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Abstract

We qualitatively separate semi-honest secure computation of non-trivial secure-function eval-
uation (SFE) functionalities from existence of key-agreement protocols. Technically, we show
the existence of an oracle (namely, PKE-oracle) relative to which key-agreement protocols exist;
but it is useless for semi-honest secure realization of symmetric 2-party (deterministic finite)
SFE functionalities, i.e. any SFE which can be securely performed relative to this oracle can
also be securely performed in the plain model.

Our main result has following consequences.

◦ There exists an oracle which is useful for some 3-party deterministic SFE; but useless for
semi-honest secure realization of any general 2-party (deterministic finite) SFE.

◦ With respect to semi-honest, standalone or UC security, existence of key-agreement proto-
cols (if used in black-box manner) is only as useful as the commitment-hybrid for general
2-party (deterministic finite) SFE functionalities.

This work advances (and conceptually simplifies) several state-of-the-art techniques in the
field of black-box separations:

1. We introduce a general common-information learning algorithm (CIL) which extends the
“eavesdropper” in prior work [IR89, BM09, HOZ13], to protocols whose message can depend
on information gathered by the CIL so far.

2. With the help of this CIL, we show that in a secure 2-party protocol using an idealized
PKE oracle, surprisingly, decryption queries are useless.

3. The idealized PKE oracle with its decryption facility removed can be modeled as a collec-
tion of image-testable random-oracles. We extend the analysis approaches of prior work
on random oracle [IR89, BM09, DLMM11, MMP12, HOZ13] to apply to this class of ora-
cles. This shows that these oracles are useless for semi-honest 2-party SFE (as well as for
key-agreement).

These information theoretic impossibility results can be naturally extended to yield black-box
separation results (cf. [RTV04]).
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1 Introduction

Public-key encryption (PKE) is an important security primitive in a system involving more than two
parties. In this work, we ask if PKE could be useful for protecting two mutually distrusting parties
against each other, if there is no other party involved. More specifically, we ask if the existence
of PKE can facilitate 2-party secure function evaluation (SFE). Informally, our main result in this
work shows the following:

The existence of PKE (as a computational complexity assumption, when used in a black-
box manner) is useless for semi-honest secure evaluation of any finite, deterministic
2-party function.

Here, a complexity assumption being “useless” for a task means that the task can be realized using
that assumption alone (in a black-box manner) if and only if it can be realized unconditionally (i.e.,
information-theoretically).1 As is typical in this line of research, our focus is on deterministic func-
tions whose domain-size is finite. (However, all our results extend to the case when the domain-size
grows polynomially in the security parameter; our proofs (as well as the results we build on) do not
extend to exponentially growing domain-sizes, though.) Technically, we show an “oracle-separation”
result, by presenting a randomized oracle which enables PKE in the information-theoretic setting,
but does not enable SFE for any 2-party function for which SFE was impossible without the oracle.
Then, using standard techniques, this information theoretic impossibility result is translated into
the above black-box separation result [RTV04]. While the above statement refers to semi-honest
security, as we shall shortly see, a similar statement holds for security against active corruption, as
well.

It is instructive to view our result in the context of “cryptographic complexity” theory [MPR10]:
with every (finite, deterministic) multi-party function f , one can associate a computational in-
tractability assumption that there exists a secure computation protocol for f that is secure against
semi-honest corruption.2 Two assumptions are considered distinct unless they can be black-box re-
duced to each other. Then, the above result implies that secure key agreement (i.e., the interactive
analog of PKE) does not belong to the universe of assumptions associated with 2-party functions.
However, it is not hard to see that there are 3-party functions f such that a semi-honest secure
protocol for f (in the broadcast channel model) is equivalent to a key agreement protocol.3 Thus
we obtain the following important conclusion:

The set of computational complexity assumptions associated (in the above sense) with
3-party functions is strictly larger than the set associated with 2-party functions.

1The task here refers to 2-party SFE in the “plain” model. We do not rule out the possibility that PKE is useful
for 2-party SFE in a “hybrid” model, where the parties have access to a trusted third party.

2This is the simplest form of assumptions associated with functionalities in [MPR10], where a more general
framework is presented.

3As an example, consider the 3-party function f(x, y, z) = x ⊕ y. A semi-honest secure protocol π for f over
a broadcast channel can be black-box converted to a key-agreement protocol between Alice and Bob, where, say,
Alice plays the role of the first party in π with the key as its input, and Bob plays the role of the second and third
parties with random inputs. Conversely, a key-agreement protocol can be used as a black-box in a semi-honest secure
protocol for f , in which the first party sends its input to the second party encrypted using a key that the two of them
generate using the key-agreement protocol.
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This answers an open question posed in [MPR10], but raises many more questions. In particular,
we ask if the same conclusion holds if we consider (n + 1)-party functions and n-party functions,
for every n > 2.

Another consequence of our main result is its implications for SFE secure against active cor-
ruption. Following a related work in [MMP12], using characterizations of functions that have SFE
protocols secure against semi-honest and active corruptions [Kus89, Bea89, MPR09, MPR12], we
obtain the following corollary of our main result.

The existence of PKE (as a black-box assumption) is exactly as useful as a commitment
functionality (given as a trusted third party) for secure evaluation of any finite, deter-
ministic 2-party function. This holds for semi-honest security, standalone active security
and UC-security.

Note that for semi-honest security, the commitment functionality is not useful at all (since semi-
honest parties can commit using a trivial protocol), and this agrees with the original statement.
The interesting part of the corollary is the statement about active (standalone or UC) security.
Commitment is a “minicrypt” functionality that can be implemented using one-way functions (in
the standalone setting) or random oracles. PKE, on the other hand, is not a minicrypt primitive
[IR89]. Yet, in the context of guaranteeing security for two mutually distrusting parties, computing
a (finite, deterministic) function, without involving a trusted third party, PKE is no more useful
than the commitment functionality.

In the rest of this section, we state our main results more formally, and present an overview of
the techniques. But first we briefly mention some of the related work.

1.1 Related Work

Impagliazzo and Rudich [IR89] showed that random oracles are not useful against a computationally
unbounded adversary for the task of secure key agreement. This analysis was recently simplified
and sharpened in [BM09, HOZ13]. Haitner, Omri, and Zarosim [HOZ12, HOZ13] show that random
oracles are essentially useless in any inputless protocol.4

Following [IR89] many other black-box separation results have appeared (e.g. [Sim98, GMR01,
BPR+08, KSY11, MM11]). In particular, Gertner et. al [GKM+00] insightfully asked the question
of comparing oblivious-transfer (OT) and key agreement (KA) and showed that OT is strictly more
complex (in the sense of [IR89]). Another trend of results has been to prove lower-bounds on the effi-
ciency of the implementation in black-box constructions (e.g. [KST99, GGKT05, LTW05, HHRS07,
BM07, BM09, HHRS07]). A complementary approach has been to find black-box reductions when
they exist (e.g. [IL89, Ost91, OW93, Hai08, HNO+09]). Also, results in the black-box separation
framework of [IR89, RTV04] have immediate consequences for computational complexity theory.
Indeed, as mentioned above, separations in this framework can be interpreted as new worlds in
Impagliazzo’s universe [Imp95].

Our work relies heavily on [MMP12], where a similar result was proven for one-way functions
instead of PKE. While we cannot use the result of [MMP12] (which we strictly improve upon) in a

4Ideally, a result similar to that of [HOZ13] should be proven in our setting of secure function evaluation too,
where parties do have private inputs, as it would extend to randomized functions as well. While quite plausible, such
a result remains elusive.
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black-box manner, we do manage to exploit the modularity of the proof there and avoid duplicating
any significant parts of the proof.

1.2 Our Contribution

For brevity, in the following we shall refer to “2-party deterministic SFE functions with polynomially
large domains” simply as SFE functions. Also, we consider security against semi-honest adversaries
in the information theoretic setting, unless otherwise specified (as in Corollary 2).

Our main result establishes that there exists an oracle which facilitates key-agreement while
being useless to 2-party SFE.

Theorem 1. There exists an oracle PKE such that, the following hold:

◦ There is a secure key-agreement protocol (or equivalently, a semi-honest secure 3-party XOR
protocol) using PKE.

◦ A general 2-party deterministic function f , with a polynomially large domain, has a semi-
honest secure protocol against computationally unbounded adversaries using PKE if and only
if f has a perfectly semi-honest secure protocol in the plain model.

As discussed below, this proof breaks into two parts — a compiler that shows that the decryption
queries can be omitted, and a proof that the oracle without the decryption queries is not useful for
SFE. For proving the latter statement, we heavily rely on a recent result from [MMP12] for random
oracles; however, this proof is modular, involving a “frontier analytic” argument, which uses a few
well-defined properties regarding the oracles. Our contribution in this is to prove these properties
for a more sophisticated oracle class (namely, family of image-testable random oracles), rather than
random oracles themselves.

As in [MMP12], Theorem 1 translates to a black-box separation of the primitive PKE from
non-trivial SFE. Also, it yields the following corollary, that against active corruption, our PKE
oracle is only as useful as the commitment-hybrid model, as far as secure protocols for 2-party SFE
is concerned.

Corollary 2. There exists an oracle PKE such that, the following hold:

◦ There is a secure key-agreement protocol (or equivalently, a semi-honest secure 3-party XOR
protocol) using PKE.

◦ A general 2-party deterministic function f , with a polynomially large domain, has a statistically
semi-honest, standalone or UC-secure protocol relative to PKE if and only if f has a perfectly,
resp., semi-honest, standalone or UC-secure protocol in the commitment-hybrid.

Apart from there results, and their implications to the complexity of 2-party and 3-party func-
tions, we make important technical contributions in this work. As described below, our “common-
information learner” is simpler than that in prior work. This also helps us handle a more involved
oracle class used to model PKE. Another module in our proof is a compiler that shows that the
decryption facility in PKE is not needed in a (semi-honest secure) protocol that uses PKE, even if
the PKE is implemented using an idealized oracle.
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1.3 Technical Overview

The main result we need to prove (from which our final results follow, using arguments in [MMP12])
is that there is an oracle class PKEκ relative to which secure public-key encryption (i.e., 2-round
key agreement) protocol exists, but there is no secure protocol for any non-trivial SFE function
relative to it.

The oracle class PKEκ is a collection of following correlated oracles:

◦ Gen(·): It is a (length-tripling injective) random oracle which maps secret keys sk to respective
public keys pk.

◦ Enc(·, ·): For each public key pk, it is an independently chosen (length tripling injective)
random oracle which maps messages m to cipher texts c.

◦ Dec(·, ·): Given a valid secret key sk and a valid cipher text c it outputs m such that message
m was encrypted using public key pk = Gen(sk).

◦ Additionally, it provides test oracles Test which output whether a public key pk is a valid
public key or not; and whether a cipher text c has been created using a public key pk or not.

Note that without the Test oracle, this oracle class can be used to semi-honest securely perform OT;
hence, all 2-party SFE will be trivial relative to it (see discussion in [GKM+00, LOZ12]). The main
technical contribution of this paper is the negative result which shows that the above mentioned
oracle class PKEκ is useless for 2-party SFE against semi-honest adversaries.

This is shown in two steps:

1. First, we show that the decryption oracle Dec(·, ·) is not useful against semi-honest adver-
saries. That is, given a (purported) semi-honest secure protocol ρ for a 2-party SFE f we
compile it into another semi-honest secure protocol Π (with identical round complexity, al-
beit polynomially more query complexity) which has slightly worse security but performs no
decryption-queries.

2. Finally, we observe that the oracle class “PKEκ minus the decryption oracle” is identical to
image-testable random-oracles. And we extend the negative result of [MMP12] to claim that
this oracle class is useless for 2-party SFE.

The key component in both these steps is the Common Information Learner algorithm, relative
to image-testable random oracle class. But we begin by introducing image-testable random oracles.

Image-testable Random-oracle Class. It is a pair of correlated oracles (R, T ), where R is
a (length-tripling injective) random oracle and test oracle T which outputs whether a point in
range has a pre-image or not. We consider keyed-version of these oracle, where for each key in an
exponentially large key-space K we have an independent copy of image-testable random oracle.

Note that the answer to an image test query can slightly change the distribution of exponentially
many other queries; namely, when we know that y is not in the image of R, the answer to any query
x for R will not be uniformly distributed (because it cannot be y). However, since the number of
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tested images are polynomial-size and the number of possible queries to R are exponentially large,
this will affect the distribution of the answers by R only negligibly. Also, because of the expansion
of the random oracle R, the fraction of the image-size of R is negligibly small relative to the range
of R. So an algorithm, with polynomially-bounded query complexity, who queries the test oracle
T has negligible chance of getting a positive answer (i.e. an image) without actually calling R. We
emphasize that our whole analysis is conditioned on this event (i.e. accidentally discovering y in the
image of the oracle) not taking place; and this requires careful accounting of events because it holds
only for (polynomially) bounded query algorithms.

Common Information Learner. The common information learner is a procedure that can see
the transcript of an oracle-based protocol between Alice and Bob, and by making a polynomial
number of publicly computable queries to the oracle, derives sufficient information such that condi-
tioned on this information, the views of Alice and Bob are almost independent of each other. Our
common information learner is similar in spirit to those in [IR89, BM09, MMP12, HOZ13] but is
different and more general in several ways:

◦ Handling Image-Testable Oracles. Our common information learner applies to the case
when the oracle is not just a random oracle, but an image-testable random oracle family.5

◦ Interaction between Learner and the System. It is important for the first part of
our proof (i.e. compiling out the decryption queries) that the common information learner
interacts with the protocol execution itself. That is, at each round the information gathered by
the common information learner is used by the parties in subsequent rounds. We require the
common information learner to still make only a polynomial number or oracle queries while
ensuring that conditioned on the information it gathers, the views of the two parties remain
almost independent. In showing that the common information learner is still efficient, we
show a more general result in terms of an interactive process between an oracle system (the
Alice-Bob system, in our case) and a learner, both with access to an arbitrary oracle (possibly
correlated with the local random tapes of Alice and Bob).

◦ Simpler Description of the Learner. The common information learner in our work has
a simpler description than that in [IR89, BM09, MMP12]. Our learner queries the random
oracle with queries that are most likely to be queried by Alice or Bob in a protocol execution.
The learner in [BM09, MMP12] is similar, but uses probabilities not based on the actual
protocol, but a variant of it; this makes the description of their common information learner
more complicated, and somewhat complicates the proofs of the query efficiency of the learner.6

Showing that Image-Testable Random Oracles are Useless for SFE. In [MMP12] it was
shown that random oracles are useless for SFE. This proof is modular in that there are four specific
results that depended on the nature of the oracle and the common information learner. The rest
of the proof uses a “frontier analytic” argument that is agnostic to the oracle and the common
information learner. Thus, in this work, to extend the result of [MMP12] to a family of image-

5The work of [HOZ13] also handles a larger set of oracles than random oracles (called simple oracle), but that
class is not known to include image-testable oracles as special case [Hai13].

6[IR89] uses an indirect mechanism to find the heavy queries, and reasoning about their common information
learner is significantly more involved.
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testable random oracles, we need only ensure that these four properties continue to hold. The four
properties are as follows:

1. Alice’s message conditioned on the view of the CIL is almost independent of Bob’s input.
(Lemma 10, item 1.)

2. Safety holds with high probability. (Lemma 10, item 2.)

3. A strong independence property of Alice’s and Bob’s views conditioned on that of the CIL.
(Lemma 10, item 3.)

4. Modularity properties of image-testable random oracles. (Lemma 5 and Lemma 6)

Compiling Out the Decryption Queries. The main idea behind compiling out the decryption
queries is that if Alice has created a ciphertext by encrypting a message using a public-key that was
created by Bob, and she realizes that there is at least a small (but significant) probability that Bob
would be querying the decryption oracle on this ciphertext (since he has the secret key), then she
would preemptively send the actual message to him. We need to ensure two competing requirements
on the compiler:

1. Security. Note that with some probability Alice might send this message even if Bob was
not about to query the decryption oracle. To argue that this is secure, we need to argue that
a curious Bob could have called the decryption oracle at this point, for the same ciphertext.

2. Completeness. We need to ensure that in the compiled protocol, Bob will never have to call
the decryption oracle, as Alice would have sent him the required decryptions ahead of time.

For security, firstly we need to ensure that Alice chooses the set of encryptions to be revealed based
only on the common information that Alice and Bob have. This ensures that Bob can sample a
view for himself from the same distribution used by Alice to compute somewhat likely decryption
queries, and obtain the ciphertext and secret-key from the decryption query made in this view. The
one complication that arises here is the possibility that the secret-key in the sampled view is not
the same as the secret-key in the actual execution. To rule this out, we rely on the independence
of the views of the parties conditioned on the common information. This, combined with the fact
that it is unlikely for a valid public-key to be discovered by the system without either party having
actually called the key-generation oracle using the corresponding secret-key, we can show that it is
unlikely for a sampled view to have a secret-key different from the actual one.

For completeness of the compiler, we again rely on the common information learner to ensure
that if Alice uses the distribution based on common information to compute which decryption
queries are likely, then it is indeed unlikely for Bob to make a decryption query that is considered
unlikely by Alice.

1.4 Overview of the paper

In Section 2 we formally define all relevant oracle classes. We introduce our heavy-querying algo-
rithm in Section 3 for any oracle system. In Section 4 we discuss some of the salient features of the
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(keyed version of) image-testable random-oracle class. Using the result in Section 3 and one of the
properties in Section 4, we show how to construct the common-information learner for oracle sys-
tems without any private inputs for parties in Section 5, relative to (keyed version of) image-testable
random-oracle class. Based on this CIL, we show in Section 6 that decryption queries are useless
in the idealized PKE oracle. Finally, we show that the “PKE minus decryption oracle” is identical
to (collection of) image-testable random oracles; and in Section 7 we show how to create a CIL for
protocols where parties have private inputs. Leveraging the properties of our oracles and CIL for
protocols where parties have private inputs, we show how to obtain our main result Theorem 1 in
Section 8.

2 Oracle Classes

In this section we shall introduce the general oracle classes used in our paper. A general class
of oracles shall be represented by O. We are interested in three main classes of oracles, each
parameterized by the security parameter κ.

2.1 Image-testable Random Oracle Class

The set Oκ consists of the all possible pairs of correlated oracles O ≡ (R, T ) of the form:

1. R : {0, 1}κ 7→ {0, 1}3κ is an injective function, and

2. T : {0, 1}3κ 7→ {0, 1} is defined by: T (β) = 1 if there exists α ∈ {0, 1}κ such that R(α) = β;
otherwise T (β) = 0.

This class of oracles is known as image-testable random oracle class. Based on the length of the
query string we can uniquely determine whether it is a query to R or T oracle. Queries to the
R oracle and T oracle are, respectively, called R-queries and T-queries. We follow a notational
convention. R-queries shall be denoted by α and T-queries shall be represented by β.

2.2 Keyed Version of Image-testable Random Oracle Class

Given a set K of keys,7 consider the following oracle O(K): For every k ∈ K, let O(k) ∈ Oκ. Given a
query 〈k, q〉, where k ∈ K and q is the query to an oracle in Oκ, answer it with O(k)(q). Let O(K)

κ be
the set of all possible oracles O(K). This class of oracle O(K)

κ is called keyed-version of image-testable
random oracle class. Intuitively, interpret this as a collection of independent copies of oracles from
Oκ.

7 Note that the description of the keys in K is poly(κ); so the size of the set K could possibly be exponential in κ.
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2.3 Public-key Encryption Oracle

We shall use a “PKE-enabling” oracle similar to the one used in [GKM+00]. With access to this
oracle, a semantically secure public-key encryption scheme can be readily constructed,8 yet we shall
show that it is useless for SFE. This oracle, which we will call PKEκ (or simply PKE, when κ is
implicit), is a collection of the oracles (Gen,Enc,Test1,Test2,Dec) defined as follows:

◦ Gen: It is a length-tripling injective random oracle from the set of inputs {0, 1}κ to {0, 1}3κ. It
takes as input a secret key sk and provides a public-key pk corresponding to it, i.e. Gen(sk) =
pk.

◦ Enc: This is an “encryption” oracle. It can be defined as a collection of length-tripling injective
random oracles, keyed by strings in {0, 1}3κ. For each key pk ∈ {0, 1}3κ, the oracle implements
a random injective function from {0, 1}κ to {0, 1}3κ. When queried with a (possibly invalid)
public key pk, and a message m ∈ {0, 1}κ, this oracle provides the corresponding cipher text
c ∈ {0, 1}3κ for it, i.e. Enc(pk,m) = c.

◦ Test1: It is a test function which tests the validity of a public key, i.e. given a public-key pk,
it outputs 1 if and only if there exists a secret key sk such that Gen(sk) = pk.

◦ Test2: It is a test function which tests the validity of a public key and cipher text pair, i.e.
given a public-key pk and cipher text c, it outputs 1 if and only if there exists m such that
Enc(pk,m) = c.

◦ Dec: This is the decryption oracle, from {0, 1}κ × {0, 1}3κ to {0, 1}κ ∪ {⊥}, which takes a
secret-key, cipher-text pair (sk, c) and returns (the unique) m such that Enc(Gen(sk),m) = c.
If no such m exists, it outputs ⊥.

We note that the encryption oracle produces cipher texts for public keys pk irrespective of
whether there exists sk satisfying Gen(sk) = pk. This is crucial because we want to key set K to
be defined independent of the Gen oracle.

PKEκ Without Dec. We note that if we remove the oracle Dec, the above oracle is exactly the
same as the image-testable random oracle O(K)

κ , with K = {0, 1}3κ ∪ {⊥}. Here we identify the
various queries to PKEκ with queries to O(K)

κ as follows: Gen(sk) corresponds to the query 〈⊥, sk〉,
Enc(pk,m) corresponds to 〈pk,m〉, Test1(pk) corresponds to 〈⊥, pk〉 and Test2(pk, c) corresponds
to 〈pk, c〉.

3 Heavy-query Performing Algorithm

In this section we shall introduce a Heavy-query Performing algorithm. Let O be a finite class
of oracles with finite domain D. Our experiment is instantiated by an oracle system Σ and a
deterministic “Heavy-query Performer” H (with implicit parameter σ, see Figure 2).

8To encrypt a message of length, say, κ/2, a random string of length κ/2 is appended to it, and passed to the
“encryption” oracle, along with the public-key.
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The oracle system Σ takes a random tape as input which has finite length. Let S be the set of
pairs of random tape r for Σ and oracle O ∈ O. The system Σ could possibly be computationally
unbounded; but its round complexity is finite. Consider the experiment in Figure 1.

1. Let DS be a distribution over S such that Supp(DS) = S. Sample (r,O) ∼ DS.

2. Start an interactive protocol between ΣO(r), i.e. the oracle system Σ with access to
oracle O and local random tape r, and the heavy-query performer H.

Figure 1: Protocol between Oracle system Σ and the Heavy-query Performer H.

Heavy-Query-Performer H. After every message sent by the oracle system Σ, perform the
following step:

◦ Repeatedly call Heavy-Query-Finder to obtain a query-answer pair (q∗, a∗); and add the
query-answer pair (q∗, a∗) to the transcript T . Until it reports that there are no more
heavy queries left.

Heavy-Query-Finder: Let T be the transcript between the oracle system Σ and heavy-query
performer H. The messages added by Σ are represented by TΣ and the set of query-answer
pairs added by H are represented by TH. It has an implicit parameter σ, which is used
to ascertain whether a query is heavy or not. Description of the oracle system Σ and the
distribution DS is also provided to this algorithm.

1. For every q ∈ D, which is not already answered in TH, compute the probability that
ΣÕ(r̃) performs the query q when (r̃, Õ) ∼ DS conditioned on transcript T .

2. If there is no query q with probability ≥ σ then report that there are no more heavy
queries left and quit. Otherwise, let q∗ be the lexicographically smallest such query.

3. If the answer to q∗ is uncertain (given the transcript T ) then query O at q∗ and obtain
the answer a∗. Otherwise, let a∗ be the fixed answer to q∗.

4. Return (q∗, a∗).

Figure 2: Heavy-query Performing Algorithm.

We emphasize that the heavy-query performer H never performs a query unless its answer is
uncertain. If the answer to the query q∗ in uncertain, we say that the answer to this query has
(max) entropy. Let QΣ

(〈
ΣO(r),H

〉)
represent the query-answer set of the oracle system Σ when its

local random tape is r, has oracle access to O and is interacting with the heavy-query performer H.
Similarly, QH

(〈
ΣO(r),H

〉)
represents the query-answer set of the heavy-query performer H which

were actually performed to the oracle when Σ has local random tape r and has oracle access to O.
Note that QΣ

(〈
ΣO(r),H

〉)
and QH

(〈
ΣO(r),H

〉)
could possibly be correlated to each other.

Efficiency of the Heavy-query Performer. We argue that the expected query complexity of
the heavy-query performer cannot be significantly larger than the query complexity of the system

9



Σ itself:

Lemma 1 (Efficiency of Heavy-query Performer). Let DS be a joint distribution over the space S as
defined in Figure 1. For every (randomized) oracle system Σ, the expected query complexity of the
heavy-query performer H (presented an Figure 2) is at most 1

σ times the expected query complexity
of the oracle system Σ in the experiment shown in Figure 1. Formally,

E
(r,O)∼DS

[∣∣QH (〈ΣO(r),H
〉)∣∣] ≤ E(r,O)∼DS

[∣∣QΣ

(〈
ΣO(r),H

〉)∣∣]
σ

In particular, by Markov inequality, the probability that H asks more than E(r,O)∼DS [|QΣ(〈ΣO(r),H〉)|]
σ·σ̃

queries is at most σ̃.

Before we prove the above mentioned lemma, we mention some highlights of the current proof.
The proof is significantly simpler and is more general than the ones presented in [BM09, HOZ13]
because our learner is directly working with heavy queries rather than concluding the heaviness of
the queries being asked by the learner. Also note that in our setting the oracles might be correlated
with local random tape of the system Σ; and the future messages of the oracle system Σ could,
possibly, depend on prior messages of H. We also note that the same proof also works in the setting
where Σ cannot read the transcript T 9 but H also considers queries performed in the future by Σ
while computing the set of heavy-queries.10

Proof. The proof proceeds by induction on |S = Supp(DS)|.

For the base case, note that |S| = 1 impliesH never queries the oracle; hence,
∣∣QH (〈ΣO(r),H

〉)∣∣ =
0 and the induction hypothesis is trivially satisfied.

Assume the hypothesis is true for every |S| < s and DS distribution over S.

Now, for the inductive step, consider |S| = s. Define the following event: “Consider the first
place where there is entropy in the message to be added to T by Σ or H conditioned on T .” Note
that if there are no entropy in the messages of H, then those queries were never performed to the
oracle.

Case 0. If the event mentioned above never takes place then
∣∣QH (〈ΣO(r),H

〉)∣∣ = 0 and the
hypothesis is trivially satisfied

Case 1. Suppose the first place where the above mentioned event takes place corresponds to a
message sent by Σ. Let the possible messages by m1, . . . ,mt, where t ≥ 2; and Si ⊂ S be the set of
(r,O) pairs such that Σ and H interact to generate T and Σ sends mi as the next message. Define
DSi as the distribution DS conditioned on generating a sample in Si; and pi be the probability that
(r,O) ∼ DS lies in the space Si.

9More specifically, it cannot read TH; note that Σ already knows the part TΣ generated by Σ itself.
10Note that if Σ can also read from T then the distribution of future queries is not well defined. But if Σ cannot

read T , then future queries are well defined after (r,O) is instantiated.
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E
(r,O)∼DS

[∣∣QH (〈ΣO(r),H
〉)∣∣] =

∑
i∈[t]

pi · E
(r,O)∼DSi

[∣∣QH (〈ΣO(r),H
〉)∣∣]

≤
∑
i∈[t]

pi ·
E(r,O)∼DSi

[∣∣QΣ

(〈
ΣO(r),H

〉)∣∣]
σ

, By Induction Hypothesis

=
E(r,O)∼DS

[∣∣QΣ

(〈
ΣO(r),H

〉)∣∣]
σ

Case 2. Suppose the first place where the event takes place corresponds to a message sent by
H. Let the possible answers to the query q∗ be a∗1, . . . , a∗t , where t ≥ 2. Define mi = (q∗, a∗i ).
Similar to the previous step we can define Si, DSi and pi. Let Σi be the system Σ where query q∗ is
(hardwired) to answer a∗i , thus the query q

∗ is never actually performed by the system Σi. Further,
when (r,O) ∼ DSi and H interacts with Σi then H never performs the query q∗ because its answer
is fixed to a∗i in Si.

E
(r,O)∼DS

[∣∣QH (〈ΣO(r),H
〉)∣∣] = 1 +

∑
i∈[t]

pi · E
(r,O)∼DSi

[∣∣QH (〈ΣO
i (r),H

〉)∣∣]
≤ 1 +

∑
i∈[t]

pi ·
E(r,O)∼DSi

[∣∣QΣi

(〈
ΣO
i (r),H

〉)∣∣]
σ

, By Induction Hypothesis

≤ E(r,O)∼DS

[∣∣QΣ

(〈
ΣO(r),H

〉)∣∣]
σ

, By Heaviness of q∗

The last inequality is a consequence of the fact that q∗ is a heavy query. Intuitively, at least σ
fraction of the executions of Σ experience reduction in query complexity by 1 when we define the
systems Σi. Formally, because q∗ is a heavy query we have:∑

i∈[t]

pi · E
(r,O)∼DSi

[∣∣QΣi

(〈
ΣO
i (r),H

〉)∣∣] ≤ ( E
(r,O)∼DS

[∣∣QΣ

(〈
ΣO(r),H

〉)∣∣])− σ · 1
Note that, since Σ has finite round complexity and the domain D of the oracle class is finite,

interaction between Σ and H is finite. Thus, exactly one of the above mentioned cases must occur.
This completes the inductive step and, hence, the proof.

Specific to Image-testable Random-oracles. Relative to the oracle class O(K)
κ , we can make

an assumption that after performing a R-query 〈k, α〉 and receiving β as answer, H immediately
performs the next query as 〈k, β〉. Note that this query has no entropy (because this query will
surely be answered 1); and, hence, need not be actually performed to the oracle.

4 Modularity of (Keyed Version of) Image-testable Random-oracles

In this section we shall prove some properties of (keyed version of) image-testable random oracles.
We import a result (see, Equation 1) which says that it is nearly impossible, except for negligible

11



probability, for a polynomially-bounded algorithm to guess y in the image of such an oracle. Further,
we show that these oracles have properties (conditioned on suitable events) similar to random oracles:
Corollary 4, Lemma 5 and Lemma 6. Corollary 4 is crucial in building CIL for protocols; while
Lemma 5 and Lemma 6 are necessary for the analysis of [MMP12] to apply to our oracle class.

4.1 Notation and Definitions

Given a query-answer set P relative to an oracle class O, we represent the set of all oracles O ∈ O
which are consistent with P as: O|P , read as O restricted to query-answer set P . A query-answer
set P is consistent (represented as Consistent(P )) relative to an oracle class O, if |O|P | > 0. The
set of all queries in P is represented by Q(P ).

Definition 1 (Good). Three query-answer sets PA, PB and PE are called good, represented by
Good(PA, PB, PE), if Consistent(PA ∪ PB ∪ PE) and PA ∩ PB ⊆ PE.

Specific to oracle classes Oκ and O(K)
κ . Given a query-answer set P relative to an oracle in

Oκ, we denote the number of R-queries in P as RComp(P ). The number of query answer pairs of
form (β, 0) ∈ P , where β is a T-query is represented by T0Comp(P ); and number of T-queries of
form (β, 1) in P is represented by T1Guess(P ).

We extend these notations to query-answer sets P relative to O(K)
κ . The subset of P con-

taining query-answers where the query had key k ∈ K is represented by P |k.11 The definition of
RComp, T0Comp and T1Guess are extended to P |k and is represented by, respectively, RComp(P ; k),
T0Comp(P ; k) and T1Guess(P ; k).

Definition 2 (Typical). A query-answer set P relative to O(K)
κ is typical, represented by Typical(P ),

if T1Guess(P |k) = 0, for every k ∈ K.

Definition 3 (Canonical). A canonical sequence of query-answer pairs is a sequence of query-answer
pairs such that an R-query of form 〈k, α〉 is immediately followed by a T-query of form 〈k, β〉, where
the query 〈k, α〉 was answered by β.

In this paper all query-answer sets considered shall be of size poly(κ).

Some Useful Results. In this section we summarize some useful properties of query-answer sets
relative to oracle class O(K)

κ .

Lemma 2. Suppose PA, PB and PE are three canonical query-answer sets relative to O(K)
κ , such

that Consistent(PA ∪ PB ∪ PE). Then:

1. Typical(PA ∪PB ∪PE) and Good(PA, PB, PE) implies Typical(PA \PE) and Typical(PB \PE).

2. Typical(PA∪PB∪PE) and Good(PA, PB, PE) implies T1Guess(PA∪PE)+T1Guess(PB∪PE) =
T1Guess(PE).

11We are overloading the notion of “restriction”. But the context where a restriction is applied will disambiguate
the usage trivially.
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Proof. 1. Suppose there exists a query (〈k, β〉 , 1) ∈ PB\PE but no 〈k, α〉 is answered with β in the
set PB\PE . But Typical(PA∪PB∪PE) holds. So, there exists α such that (〈k, α〉 , β) lies in PA,
PB or PE . If it lies in PA, then (〈k, β〉 , 1) ∈ PA (by canonical form); and then (〈k, β〉 , 1) ∈ PE
(by good-ness); which is a contradiction. If it lies in PE , then again (〈k, β〉 , 1) ∈ PE (by
canonical form); which is a contradiction. If it lies if PB, then it must lie in PB ∩ PE ; and it
reduces to the previous case. So, it is impossible that: ¬Typical(PB \ PE). Similarly, we can
also show that Typical(PA \ PE).

2. Consider a query-answer pair (〈k, β〉 , 1) ∈ PE such that for every α ∈ {0, 1}κ we have
(〈k, α〉 , β) 6∈ PE . Then we claim that: either (〈k, α〉 , β) ∈ PA \ PE or (〈k, α〉 , β) ∈ PB \ PE
(but not both). If it is in none of these sets then it will violate Typical(PA ∪PB ∪PE). If it is
in both of these sets then it will violate Good(PA, PB, PE). Hence we have the result.

4.2 Imported Result

In this section we present a technical result pertaining to the oracle class O(K)
κ . This result intuitively

says that an oracle algorithm with polynomially bounded query complexity cannot guess an image
of R $← Rκ with significant probability, where Rκ is the set of all length-tripling injective oracles
with input domain {0, 1}κ.

Lemma 3 (Imported from [KMR89]). Let Rκ be the set of all injective functions from {0, 1}κ to
{0, 1}3κ. Let A be an oracle algorithm, possibly randomized, with unbounded computational power
but restricted to poly(κ) query complexity which has access to an oracle R $← Rκ. The probability
that AR can output β such that:

1. There exists α such that R(α) = β, but

2. A never queried R and received β as answer.

is at most negl(κ).

Consider any algorithm A with local random tape r $←U and oracle access to O ∈ O(K)
κ . Let

P (AO(r)-at-time-i) be the set of query-answer pairs in A’s view at time i. If the query complexity
of A is poly(κ), then Lemma 3 can be re-stated as follows:

P
O

$←O(K)
κ

r
$←U

[
∃i s.t. ¬Typical

(
P (AO(r)-at-time-i)

)]
= negl(κ) (1)

4.3 Some Combinatorial Counting

Let PA and PE be canonical sets of query-answer pairs to oracles in Oκ such that Consistent(PA∪PE)
holds. Let uE = RComp(PE), vE = T0Comp(PE) and wE = T1Guess(PE). Similarly define uAE =
RComp(PA ∪ PE), vAE = T0Comp(PA ∪ PE) and wAE = T1Guess(PA ∪ PE).
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Lemma 4. Let PA and PE be canonical set of query-answer pairs with respect to oracle class Oκ.
If |PA ∪ PE | = poly(κ), then:

P
O

$←Oκ|PE

[O ∈ Oκ|PA∪PE ] =
N3uE+2wE

N3uAE+2wAE
× (1± negl(κ)),

where N = 2κ.

Proof. Note that:

|Oκ|PE | = wE !

(
N − wE
wE

)
× (N − (uE + wE))!

(
N3 − (uE + vE + wE)

N − (uE + wE)

)
This is because:

1. uE elements in {0, 1}κ are already mapped,

2. wE elements of {0, 1}3κ receive mappings in wE !

(
N − wE
wE

)
ways, and

3. The number of ways the remaining N − (uE + wE) elements of the domain are injectively

mapped to the range is (N − (uE + wE))!

(
N3 − (uE + vE + wE)

N − (uE + wE)

)
.

Since |PE | = 2uE + vE + wE = negl(κ)N , we have:

nE = |Oκ|PE | = wE !

(
N − wE
wE

)
× (N − (uE + wE))!

(
N3 − (uE + vE + wE)

N − (uE + wE)

)
= (N − uE)wE × (N3 − (uE + vE + wE))N−(uE+wE) × (1± negl(κ))

= NwE ×N3(N−(uE+wE)) × (1± negl(κ))

=
N3N

N3uE+2wE
× (1± negl(κ))

Similarly, we also have:

nAE =
N3N

N3uAE+2wAE
× (1± negl(κ))

Finally, the lemma follows by observing that:

P
O

$←Oκ|PE

[O ∈ Oκ|PA∪PE ] =
nAE
nE

=
N3uE+2wE

N3uAE+2wAE
× (1± negl(κ))

Intuitively, Lemma 4 implies that T0Comp(PA ∪ PE) does not have significant influence. If
T1Guess(PE) = T1Guess(PA ∪ PE) = 0, then this is nearly equivalent to randomly answering the
R-queries in PA \ PE and the resulting query-answer set being consistent with PA ∪ PE .

The previous result can also be generalized to the oracle class O(K)
κ . Let PA and PE be sets of

query-answer pairs to oracles in O(K)
κ . Considering PE |k, for k ∈ K, we define uE,k, vE,k and wE,k

as above. Similarly, by considering (PA ∪ PE)|k we define uAE,k, vAE,k and wAE,k.
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Corollary 3. Let PA and PE be canonical set of query-answer pairs with respect to oracle class
O(K)
κ . If |PA ∪ PE | = poly(κ), then:

P
O

$←O(K)
κ |PE

[O ∈ O(K)
κ |PA∪PE ] =

(∏
k∈K

N3uE,k+2wE,k

N3uAE,k+2wAE,k

)
× (1± negl(κ))

, where N = 2κ.

Proof. By taking union bound over keys k ∈ K which are queried in PA∪PE , we get this result.

Further, due to Corollary 3, we have:

Corollary 4. Let PA, PB and PE be canonical set of query-answer pairs with respect to O(K)
κ such

that:

1. |PA ∪ PB ∪ PE | = poly(κ),

2. Typical(PA ∪ PB ∪ PE), and

3. Good(PA, PB, PE).

Then:

P
O

$←Oκ|PE

[O ∈ Oκ|PA∪PB∪PE ] =
N2T1Guess(PE)

N3RComp(PA\PE) ×N3RComp(PB\PE)
× (1± negl(κ))

Proof. The result follows directly by using the above corollary with wAE =
∑

k∈KwAE,k = 0 and,
for the kind of query-answer sets being considered, using the fact that RComp(PA ∪ PB ∪ PE) =
RComp(PA \ PE) + RComp(PB \ PE) + RComp(PE).

4.4 Local Samplability and Oblivious Re-randomizability

In this section, we shall prove two properties which we summarize intuitively.

1. Local Samplability: We need Bob to sample hypothetical Bob views without exactly knowing
what view Alice has. A crucial step in this is to sample a new query-answer set P ′B which is
consistent with PE ; and this sampling has to be independent of the exact query-answer set
PA of Alice.

2. Oblivious Re-randomizability: Once Bob has sampled a hypothetical Bob view, it needs to
simulate the view further which includes answering further queries to the (hypothetical) oracle.
A crucial step in this is to answer these new queries with answers which are consistent with
Alice’s query-answer set PA; and re-randomize the part of the oracle which is consistent with
the actual Bob query-answer pairs PB.

Lemma 5 and Lemma 6 intuitively summarize these two properties respectively.

Suppose we are given canonical query-answer sets PA, PB, PE such that Good(PA, PB, PE) and
Typical(PA ∪ PB ∪ PE). We are given a canonical query-answer set P ′B such that Good(PA, P

′
B, PE)

and Typical(PA ∪ P ′B ∪ PE). Note that PB and P ′B need not be consistent with each other.
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Local Samplability. Consider the probability:∣∣∣O(K)
κ |PA∪P ′B∪PE

∣∣∣∣∣∣O(K)
κ |PA∪PE

∣∣∣ =
N3RComp(PA∪PE)+2T1Guess(PA∪PE)

N3RComp(PA∪P ′B∪PE)+2T1Guess(PA∪P ′B∪PE)
(1± negl(κ)), by Lemma 4

=
N2T1Guess(PA∪PE)

N3RComp(P ′B\PE)
(1± negl(κ)), by Good(PA ∪ P ′B ∪ PE)

=
N2T1Guess(PE)−2T1Guess(P ′B\PE)

N3RComp(P ′B\PE)
(1± negl(κ)), by Lemma 2

(2)

This shows that the probability of sampling an oracle inO(K)
κ |PA∪PE which is also inO(K)

κ |PA∪P ′B∪PE
is (nearly) independent of PA.

Lemma 5 (Local Resampling). Suppose for polynomial size canonical query-answer set PA, P ′B
and PE such that Good(PA, P

′
B, PE) and Typical(PA ∪ P ′B ∪ PE) hold. Let p be the probability that

O
$←O(K)

κ |PA∪PE is also consistent with P ′B.

Let p̃ = N2T1Guess(PE)−2T1Guess(P̃B\PE)

N3RComp(P̃B\PE)
.

Then we have p = p̃(1± negl(κ)).

Proof. The proof is immediate due to Equation 2.

Oblivious Re-randomizability. Let ∆P be any query-answer set such that Consistent(PA∪P ′B∪
PE∪∆P ). Note that ∆P need not be consistent with PB and it could have intersection queries with
PA outside PE . Without loss of generality, we can assume that ∆P does not intersect PA∪P ′B∪PE .
We consider the re-randomizing algorithm presented in Figure 3 for Bob. A similar algorithm can
also be constructed for Alice and the arguments will be analogous.

A hybrid-argument. Before we analyze the re-randomization algorithm in Figure 3, let us consider
an alternate hybrid re-randomization algorithm (in Figure 4) which is easier to analyze.

We shall condition on the following event: “The mapping is injective.”

Define U = PA ∪ P ′B ∪ PE ∪∆P .

Note that this event occurs with probability 1− negl(κ), because |U | = poly(κ). Conditioned on
this event, the following two are identical:

1. Sample an oracle O $←O(K)
κ |PA∪P ′B∪PE Compute the probability that O is consistent with ∆P .

2. Sample an oracle O $← O(K)
κ |PA∪PB∪PE . Relative to this oracle run the hybrid-experiment of

Figure 4. Compute the probability that queries in Q(∆P ) receive identical output as in ∆P .

To complete the argument, note that
∑

k∈K |Ek,global| ≤ |U | = poly(κ). Thus, the difference in
the experiments Figure 4 and Figure 3 is negl(κ).
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Suppose Alice has private query-answer sequence PA, Eve has PE and Bob has PB. Assume
that Bob has been provided with P ′B; and Typical(PA ∪ P ∪ PE) and Good(PA, P, PE) hold,
for P ∈ {PB, P ′B}.
Let D be the set of R-queries in PB which are not already included in Q(PE ∪ P ′B). We re-
emphasize that the queries in Q(PB)∩Q(P ′B) outside Q(PE) could possible by inconsistently
answered.
Initialize a global set Rlocal = ∅.
Query-Answering (q)

1. If q is answered in PE ∪ P ′B use that answer.

2. If q = 〈k, α〉 is a new R-query and q ∈ D, answer with a $←{0, 1}3κ. Add 〈k, a〉 to Rlocal.

3. If q is a T-query which has already in Rlocal then answer 1.

4. Otherwise (i.e. if the conditions above are not met) forward the query to the actual
oracle and obtain the answer a.

Figure 3: Bob’s algorithm to answer future queries using re-randomization (oblivious to PA).

Lemma 6 (Oblivious Re-randomizing). Let PA, PB, P ′B and PE be polynomial size canonical query-
answer sets such that:

1. Good(PA, PB, PE) and Typical(PA ∪ PB ∪ PE), and

2. Good(PA, P
′
B, PE) and Typical(PA ∪ P ′B ∪ PE).

Let ∆P be a polynomial size query-answer set such that Consistent(PA ∪P ′B ∪PE ∪∆P ). Define
p as the probability that O $←O(K)

κ |PA∪P ′B∪PE is consistent with ∆P .

Sample O $←O(K)
κ |PA∪PB∪PE and run the oblivious re-randomizing algorithm provided in Figure 3.

This defines a distribution over polynomial size query answer sets. Let p̃ be the probability of ∆P
under this distribution.

Then: p = p̃(1± negl(κ)).

5 Common Information Learner for Input-less Protocols

In this section, we show how to construct the Common-information Learner for 2-party protocols
which have no inputs. We need to construct an eavesdropper algorithm which publicly captures all
the common information between Alice and Bob private views. First, in Lemma 7, we show that
conditioned on suitable events joint-views of Alice and Bob is (close to) a product distribution. Next,
we show that starting with Alice-Bob joint views which are already close to product distribution,
the updated joint-views (after one of them sends a message in a round) cannot be significantly far
from product views (see Lemma 8). Finally, we prove our main result (Lemma 9) that constructs a
curious eavesdropper algorithm such that with high probability Alice-Bob joint views are close to
product distribution based on the public-view at the end of each round of the protocol.
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Initialize a global set Rlocal = ∅ and Ek,global = ∅ (for each k ∈ K).

1. If q is answered in PE ∪ P ′B use that answer.

2. If q = 〈k, α〉 is a new R-query and q ∈ D, answer with a $←{0, 1}3κ \Eglobal. Add 〈k, a〉
to Rlocal.

3. If q is a T-query which has already in Rlocal then answer 1.

4. Otherwise (i.e. if the conditions above are not met) forward the query to the actual
oracle and obtain the answer a. If the q = 〈k, β〉 is a T-query and a = 0 then add β to
Ek,global.

Figure 4: Hybrid-experiment.

5.1 Notation and Definitions

In this section we shall consider three party protocols between Alice, Bob and Eve relative to oracle
class O(K)

κ over broadcast channel. We shall consider only a restriction of Eve, namely Public Query
Strategies. They have the following properties:

1. Eve has no private state. Her view is completely public.

2. In every round i after Alice or Bob has added a message mi to the public transcript, Eve is
invoked.

3. When invoked, Eve performs a list of queries to the oracle O ∈ O(K)
κ and broadcasts the

sequence of query-answer pairs PE,i.

Thus Eve’s view consists of the public transcriptm generated by Alice and Bob; and the sequence
of query-answer pairs PE she broadcasts to all parties. We can write Eve’s view VE = (m,PE).

Alice’s view also includes her private random tape rA and her private query-answers PA. So, we
can write VA = (rA,m, PA, PE). Similarly, we can also write VB = (rB,m, PB, PE).

Note that public-query strategy Eve is deterministic and her view is a subset of each party’s
view. Our sample space is joint distribution of Alice-Bob views when rA

$←U, rB
$←U and O $←O(K)

κ .
We shall use bold-math notation to represent the random variables, for example PA represents the
random variable for Alice private query-answer set and P[PA = PA] is the probability that PA is
Alice’s private random query-answer set when Alice-Bob joint views is sampled according to the
sample space mentioned above.

Definition 4 (Normal Protocol Form). A three party protocol between Alice, Bob and (public query
strategy) Eve is in normal form, if:

1. In every round Alice or Bob sends a message; followed by a sequence of query-answer pairs
from Eve.

2. In rounds i = 1, 3, . . . Alice sends the message mi; and in i = 2, 4, . . . Bob sends a message.
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3. In every round i after Alice/Bob has sent the message mi, Eve broadcasts PE,i.

4. Alice, Bob and Eve always perform canonical queries.

A triplet of views VA, VB and VE are called possible, represented as Possible(VA, VB, VE), if:
There exists an oracle O such that when the three party protocol is run with Alice local randomness
rA and Bob local randomness rB then the views produced for Alice, Bob and Ever are respectively
PA, PB and PE . Note that Possible(VA, VB, VE) implies Consistent(PA, PB, PE).

Definition 5 (Nice Views). Alice, Bob and Eve views in a normal protocol are called nice, repre-
sented as Nice(VA, VB, VE) if: Possible(VA, VB, VE), Good(PA, PB, PE) and Typical(PA ∪ PB ∪ PE).

Views at end of rounds. Suppose the set of messages sent by Alice-Bob is m = m1m2 . . . .
We represent m(i) = m1 . . .mi, i.e. the message at the end of round i. Similarly, we define P (i)

E =
PE,1 . . . PE,i, i.e. the query-answer pairs added by Eve till the end of round i. Analogously, we also
define V (i)

A = (rA,m
(i), P

(i)
A , P

(i)
E ) and V (i)

B = (rB,m
(i), P

(i)
B , P

(i)
E ).

We shall use V
(i)
E as the distribution over Eve views at the end of round i after VE is drawn

from the underlying sample space of complete Alice-Bob views.

Augmented Protocols. Suppose we are provided with a two-party protocol π between Alice and
Bob. An augmentation of π, represented as π+, with a third party Eve is a three-party protocol over
a broadcast channel. In every round of the augmented protocol, Alice/Bob broadcasts a message
followed by Eve. In this paper, we shall only consider augmentations of two-party protocols with
public-query strategies.

Let us clarify the notion of augmented protocols with some examples:

1. Suppose Alice and Bob have next message functions as defined by π. This next message
function could be such that it ignores any message not sent by Alice or Bob. In this case, the
augmentation of π by a third party has no effect on the behavior of Alice/Bob. The third
party simply adds additional messages to the public transcript. For example, consider the
augmentation of key-agreement protocol with eavesdropper strategies (as in Corollary 5).

2. On the other hand, the next message functions for Alice and Bob as defined in π could behave
differently in 2-party and 3-party setting. If Alice sees additional messages in the public
transcript (i.e. messages which were not sent by Alice or Bob) then it could run a different
next message function; otherwise it runs the 2-party next message function.

3. In particular, we shall deal with augmented protocols where Alice/Bob’s 3-party version of
next message protocol will use the messages sent by the third party Eve to form a wrapper
around the original 2-party next message generation function. For example, consider the
compiler presented in Section 6.

5.2 Independence of Private Views conditioned on Nice-event

In this section we shall prove the following result.
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Simulate(VE):
Comment: Essentially, this is a rejection sampling algorithm which outputs “nice” views.

1. Let A(VE) = {VA : ∃ VB s.t. Possible(VA, VB, VE)} and, similarly, B(VE) =
{VB : ∃ VA s.t. Possible(VA, VB, VE)}.

2. Let A(VE) be the distribution over A(VE) which puts weight on VA proportional to
1

N3RComp(PA\PE) , where N = 2κ. And B(VE) be the distribution over B(VE) which puts
weight on VB proportional to 1

N3RComp(PB\PE) .

3. Sample VA ∼ A(VE), VB ∼ B(VE). If Nice(VA, VB, VE) then output (VA, VB); otherwise
output Simulate(VE).

Figure 5: Independent Simulation of Alice and Bob private Views.

Lemma 7. Consider the sampling algorithm in Figure 5. Let VA, VB and VE be Alice, Bob and
Eve (partial) views, respectively, in an oracle protocol π with access to O ∈ O(K)

κ . If VA, VB, VE are
such that Nice(VA, VB, VE) holds then:

P(VA,VB)∼Simulate(VE)[VA = VA,VB = VB]

P[VA = VA,VB = VB|VE = VE ,Nice(VA,VB,VE)]
= (1± negl(κ))

Intuitively, this result states that, conditioned on “nice” event occurring, the distribution of
Alice-Bob joint views is close to a product distribution also conditioned on the same “nice” event.

Proof. For nice VA, VB and VE , we are interested in computing the following probability:

P[VA = VA,VB = VB|VE = VE ,Typical(PA ∪PB ∪PE),Good(PA,PB,PE)]

Consider the following manipulation:

P[VA = VA,VB = VB|VE = VE ,Typical(PA ∪PB ∪PE),Good(PA,PB,PE)]

=
P[VA = VA,VB = VB,Typical(PA ∪PB ∪PE),Good(PA,PB,PE),VE = VE ]

P[Typical(PA ∪PB ∪PE),Good(PA,PB,PE),VE = VE ]
,

By Bayes’ Rule

=
P[VA = VA,VB = VB,VE = VE ]

P[Typical(PA ∪PB ∪PE),Good(PA,PB,PE),VE = VE ]
,

Because Nice(VA, VB, VE) holds

=
P[rA = rA, rB = rB,m = m,PA = PA,PB = PB,PE = PE ]

P[Typical(PA ∪PB ∪PE),Good(PA,PB,PE),VE = VE ]
,

Expanding the random variables VA,VB,VE

=
P[rA = rA, rB = rB,PA = PA,PB = PB,PE = PE ]

P[Typical(PA ∪PB ∪PE),Good(PA,PB,PE),VE = VE ]
,

Because m is a deterministic function of rA, rB,PA,PB

=
P[rA = rA] P[rB = rB] P[PE = PE ]× P[PA = PA,PB = PB|PE = PE ]

P[Typical(PA ∪PB ∪PE),Good(PA,PB,PE),VE = VE ]
,
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By Chain Rule and Independence of rA, rB

= cVE ×
N2T1Guess(PE)

N3RComp(PA\PE) ×N3RComp(PB\PE)
× (1± negl(κ)),

where cVE is a constant dependent only on VE and using Corollary 4

= dVE ×
1

N3RComp(PA\PE)
× 1

N3RComp(PB\PE)
× (1± negl(κ)),

where dVE is a constant dependent only on VE

The result directly proves Lemma 7 (See Equation 5 in Appendix A.1).

5.3 Augmentation of Protocols

Given a two party protocol π we augment it with a third party protocol Eveπ as described in
Figure 6. The algorithm is parametrized by a parameter σ which shall be chosen sufficiently small.

1. Interpret the two-party oracle protocol π as the oracle system Σ in Figure 1. Messages
produced by Alice or Bob in round i is interpreted as the message of Σ.

2. Define O = O(K)
κ and DS as the uniform distribution over O and the space of local

random tapes of Alice and Bob.

3. Let Eveπ be the heavy-query performer algorithm in Figure 2 instantiated with a suit-
ably small parameter σ.

Figure 6: Augmentation of an input-less two-party protocol with a public-query strategy Eveπ.

5.4 Reduction in Niceness is Low

We shall prove the following result:

Lemma 8. Let π be a normal two party protocol between Alice and Bob, where parties have access
to an oracle from the class O(K)

κ . Consider an augmentation of this two-party protocol using a
public-query strategy Eveπ described in Figure 6. Then, for every round i, we have:

P
[(

Nice(1) ∧ · · · ∧ Nice(i)
)
∧

(
¬Long(i)

)]
≥ 1−Θ(ψ2σi)

Intuitively, this lemma implies that views of the parties in a random execution of protocol π
along with the Eve’s view (w.h.p.) remains “nice”; and Eve performs at most 2ψ/σ2 queries.

Proof. Let A(0) = B(0) = ∅ and C(0) is the set containing the empty transcript. Recursively define
A(i+1), B(i+1) and C(i+1) as follows:

1. A(i+1) =
{
V

(i+1)
E : Long(i+1) ∧ ∃V (i)

E ∈ C(i) s.t. V (i+1)
E |=V (i)

E

}
. Here, V (i+1)

E |=V (i)
E is true if

and only if Eve’s view V
(i+1)
E was V (i)

E at the end of round i.
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2. B(i+1) =
{
V

(i+1)
E : ¬Long(i+1) ∧ P[Nice(i+1)|V (i+1)

E ] < 1
2 ∧ ∃V

(i)
E ∈ C(i) s.t. V (i+1)

E |=V (i)
E

}
,

and

3. C(i+1) =
{
V

(i+1)
E : V

(i+1)
E 6∈ A(i+1) ∪ B(i+1) ∧ ∃V (i)

E ∈ C(i) s.t. V (i+1)
E |=V (i)

E

}
.

Intuitively we are doing the following: Consider a complete execution. Suppose i is the smallest
index such that V (i)

E for this execution Long(i) or P[Nice(V
(i)
A ,V

(i)
B , V

(i)
E )|V (i)

E ] < 1
2 holds. If Long(i)

holds then we account for this execution in the set A(i). Otherwise if P[Nice(V
(i)
A ,V

(i)
B , V

(i)
E )|V (i)

E ] <
1
2 holds then we account for this execution in the set B(i).

We define:

1. ai = P[V
(i)
E ∈ A(i)],

2. bi = P[¬Nice(i) ∧ V
(i)
E ∈ B(i)], and

3. ci = P[¬Nice(i) ∧ V
(i)
E ∈ C(i)].

We have the following properties:

1. Note that a0 = b0 = c0 = 0. Because, initially there are no queries in Alice, Bob and Eve
views.

2. P[A(i) ∪ B(i)] ≤ ai + 2bi, by averaging arguments.

3. We have:
∑

i∈[n] ai ≤ σ (Lemma 1).

4. For i < n, we have bi+1+ci+1 ≤ ci+Θ(ψ2σ)+negl(κ) (Lemma 14). Further, this recurrence has
the following telescoping property: ck +

∑
i∈[k] bi ≤ Θ(ψ2σi) + negl(κ), for σ(κ) = 1/poly(κ).

5. P[V
(i)
E 6∈ C(i)] ≤ (a1 +· · ·+ai)+2(b1 +· · ·+bi) ≤ σ+2(Θ(ψ2σi)+negl(κ)) = Θ(ψ2σi)+negl(κ).

6. P[V
(i)
E ∈ C(i) ∧ Nice(i)] = 1− (a1 +· · ·+ ai)− 2(b1 +· · ·+ bi)− ci ≥ 1−Θ(ψ2σi)− negl(κ).

Thus, we have

P[Nice(1) ∧ · · · ∧ Nice(i)] ≥ 1−Θ(ψ2σi), and

P[¬Long(i)] ≥ 1− σ,

for every i ≤ n.

5.5 Common Information Learner for Input-less Protocols

In this section we prove the following result:
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Lemma 9 (Common Information Learner in Input-less Protocols). Let π be an input-less random-
ized two-party protocol in normal form using a random oracle O ∈ O(K)

κ with round complexity n
and query complexity (at most) ψ, for some key set K. Let Eveπ be an eavesdropper strategy as
defined in Figure 6 (for a suitable choice of the parameter σ = 1/poly(κ)). For every ε = 1/poly(κ),
there exists σ = 1/poly(κ) such that: Let V (i)

E be the restriction of VE ∼ VE to the end of round i.
With probability 1− ε over the choice of VE, the following holds:

1. (1− ε)-Independence: For every round i, the following distributions are ε-close:(
(V

(i)
A |V

(i)
E )× (V

(i)
B |V

(i)
E )
)

and
(

(V
(i)
A ,V

(i)
B )|V (i)

E

)
2. ε-Lightness: For every round i and query q 6∈ Q(P

(i)
E ) it holds that:

P
V

(i)
A ∼(V

(i)
A |V

(i)
E )

[q ∈ Q(P
(i)
A )] ≤ ε and P

V
(i)
B ∼(V

(i)
B |V

(i)
E )

[q ∈ Q(P
(i)
B )] ≤ ε

3. Strong (1 − ε)-Independence: For every round i, if Alice sends the i + 1’st message, the
following distributions are ε-close:(

(V
(i+1)
A |V (i)

E )× (V
(i)
B |V

(i)
E )
)

and
(

(V
(i+1)
A ,V

(i)
B )|V (i)

E

)
Proof. First Property. Using Lemma 8 we can conclude the following: There exists a polynomial
p∗ such that,

P[¬Nice(1) ∨ · · · ∨ ¬Nice(n) ∨ Long(i)] ≤ p∗(σ, n, ψ)

By averaging argument (Markov Inequality), one can conclude that, over the choice of VE , with
probability at least 1−

√
p∗(σ, n, ψ), we shall have:

P[¬Nice(1) ∨ · · · ∨ ¬Nice(n) ∨ Long(n)|VE ] ≤
√
p∗(σ, n, ψ)

For such a VE , note that ¬Long(n)(VE) must hold. Then we have that: P[¬Nice(1) ∨ · · · ∨ ¬Nice(n)|VE ] ≤√
p∗(σ, n, ψ).

Let V (i)
E be a truncation of VE up to the end of any round i. Then it holds that:

P[Nice(i)|V (i)
E ] ≥ 1−

√
p∗(σ, n, ψ)

Note that conditioned on Nice(i), the joint distribution of Alice-Bob views (V
(i)
A ,V

(i)
B |V

(i)
E ,Nice(i))

is close to a product distribution (Lemma 7). This implies that (by Lemma 15):

∆
(

(V
(i)
A ,V

(i)
B |V

(i)
E ), (V

(i)
A |V

(i)
E )× (V

(i)
B |V

(i)
E )
)
≤ (poly(ψ) · p∗(σ, n, ψ))Θ(1)

By setting σ = poly(ε, 1/n, 1/ψ, 1/κ) for a sufficiently large polynomial, we get the first property
of the result.
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Second Property. Consider a complete view of Eve VE as above. Since ¬Long(VE) holds, this
implies that the eavesdropper did not find any more heavy-queries. Thus, we know that the prob-
ability of any query q 6∈ PE is at most σ when Alice-Bob joint views are sampled according to the
distribution (V

(i)
A ,V

(i)
B |V

(i)
E ). In particular, the probability that q is in Q(P

(i)
A ) is at most σ when

sampled according to the distribution (V
(i)
A |V

(i)
E ).

By using sufficiently small σ, we can ensure that the second condition holds.

Third Property. The third property follows from the first and second properties and a simple
change of parameter over ε (and using the value of ε that makes all properties hold). A very similar
argument was used in in [MMP12]. Here we sketch the argument for sake of completeness.

Suppose we have obtained a VE conditioned on which, the joint distribution of views of Alice and
Bob till the end of round i is close to a product distribution. We claim that the same holds (with
a weaker parameter), even if we look at the distribution of Alice till generating the next message
mi+1. The reason is the following. Since the views of Alice and Bob are ε-close, if we sample the
views of Alice and Bob independently, and then execute Alice to get mi+1 consistently with Bob (as
if we are running the real experiment in which Alice and Bob are sampled jointly) and call this the
imaginary experiment, the distribution of the parties in the imaginary experiment remains ε close
to generating mi+1 from the real execution. Now we use the second property over the imaginary
experiment: till generating mi+1, Alice will ask any of Bob’s private queries (i.e. those not already
in VE) only with probability O(ε · ψ) . The reason is that, as long a Alice has not asked Bob’s
private queries, her execution continues independently of Bob; also, using a union bound and the
second property, the probability of hitting and of Bob’s queries is at most ψ · ε.

As a direct consequence of Lemma 9 we have the following corollary:

Corollary 5. There does not exist a secure key-agreement protocol relative to oracle class O(K)
κ , for

any key set K.

6 Compiling our Decryption Queries

In this section we show that a family of PKE-enabling oracles is only as useful as a family of image
testable random oracles, for semi-honest SFE. Combined with the result that this image testable
random oracle family is useless for SFE, we derive the main result in this paper, that PKE is useless
for semi-honest SFE.

As pointed out by [GKM+00], care must be taken in modeling such an oracle so that it does
not allow oblivious transfer. In our case, we need to separate it from not just oblivious transfer but
any non-trivial SFE.

In our proof we shall use the oracle PKEκ defined in Section 2.3. This oracle facilitates public-key
encryption (by padding messages with say κ/2 random bits before calling Enc), and hence key agree-
ment. But, as mentioned before, by omitting the Dec oracle, the collection (Gen,Enc,Test1,Test2)
becomes an image-testable random oracle family O(K). As we will see in Section 7.4, an image-
testable random oracle is not useful for SFE or key agreement. The challenge is to show that even
given the decryption oracle Dec, which does help with key-agreement, the oracle remains useless
for SFE. [GKM+00] addressed this question for the special case of oblivious transfer, relying on
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properties that are absent from weaker (yet non-trivial) SFE functionalities. Our approach is to
instead show that the decryption facility is completely useless in SFE, by giving a carefully com-
piled protocol whereby the parties help each other in finding decryptions of ciphertexts without
accessing Dec oracle, while retaining the security against honest-but-curious adversaries. We show
the following.

Theorem 6. Suppose Π is an N -round 2-party protocol with input domain X × Y, that uses the
oracle PKEκ. Then for any polynomial poly, there is an N -round protocol Π∗ using the oracle O(K)

κ

that is as secure as Π against semi-honest adversaries, up to a security error of |X ||Y|/poly(κ).

Below we present the compiler used to prove this theorem, and sketch why it works. The full
proof appears in Section 6.1.

The Idea Behind the Compiler. Conceptually the compiler is simple: each party keeps track
of the ciphertexts that it created that the other party becomes “capable of” decrypting and sends
the message in the ciphertext across at the right time. This will avoid the need for calling the
decryption oracle. But we need to also argue that the compilation preserves security: if the original
protocol was a secure protocol for some functionality, then so is the compiled protocol. To ensure
this, a party, say Bob, should reveal the message in an encryption it created only if there is a
high probability that Alice (or a curious adversary with access to Alice) can obtain that message
by decryption. Further, the fact that Bob found out that Alice could decrypt a ciphertext should
not compromise Bob’s security. This requires that just based on common information between the
two parties it should be possible to accurately determine which ciphertexts each party can possibly
decrypt. This is complicated by the fact that the protocol can have idiosyncratic ways of transferring
ciphertexts and public and private keys between the parties, and even if a party could carry out a
decryption, it may choose to not extract the ciphertext or private key implicit in its view. By using
the common information learner for image testable random oracles, it becomes possible to

Definition of the Compiler. Given a 2-party protocol Π, with input domains X ×Y, we define
the compiled protocol Π∗ below. Π has access to PKEκ, where as Π∗ will have access to the
interface of PKEκ consisting only of (Gen,Enc,Test1,Test2) (or equivalently, to O(K)

κ as described in
Section 2). For convenience, we require a normal form for Π that before making a decryption query
Dec(sk, c) a party should make queries Gen(sk),Test1(pk) and Test2(pk, c) where pk was what was
returned by Gen(sk).

We define Π∗ in terms of a 3-party protocol involving Alice0,Bob0,Eve, over a broadcast channel.
In the following we will define Alice0 and Bob0; this then defines an (inputless) system Σ which
consists of them interacting with each other internally, while interacting with an external party; in
Σ, the inputs to Alice0 and Bob0 are picked uniformly at random. Then, Eve is defined to be H
for the system Σ, as defined in Figure 6: after each message from Σ (i.e., from Alice or Bob), Eve
responds with a set of publicly computable queries to the oracle. Finally, Π∗ is defined as follows:
Alice runs Alice0 and Eve internally, and Bob runs Bob0 and Eve.12

So to complete the description of the compiled protocol, it remains to define the programs Alice0

and Bob0. We will define Alice0; Bob0 is defined symmetrically.
12Note that Eve follows a deterministic public-query strategy, and can be run by both parties. Alternately, in Π∗,

one party alone could have run Eve. But letting both parties run Eve will allow us to preserve the number of rounds
exactly, when consecutive messages from the same party are combined into a single message.
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Procedure 1. Alice0 internally maintains the state of an execution of Alice’s program in Π (denoted
by AliceΠ). In addition, Alice0 maintains a list LA of entries of the form (m, pk, c), one for every call
Enc(pk,m) = c that AliceΠ has made so far, along with such triples from the (secondary) messages
from Bob0.

Corresponding to a single message mi from Alice in Π, Alice0 will send out two messages — a
primary message mi and a secondary message CA,i (with an intermediate message from Eve) — as
follows. (For the sake of brevity we ignore the boundary cases i = 1 and i−1 being the last message
in the protocol; they are handled in a natural way.)

The list LA,, before receiving the i− 1st message, is denoted by LA,i−2.

◦ On receiving mi−1 and CB,i−1 from Bob0 (and the corresponding messages from Eve), first
Alice sets LA,i−1 := LA,i−2 ∪ CB,i−1 (where CB,i−1 is parsed as a set of entries of the form
(m, pk, c)).

◦ Then Alice0 passes on mi−1 to AliceΠ, and AliceΠ is executed. During this execution AliceΠ is
given direct access to (Gen,Enc,Test1,Test2); but for every query of the form Dec(sk, c) from
AliceΠ, Alice0 obtains pk = Enc(sk) and checks if any entry in LA,i−1 is of the form (m, pk, c)
for some m. If it is, Alice0 will respond to this query with m. Otherwise Alice0 responds with
⊥. At the end of this computation, the message output by AliceΠ is sent out as mi.

Also Alice updates the list LA,i−1 (which was defined above as LA,i−2 ∪ CB,i−1) to LA,i by
including in it a tuple (m, pk, c) for each encryption query Enc(pk,m) = c that AliceΠ made
during the above execution.

◦ Next it reads a message from Eve. Let T (i) denote the entire transcript at this point (including
messages sent by Alice0, Bob0 and Eve). Based on this transcript Alice0 computes a set DT (i)

B
of ciphertexts that Bob is “highly likely” to be able to decrypt in the next round, but has not
encrypted itself,13 and then creates a message CA,i that would help Bob decrypt all of them
without querying the decryption oracle. The algorithm AssistA used for this is detailed below
in Procedure 2. Alice finishes her turn by sending out CA,i.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Procedure 2. Procedure AssistA for computing CA,i:

For each possible view VB of BobΠ at the point T (i) is generated let,

dB(VB) := {(pk, c)|∃sk s.t. [Gen(sk) = pk], [Test1(pk) = 1], [Test2(pk, c) = 1] ∈ VB
and 6 ∃m s.t. [Enc(pk,m) = c] ∈ VB}.

We define the set

DT (i)

B := {(pk, c)|P[(pk, c) ∈ dB(VB)|T (i)] > δ} (3)

13The threshold δ used in defining DT (i)

B by itself does not make it highly likely for the honest Bob to be able to
decrypt a ciphertext. However, as we shall see, this will be sufficient for a curious Bob to be able to decrypt with
high probability.
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where the probability is over a view VB for BobΠ sampled conditioned on T (i), in the interaction
between Σ (i.e., Alice0 and Bob0 with a random input pair) and Eve.14 The threshold δ which will
be set to an appropriately small quantity (larger than, but polynomially related to, σ associated
with Eve).

The message CA,i is a set computed as follows: for each (pk, c) ∈ DT (i)

B , if there is an m such
that Enc(pk,m) = c appears in LA,i, then the triple (m, pk, c) is added to CA,i. If for any (pk, c), if
there is no such m, then the entire protocol is aborted.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Security of the Compiled Protocol. To formally argue the security of the compiled protocol
we must show an honest-but-curious simulator with access to either party in an execution of Π,
which can simulate the view of an honest-but-curious adversary in Π∗. Here we do allow a small
(polynomially related to σ), but possibly non-negligible simulation error. We give a detailed analysis
of such a simulation in Section 6.1. Below we sketch some of the important arguments.

Firstly, it must be the case that the probability of Alice0 aborting in Π∗ while computing a
secondary message CA,i, is small. Suppose, with probability p Alice fails to find an encryption
for some (pk, c) ∈ DT (i)

B . Then, by the independence property guaranteed by Lemma 9, with
about probability δp this Alice execution takes place in conjunction with a Bob view VB such that
(pk, c) ∈ dB(VB). This would mean that with close to probability δp we get an execution of the
original protocol Π in which (pk, c) is present in the parties’ views, but neither Alice nor Bob created
this ciphertext. This probability must then be negligible.

The more interesting part is to show that it is safe to reveal an encrypted message, when there is
only a small (but inverse polynomial) probability that the other party would have decrypted it. For
concreteness, consider when the honest-but-curious adversary has access to Alice. In the execution
of Π∗ it sees the messages CB,i that are sent by Bob (assuming Bob does not abort). These contain
the messages for each (pk, c) pair in DT

A where T is the common information so far. So we need to
show that the simulator would be able to extract all these messages as well. Consider a (pk, c) ∈ DT

A.
If Alice’s view contains an Enc query that generates c, or a Gen query that generates pk, then the
simulator can use this to extract the encrypted message. Otherwise it samples a view A′ for Alice
consistent with T , but conditioned on (pk, c) ∈ dA(A′) (such A′ must exist since (pk, c) ∈ DT

A).
Then A′ does contain a secret key sk′ for pk that Alice will use to decrypt the ciphertext.

However, note that the view of the oracle in A′ need not be consistent with the given oracle. Thus
it may not appear meaningful to use sk′ as a secret key. But intuitively, if it is the case that with
significant probability Alice did not generate pk herself, then it must have been generated by Bob,
and then the only way Alice could have carried out the decryption is by extracting Bob’s secret key
from the common information. Thus this secret key is fixed by the common information. Further,
by sampling an Alice view in which a secret key for pk occurs, this secret key must, with high
probability agree with the unique secret key implicit in the common information. Formalizing this
intuition heavily relies on the independence characterization: otherwise the common information
need not fix the secret key, even if it fixes the public key.

14Even though we define Alice0 in terms of a probability that is in terms of the behavior of a system involving
Alice0, we point out that this probability is well-defined. This is because the probability computed in this round
refers only to the behavior of the system up till this round. Also Eve, which is also part of the system generating
T (i), depends only on the prior messages from Alice0.
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In Section 6.1 we give a detailed proof of security of Π∗, by defining a complete simulation, and
using a coupled execution to analyze how good the simulation is. We show that the compiled protocol
is as secure as the original protocol up to a security error of O|X ||Y|(N(σ/δ + δ)) = O(1/poly) by
choosing appropriate parameters, assuming |X ||Y| is polynomial.

The proof relies on Lemma 9. It shows that even when the protocol allows the parties to use
the information from the common information learner, it holds that the views of the two parties (in
an inputless version of the protocol considered in the proof) are nearly independent of each other’s,
conditioned on the common information gathered by Eve.

6.1 Complete Proofs

In this section we prove Theorem 6. In Figure 7a we illustrate how Π∗ works.

Firstly, we note that Π∗ is efficient if Π is.

Claim 1. Suppose Π is a protocol using the PKEκ oracle in which Alice and Bob make at most
poly(κ) oracle queries and communicates at most poly(κ) bits. Then Π∗ is a protocol using the O(K)

κ

oracle, with at most poly(κ, 1/δ) number of oracle queries and communication.

This follows from the efficiency of Eve (Lemma 1), and the fact that for any T , we have |DT
A| ≤

poly(κ, 1/δ) and (similarly |DT
B|), since |dBVB| ≤ poly(κ) for all possible VB.

Below we argue that Π∗ is as secure as Π. For honest-but-curious corruption, it is enough to
consider the case when exactly one of the two parties is corrupt (this subsumes the correctness
requirement of when both parties are honest). W.l.o.g. we consider when the adversary has access
to Alice, and Bob is honest. For any such adversary Adv in the compiled protocol, we define a
corresponding adversary Sim in the original protocol, as shown in Figure 7b. The simulator is
defined as follows:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Procedure 3. A semi-honest adversary Sim controlling AliceΠ in an execution of Π (with access to
the oracle PKE.)

Goal: to simulate the view of an arbitrary (poly-query) adversary Adv controlling AliceΠ∗ in an
execution of Π∗.

Sim runs Adv, as well as the honest compiled protocol AliceΠ∗ , with the following modifications:

◦ Dec queries made by the copy of AliceΠ within AliceΠ∗ are answered by the actual PKE oracle
(rather than by looking up LA); but LA is still kept updated as in Π∗.

◦ Even if AssistA (within AliceΠ∗) aborts, the copy of AliceΠ is not aborted. (But the rest of
AliceΠ∗ and Adv would be terminated.)

◦ The secondary messages CB from Bob0 are simulated using a procedure SimAssistB, described
below. (The primary messages m are received from BobΠ.) If SimAssistB aborts, then the
execution of AliceΠ alone is continued, and the rest of AliceΠ∗ and Adv are terminated.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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mi-1

mi

CA,i

CB,i-1

Alice∏

Alice0 Bob0

Bob∏Eve EveAsstA AsstB LBLA

Alice∏* Bob∏*

(a) The compiled protocol between AliceΠ∗ and BobΠ∗ . It shows how Alice0 producesmi and CA,i on receiving
mi−1 and CB,i−1 from Bob0 and the interleaving messaged from Eve (shown by dotted lines). mi is produced
by AliceΠ, but with its Dec queries answered from the list LA. CA,i is produced by AssistA, again by looking
up LA. The darkened bars within AliceΠ and AssistA indicate the execution between when the inputs for
these algorithms become available and when they produce their outputs. LA is updated with the message
CB,i−1 as well as the Enc queries made by AliceΠ during its computation.

Bob∏

X

mi-1

mi

CA,i

CB,i-1

Alice∏ EveAsstALAAdv

Sim

SimAsstB

(b) Simulator when Adv corrupts AliceΠ∗ . The simulator runs the SimAssistB algorithm to simulate the
messages from AssistB . Also, it modifies the execution of AliceΠ so that the Dec queries to the oracle are
answered by the oracle itself (but LA is still kept updated), and even if AssistA aborts, AliceΠ does not. This
ensures that Sim is an hones-but-curious adversary for Π.

Figure 7: The compiled protocol Π∗ and the simulation to prove its security
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Procedure 4. Procedure SimAssistB:

Input: a view VA for Alice0, when it expects a message CB from Bob0.

Output: a simulated message CB.

Let T denote the transcript in the view VA (which includes the messages from Eve). Let DT
A be as

defined in Equation 3 (but defined from the point of view of Bob, instead of Alice). The goal of
this algorithm is to generate a set CB such that for each (pk, c) ∈ DT

A, there is a (unique) entry
(m, pk, c) in T . (This algorithm makes at most |DT

A| queries (all decryptions) to the oracle.)

First compute the set DT
A (based on the transcript T ). Then for each (pk, c) ∈ DT

A try to add an
(m, pk, c) to the set CB as follows:

(i) If for some m there is a query of the form [Enc(pk,m) = c] in VA, add (m, pk, c) to CB.

(ii) Else, if for some sk there is a query of the form [Gen(sk) = pk] in VA, then make the oracle
query Dec(sk, c) and if the oracle returns m, add (m, pk, c) to CB.

(iii) Else, the algorithm proceeds as follows: sample a view V ′A for Alice0 in the execution of Π∗

with uniformly random inputs, but conditioned on transcript being T , and conditioned on
(pk, c) ∈ dA(V ′A) (this is possible since (pk, c) ∈ DT

A). Since (pk, c) ∈ dA(V ′A) there exists
a query [Gen(sk′) = pk] in V ′A. Query the decryption oracle with Dec(sk′, c). If the oracle
answers with ⊥ then the algorithm aborts. Else, if the answer is m, then it adds (m, pk, c) to
CB.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that in the execution of the original protocol Π with Sim controlling AliceΠ, Sim behaves
as an honest-but-curious adversary; it lets the execution of Π proceed unhindered, in particular,
giving AliceΠ direct access to the PKE oracle (including Dec) and never aborting its execution.

To argue that this gives a good simulation (up to a small error) of the execution of Π∗ with
Adv controlling AliceΠ∗ , we define a coupled execution of the two protocols (see Figure 8). For this
coupled execution, we sample a single oracle (including Dec, though the compiled protocol and Adv
do not have access to this part), a single pair of inputs (x, y) for Alice and Bob (where x and y
are independently chosen uniformly at random), a single pair of random tapes for AliceΠ and BobΠ,
and a single random tape for Adv. Then we choose a random tape for the rest of the simulator.15

These deterministically define an execution for the entire coupled system. The coupled execution
terminates the first time any of the failure events (Extraction failure, Lookup failure or Abort
failure) occurs.

It is easy to verify the following claim:

Claim 2. In an instance of the coupled execution defined in Figure 8, if none of the failure events
occur, then the final view of Adv in the two executions are identical.

This relies on the fact that if SimAssistB or AssistA finds an m such that Enc(pk,m) = c, and if
Gen(sk) = pk, then it must be the case that Dec(sk, c) = m.

15The simulator, as described above, uses extra randomness in SimAssistB . The randomness is used essentially to
sample a secret key (by sampling a view V ′A) when it is not found in Alice’s view. It is easy to derandomize this by
having it pick the most probable secret key instead. But for the sake of a direct analysis, we allow this randomness.
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Π∗ execution
An honest-but-curious adversary Adv runs along

with AliceΠ∗ (which consists of AliceΠ, LA,
AssistA and Eve, with the Dec queries of AliceΠ

being asnwered using LA).

Π execution
Sim runs along with AliceΠ; Sim consists of Adv,
LA, AssistA, and Eve. All AliceΠ queries to the

oracle are answered by the oracle.

Adv (in both executions) has received mi−1 from BobΠ, as well as the following message from Eve, and is
expecting a message CB,i−1 from AssistB next.

Adv receives the message CB,i−1 from AssistB im-
plemented by BobΠ∗ (and LA and Eve’s view are
updated using it).

Sim uses SimAssistB to compute CB,i−1. If
SimAssistB does not abort, then Sim passes CB,i−1

to Adv (and LA and Eve’s view are updated using
it).

Extraction failure: In the Π execution SimAssistB aborts (because it fails to extract the message m for
some (pk, c) ∈ DT (i)

A ).

AliceΠ∗ passes mi−1 to AliceΠ, and AliceΠ is exe-
cuted to compute mi. Dec queries made by AliceΠ

are answered by looking up LA,i−1.

AliceΠ receives mi−1 and computes mi. Dec
queries are answered by directly asking the ora-
cle (ignoring the answer from LA,i−1).

Lookup failure: In the Π∗ execution, the answer that is computed for a decryption query by AliceΠ, by
looking up the list LA,i−1 is different from what Dec oracle would give.

AliceΠ∗ computes T (i) (by running Eve) and then
invokes AssistA to compute CA,i, which is for-
warded to Bob. AssistA (and AliceΠ∗) aborts dur-
ing this computation if for some (pk, c) ∈ DT (i)

B , it
cannot find an entry of the form Enc(pk,m) = c
is in LA,i.

Eve and AssistA are run as in Π∗. CA,i is not
forwarded to Bob.

Abort failure: In Π∗ execution AliceΠ∗ (i.e., AssistA) aborts.

Figure 8: The coupled Π∗ and Π executions.

Now we prove several claims about Π∗ and the coupled execution that imply that probability of
any failure event occuring is small, no matter what the inputs (x, y) are, or equivalently when the
inputs are chosen uniformly at random (since the size of the domains |X × Y| is polynomial). All
the proofs use Lemma 9 applied to the protocol Π∗ with uniform inputs. To facilitate this, we define
two distributions, V

(i)
AB and V

(i)
A×B as follows. Fix the uniform distribution over the inputs (x, y) to

Alice and Bob. V
(i)
AB is simply the joint distribution over the views of Alice0 and Bob0 just before

AssistA is invoked to compute CA,i. Let T (i) denote the transcript at that point. V
(i)
A×B can be

defined as follows. Draw T (i) according to its marginal distribution in V
(i)
AB, and then independently

sample a view for Alice0 and a view for Bob0, according to their marginal distributions in V
(i)
AB,

conditioned on the value of T (i) that was sampled.

For notational convenience we shall write V
(T )
AB and V

(T )
A×B to denote the distributions V

(i)
AB and
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V
(i)
A×B conditioned on T (i) = T (where i is implicit in T ).

Claim 3. For any ε > 1/poly(κ), there is a choice of σ > 1/poly(κ) such that, for all i,

∆(V
(i)
AB,V

(i)
A×B) ≤ ε. (4)

This claim follows by a direct application of Lemma 9 noting that the oracle used by Π∗ is
indeed O(K)

κ .

Claim 4. Suppose Equation 4 holds. Then, the probability of Alice (or Bob) aborting in Π∗ due
to AssistA (rep. AssistB) failing is O(Nε/δ), where N is an upperbound on the number of messages
exchanged in Π.

Proof. Consider the probability of AssistA aborting in round i of Π∗. This happens when AssistA
fails to find a query of the form [Enc(pk,m) = c] in her list of oracle queries for some (pk, c) ∈ DT

B,
where T is the common information gathered till that point. Suppose this happens with probability
pT , conditioned on T . Note also that (pk, c) ∈ DT

B implies that with probability at least δ, there is no
oracle query of the form [Enc(pk,m) = c] in Bob’s view (but [Test1(pk) = 1] and [Test2(pk, c) = 1]

are). Then, in the distribution V
(T )
A×B, with probability at least δpT , neither the view of AliceΠ

nor the view of BobΠ contains a query of the form [Enc(pk,m) = c] for some (pk, c) ∈ DT
B, but

[Test1(pk) = 1] and [Test2(pk, c) = 1] are in the view of BobΠ. We call this event an anomaly.

Let pi be the probability that Alice aborts while computing the ith message in Π∗. pi is the
expected value of pT when T is distributed over transcripts T (i). From the above, the probability
of an anomaly in round i is at least piδ, when the views are sampled according to V

(i)
A×B. Then, by

Lemma 9, with probability at least piδ − ε, an anomaly occurs after i messages in an execution of
Π∗. But this anomaly can happen with only negligible probability. Hence pi is at most negligibly
larger than ε/δ. Then, by the union bound, probability of AssistA (or AssistB) aborting at any
round in Π∗ is O(Nε/δ) where N is the total number of messages exchanged in Π.

Claim 5. In the coupled execution of Π∗ and Π, the probability that a Lookup failure occurs is
O(Nδ)).

Proof. A Lookup failure occurs while AliceΠ∗ computes mi if a Dec query (pk, c) made by AliceΠ is
not listed in LA,i−1 (and is hence answered by ⊥), but in fact, Dec oracle would have given a valid
message m. Now, for a Lookup failure to occur, an Abort failure must not have occurred before
it (since the coupled execution terminates the first time a failure event occurs). So we can assume
that all queries in DT (i)

A were actually answered in CB,i−1 ⊆ LA,i−1. This means that (pk, c) is not
in DT (i)

A and neither is it in the list of local Enc queries Alice made. That is, the view of AliceΠ VA

must be such that (pk, c) ∈ dA(VA) but (pk, c) 6∈ DT (i)

A . By definition of DT (i)

A , this probability is
at most δ, for each value of T (i). Thus, overall too, the probability of a Lookup failure at any one
round is at most δ. By union bound, the probability of any lookup failure occuring is O(Nδ).

Claim 6. Suppose Equation 4 holds. In the coupled execution of Π∗ and Π, the probability of
Extraction failure is O(Nε/δ).

Proof. Extraction failure occurs for Alice if for some (pk, c) ∈ DT
A, SimAssistB fails to find (m, pk, c)

such that Enc(pk, c) = m. Note that SimAssistB samples a view V ′A conditioned on having a query
of the form [Gen(sk′) = pk] in that view. Extraction failure occurs if for this sk′, Dec(sk′, c) = ⊥.
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We note that since (pk, c) ∈ DT
A, the test queries Test1(pk) and Test2(pk, c) are heavy queries

(with answer 1) and hence must already be present in the transcript T which includes Eve’s messages,
and should have the answer 1. Then, we can divide the above failure event into two cases (by
considering the view of Bob as well): when Bob’s view VB has a secret key sk 6= sk′ and when
Bob’s view has no secret key for pk. Given the perfect correctness requirement for the oracle, and
that Test1(pk) = 1 and Test2(pk, c) = 1, the case when Bob has the same secret key sk = sk′, but
decryption yields ⊥, does not arise. Note that Bob’s view VB here is with respect to the actual
oracle (available to VA) and not an independently chosen one (as in the case of V ′A).

We analyze the above two cases now.

For the second of the above two cases, note that the event we are considering has it that Alice’s
view VA does not contain a Gen oracle call that yields pk (since otherwise the SimAssistB would not
have reached the third step and aborted) and Bob’s view also does not have one, but the test query
Test1(pk) = 1 is present in both their views. This is an extremely unlikely event (see Lemma 3),
and its probability can be bounded by a negligible function of κ.

Now we turn to analysing the first case, that is, in some round i Bob’s view VB has a secret
key sk different from the secret key sk′ present in the sampled view V ′A. This by itself does not
give a contradiction (even though Gen is injective), since V ′A was sampled independently from VB
conditioned on T and on having (pk, c) ∈ dA(V ′A). Nevertheless we observe the following: given
T , if V ′′A is picked at random only conditioned on T , then with probability at least δ we have
(pk, c) ∈ dA(V ′′A), and hence the probability of getting sk′ 6= sk when sk′ is taken from V ′A is at
most 1/δ times the probability sk′′ 6= sk when sk′′ is taken from V ′′A . Further, after picking a
Bob view VB, sampling an Alice view V ′′A conditioned only on the transcript is identical to drawing
(V ′′A , VB)← V

(i)
A×B. Thus the failure probability using (V ′′A , VB) is at most ε more than the finding

two distinct secret keys for pk in (VA, VB) ← V
(i)
AB. But this last probability is 0. Working

backwards, the probability of sk′ 6= sk is at most ε/δ.

Thus the probability of extraction failure on receiving a message is O(ε/δ) and by union bound,
the probability of extraction failure is O(Nε/δ).

To complete our analysis, by the above claims the failure probability in the coupled execution
with uniform inputs can be made at most O(N(ε/δ + δ)) by using a small enough σ to define
Eve. Recall that this experiment picks an input pair uniformly at random. So, for each input
pair, the failure probability of the coupled execution is O(|X ||Y|N(ε/δ + δ)), where X and Y
are the (polynomial-sized) input domains. Then, by Claim 2, the statistical distance between the
environment’s view in the two executions is O(|X ||Y|N(ε/δ+δ)). Hence by choosing ε = δ2 and δ to
be 1/(|X ||Y|Npoly) for any polynomial poly, we can make the statistical error O(1/poly) (suffering
a polynomially related blow up in the communication and oracle-query complexity of the compiled
protocol).

7 Common Information Learner for Protocols with Inputs

In this section we shall define the common-information learner for two-party protocols where parties
have private inputs. First, we shall describe how the protocols are augmented and, next, we shall
prove some properties of the common-information learner (see Lemma 10). This section directly

33



uses the CIL for input-less protocol presented in Lemma 9 to obtain the CIL for protocols with
inputs as shown in [MMP12].

7.1 Augmentation of Two-party Protocols

Given a two-party protocol ρ where parties have private inputs, we describe the augmentation
algorithm in Figure 9.

1. Given a two-party protocol ρ, define π as the input-less version of ρ, where x $←X and
y

$←Y.

2. Let π+ be augmentation of π with Eveπ as defined in Figure 6.

3. The underlying sample space considered will be joint Alice-Bob views as generated by
π+ when the oracle is chosen uniformly at random.

Figure 9: Augmentation algorithm Eveπ for a two-party protocol where parties have private inputs.

7.2 Notation and Definitions

In this section we introduce the following definition:

Definition 6 (Safety). For Alice view VA, pair of Bob views (VB, V
′
B) and Eve view VE, we define

the following event: Safety(VA, (VB, V
′
B), VE) = Nice(VA, VB, VE) ∧ Nice(VA, V

′
B, VE).

Analogously, we also define Safety((V ′A, VA), VB, VE).

7.3 Common-Information Learner Properties

Given a 2-party protocol ρ where parties have private inputs, we augment it with Eveπ as described
in Figure 9. By suitably choosing the parameter σ for Eveπ, we can ensure the following strong
independence properties:

1. Suppose i is an even round in the augmented protocol ρ+. If x ∈ X and y, y′ ∈ Y are likely
inputs at V (i)

E (transcript of the augmented protocol), then the message sent by Alice is nearly
independent of Bob’s private input being y or y′.

2. Suppose i is an even round in the augmented protocol ρ+. If x ∈ X and y, y′ ∈ Y are likely
inputs at V (i)

E , then sample a Alice-Bob joint view (V
(i+1)
A , V

(i)
B ) just after Alice has sent the

message mi+1. Conditioned on the transcript V (i)
E , message sent by Alice mi+1 and Bob input

being y′, sample a new Bob view V ′
(i)
B . With high probability: Safety(V

(i+1)
A , (V

(i)
B , V ′

(i)
B ), V

(i)
E )

holds, i.e. Nice(V (i+1)
A , V

(i)
B , V

(i)
E ) and Nice(V

(i+1)
A , V ′

(i)
B , V

(i)
E ).
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3. For an even round i, and likely inputs x ∈ X and y, y′ ∈ Y the distribution of (V
(i+1)
A , V

(i)
B V ′

(i)
B )

is close to a product distribution where each component is independently sample conditioned
on (V

(i)
E ,mi+1).

Analogous conditions hold when i is odd. The result is formally stated as Lemma 10 and the proof
follows from Lemma 9. Note that all these guarantees are only with respect to likely inputs. We
emphasize that we need to use these properties in our argument in context where the private inputs
being considered are all likely; which shall be the case in our setting.

Lemma 10 (Common Information Learner for Likely Inputs). Function f : X × Y 7→ Z is a
(symmetric) 2-party deterministic function with polynomial domain size. Let ρ be a normal protocol
for secure function evaluation of f relative to an oracle class O(K)

κ (for some key set K) and parties
have query complexity at most ψ. Consider Eveπ parametrized by σ and the sample space of Alice-
Bob joint views as defined in Figure 9. For every ε = 1/poly(κ), there exists σ = 1/poly(κ) such
that: With probability 1− ε over the choice of VE ∼ VE (i.e. complete views of Eveπ), the following
conditions hold:

1. For every even round i and any input x ∈ X , y, y′ ∈ Y such that P[x, y|V (i)
E ] ≥ ε and

P[x, y′|V (i)
E ] ≥ ε, we have:

∆
(

(mi+1|V (i)
E , x, y), (mi+1|V (i)

E , x, y′)
)
≤ ε.

We remind that V (i)
E is restriction of VE to first i rounds.

2. Consider any input x ∈ X , y, y′ ∈ Y and even round i. Note that mi+1 is already fixed in VE.
Define,

D ≡ (V
(i+1)
A ,V

(i)
B |V

(i)
E ,mi+1, x, y)× (V

(i)
B |V

(i)
E , V

(i+1)
A ,mi+1, x, y

′)

If P[x, y|V (i)
E ,mi+1] ≥ ε and P[x, y′|V (i)

E ,mi+1] ≥ ε then, we have:

P
(A,B,B′)∼D

[Safety(A, (B,B′), V
(i)
E )] ≥ 1− ε.

3. Consider any input x ∈ X , y, y′ ∈ Y and even round i. Let D be the distribution as defined
above, and D′ be the product distribution:

(V
(i+1)
A |V (i)

E ,mi+1, x)× (V
(i)
B |V

(i)
E ,mi+1, y)× (V

(i)
B |V

(i)
E ,mi+1, y

′)

If P[x, y|V (i)
E ,mi+1] ≥ ε and P[x, y′|V (i)

E ,mi+1] ≥ ε then, we have:

∆
(
D,D′

)
≤ ε

Analogous conditions (by swapping Alice and Bob views) also hold for odd i.

Proof. We shall prove this lemma in three parts. We shall show that by choosing σ sufficiently small
one can satisfy the conditions 1, 2 and 3 independently. Setting σ to be smaller than all these three
respective values of σ we get the above result.

Part 1 and Part 2. These two parts are identical to the theorems proven in Appendix A of
[MMP12] using Lemma 9.

Part 3. We will use the following two lemmas.
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Lemma 11 (From Section A.2 in [MMP12]). Let a,b be two random variables such that ∆ (a,b) ≤
σ. Let E be an event such that P [a ∈ E] ≥ δ > 0 and P [b ∈ E] > 0. Define aE ≡ (a | E) and
bE ≡ (b | E). Then, ∆ (aE ,bE) ≤ σ/δ.

Lemma 12. Let a,b be two random variables such that ∆ ((a,b),a× b) ≤ α. Suppose m is
another random variable which is a function of a. Then, with probability at least 1 −

√
α over the

choice of m ∼m, it holds that the following distributions are all O(
√
α) close:

D1 = (a,b | m),D2 = (a | m)× (b | m),D3 = (a | m)× b.

In particular, for any such choice of m ∼ m, it holds that the distribution b remains O(
√
α) close

to (b | m).

Proof. Let F be a distribution with 3 components defined as follows: We first sample from (a,b)
jointly, and then we sample m conditioned on a. Let F′ be a similar random variable with the
difference that we sample the first two components from a × b independently. First note that the
statistical distance cannot increase under the same transformation; and so: ∆ (F,F′) ≤ α. Also,
since the third component m is distributed identically in F and F′, we can expand the statistical-
distance expression between F,F′ over m as follows.

α ≥∆
(
F,F′

)
= E

m∼m
∆ ((a,b | m), (a | m)× b)

By an averaging argument overm we conclude that with probability 1−
√
α overm ∼m, it holds

that ∆ (D1,D3) ≤
√
α. One of the results in Section A.2 in [MMP12] shows that when a distribution

(here D1) is δ =
√
α-close to a product distribution (here D3), then it is at most 3δ = 3

√
α far from

the product of its own marginals (here D2). This finishes the proof the lemma.

In the following we will first compare the first two components of D and D′, and then we will
compare their last components.

We use Part 3 of Lemma 9 with Eve’s parameter equal to σ (which we can choose arbitrarily
polynomially smaller than ε). Therefore, in the following we will suppose that strong 1−σ indepen-
dence already holds over the choice of V (i)

E (which happens with probability 1−σ > 1−ε/10). Now,
using Lemma 12 we conclude that with probability 1−

√
σ > 1−ε/10 over the choice of mi+1 (which

is only a function of V (i+1)
A ) the joint random variables (V

(i+1)
A ,V

(i)
B ) conditioned on (V

(i)
E ,mi+1)

will be O(
√
σ)-close to the product their marginals. For such choice of (V

(i)
E ,mi+1) we prove the

third claim of the lemma by comparing the (first two components of the) distributions D and D′.
Now we use Lemma 11 as follows. Let a be the joint distribution of of V

(i+1)
A ,V

(i)
B conditioned on

V
(i)
E ,mi+1 and let b be the product of the marginal distributions of the two components of a (i.e.

sampling views of Alice and Bob independently). We let E be the event that Alice is using input x
and Bob is using y. Since we are assuming the probability of E is at least ε, Lemma 11 shows that
(for the fixed pair V (i)

E ,mi+1) the following two distributions are O(
√
σ/ε) < ε/10-close:

(V
(i+1)
A ,V

(i)
B |x, y, V

(i)
E ,mi+1) and (V

(i+1)
A |V (i)

E ,mi+1, x, y)× (V
(i)
B |V

(i)
E ,mi+1, x, y).

But, since the second distribution above is a product distribution the first component does not
depend on y and the first component does not depend on x, and therefore it is simply the same as
(V

(i+1)
A |V (i)

E ,mi+1, x)× (V
(i)
B |V

(i)
E ,mi+1, y).
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Thus far, we have proved that with probability at least 1 − O(
√
σ) ≥ 1 − ε/10 over the choice

of VE (which includes V (i)
E ,mi+1) the first two components of D1 and D2 are O(

√
σ) close. Now

we bound the statistical distance of the third components by showing that with “high” probability
over the sampled components VE (which includes V (i)

E ,mi+1) and V
(i+1)
A , V

(i)
B , the last components

of D1,D2 are also statistically close.

In the following we will be using the same sampled V
(i)
E ,mi+1. We will first show that the

following two distributions are close:

(V
(i+1)
A ,V

(i)
B |x, y

′, V
(i)
E ,mi+1) and (V

(i+1)
A |V (i)

E ,mi+1, x)× (V
(i)
B |V

(i)
E ,mi+1, y

′).

Then we will argue, with an averaging argument, that with high probability over the (already)
sampled V

(i+1)
A the last components of D,D′ are close. In fact, the very same argument that we

used already for inputs (x, y) shows that (for the fixed V (i)
E ,mi+1) the above two distributions are

O(
√
σ/ε) close. An averaging argument over the sampled V (i+1)

A shows that with probability at least
1−
√
O(
√
σ/ε) > 1−ε/10 over the choice of V (i+1)

A the distribution of (V
(i)
B |x, y′, V

(i)
E ,mi+1) (which is

the distribution of the last component of D conditioned on the previously sampled components) will
be
√
O(
√
σ/ε) < ε/10-close to (V

(i)
B |V

(i)
E ,mi+1, y

′) (which is the distribution of the last component
of D′ conditioned on the previously sampled components).

7.4 Extension of [MMP12] to Image-testable Random-oracles

The frontier analysis of [MMP12] is agnostic of the actual oracle class used. It only requires three
set of results which are ensured by:

1. Resampling of local views, see Lemma 5,

2. Oblivious Re-randomization, see Lemma 6, and

3. Common-information Learner for protocol with inputs, see Lemma 10.

Thus, extending [MMP12] to the class of (keyed version) of image-testable random oracles.

Lemma 13. Suppose ρ is a 1 − λ(κ) semi-honest secure protocol (with round complexity N) for
2-party finite semi-honest non-trivial f relative to oracle class O(K)

κ , for any key set K. There exists
Λ = 1/poly(·) such that, for infinitely many κ, we have λ(κ) > Λ(N,κ).

We emphasize that the insecurity parameter Λ(N,κ) is independent of the query complexity
of protocol ρ. The number of additional queries performed by the parties in their curious attacks
depends on ψ; but not the insecurity it demonstrates.

8 Putting Things Together

Now we prove the negative result of Theorem 1. Suppose f is a 2-party finite semi-honest non-trivial
SFE. Assume that there exists a 1 − negl(κ) secure protocol ρ relative to oracle class PKEκ, with
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round complexity N . By Theorem 6, we construct a new protocol which 1− λ∗(κ) secure protocol
ρ∗ relative to oracle class O(K)

κ , where λ∗ could be arbitrarily small 1/poly and K = {0, 1}2κ ∪ {⊥}.

By Lemma 13, λ∗(κ) must be > Λ(N,κ) for infinitely many κ.

We choose λ∗ sufficiently small so that λ∗(κ) < Λ(N,κ). This contradicts the above lemma
and hence the assumption that ρ is a (1 − negl(κ)) secure protocol for semi-honest non-trivial f
relative to PKEκ. Note that this result crucially relies on the fact that Theorem 6 preserves round-
complexity and the simulation error exhibited in Lemma 13 is function of only round complexity
(and independent of the query complexity).

Finally, Corollary 2 restricted to symmetric SFE follows from: a) the result in [MPR09] which
shows that the set of symmetric SFE which is standalone or UC trivial in the Fcom-hyrbid is identical
to the set of semi-honest trivial SFE (which were characterized by [Kus89, Bea89, MPR09]) , and
b) the result in [PR08] which shows that standalone or UC-secure protocols for symmetric SFE are
also semi-honest secure. Next, extension of this result to general SFE follows from [MPR12].

9 Conclusions and Open Problems

As mentioned in the introduction, our result can be set in the larger context of the “cryptographic
complexity” theory of [MPR10]: with every (finite, deterministic) multi-party function f , one can
associate a computational intractability assumption that there exists a secure computation protocol
for f that is secure against semi-honest corruption. The main result of this work shows that the
set of such assumptions associated with 3-party functions is strictly larger than the set associated
with 2-party functions. However, we do not characterize this set either for the 3-party case or for
the 2-party case.

It remains a major open problem in this area to understand what all computational intractability
assumptions could be associated with multi-party functions. For the 3-party case, this question is
far less understood than that for 2-party functions. Intuitively, there are many more “modes of
secrecy” when more than two parties are involved, and these modes will be associated with a finer
gradation of intractability assumptions. Our result could be seen as a first step in understanding
such a finer gradation. It raises the question whether there are further modes of secrecy for larger
number of parties, and if they always lead to “new” complexity assumptions.

Stepping further back, the bigger picture involves randomized and reactive functionalities, var-
ious different notions of security, and “hybrid models” (i.e., instead of considering each multi-party
function f and a secure protocol for it in plain model, we can consider a pair of functions (f, g) and
consider a secure protocol for f given ideal access to g). The cryptographic complexity questions of
such functions remain wide open.
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A Technical Results

In this section we shall present some technical results needed in the paper.

A.1 Result about Independence

Let G be a bipartite graph with partite sets U and V ; and edge set E. Consider a probability
distribution d over E and the probability of an edge (i, j) is represented by d(i, j). Additionally,
for i ∈ U , j ∈ V and (i, j) ∈ G we have:

d(i, j) = c · a(i) · b(j) · (1 + εi,j)

And |εi,j | ≤ ε. Let a be probability distributions over U such that the probability of i ∈ U
according to the distribution a is ca · a(i), where ca is a normalization constant. Similarly, define b
the probability distribution over V such that the probability of j ∈ V is cb · b(j).

Consider a new distribution n(i, j) over E defined by the following sampling algorithm:

1. Sample i ∼ a and j ∼ b.

2. If (i, j) 6∈ E, go to Step 1.

3. Output (i, j).

In this section we shall interpret probability distributions as vectors, where the indices are entries
in the sample space. We shall use the fact that:∑

(i,j)∈E

ca(i)b(j) ∈
[

1

1 + ε
,

1

1− ε

]

Otherwise, it cannot be the case that
∑

(i,j)∈E ca(i)b(j)(1 + εi,j) = 1, because |εi,j | ≤ ε.

Note that n(i, j) = c′ · a(i)b(j), where c′ is a suitable normalization constant.

d(i, j)

n(i, j)
=
c(1 + εi,j)

c′

= (1± ε) c
c′

= (1± ε)c

 ∑
(i,j)∈E

a(i)b(j)


∈
[

1− ε
1 + ε

,
1 + ε

1− ε

]
(5)

A.2 Reduction in Niceness

In this section we prove the following lemma:

Lemma 14. bi+1 + ci+1 ≤ ci + Θ(ψ2σ) + negl(κ), where σ = 1/poly(κ).
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Proof. By definition, for every V (i)
E ∈ C(i) we have ¬Long(V

(i)
E ) and P[Nice(V

(i)
A ,V

(i)
B , V

(i)
E )|V (i)

E ] ≥
1
2 .

Since Eve stopped querying, for every every q 6∈ Q(P
(i)
E ), we have: P[q ∈ Q(V

(i)
A )∪Q(V

(i)
B )] < σ.

Hence, we can claim that: P(VA,VB)∼Simulate(V
(i)
E )

[q ∈ Q(VA)∪Q(VB)] < 2σ(1 + negl(κ)). Otherwise,
we have the following contradiction:

P
(VA,VB)∼Simulate(V

(i)
E )

[q ∈ Q(VA) ∪Q(VB)] ≥ 2σ(1 + negl(κ))

=⇒ P[q ∈ Q(V
(i)
A ) ∪Q(V

(i)
B )|Nice(V(i)

A ,V
(i)
B , V

(i)
E )] ≥ 2σ

=⇒ P[Nice(i)|V (i)
E ]× P[q ∈ Q(V

(i)
A ) ∪Q(V

(i)
B )|Nice(V(i)

A ,V
(i)
B , V

(i)
E )] ≥ σ

=⇒ P[q ∈ Q(V
(i)
A ) ∪Q(V

(i)
B )|V (i)

E ] ≥ σ

Suppose i is even, i.e. Alice is supposed to send the next message in protocol π. Consider
the view of Alice just after she performs her sequence of queries to the oracle. Let her view be
represented by: V (i,+)

A = (rA,m
(i), P

(i+1)
A , P

(i)
E ).

Let µi+1 be the probability that Nice(P (i)
A ∪P

(i)
B ∪P

(i)
E ) but ¬Typical(P (i+1)

A ∪P (i)
B ∪P

(i)
E ) holds.

Intuitively, this accounts for the case that (one of the) the new queries performed by Alice is an
atypical query while P (i)

A ∪P
(i)
B ∪P

(i)
E was typical and good. Note that

∑
i∈[n] µi ≤ negl(κ), because

µi is the probability of performing an atypical query when the query complexity of the system is
bounded by 2ψ (1 + 1/σ2) (by Lemma 3 and Equation 1).

Let γi+1 be the probability that Nice(P (i)
A ∪ P

(i)
B ∪ P

(i)
E ) but ¬Good(P

(i+1)
A ∪ P (i)

B ∪ P
(i)
E ) holds.

In other words, we are accounting for the case that the new queries performed by Alice yields an
intersection query while P (i)

A ∪ P
(i)
B ∪ P

(i)
E was typical and good. This reduces to a claim in [BM09]

which shows that:

Claim 7 (Restated from [BM09]). γi+1 ≤ 2× ψ2 × 2σ(1 + negl(κ)) = 4ψ2σ + negl(κ).

Next, considering Eve queries after Alice sends a message we have the following cases to consider:

1. If Eve performs too many queries, then the view V
(i+1)
E will be accounted in A(i+1),

2. If ¬Long(V
(i+1)
E ) then the probability that Eve performs an atypical query can be accounted

in ρi+1 and is negl(κ),

3. Otherwise, if Nice(P (i+1)
A ∪ P (i)

B ∪ P
(i)
E ) holds then extra Eve queries preserves this property.

Therefore, it follows that bi+1 + ci+1 = ci + Θ(ψσ(1 + negl(κ))) + µi+1 + ρi+1 ≤ ci + Θ(ψσ) +
negl(κ).

A.3 Product Distribution Basics

Lemma 15. Relative to oracle class O(K)
κ , suppose VE is an Eve view such that P[Nice(VA, VB, VE)|VE ] ≥

1− δ and for any q 6∈ Q(PE) we have P[q ∈ Q((PA ∪ PB) \ PE)] ≤ δ. For δ = o(1) = 1/poly(κ), we
have: ∆ ((VA, VB|VE), (VA|VE)× (VB|VE)) ≤ 3(ψ + 1)δ.
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Proof. Consider the following two distributions:

1. D1: This is the joint distribution (VA, VB) conditioned on the event that VE occurs. That is,
D1 is the distribution (VA, VB|VE).

2. D2: This is the joint distribution (VA, VB) conditioned on the event that VE and Nice(VA,VB, VE)
occurs.

Note that ∆ (D1,D2) ≤ δ, because P(VA,VB)∼D1
[Nice(VA, VB, VE)|VE ] ≥ 1− δ.

Define distribution D3 as Simulate(VE). We know that ∆ (D2,D3) ≤ negl(κ) (by Lemma 7).

Note that for any q 6∈ Q(PE) we have P(VA,VB)∼D3
[q ∈ Q((PA∪PB)\PE)] ≤ δ(1+negl(κ))/(1−δ),

because P(VA,VB)∼D1
[Nice(VA, VB, VE)|VE ] ≥ 1 − δ, the queries are at most “δ-heavy” in the actual

distribution D1, and ∆ (D2,D3) ≤ negl(κ).

Let D4 be the distribution over Alice-Bob joint views defined as follows: The probability of
Alice-Bob joint view (a, b) has probability P(ã,b̃)∼D3

[ã = a]× P(ã,b̃)∼D3
[b̃ = b].

By Barak-Mahmoody-09 [BM09] we know that: ∆ (D3,D4) ≤ 2ψ × δ(1 + negl(κ))/(1− δ).

Because of ∆ (D3,D1 ≡ (VA, VB|VE)) ≤ δ + negl(κ), we have: ∆ (D4, (VA|VE)× (VB|VE)) ≤
2(δ + negl(κ)).

By triangle inequality, we get:

∆ (D1, (VA|VE)× (VB|VE)) ≤∆ (D1,D2) + ∆ (D2,D3) + ∆ (D3,D4) + ∆ (D4, (VA|VE)× (VB|VE))

≤ δ + negl(κ) + 2ψδ/(1− δ) + 2(δ + negl(κ))

≤ 3(ψ + 1)δ

This completes the proof of the lemma.
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