ciphertext using Bob’s public key. Whenever the prob-
ability that Bob invokes the decryption oracle on this ciphertext is non-negligibly
high, Alice will directly reveal the message to Bob. Hence, Bob does not need
to use the decryption oracle. This shall not harm the security as a semi-honest
Bob can recover the message by asking polynomially many additional queries.
We refer the readers to [56] for more details.

Looking forward, we shall prove that any fair coin-tossing protocol in the

ITRO model is {2 L;XO) -insecure. By setting € to be 1/poly for some suf-

ficiently large polynomial, we shall guarantee that

()

This guarantees that the insecurity of the protocol in the PKE oracle model is
(qualitatively) identical to the insecure of the protocol in the ITRO model.

5.4 Extending the proof of [59] to Image Testable Random Oracle

We first recall the following theorem from [56].

Imported Theorem 2 (Common Information Learner [56]) There exists
a universal polynomial p(-,-) such that the following holds. Let w be any two-party
protocol in the ITRO model, in which both parties make at most m queries. For
all threshold € € (0,1), there exists a public algorithm, called the common infor-
mation learner, who has access to the transcript between Alice and Bob. After
receiving each message, the common information learner performs a sequence of
queries and obtain its corresponding answers from the ITRO. Let M; denote the
it" message of the protocol. Let H; denote the sequence of query-answer pairs
asked by the common information learner after receiving the message M;. Let
T; be the union of the it" message M; and the it" common information learner
message H;. Let V2 (resp., VB) denote Alice’s (resp., Bob’s) private view imme-
diately after message T;, which includes her private randomness, private queries,
and the public partial transcript. , The common information learner guarantees
that the following conditions are simultaneously satisfied.

— Cross-product Property. Fiz any round 1,

E [SD (VA VA |T<i = t<i) , (VP T<i = t<i) x (VP |T<i = t<i))] < e

<i <i

Intuitively, it states that on average, the statistical distance between (1) the
joint distribution of Alice’s and Bob’s private view, and (2) the product of
the marginal distributions of Alice’s private views and Bob’s private views is
small.
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— Efficient Property. The expected number of queries asked by the common
information learner is bounded by p(m,1/€).

This theorem, combined with proof of [59] gives the following theorem.

Theorem 7. There exists a universal polynomial p(-,-,-,-) such that the follow-
ing holds. Let w be a protocol in the ITRO model, where Alice and Bob make at
most m queries. Let Xog and r be the expected output and message complexity.
Then, there exists an (information-theoretic) fail-stop adversary that deviates
the expected output of the other party by

(2155

This attacker asks at most p (n, m,r, M) additional queries.

Below, we briefly discuss why Imported Theorem 2 is sufficient to prove this
theorem. The full proof is analogous to [59] and the proof of the results in the
f-hybrid model. Hence we omit it here.

On a high level, the proof goes as follows. We prove Theorem 7 by induction.
Conditioned on the first message, the remaining protocol becomes an (r — 1)-
message protocol, and one can apply the inductive hypothesis. For every possible
first message i, we consider whether to abort immediately or defer the attack
to the remaining sub-protocol. By invoking Imported Lemma 1, we obtain a
potential function, which characterizes the insecurity of the protocol with first
message being ¢. This potential function will be of the form

(w5, ai,0;) = 2;(1 — 23) + (21 — a;)* + (v — bi)?,

where z;, a;, and b; stands for the expected output, expected Alice defense, and
expected Bob defense, respectively. To complete the proof, [59] showed that it
suffices to prove the following Jensen’s inequality.

E[®(zi, a;,b;)] > (1;3 [z:], Elai] ,E [bi]> :

To prove this, one can rewrite @(z, a,b) as
®(x,a,b) =z + (z —a—b)? — 2ab.

We note that x and (x — a — b)? are convex functions, and hence Jensen’s in-
equality holds. As for the term ab, we shall have

E[aibi] ~ E[ai] - E [bi]

K3 K3 K3
as long as, conditioned on every possible first message i, Alice’s private view
is (almost) independent to Bob’s private view. This is exactly what Imported

Theorem 2 guarantees except for a small error depending on €, which we shall
set to be sufficiently small. Therefore, the proof shall follow.
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6 Open Problems

In this work, we proved that access to ideal invocations to the secure function
evaluation functionalities like the Kushilevitz function (Figure 2) does not en-
able optimal fair coin-tossing. However, we do not resolve the following stronger
statement. Suppose there exists an oracle relative to which there exists a secure
protocol for the Kushilevitz function. Is optimal fair coin-tossing impossible rel-
ative to this oracle?

To appreciate the distinction between these two statements, observe that
there may be additional ways to use the “oracle implementing Kushilevitz func-
tion” than merely facilitating the secure computing of the Kushilevitz function.
More generally, there may be implicit consequences implied by the existence of
such an oracle. For example, “the existence of an efficient algorithm for 3SAT”
not only allows solving 3SAT problems, but it also allows efficiently solving any
problem in PH because the entire PH collapses to P.

This problem is incredibly challenging and one of the major open problems
in this field. The technical tools developed in this paper also bring us closer to
resolving this problem.
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A Missing Proofs

A.1 Proof of Lemma 3

Proof. Let X = (X1,...,X¢) and Y = (Y1,...,Y,) be the random variables of
the private inputs that Alice and Bob send to the trusted party until partial
transcript m<;. Clearly, X is a deterministic function of M. <; and RA. Similarly,
Y is a deterministic function of M<; and RB. Fix any 7* and B, let # and ¢ be
the unique inputs that is consistent with 7 and rB. Then, we have

PI‘[(RA,RB) = (TA,TB)|M§Z‘ = mgi}
—Pr[X =7,V = g‘MSZ- = mei] - Pr[(RA R®) = (A,0%) [ M = mei, X =7,V = ]

:Pr{)_('zf

Mfi = mgz} . PI‘[? = Zj‘MSZ = mgi:|
. PI‘|:RA = TA‘MS,L‘ = mgi,)z = fi| . PI‘|:RB == TB‘MSZ‘ = mgi,? = :lj:|
:PI‘[RA = ’I“A’MSZ' = mgi] . PI‘[RB = TB’MSZ' = mgi],

where in the second identity, we use the fact that f satisfies the strict cross prod-
uct rule. Hence the input of f, given the output, can be sampled independently.

A.2 Proof of Claim 1

Proof. Consider the probability that both Alice’s first defense and Bob’s first
defense are 1. On the one hand, since Alice view and Bob view are independent,
this equals to the product of the probability that Alice’s first defense is 1 and
the probability that Bob’s first defense is 1, i.e., D{' - D§. On the other hand,
conditioned on the first message being M; = mgl), Alice view and Bob view
are still independent. Hence, by the same reasoning, the probability that both

Alice’s first defense and Bob’s first defense are 1 is d?’(i)dlB’(i). Therefore,

L
S0 a0 — D 8.
=1
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