
Limits of Random Oracles in Secure Computation

Mohammad Mahmoody∗ Hemanta K. Maji† Manoj Prabhakaran‡

May 16, 2012

Abstract

The seminal result of Impagliazzo and Rudich (STOC 1989) gave a black-box separation between
one-way functions and public-key encryption: informally, a public-key encryption scheme cannot be
constructed using one-way functions as the sole source of computational hardness. In addition, this
implied a black-box separation between one-way functions and protocols for certain Secure Function
Evaluation (SFE) functionalities (in particular, Oblivious Transfer). Surprisingly, however, since then
there has been no further progress in separating one-way functions and SFE functionalities (though
several other black-box separation results were shown). In this work, we present the complete picture for
deterministic 2-party SFE functionalities. We show that one-way functions are black-box separated from
all such SFE functionalities, except the ones which have unconditionally secure protocols (and hence do
not rely on any computational hardness), when secure computation against semi-honest adversaries is
considered. In the case of security against active adversaries, a black-box one-way function is indeed
useful for SFE, but we show that it is useful only as much as access to an ideal commitment functionality
is useful.

Technically, our main result establishes the limitations of random oracles for secure computation.
We show that a two-party deterministic functionality f has a secure function evaluation protocol in the
random oracle model that is (statistically) secure against semi-honest adversaries if and only if f has
a protocol in the plain model that is (perfectly) secure against semi-honest adversaries. Further, in the
setting of active adversaries, a deterministic SFE functionality f has a (UC or standalone) statistically
secure protocol in the random oracle model if and only if f has a (UC or standalone) statistically secure
protocol in the commitment-hybrid model.

Our proof is based on a “frontier analysis” of two-party protocols, combining it with (extensions of)
the “independence learners” of Impagliazzo-Rudich/Barak-Mahmoody. We make essential use of a com-
binatorial property, originally discovered by Kushilevitz (FOCS’89), of functions that have semi-honest
secure protocols in the plain model (and hence our analysis applies only to functions of polynomial-sized
domains, for which such a combinatorial characterization is known).

Keywords: Secure Function Evaluation, Random Oracle Model, One-Way Function, Random Permutation Oracle, Ideal Ci-

pher, Symmetric Primitives, Black-Box Separation.

∗Cornell, mohammad@cs.cornell.edu. Supported in part by NSF Award CCF-0746990, AFOSR Award FA9550-10-1-0093,
and DARPA and AFRL under contract FA8750-11-2-0211. The views and conclusions contained in this document are those of
the author and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US government.
†Univ. of California, Los Angeles. Work partially done when at Univ. of Illinois, Urbana-Champaign. Partially supported by

NSF grants CNS 07-47027 and CNS 07-16626. hmaji@cs.ucla.edu.
‡Univ. of Illinois, Urbana-Champaign. Supported by NSF grant CNS 07-47027. mmp@cs.uiuc.edu.

mailto:mohammad@cs.cornell.edu
mailto:hmaji@cs.ucla.edu
mailto:mmp@cs.uiuc.edu

Contents

1 Introduction 1

1.1 Our Results . 2

1.2 Related Work . 3

1.3 Technical Overview . 4

1.3.1 Frontier Analysis Meets Random Oracles . 5

1.3.2 Using the Independence Learner . 7

2 Preliminaries 8

2.1 Secure Evaluation of 2-Party Functions . 8

2.2 Random Oracles . 9

2.3 Frontiers . 9

3 Transcript Tree and Other Notation 10

4 Overview of Our Analysis 12

5 Detailed Proof of Theorem 1.1 15

5.1 Frontier Ordering . 15

5.2 Proof of Theorem 1.1 . 17

5.3 Bounding probability of events F θX and F θY . 18

5.4 Bounding probability of event F 0
Y ≺(F θX ∪ F θY) . 19

5.5 Bounding the probability of event F̃X . 20

6 Beyond Semi-Honest Security 31

7 Black-Box Separations 32

8 Open Problems and Future Work 34

References 37

A Independence Learners 38

A.1 Some Notations . 38

A.1.1 Random Variables. 38

A.1.2 Two Party Protocols . 38

A.2 Independence Learner . 39

A.3 Using the Independence Learner . 39

A.4 General Useful Lemmas . 40

A.5 Proving Lemma A.2 and Lemma A.3 . 43

A.5.1 Proof of Lemma A.2 . 43

A.5.2 Proof of Lemma A.3 . 44

A.5.3 Proof of Lemma A.8 . 45

B Some Examples for Intuition 47

B.1 Undecomposable Functions . 47

B.2 Decomposable Example . 47

C Black-box Separation Proof 48

1 Introduction
How useful is a random oracle in two-party secure function evaluation (SFE)? One obvious use of a random
oracle is for implementing commitment. We show that, remarkably, for 2-party SFE1 a random oracle by
itself is only as useful as a commitment functionality.

This result has important implications in understanding the “complexity” of secure function evaluation
functionalities vis a vis computational primitives like one-way functions. An important goal in cryptography
is to understand the qualitative complexity of various cryptographic primitives. In the seminal work of
Impagliazzo and Rudich [IR89] a formal framework was established to qualitatively separate cryptographic
primitives like symmetric-key encryption and public-key encryption from each other. Understanding that
such a separation exists has been hugely influential in theoretical and practical cryptographic research in the
subsequent decades: to optimize on both security and efficiency dimensions, a cryptographic construction
would be based on symmetric-key primitives when possible, and otherwise is shown to “require” public-key
primitives.

Beyond encryption, the result in [IR89] already implies the separation of certain SFE functionalities (in
particular, Oblivious Transfer) from one-way functions. Surprisingly, however, since then there has been no
further progress on separating SFE functionalities and one-way functions (though several other black-box
separation results have emerged [Sim98, GKM+00, GMR01, BPR+08, KSY11, MM11]). In this work,
we present the complete picture for deterministic 2-party SFE functionalities: we show that in the case
of security against semi-honest adversaries, all of them are black-box separated from one-way functions,
except the ones which are trivial (which have unconditionally perfectly secure protocols). In the case of
active adversaries, a black-box one-way function is indeed useful for SFE, but we show that it is useful
only as much as access to a commitment functionality is useful (and explicitly characterize the functions for
evaluating which it is useful).

Our work could be viewed as a confluence of two largely disjoint lines of work — one on black-box
one-way functions, and one on the structure of secure function evaluation functionalities. The former line es-
sentially started with [IR89]. The latter can be traced back to concurrent work [CK89, Bea89, Kus89] which
combinatorially characterized which finite (2-party) functionalities have (perfectly) semi-honest secure pro-
tocols. This property, called decomposability [Kus89] will be important for us. Several later works obtained
such combinatorial characterizations of SFE functionalities in different contexts (e.g., [Kil91, BMM99,
KKMO00, MPR10, KM11, Kre11]).

An important ingredient of our proof is the “frontier analysis” approach from [MPR09, MOPR11]. As
we shall see, frontier analysis provides a powerful means to explicitly work with otherwise-subtle condi-
tional probabilities, especially as arising in 2-party protocols. In essence, it is simply a means to explicitly
keep track of the order in which various events occur in a protocol (or more generally, in a sequence of
random variables). But as we shall see, having an explicit mental picture lets us define frontiers and reason
about their properties that are a priori not obvious (see Figure 2 in Section 5.1, for instance). The proof
in [CI93] could in fact be viewed as an instance of frontier analysis (and is one of the earliest ones that the
authors are aware of). An instance of such an approach in a non-cryptographic setting is present in the recent
work of Barak et al. [BBCR10], who consider frontiers in a protocol where significant amounts of “new and
relevant” information is revealed, and use this to reduce the total amount of communication.

1We restrict our treatment to SFE functionalities with finite (or at most polynomial-sized) domains. This is because, even
without random oracles, a tight characterization of realizable functionalities is known only with this restriction.

1

1.1 Our Results

We summarize our main results below. Our main result is the following.

Theorem 1.1. A deterministic two-party function f , with a polynomially large domain, has a semi-honest
secure protocol against computationally unbounded adversaries in the random oracle model if and only if
f has a perfectly semi-honest secure protocol in the plain model.

We remark that such f can be explicitly characterized as decomposable functions as defined in [Kus89]
(if f is symmetric), or more generally, as those for which the symmetric function f ′ obtained as the “common
information” part of f2 is decomposable and f and f ′ are “isomorphic.”3

In this theorem, as is conventional in much of the work on the combinatorial structure of SFE func-
tionalities, we restrict ourselves to functions whose domain size is polynomial in the security parameter. A
full combinatorial characterization of semi-honest securely realizable functions (even in the plain model) is
known only with this restriction. In particular, there are undecomposable functions, with super polynomial
domain size, which are semi-honest securely realizable. Henceforth, unless mentioned otherwise, whenever
we consider a function we shall assume that its domain size is polynomial in the security parameter.

The above result — that random oracles are useless for 2-party SFE — does not hold in the case of
security against active adversaries. In particular, note that the commitment functionality FCOM, can be
constructed UC-securely in a black-box manner from random oracles, and so, all the functions which can
be UC-securely computed in the FCOM hybrid can also be UC-securely computed in the random oracle
model. But we shall show that this is all that a random oracle is useful for in 2-party SFE. This follows from
Theorem 1.1 and a compiler from [MPR09] that turns semi-honest secure protocols to UC-secure protocols
in the FCOM-hybrid model (see proof in Section 6).

Theorem 1.2. A deterministic two-party function f , with a polynomially large domain, has a statistically
UC-secure (and equivalently, a statistically standalone-secure) protocol in the random oracle model if and
only if f has a statistically UC-secure (and equivalently, a statistically standalone-secure) protocol in the
FCOM hybrid.

We remark that such f can be characterized as those for which, on removing all “redundant inputs”4 one
at a time, we obtain a function of the kind in Theorem 1.1.

Blackbox Separations. Black-box constructions form a general framework of obtaining a (more complex)
cryptographic primitive Q (e.g., pseudorandom generators) from another (perhaps simpler) cryptographic
primitiveP (e.g., one-way functions) whileP is used in the implementation ofQ only as a black-box and the
security ofQ is proved based on the security of P also through a black-box argument. Apart from being the
most common kind of reductions used in cryptographic constructions (with “provable security”), black-box

2For a deterministic two-party function f : X ×Y → ZA×ZB , the common information function f ′ is defined as follows (see
for e.g., [MOPR11]): consider the bipartite graph consisting of nodes of the form (x, a) ∈ X ×ZA and (y, b) ∈ Y ×ZB , with an
edge between (x, a) and (y, b) iff f(x, y) = (a, b). Then f ′ maps (x, y) to the connected component containing (x, a) and (y, b)
where f(x, y) = (a, b). Intuitively, f ′(x, y) reveals only that part of the information about (x, y) that f reveals to “commonly” to
both Alice and Bob (and so they know that it is known to the other party as well).

3 f0 and f1 are isomorphic if there is a UC and semi-honest secure protocol for evaluating either function which uses a single
instance of the other function with no other communication. In particular, if either function has a semi-honest secure protocol in
the random oracle model (respectively, plain model), then the other one has such a protocol too.

4Alice’s input x to f is said to be redundant (for security against active adversaries) if there is an input x′ 6= x that dominates
x: i.e., Alice can substitute x′ for x without Bob noticing while still being able to calculate her correct output.

2

reductions provides us with a framework to understand “complexity” of cryptographic primitives. This line
of research was initiated in the seminal work of Impagliazzo and Rudich [IR89] who showed that public-key
cryptography is strictly more complex than symmetric-key cryptography (say, one-way functions) under this
framework.

Theorem 1.1 is proven in the computationally unbounded setting, and the honest-but-curious adversaries
implicit in our proofs use super-polynomial computational power (even if the honest parties were polynomial
time). However, similar to the results in [IR89], this can be translated to a statement about black-box
separation of semi-honest SFE protocols (for functions without perfectly secure protocols) from one-way
functions, in a probabilistic polynomial time (PPT) setting. Intuitively, this is so because a random oracle
is a strong one-way function (but for the drawback that it does not have a small code to implement it);
so, if one-way function is the sole computational primitive needed for a construction, and it is used in a
black-box manner, then it should be possible to base the construction on a random oracle instead. Hence,
ruling out secure protocols in the random oracle model in the computationally unbounded setting would rule
out protocols in the PPT setting that base their security on one-way functions in a black-box manner. The
technicalities depend on the formal definition of black-box reduction. We follow the definitions in [RTV04],
with slight technical modifications, to state our results. A formal statement appears in Theorem 7.2. We
summarize this result informally below.

Theorem 1.3. (Informal.) For a deterministic two-party function f , with a polynomially large domain, there
is a fully black-box reduction of semi-honest secure function evaluation of f to one-way functions if and only
if f has a perfectly semi-honest secure protocol in the plain model.

Though we state the result for one-way functions, in fact, any collection of primitives that can be con-
structed from a random oracle (or ideal cipher) or a random permutation oracle5 in a black-box manner –
one-way functions, one-way permutations, collision resistant hash functions, block-ciphers (including expo-
nentially hard versions of these primitives) – is useless for 2-party SFE, if the primitives are used in a fully
black-box manner.

As in the case of Theorem 1.1, the above statement can be extended to the case of security against active
adversaries.

Theorem 1.4. (Informal.) For a deterministic two-party function f , with a polynomially large domain, there
is a fully black-box reduction of UC (or stand-alone) secure function evaluation of f to one-way functions
if and only if f has a statistically UC (or stand-alone) secure protocol in the FCOM-hybrid model.

Note that, though commitment is already known to be black-box equivalent to one-way functions, statis-
tical (standalone) security in the FCOM-hybrid is, on the face of it, more restrictive than standalone security
in the PPT setting using fully black-box commitments. Further, the theorem holds for not only one-way
functions, but also the other computational primitives mentioned above.

1.2 Related Work

Impagliazzo and Rudich [IR89] showed that random oracles are not useful against a computationally un-
bounded adversary for the task of secure key agreement. This analysis was recently simplified and sharpened
in [BM09]. These results and techniques are one starting point for our result.

5We point out that Theorem 1.1 extends to a random permutation oracle, as argued in [IR89]: otherwise, we can construct an
efficient distinguisher between a length preserving random oracle and a length preserving random permutation oracle for “long”
inputs, and this can be shown to be impossible (as it is improbable to find collisions in a random oracle).

3

Following [IR89] many other black-box separation results followed (e.g., [Sim98, GMR01, BPR+08,
KSY11, MM11]). In particular, Gertner et al. [GKM+00] insightfully asked the question of comparing
oblivious-transfer (OT) and key agreement (KA) and showed that OT is strictly more complex (in the
sense of [IR89]). Another trend of results has been to prove lower-bounds on the efficiency of the im-
plementation reduction in black-box constructions (e.g., [KST99, GGKT05, LTW05, HHRS07, BM07,
BM09, HHRS07]). A complementary approach has been to find black-box reductions when they ex-
ist (e.g., [IL89, Ost91, OW93, Hai08, HNO+09]). Also, results in the black-box separation framework
of [IR89, RTV04] have immediate consequences for computational complexity theory. Indeed, separations
in this framework can be interpreted as new worlds in Impagliazzo’s universe [Imp95].

Frontier analysis is possibly implicit in previous works on proving impossibility or lower bounds for
protocols. For instance, the analysis in [CI93] very well fits our notion of what frontier analysis is. The
analysis of protocols in [CK89, Bea89, Kus89] also have some elements of a frontier analysis, but of a
rudimentary form which was sufficient for analysis of perfect security. In [MPR09] frontier analysis was ex-
plicitly introduced and used to prove several protocol impossibility results and characterizations. [KMR09]
also presented similar results and used somewhat similar techniques (but relied on analyzing the protocol by
rounds, instead of frontiers, and suffered limitations on the round complexity of the protocols for which the
impossibility could be shown). We also rely on results from [MOPR11] to extend the result to general SFE
functionalities as opposed to symmetric SFE functionalities.

1.3 Technical Overview

We rely on a careful combination of the techniques in the black-box separation literature (in particular [IR89,
BM09, DLMM11]) and new frontier analysis techniques. Below we briefly explain the overall approach and
point out some of the highlights.

A clear starting point of our investigation is the “independence learner” of [IR89, BM09] which shows,
in a protocol between Alice and Bob involving private queries to a random oracle, how to make several (but
polynomially many) additional queries to the random oracle and make Alice’s and Bob’s views (conditioned
on their inputs) independent of each other. However,from this independence property it is not immediate to
conclude that random oracles are useless in SFE protocols. One conjecture (which we are not able to prove)
would be that the effect of the random oracle can be “securely simulated” in the plain model, and then any
protocol in the random oracle model can be compiled into a plain-model protocol that is as secure as the
original one. This would avoid the need to rely on combinatorial characterizations of SFE functionalities,
and indeed show that random oracles are useless for virtually any protocol (up to small, but non-negligible
errors inherent in the independence learner). However, in this work we do not obtain such a compiler. In
particular, we do not rule out the possibility that in fact random oracles could have unsimulatable effects,
and may aid in secure computation of randomized functionalities, or functionalities with super-polynomial
input domains.6

This leads us to the techniques used in showing that a symmetric SFE functionality f is semi-honest
securely realizable if and only if it is decomposable. The strongest version of this result was proven using
frontier analysis in [MPR09]. However, as we shall see, we need a significantly more sophisticated argument
here.

6An earlier version of this work (presented in [Maj11]), pursued this approach, and appeared to succeed. However, on closer
scrutiny a major gap was found in the case when both Alice and Bob can have private inputs, which we have not been able to repair.
Indeed, based on our current understanding, we do not conjecture that the random oracle can be compiled away from all protocols
involving private inputs to both the parties.

4

1.3.1 Frontier Analysis Meets Random Oracles

First we describe why naı̈ve attempts at generalizing the argument used to characterize functions with SFE
protocols in the plain model [MPR09] fail in the random oracle setting.

The plain model result crucially relies on the following “locality” property. When Alice sends the next
message in a plain model protocol, she can reveal (i.e., add to the transcript) new information only about
her own input but not about Bob’s inputs. So, during the execution of the protocol, Alice and Bob would
alternately reveal information about their inputs x and y respectively. Suppose we define two frontiers: FX ,
where (significant, additional) information about x is first revealed, and FY where (significant, additional)
information about y is first revealed in the transcript. By the locality property, FX consists of nodes where
Alice has just sent out a message, and FY consists of nodes where Bob has just sent out a message. Firstly,
for the sake of correctness, information about x and y need to be revealed by the end of the protocol,
and hence, FX and FY are almost “full” frontiers (i.e., there is only a small probability that an execution
finishes without passing through both frontiers).7 To draw a contradiction we rely on the property that, for
an undecomposable function, it will be insecure for either party to reveal information about their input first.
In terms of the frontiers, this says that it will be insecure if, a (significantly probable) portion of FX appears
above FY , or if a (significantly probable) portion of FY appears above FX . Combined with the fact that
both frontiers are almost full, this rules out secure protocols for undecomposable functions.

Handling the Random Oracle. In the presence of a random oracle, we lose the locality property (that
Alice’s message is independent of Bob’s input, conditioned on the transcript). It becomes possible that a
correlation is established between Alice’s and Bob’s views via the common random oracle, even conditioned
on the transcript. Indeed, given a random oracle, a secure protocol for even OT is possible unless the
curious parties query the oracle on points other than what is prescribed by the protocol. Hence, to be
meaningful in the presence of an oracle, we must define the information revealed by a transcript as what
a curious eavesdropper making additional (polynomially bounded) queries to the oracle, can learn. This is
where the independence learner “Eve” of [IR89, BM09] is relevant. Intuitively, Eve attempts to learn as
much as possible (staying within a budget of polynomially many oracle queries), by making all “important”
queries to the oracle after each message in the protocol. By including the information obtained by Eve into
the transcript itself, we can ensure that the frontiers do correspond to points where certain information is
revealed, conditioned on the information obtained by Eve. Being a semi-honest setting, it is not relevant
when these queries are performed; but for our frontier analysis, it will be important to consider the curious
eavesdropper as running concurrently with the protocol, querying the oracle as many times as it wants, after
each message in the protocol.

Main Challenge. Once the transcript is augmented with Eve’s view, one could hope that the previous
analysis from [MPR09] can be applied. Indeed, in this augmented protocol, the locality property is restored.
However, now we have introduced new messages in the transcript (namely Eve’s interaction with the random
oracle), and these messages could be correlated with both Alice’s and Bob’s inputs! This is the core issue

7As we shall see, for undecomposable functions, this must hold even if there are inputs for one party (say Bob) for which the
function becomes constant. That is, FY needs to be crossed even for executions in which Bob’s input is a value y for which the
function f(·, y) is constant. This is because, by undecomposability, for certain values of Alice’s input x, and another input y′ for
Bob, f(x, y) = f(x, y′) where f(·, y′) is not constant, and then by security, the execution with input (x, y) has to be close to the
execution with input (x, y′). In the latter, information about y needs to be revealed.

5

that we need to tackle.8

Our Solution. Now we give an intuitive (but imprecise) description of our proof. As above, we shall
define the frontiers FX and FY where information about x and (respectively) about y is first revealed in the
(augmented) transcript. Now, information about x or y could be revealed when Alice sends out a message,
Bob sends out a message, or Eve obtains its answers from the oracle. We will be able to rule out information
about x being revealed by a message from Bob, or information about y being revealed by a message from
Alice (this corresponds to Claim 5.6), but this leaves open the possibility that an answer for an Eve query to
the oracle reveals information about x and y simultaneously.

To address this, we pursue the following intuition: suppose no information about y has been revealed so
far, and Alice sends out a message; suppose some information about x is revealed not immediately by this
message, but after Bob (and Eve) carry out oracle queries and respond to Alice’s message (but before Alice
responds again). (Our concern is that this information could depend on x and y simultaneously.) Then we
demonstrate a curious Bob strategy that can learn the same information about x, irrespective of his actual
input y. The intuition behind this strategy is the following: consider the point immediately after Alice sent
out her message. Bob samples for himself a view conditioned on an alternate input y′ such that an actual
execution with input (x, y′) reveals information about x that should not be revealed when Bob’s input is
y. Bob can simulate the execution with input y′ for himself, starting from this point until the next message
from Alice, without interacting with Alice; however, the oracle Bob has access to is conditioned on the
actual pair of inputs (x, y), and not (x, y′). Clearly, it will be pointless to use this oracle directly to simulate
the execution with input (x, y′). A crucial observation at this point (this corresponds to Claim 5.7) is that, it
is highly unlikely for an oracle query that is not in Eve’s view to be present in both Alice’s view and Bob’s
view (or the sampled view for Bob). This lets Bob simulate an oracle conditioned on (x, y′) as follows: if
an oracle query is already answered in the sampled view for Bob (with input y′), use it (it is likely not to
have been asked by Alice); else, if an oracle query is present in the original view for Bob (but not present in
the sampled view, and neither in Eve’s view), then “undo” the effect of the query in Bob’s view by sampling
a new answer for it (again, it is unlikely to have been asked by Alice); if not, use the actual oracle (thus
ensuring that any queries already present in Alice’s view are consistently answered). This allows curious
Bob to seamlessly replace the actual oracle with an oracle consistent with inputs (x, y′), even though he
does not know x or Alice’s view of the oracle. What facilitates this, in addition to the fact that Eve captures
all intersection queries, is the special “modular” nature of the random oracle.

This essentially means that when information about x is revealed, information about y must have been
revealed already by the time the last message was sent by Alice (even if the information about x is revealed
only during subsequent queries to the oracle by Bob or Eve). Further, as mentioned above, since Alice could
not have revealed information about y, this information about y must have been revealed strictly before the
last message from Alice, and in particular, strictly before the information about x was revealed. This is
captured in Claim 4.2 which implies that (in terms of the simplified presentation above) FX can be reached
only strictly after passing through a node in FY .

Some Technical Issues. Formalizing the above intuitive description presents several challenges. The most
important aspect is the appropriate definition of the frontier, and the statement regarding the ordering of the
frontiers. For the above curious Bob to have an advantage, the information revealed about x should have

8This is the issue that was not correctly handled in a previous attempt by the authors (in [Maj11]), in trying to compile away the
random oracle. The current frontier analysis based approach avoids subtle probabilistic reasoning which is invariably fraught with
dangers of false intuition.

6

been after the last message from Alice. For each node u we define Apred(u) to correspond to the last
message from Alice; however for a node u which itself corresponds to a message from Alice (where the
argument relies on the locality property and not the above curious Bob strategy) Apred(u) is defined as
its parent node. Another important issue is that, above we argued in terms of “the probability of reaching a
segment.” However, this probability depends on the inputs. (The set of nodes in the frontier does not change;
only the distribution over them changes.) Whether these probabilities are similar or different depends on
whether the inputs have already been distinguished or not. Note that we use properties of these distributions
to reason about the ordering of the frontiers, and these distributions themselves depend on the ordering of
the frontiers! Much of our technical difficulties arise from circumnavigating potential circularities.

1.3.2 Using the Independence Learner

As mentioned above, a crucial tool for analyzing protocols using a random oracle is to show that by making
polynomially many queries to the oracle, an eavesdropper Eve can get sufficient information such that
conditioned on this, Alice and Bob’s views in the protocol are almost always close to being independent (up
to an inverse polynomially small error). This is a delicate argument implicitly proved in [BM09] building
on ideas from [IR89], and was first explicitly described in [DLMM11]. The view of such an Eve is part of
the augmented transcript, with respect to which the frontiers are defined.

A subtle issue to address when extending this Eve to our case is that Alice and Bob receive inputs
from an arbitrary environment and Eve does not see the inputs. In particular, Alice and Bob could receive
correlated inputs, and we cannot claim that their views, conditioned on Eve’s view, are (almost always,
close to being) independent. However, we can create an Eve which is oblivious to the actual inputs, but for
every input pair (x, y) of inputs, when the protocol is executed with these inputs, Alice’s and Bob’s views
conditioned on Eve’s view are (almost always, close to being) independent. For this, we take Eve to be as
defined in [BM09] (presented in Lemma A.1), but applied to an inputless protocol obtained by considering
our original protocol but with inputs (x, y) that are chosen initially at random (say as part of the randomness
of the two parties). Initially this Eve considers the actual input to be of significant probability (since the
inputs come from a polynomially large domain). In analyzing this Eve, we rely on an argument that with
significant probability, at any round of the protocol, this Eve will consider the actual input to be a likely
input (Lemma 2.1).

In our analysis sketched above, there are two guarantees from this Eve that we rely on, captured in
Claim 5.6 and Claim 5.7, as described below.

1) Alice’s Message Independent of Bob’s Input. Firstly, recall that the purpose of introducing Eve’s
view into the transcript was to restore the “locality property” – i.e., Alice’s messages, conditioned on Eve’s
view, are independent of Bob’s view. More precisely, we will need the guarantee that at a point where Alice
is about to send a message, if two inputs of Bob, y and y′ are both somewhat likely, then Alice’s message
is almost independent of which of these two inputs Bob has. This is stated in Claim 5.6, and follows from
Lemma A.2 proven in Appendix A. Note that we need this to hold (and this holds) only at points where both
of Bob’s inputs y and y′ are somewhat likely. (In using this claim, the points considered will be above the
frontier FY so that all inputs for Bob are significantly probable.)

2) Collisions of Private Queries Unlikely. The second place where we rely on Eve’s properties is in
arguing that the curious Bob strategy outlined above works: i.e., that when curious Bob samples a view for
himself after Alice sends a message, it is unlikely that there will be an oracle query in either his actual view
or in the freshly sampled view that occurs in Alice’s actual view, but is not present in Eve’s view. This is

7

stated in Claim 5.7 and follows from Lemma A.3 proven in Appendix A. We need this to occur only when
the “fake” input y′ used for the sampled view is somewhat likely. (Again, the claim will be applied only to
points above the frontier FY , and all inputs are somewhat likely there.) We remark that, just for the actual
views, similar statements were already explicitly proven in [IR89, BM09], bounding the probability of an
“intersection query” that is not present in Eve’s view. The additional twist in our case is that we need to
also consider the view sampled for a “fake” input; further, Bob’s views we consider are not at the point Eve
finishes a round of oracle queries, but after a subsequent message from Alice.

It is important to note that Bob’s views considered here consist of the oracle queries he made only up
to the point he sent his previous message to Alice (even though the views include the last message from
Alice). Lemma A.3 would not be true, if instead we consider Bob’s views including oracle queries he makes
after receiving Alice’s last message. The reason is that the last message sent from Alice can simply tell Bob
that Alice has asked a random new query q and Bob might make the same query immediately afterwards.
This way, the information that was gathered by Eve till the end of the previous round (before Alice sent her
message) is incapable of catching this intersection query.

2 Preliminaries
In this section we introduce some basic notation, conventions and definitions. (Further conventions needed
shall be introduced in their respective sections).

2.1 Secure Evaluation of 2-Party Functions

2-Party Functions. A (deterministic) 2-party function f : X×Y 7→ ZA×ZB maps a pairs of inputs (x, y)
(associated with Alice and Bob respectively) to a pair of outputs (a, b) (for the two parties, respectively). For
most part in our proofs, we shall be dealing with symmetric 2-party functions which produce two identical
outputs (or equivalently, a single output given to both parties).

For symmetric functions, an Alice-cut is a partition (X, X̄) of the input space X such that for any
x ∈ X , x̄ ∈ X̄ and y ∈ Y f(x, y) 6= f(x̄, y). The functions associated with an Alice-cut (X, X̄) are the
two restrictions of f , restricted to domain X×Y and to domain X̄×Y . A Bob-cut and functions associated
with it are defined similarly.

Now, we define decomposable functions f in the following recursive manner [Kus89, Bea89]:

1. A constant function is decomposable.
2. If f has an Alice-cut or a Bob-cut and the two functions associated with that cut are both decomposable

then f is decomposable.

A function is undecomposable if it is not decomposable. Moreover, it is said to be undecomposable at the
top-most level, if f : X × Y 7→ Z does not have an Alice-cut or Bob-cut (refer Appendix B for some
examples).

Secure Function Evaluation. A Secure Function Evaluation (SFE) functionality is associated with a 2-
party function f : the ideal SFE functionality accepts x from Alice, y from Bob, computes f(x, y) = (a, b)
and gives a to Alice and b to Bob. We shall refer to the SFE functionality and the two-paty function asso-
ciated with it, interchangeably. For most part, we shall consider protocols for SFE functionalities that are
secure against semi-honest adversaries. Our final theorems consider the two standard notions of security
against active adversaries as well, namely, standalone security and Universally Composable (UC) security.
Mostly we work with statistical security, which places no computational limitations on the parties or envi-

8

ronment; but we do state consequences for our results for security in the computational setting as well. We
omit a detailed description of the standard security definitions. As it turns out, in our results, there would
be no distinction between UC security and standalone security. (Readers unfamiliar with the details of the
definitions may ignore the few places in our proofs where we discuss the two notions separately, to establish
their similarity.)

Security Definitions. Security of protocols is defined under the standard simulation paradigm. We con-
sider semi-honest security in which the adversary and the simulator are semi-honest (a.k.a. passive or honest-
but-curious), and also active-security. In the latter case security can be considered in the standalone setting
or the universally composable setting. The statistical difference between the views of the environment in the
real and ideal executions, maximized for each simulator over all environments, and then minimized over all
simulators, will be called the “security error” of a protocol.

We can in fact work with a (weaker) game based definition of semi-honest security which only requires
that if f(x, y) = f(x, y′) Alice’s views in the two executions with inputs (x, y) and (x, y′) should be
(statistically) indistinguishable from each other; similarly Bob’s views for executions with inputs (x, y) and
(x, y) should be indistinguishable, if f(x, y) = f(x′, y). This definition is identical to the simulation based
definition in the computationally unbounded setting; but when considering the PPT setting (for black-box
separation results), the weaker security definition makes our results stronger, and more amenable to being
framed in terms of the definitions in [RTV04].

2.2 Random Oracles

An oracleO is specified by a function (from queries to answers) chosen according to a specified distribution.
This choice is made before answering any query, however for the sake of analysis of the protocol we can
choose the randomness of the oracle along the way as the parties interact (this is also known as the lazy
evaluation of the oracle). In this paper, we shall use O which are random oracles, i.e. every query is
independently mapped to an image chosen uniformly at random.

Security Parameter of O. We shall associate a security parameter κ with the queries to the oracle, and
will invariably require that the length of the queries and their answers is polynomial in κ (e.g., O for the
security parameter κ could be a random function from {0, 1}κ to {0, 1}κ). For simplicity, any protocol using
the oracle would make all queries with the same security parameter as the protocol’s own security parameter.

Query Operator. For any view V of some oracle algorithm interacting withO, we denote the set of oracle
queries made by the algorithm according to the view V by Q(V).

2.3 Frontiers

Consider a (possibly infinite) sequence of correlated random variables (m1,m2, . . .). We consider a natural
representation of such a sequence as a rooted tree, with each level corresponding to a random variable mi

and each node v at depth t in the tree is uniquely identified with an assignment of values (m1,m2, . . . ,mt)
to (m1,m2, . . . ,mt), such that (m1,m2, . . . ,mt−1) is equal to the values identified with its parent node.
Then we can identify the sequence of values of these random variables with a unique path in this tree,
starting at the root.

We can identify a set of nodes S in this tree with the event that the path corresponding to the values
taken by the random variables intersects S. A frontier on this tree corresponds to a set F of nodes which is
“prefix-free” (i.e., no two nodes in F are on the same path starting at the root). We often define a frontier

9

using a predicate, as the set of nodes which satisfy the predicate but do not have an ancestor which satisfies
the predicate (i.e., the predicate is satisfied for the “first time”). Note that the frontier event is deterministic
given a node in the tree (though the event could be in terms of the probability of other events at that node).

The tree naturally defines an “ancestor” partial order of the nodes in the tree: we say u� v if u occurs
somewhere on the path from the root of the tree to v (u could be identical to v). If u� v, but u 6= v, then we
write u≺ v.

Invariably, we consider this tree only with sequence of random variables corresponding to the messages
exchanged in a protocol (but possibly augmented by additional messages added for analysis). Though not
necessary, it will be convenient to consider the underlying process as consisting of picking a uniformly
random input and then executing the protocol. However, clearly, the tree and frontiers can be used to
represent any sequence of random variables.

As a simple illustration of the routine arguments we carry out over such a tree, we state and prove a
simple lemma (which gets used later in the paper). In Lemma 6.4 of [IR89] it was shown how to obtain an
upper-bound on the conditional probability of an unlikely event under a sequence of leaking information.
The following lemma can be thought of as a “dual” statement showing that if the event is noticeable, when
it actually happens, then it remains noticeable conditioned on a sequence of leakages. More formally we
prove the following.

Lemma 2.1. Consider a sequence of correlated random variables (m1,m2, . . .) For any event X jointly
distributed with these variables, let S be the event that there exists t such that P[X | (m1,m2, . . . ,mt)] < θ.
Then it holds that P[S | X] < θ/P[X].

Proof. Consider the tree representing the sequence of random variables (m1,m2, . . .). The event S corre-
sponds to a subset of nodes in this tree: S = {v | P[X | v] < θ}. Define U to be the frontier of nodes in S
that do not have a strict ancestor in S; namely, U = {v | v ∈ S and for all u s.t. u≺ v, u 6∈ S}. Note that
P[S | X] = P[U | X]. Further,

P[U | X] =
∑
u∈U

P[u | X] =
∑
u∈U

P[X | u]P[u]/P[X] < θP[U]/P[X] ≤ θ/P[X].

A corollary to Lemma 2.1 is that in a protocol execution, the actual inputs of Alice and Bob will not
become “unlikely” conditioned on the transcript, except with small probability.

3 Transcript Tree and Other Notation
In this section, first we define the tree notation that is used throughout our analysis. We shall also define the
frontiers on this tree that are central to our analysis.

Augmented Protocol Execution. We shall consider two-party protocols Π where Alice and Bob interact
to evaluate a (symmetric) function f : X × Y → Z on their respective local inputs x ∈ X and y ∈ Y . We
shall assume that |X | and |Y are both polynomial in the security parameter. Alice and Bob have access to
a random oracle O. We “augment” the protocol Π with a “public query strategy” Eve, which can see the
publicly generated transcript and can also query the random oracle. For simplicity, we consider Eve to be
deterministic (as will be the case in our instantiation of Eve). Later, we will instantiate Eve from Lemma A.1
(applied to an inputless protocol obtained by using uniformly randomly chosen inputs for Π).

10

When Alice is supposed to generate the next message, she queries the random oracle at some points.
Based on her local view, she then generates the next message of the protocol using her next message gen-
eration algorithm. Similarly, Bob also generates the next message of the protocol during his turns. Eve, on
the other hand, simply performs several queries to the random oracle and announces all her queries and their
corresponding answers at the end of her turn. For concreteness we shall assume that the protocol starts with
Alice sending a message. Alice and Bob take turns alternately, with Eve getting a turn after every Alice or
Bob message (i.e., the messages will be sent by Alice, Eve, Bob, Eve, and again Alice, Eve and so on.).

We shall refer to this protocol as the “augmented protocol” (Π,Eve).

A

B

A

E

B

E

A

E

Figure 1: Schematic representation of the
nodes in T+ (including two initial dummy
nodes). The nodes are labeled A, B and E,
for Alice, Bob and Eve. The dotted lines
show the Apred relation.

Augmented Transcript Tree T+. Our analysis considers the
transcript tree T+ of an execution of Π augmented with a pub-
lic query strategy Eve. The T+ associated with an augmented
protocol (Π,Eve), is the tree as defined in Section 2.3 with the
sequence of random variables (m1,m2, . . .) being the mes-
sages added to the transcript of the augmented protocol by Al-
ice, Eve and Bob during an execution. In other words, the
nodes in the transcript tree are all the possible partial tran-
scripts in the augmented protocol execution, with a directed
edge from a node u to a node v, if the partial transcript asso-
ciated with v is obtained by adding exactly one message (from
Alice, Bob or Eve) to the partial transcript associated with u.

For convenience we add an initial “dummy” round, in
which Alice sends a fixed message followed by Bob sending a
fixed message. These correspond to two dummy nodes at the
root of T+. We shall denote by Anodes and Bnodes the sets of
Alice and Bob nodes, and by Achildren and Bchildren the sets
of (Eve) nodes that are children of, respectively, Alice nodes
and Bob nodes. The tree T+ naturally defines an “ancestor”
partial order of the nodes in the tree: we say u� v if u occurs
somewhere on the path from the root of the tree to v (u could
be identical to v). If u� v, but u 6= v, then we write u≺ v.
We define ancstrs(v) = {u|w� v}.

An important definition we shall use through out is that of
Apred and Bpred nodes.

Definition 3.1 (Apred). For every node v in the transcript tree, except the initial dummy Alice node, we
define Apred(v) as follows:

• If v ∈ Achildren, then Apred(v) is the parent of v.

• If v 6∈ Achildren, we define Apred(v) to correspond to the last message sent by Alice, before the
transcript reached v: i.e., Apred(v) = w such that w ∈ ancstrs(v) ∩ Achildren, and for all w′ ∈
ancstrs(v) ∩ Achildren, w′�w.

Note that Apred(v) ∈ Achildren ∪ Anodes and Apred(v)≺ v. Further, for any node v, the sequence

11

v,Apred(v),Apred(Apred(v)), . . . ends at the initial dummy Alice node.9 Figure 1 pictorially summarizes
the Apred relation.

Similarly, for every node v (except the initial dummy Alice and Bob nodes), we define Bpred(v) as either
the maximal element of ancstrs(v)∩Bchildren (if v 6∈ Bchildren) or the parent of v (if v ∈ Bchildren). Note
that Bpred(v) ∈ Bchildren ∪ Bnodes and Bpred(v)≺ v.

For any partial transcript w, we define the views of Alice, Bob and Eve consistent with the partial
transcript w. The Eve view consistent with w is represented by VE(w). We represent the distribution of
Alice views and Bob views conditioned on w, when their local inputs are x and y, respectively, by VA,x(w)
and VB,y(w) (the bold face emphasizing that these are distributions). The probability is over the choice of
random tapes for Alice and Bob and the random oracle. We emphasize that the local views of parties contain
only those query-answer pairs which were generated during next message generation of messages already
present in w. So, if Alice sends the next message in a round and the resulting transcript was w, then Bob’s
views consistent with w will contain only query-answer pairs which were generated in previous rounds.
Bob’s view gets updated with new query-answer pairs when he sends the next message in the protocol.

Strictly Above a Set: u≺F and F1≺F2. We shall abuse the ≺ notation slightly, and use it in the
following senses too: if u is a node and F is a set of nodes, we write u≺F (read as u is strictly above F)
if u can be reached from the root without passing through any node in F (i.e., there is no v ∈ F such that
v�u); note that for u to be strictly above F , it is not necessary to have any v ∈ F such that u≺ v. For
two sets of nodes F1, F2, we define the event F1≺F2 to occur if the transcript path of an execution passes
through a node v ∈ F1 strictly before passing through any node in F2 (it may or may not pass through a
node in F2 afterwards).

4 Overview of Our Analysis
Here we sketch the technical details of our frontier analysis (see Section 1.3 for a motivating discussion, and
Section 5 for the remaining details).

Suppose Π is a 2-party protocol using a random oracle O that ν0-securely realizes a symmetric SFE
functionality f that is not row or column decomposable at the top level (i.e., not even the first step of
decomposition is possible; as we shall see, it is enough to rule out protocols for such functionalities). Let
Eve be the public query strategy described in Lemma A.1, with an adjustable parameter εas described there.
(ε = 1/ poly(κ) will be tuned later in the proof.) Note that in Lemma A.1, the protocol considered has no
inputs; in order to define Eve from this, we use an inputless protocol obtained by running Π with private
inputs chosen uniformly at random (as part of Alice’s and Bob’s local randomness). We shall modify the
protocol so that at the end of the protocol, Alice adds the output of the protocol to the transcript. (The
simulation error ν0 at most doubles by this modification.) We consider the transcript tree T+ as described
above, for this protocol Π augmented with Eve.

Intuitively, we will be arguing that if some information about x has been revealed by the time the
transcript reaches a node v, some information about x or y must have already been revealed when it reached
Apred(v). Similarly, for information about y to be revealed at v, some information about x or y should
already have been revealed at Bpred(v). Together these requirements yield a contradiction. To formalize

9We added dummy Alice and Bob nodes at the root level to ensure that Apred and Bpred is well-defined for all the original
nodes. Note that no information is exchanged until after the protocol passes these dummy nodes, and so these nodes will not be
part of any of our frontiers defined later.

12

this, we shall define a frontier FX (and symmetrically FY) that consists of nodes v such that the “extra
information” revealed about x at v since reaching Apred(v) is significant.

More precisely we define the following two frontiers on this tree, in terms of two parameters δ and θ
(for concreteness, consider δ = 1

N , where N is the depth of the tree T+, and θ = 1
32|X ||Y|).

• F θX = {v|v is the first node on the path from root to v s.t. ∃y ∈ Y, x, x′ ∈ X ,P[y|v] ≥ θ and

P[v|Apred(v);x, y] > (1 + δ)P[v|Apred(v);x′, y]}
• F θY = {v|v is the first node on the path from root to v s.t. ∃x ∈ X , y, y′ ∈ Y,P[x|v] ≥ θ and

P[v|Bpred(v);x, y] > (1 + δ)P[v|Bpred(v);x, y′]},

Here, P[v|w;x, y] denotes the probability (over the random tapes of the parties and the oracleO) of reaching
a node v in T+, conditioned on having reached the node w, when the parties run the protocol honestly with
inputs x and y respectively. We shall also write P[x|v] and P[y|v] to denote the probabilities of x and y being
the inputs for Alice and Bob, respectively, conditioned on a protocol execution with a uniformly random
input pair reaching the node v.10 Intuitively, the quantity maxx,x′,y | logP[v|w;x, y] − logP[v|w;x′, y]|
measures the amount of information about Alice’s input that is revealed at v, since passing through w =
Apred(v). This quantity is “significant” if it is beyond a threshold log(1 + δ) (where, for concreteness,
δ = 1/N , N being the depth of T+) and if it is realized by a y which is somewhat likely (i.e., P[y|v] ≥ θ).
In our proofs, it will be useful to consider frontiers F 0

X and F 0
Y which are defined identically as F θX and

F θY , but with θ = 0, i.e. these frontiers are considered without the restriction of P[y|v] ≥ θ and P[x|v] ≥ θ
respectively.

Based on the correctness and the security of the protocol, and using the fact that f is undecomposable at
the top level, we shall first prove that these frontiers are almost “full frontiers” (when ν0, the security error
for Π, is negligible and θ is set sufficiently small):

Claim 4.1. On an execution over T+ with a random input pair (x, y), for any value of θ, the probability
that the transcript does not pass through F θX (or symmetrically, F θY) is at most poly(|X ||Y|) · θ +O(ν0).

This is proven as Claim 5.3. Given that these frontiers exist, next we prove a restriction on how they
can occur relative to each other, leading to our final contradiction. Intuitively, the claim states the following:
suppose a transcript passes through a node u ∈ F θX ; in a secure protocol not only should u occur only at or
below the frontier F θY , but even Apred(u) should occur only at or below F θY ; that is a node in F θY should
occur strictly above u. (Similarly, for v ∈ F θY and the frontier F θX .)

Claim 4.2. Consider running the execution on T+ with a random input (x, y) where ε is the parameter of
the Independence Learner Eve. The probability that the transcript passes through a node u ∈ F θX such that
Apred(u)≺F θY is at most

poly(
N |X ||Y|

θ
) · (εΩ(1) + ν0) + poly(|X ||Y|) · θ.

Similarly, the probability that the transcript passes through a node v ∈ F θY such that Bpred(v)≺F θX is
bounded by the same quantity.

10In all our equations, we use the convention that the probability of an event conditioned on a zero-probability event is zero.
Alternately, we can avoid this by assuming, adding a negligible security error, that for any pair of inputs, any node in T+ is reached
with positive probability.

13

Once we prove this claim (as Claim 5.1), the required contradiction follows easily: by setting θ small
enough (but Ω(1/ poly(|X ||Y|))), and choosing ε for the independence learner appropriately (note that this
does not affect N), the bounds in above claims can all be driven below, say, any constant (for sufficiently
large values of the security parameter). Thus with positive probability the transcript must pass through
u ∈ F θX and v ∈ F θY , with v≺u and u≺ v, giving us the desired contradiction.

To prove Claim 4.2, technically, it is more convenient to bound the probability of encountering F̃X =
{u|u ∈ F θX and Apred(u)≺F 0

Y } (instead of u ∈ F θX such that Apred(u)≺F θY). The difference between
these two events can be bounded relatively easily (see the proof in Section 5.1 for details). In particular, for
this we use the above Claim 4.1 (with θ = 0) and a bound on the probability of F 0

X appearing strictly above
F θX and F θY (proven as Claim 5.4):

P[F 0
Y ≺(F θX ∪ F θY)] ≤ θ poly(|X ||Y|) (1)

Intuitively, the bound above says that if F 0
Y is encountered strictly above F θX , then it is very likely to occur

together with F θY ; hence when a part of F θX occurs at or above F θY (so that its Apred is strictly above F θY) it
is very likely to be at or above F 0

Y too. To upper bound the probability of the former, it is enough to upper
bound the probability of the latter.

Bounding P[F̃X] (the probability of reaching F̃X with uniformly random inputs) involves several parts:

• Part 1: Firstly, we show that we can concentrate on a 2×2 minor of the function f : that is, x̂0, x̂1 ∈ X
and ŷ0, ŷ1 ∈ Y such that f(x̂0, ŷ0) = f(x̂1, ŷ0) (but f(x̂0, ŷ1) 6= f(x̂1, ŷ1) if F̃X has significant probability).
We show that there exists a segment F̂X ⊆ F̃X such that the inputs (x̂0, ŷ1) and (x̂1, ŷ1) are distinguished
at F̂X , and P[F̃X] ≤ poly(|X ||Y|/θ)P[F̂X |x̂0, ŷ1].11

In the rest of the proof we need to bound P[F̂X |x̂0, ŷ1]. The segment F̂X splits into two parts: nodes u with
Apred(u) being an Alice node, denoted by ŜX , and the ones with Apred(u) being a child of an Alice node,
denoted by R̂X .

• Part 2: Using Lemma A.1 we show that Alice’s message cannot reveal any (significant) information
about Bob’s input, given the information already present in the transcript of the augmented execution (in
Lemma A.2). This is used to bound P[ŜX |x̂0, ŷ1]. Note that this part is analogous to the argument when no
oracle is present, though more involved (without oracles, this property is a trivial consequence of the nature
of a protocol).

• Part 3: The most involved part is to bound P[R̂X |x̂0, ŷ1]. Here we want to bound the probability
that a distinction between x̂0 and x̂1 is revealed (when Bob’s input is ŷ1) at a node u that is not a child of
an Alice node, but at w = Apred(u) the distinction between ŷ0 and ŷ1 has not been made. Since at w, ŷ0

and ŷ1 is not distinguished by the transcript, in an execution with his actual input being ŷ0, on hitting the
node w, Bob can mentally switch his input to ŷ1 — i.e., sample a view (including answers from the oracle)
consistent with the transcript and input ŷ0. We would like to argue that then Bob can continue the execution
of the protocol (till before Alice should send the next message) and check if it hits u or not, to distinguish
between x̂0 and x̂1. However, the execution depends on the random oracle which in turn is correlated with
both parties’ inputs. So Bob cannot sample a correctly distributed random oracle (since he does not know
Alice’s input) nor directly use the actual random oracle he has access to (since it is conditioned on his actual
input ŷ0 and not ŷ1).

11Note that the need for working with F θX and F θY rather than just F 0
X and F 0

Y is that in this part we rely on the “distinguishing
input” being somewhat likely. (If θ = 0 the above bound is useless.)

14

The main idea here is that the independence guarantee from Lemma A.1 can be used to let Bob “edit” the
actual random oracle (conditioned on (x, ŷ0)) to simulate a random oracle conditioned on (x, ŷ1) (without
knowing x). The editing involves inserting answers consistent with a sampled view (with input ŷ1), “delet-
ing” answers not present in this sampled view, but is present in the actual view (with input ŷ0) and using
the original oracle for queries not answered in the sampled view or the actual view. (See Figure 3 for an
illustration.) The “safety condition” in Claim 5.7 assures that the queries from the sampled view that are
not in Eve’s view (for which the answers from the sampled view are used) and the queries from the original
view that are not in Eve’s view (for which random answers are used) are both unlikely to be in in Alice’s
view; this lets us show that the oracle resulting from the editing is correctly conditioned on the input pair
(x, ŷ1).

The final (passive) attack involves carrying out the above attack at every node w and checking if the curious
exploration hits the segment R̂X in any such exploration. We show that if P[R̂X |x̂0, ŷ1] has significant
probability then it will be more likely for the exploration to hit R̂X in the exploration with input (x̂0, ŷ0)
than in the exploration with input (x̂1, ŷ0), thereby violating the security condition.

Throughout the argument, translating intuitive statements about information and probability is compli-
cated by the fact that the probability of reaching different nodes depends on the inputs themselves. While
intuitively, some of these distributions must be close to each other until the frontiers FX and FY are crossed,
we cannot often leverage this intuition without being trapped in circular arguments. Nevertheless, going
through several carefully chosen intermediate steps, we can relate the advantage obtained by Bob in distin-
guishing x̂0 and x̂1 when using input ŷ1, with that he obtains when using input ŷ0 with the above attack.

5 Detailed Proof of Theorem 1.1
In this section we present the remaining details of the proof of Theorem 1.1, that were sketched in Section 4.

Recall the setting introduced in Section 4: f is a deterministic symmetric two-party function which is
undecomposable at the top-most level (i.e., not even the first step of decomposition is possible). Suppose Π
is a semi-honest secure SFE protocol for f using a random oracle O with simulation error ν0. We defined
an augmented transcript tree T+, and frontiers F θX and F θY in T+. First, we shall state our main technical
claim about these frontiers in Section 5.1, and show how it follows from several sub-claims that are proven in
subsequent sections. Based on Claim 5.3 and Claim 5.1, we present the proof of Theorem 1.1 in Section 5.2.
The sub-claims used in the proof of Claim 5.1 are proven in Section 5.3, Section 5.4 and Section 5.5.

The technical heart of the proof appears in Section 5.5, which is part of the proof of Claim 5.1.

5.1 Frontier Ordering

In this section we shall prove the claim regarding the frontier ordering, Claim 4.2. The claim bounds the
probability (with uniformly random inputs) of the transcript encountering the following part of the frontier
F θX :

F̆X = {u|u ∈ F θX and Apred(u)≺F θY }.
Figure 2 shows this part schematically.

Claim 5.1. Let F̆X := {u|u ∈ F θX and Apred(u)≺F θY } and F̆Y := {u|u ∈ F θY and Bpred(u)≺F θX}.

15

A

A

B

E

B

E

A

E

w

is defined to be an Alice, Bob or Eve node depending on who will next add a message to the transcript. A
transcript of an execution on this tree is identified with a root to leaf path in this tree.

The tree T+ naturally defines an “ancestor” partial order of the nodes in the tree: we say u� v if u
occurs somewhere on the path from the root of the tree to v (u could be identical to v). If u� v, but u 6= v,
then we write u� v. We shall abuse this notation slightly, and use it in the following senses too: if u is a
node and F is a set of nodes, we write u�F (read as u is strictly above F) if u can be reached from the
root without passing through any node in F (i.e., there is no v 2 F such that v�u); note that for u to be
strictly above F , it is not necessary to have any v 2 F such that u� v. For two sets of nodes F1, F2, we
define the event F1�F2 to occur if the transcript path of an execution passes through a node v 2 F1 strictly
before passing through any node in F2 (it may or may not pass through a node in F2 afterwards).)

An important definition we shall use through out is that of Apred (and Bpred) nodes. If a node v is a
child of an Alice node, Apred(v) is the parent of v. Otherwise, Apred(v) is the last node on the path from
root to v that is the child of an Alice node.4 Intuitively, we will be arguing that if some information about
x has been revealed by the time the transcript reaches a node v, some information about x or y must have
already been revealed when it reached Apred(v). Similarly, for information about y to be revealed at v,
some information about x or y should already have been revealed at Bpred(v). Together these requirements
yield a contradiction. To formalize this, we shall define a frontier FX (and symmetrically FY) that consists
of nodes v such that the “extra information” revealed about x at v since reaching Apred(v) is significant.
More precisely:

• F ✓
X = {v|v is the first node on the path from root to v s.t. 9y 2 Y, x, x0 2 X , P[y|v] � ✓ and

P[v|Apred(v); x, y] > (1 + �)P[v|Apred(v); x0, y]}
• F ✓

Y = {v|v is the first node on the path from root to v s.t. 9x 2 X , y, y0 2 Y, P[x|v] � ✓ and

P[v|Bpred(v); x, y] > (1 + �)P[v|Bpred(v); x, y0]},

where P[v|w; x, y] denotes the probability (over the random tapes of the parties and the oracle O) of reaching
a node v in T+, conditioned on having reached the node w, when the parties run the protocol honestly with
inputs x and y respectively; P[x|v] and P[y|v] denote the probabilities of x and y respectively conditioned
on a protocol with a uniform input reaching the node v. We are measuring information about Alice’s input
be revealed at v, since passing through w = Apred(v), in terms of how much some two candidate inputs for
Alice get differentiated for some input of Bob, quantified as maxx,x0,y | log P[v|w; x, y]� log P[v|w; x0, y]|.
This quantity is “significant” if it is beyond a threshold (log(1 + �) where, for concreteness, � = 1/N2, N
being the depth of T+) and if it is realized by a y which is somewhat likely (i.e., P[y|v] � ✓, where, for
concreteness, ✓ = 1/32|X ||Y|). We shall also consider F 0

X and F 0
Y , where ✓ is set to 0 in the above definitions.

Based on the correctness and the security of the protocol, and using the fact that f is undecomposable
at the top level, we first prove that these frontiers are almost “full frontiers” (when ⌫0, the security error for
⇧, is negligible and ✓ is set sufficiently small):

Claim 3.1. On an execution over T+ with a random input pair (x, y), for any value of ✓, the probability
that the transcript does not pass through F ✓

X (or symmetrically, F ✓
Y) is at most poly(|X ||Y|) · ✓ + O(⌫0).

This is proven as Claim B.3. Given that these frontiers exist, next we prove a restriction on how they
can occur relative to each other, leading to our final contradiction. Intuitively, the claim states the following:

4We add dummy Alice and Bob nodes at the root level to ensure this is well-defined for all the original nodes. No information
is exchanged until the protocol passes these dummy nodes.

9

is defined to be an Alice, Bob or Eve node depending on who will next add a message to the transcript. A
transcript of an execution on this tree is identified with a root to leaf path in this tree.

The tree T+ naturally defines an “ancestor” partial order of the nodes in the tree: we say u� v if u
occurs somewhere on the path from the root of the tree to v (u could be identical to v). If u� v, but u 6= v,
then we write u� v. We shall abuse this notation slightly, and use it in the following senses too: if u is a
node and F is a set of nodes, we write u�F (read as u is strictly above F) if u can be reached from the
root without passing through any node in F (i.e., there is no v 2 F such that v�u); note that for u to be
strictly above F , it is not necessary to have any v 2 F such that u� v. For two sets of nodes F1, F2, we
define the event F1�F2 to occur if the transcript path of an execution passes through a node v 2 F1 strictly
before passing through any node in F2 (it may or may not pass through a node in F2 afterwards).)

An important definition we shall use through out is that of Apred (and Bpred) nodes. If a node v is a
child of an Alice node, Apred(v) is the parent of v. Otherwise, Apred(v) is the last node on the path from
root to v that is the child of an Alice node.4 Intuitively, we will be arguing that if some information about
x has been revealed by the time the transcript reaches a node v, some information about x or y must have
already been revealed when it reached Apred(v). Similarly, for information about y to be revealed at v,
some information about x or y should already have been revealed at Bpred(v). Together these requirements
yield a contradiction. To formalize this, we shall define a frontier FX (and symmetrically FY) that consists
of nodes v such that the “extra information” revealed about x at v since reaching Apred(v) is significant.
More precisely:

• F ✓
X = {v|v is the first node on the path from root to v s.t. 9y 2 Y, x, x0 2 X , P[y|v] � ✓ and

P[v|Apred(v); x, y] > (1 + �)P[v|Apred(v); x0, y]}
• F ✓

Y = {v|v is the first node on the path from root to v s.t. 9x 2 X , y, y0 2 Y, P[x|v] � ✓ and

P[v|Bpred(v); x, y] > (1 + �)P[v|Bpred(v); x, y0]},

where P[v|w; x, y] denotes the probability (over the random tapes of the parties and the oracle O) of reaching
a node v in T+, conditioned on having reached the node w, when the parties run the protocol honestly with
inputs x and y respectively; P[x|v] and P[y|v] denote the probabilities of x and y respectively conditioned
on a protocol with a uniform input reaching the node v. We are measuring information about Alice’s input
be revealed at v, since passing through w = Apred(v), in terms of how much some two candidate inputs for
Alice get differentiated for some input of Bob, quantified as maxx,x0,y | log P[v|w; x, y]� log P[v|w; x0, y]|.
This quantity is “significant” if it is beyond a threshold (log(1 + �) where, for concreteness, � = 1/N2, N
being the depth of T+) and if it is realized by a y which is somewhat likely (i.e., P[y|v] � ✓, where, for
concreteness, ✓ = 1/32|X ||Y|). We shall also consider F 0

X and F 0
Y , where ✓ is set to 0 in the above definitions.

Based on the correctness and the security of the protocol, and using the fact that f is undecomposable
at the top level, we first prove that these frontiers are almost “full frontiers” (when ⌫0, the security error for
⇧, is negligible and ✓ is set sufficiently small):

Claim 3.1. On an execution over T+ with a random input pair (x, y), for any value of ✓, the probability
that the transcript does not pass through F ✓

X (or symmetrically, F ✓
Y) is at most poly(|X ||Y|) · ✓ + O(⌫0).

This is proven as Claim B.3. Given that these frontiers exist, next we prove a restriction on how they
can occur relative to each other, leading to our final contradiction. Intuitively, the claim states the following:

4We add dummy Alice and Bob nodes at the root level to ensure this is well-defined for all the original nodes. No information
is exchanged until the protocol passes these dummy nodes.

9

Figure 2: A schematic representation of the segment F̆X (indicated by thicker line). The dotted lines connect
nodes to their Apred nodes (see Figure 1). F̆X contains those nodes u ∈ F θX such that Apred(u) occurs
strictly above F θY . We seek to upperbound the probability P[F̆X] (when the inputs are uniformly chosen).

Then there exist polynomials ξ, ξ′ and ε̂0, ε̂1 = εΩ(1) poly(|X ||Y|κ), such that for any value of θ,

P[F̆X] ≤ ξ (N |X ||Y|/θ) ·
Ä
ε̂0 + ε̂1 + ν0

ä
+ ξ′(|X ||Y|) · θ (2)

P[F̆Y] ≤ ξ (N |X ||Y|/θ) ·
Ä
ε̂0 + ε̂1 + ν0

ä
+ ξ′(|X ||Y|) · θ (3)

Proof. We shall prove Eq. 2 (the second part being symmetrical). That is, we are interested in bounding the
probability that, on running the execution on T+ with uniformly random inputs (x, y), the transcript reaches
a node in F̆X = {u|u ∈ F θX and Apred(u)≺F θY }. We say that the event F̆X occurs, if the path from root to
the generated transcript passes through a node in F̆X .

To obtain an upper bound on P[F̆X], we first observe that the event F̆X implies the occurrence of one of
the following three events:

1. Event F 0
Y : the transcript path does not pass through any node in F 0

Y .
2. Event F 0

Y ≺(F θX ∪ F θY): the transcript path passes through a node z ∈ F 0
Y and z≺(F θX ∪ F θY) (i.e.,

there is no node v ∈ F θX ∪ F θY such that v� z).
3. Event F̃X : the path passes through F̃X which is defined similarly to F̆X , but replacing F θY by F 0

Y .
i.e.,

F̃X = {u|u ∈ F θX and Apred(u)≺F 0
Y }.

To see this, suppose F̆X is encountered, but neither of the first two events occur; then transcript path passes
through u ∈ F̆X , and a node z ∈ F 0

Y , and a node v� z such that v ∈ F θX ∪ F θY . We argue that in this case
Apred(u)≺ z; then, since F 0

Y is part of a frontier, Apred(u)≺F 0
Y and hence u ∈ F̃X . This is because:

• If v ∈ F θX , then u = v (since u ∈ F̆X and v ∈ F θX are on the same path), and Apred(u)≺u = v� z.
• If v ∈ F θY , then v = z (since, v ∈ F θY , z ∈ F 0

Y and v� z ⇒ z = v) and further, since u ∈ F̆X and
v ∈ F θY are on the same path, by definition of F̆X , Apred(u)≺ v = z.

16

Thus, it suffices to upper bound the probabilities of each of these three events. We will be able to
easily bound both P[F 0

Y] and P[F 0
Y ≺(F θX ∪ F θY)], (Claim 4.1 — proven as Claim 5.3 – and Eq. 1 – proven

as Claim 5.4 – respectively). The main technical difficulty is in bounding P[F̃X], which is carried out in
Claim 5.5. From these three claims we get

P[F 0
Y] = O(ν0) (By Claim 4.1, with θ = 0)

P[F 0
Y ≺(F θX ∪ F θY)] ≤ poly(|X ||Y|)θ (By Eq. 1)

P[F̃X] ≤ poly

Ç
N |X ||Y|

θ

å
(ε̂0 + ε̂1 + ν0) (By Claim 5.5)

Adding the three, we get the required bound.

5.2 Proof of Theorem 1.1

The main part of the proof proves the impossibility of a semi-honest secure SFE protocol, even using random
oracles, for a symmetric function f that is undecomposable at the top-level. We shall shortly see that this is
enough.

So, suppose f is a 2-party symmetric function that is undecomposable at the top-most level, and Π
is a semi-honest secure protocol using a random oracle O, for the SFE funcionality evaluating f , with
simulation error ν0. This is the setting under which the frontiers in T+ are defined, and Claim 5.3 and
Claim 5.1 hold. The proof follows by a deriving a contradiction from these two claims (instantiated with
suitable parameters).

We shall set θ = min{ 1
8ζ0(|X ||Y|) ,

1
8ξ′(|X ||Y|)} where the ζ0 and ξ′ are as in Claim 5.3 and Claim 5.1 (in

fact, θ = Θ(1
|X ||Y|), by following the proofs of the various claims), and then choose a small enough (but

1/poly(κ)) value of ε so that (ε̂0 + ε̂1) ≤ 1
8ξ(N |X ||Y|/θ) (which is possible since 1/θ is poly(κ) and ε̂0 and

ε̂1 are εΩ(1) poly(|X ||Y|κ)), so that (for large enough κ)

P[F θX] + P[F θY] ≤ 2

Ç
c0ν0 + ζ0(|X ||Y|)θ

å
<

1

3
By Claim 5.3

P[F̆X] <
1

3
and P[F̆Y] <

1

3
By Claim 5.1

So, with non-zero probability, for a random input pair (x, y), the honestly generated transcript passes
through both F θX and F θY , but avoids both events F̆X and F̆Y . Consider one such transcript τ . Let u and v
be the intersection of this path with the frontiers F θX and F θY . For this transcript τ : v�Apred(u) (since of
u 6∈ F̆X) and Apred(u)≺u (by definition of Apred), i.e. v≺u. Symmetrically, we also get: u�Bpred(v)
and Bpred(v)≺ v, and hence u≺ v. This gives us a contradiction as desired.

Extending to all 2-party functions. Above we showed that any symmetric 2-party function that is unde-
composable at the top-level does not have an SFE protocol secure against semi-honest adversaries, in the
random oracle model. Now we extend this to show that the only 2-party functions for which semi-honest
secure protocols exist in the random oracle model are those for which (perfectly) semi-honest secure pro-
tocols exist in the plain model. We do this in two steps, first for symmetric 2-party functions and then for
general 2-party functions. But first we state a claim that we will need (in the second step).

17

Claim 5.2. If a (not necessarily symmetric) 2-party function f0 has a semi-honest secure protocol in the
random oracle model (resp. plain model), it must be “isomorphic” to a symmetric 2-party function f1 that
has a semi-honest secure protocol in the random oracle model (resp. plain model).

This is because, by a result in [MOPR11], if a 2-party function f0 is not isomorphic to a certain symmet-
ric 2-party function f1 (namely, the “common information function of f0 mentioned in Footnote 2), then f0

is complete against semi-honest adversaries. But a complete functionality cannot have a semi-honest secure
protocol in the plain or random oracle model (as otherwise all functionalities will have semi-honest secure
protocols in the random oracle model, contradicting the above results.)

Below are the two steps to complete the proof of Theorem 1.1.

1. Firstly, we argue that if a symmetric 2-party function f1 has a semi-honest secure protocol in the ran-
dom oracle model, it must be decomposable (and hence has a perfectly semi-honest secure protocol).
This is because, if f1 is undecomposable, then it has a minor f which is undecomposable at the top-
level. Further, if f1 is semi-honest securely realizable using a random oracle, so is every minor of f1,
including f , which contradicts our above result.

2. Next, if a general 2-party function f0 has a semi-honest secure protocol in the random oracle model,
then by Claim 5.2, there is a symmetric 2-party function f1 that is isomorphic to f0 and has a semi-
honest secure protocol in the random oracle. By the previous point, f1 has a perfectly semi-honest
secure protocol in the plain model, and as f0 is isomorphic to f1, so does f0.

5.3 Bounding probability of events F θ
X and F θ

Y

In this section we prove Claim 4.1 (restated below).

Claim 5.3. There exists a constant c0 and a polynomial ζ0 such that, on executing the augmented protocol
with a random input pair (x, y), P[F θX] and P[F θY] are both at most c0ν0 + ζ0(|X ||Y|) · θ.

Proof. We shall just show that P[F θX] ≤ p∗ = (5 + (1 + δ)N)ν0 + |X ||Y|θ (so that c0 = (5 + (1 + δ)N)

and ζ0(α) = α). The bound on P[F θY] follows similarly. We shall, in fact, show the stronger result that
P[F θX |x, y] ≤ p∗, for all (x, y) ∈ X × Y .

Let S be the set of all complete transcripts such that none of their ancestors lie in F θX . First, consider any
input pair (x, y) ∈ X × Y such that f(·, y) is not a constant function; we shall upper-bound the probability
P[S|x, y] by p∗ − 4ν0.

Let the frontier U(y) be the set of nodes u where, for the first time on a path from the root, P[y|u] <
θ. Let L(y) = {u ∈ S|u≺U(y)} be the part of S which is strictly above U(y). Then P[S|x, y] ≤
P[U(y)|x, y] + P[L(y)|x, y]. Firstly,

P[U(y)|x, y] =
∑

u∈U(y)

P[u|x, y] =
∑

u∈U(y)

P[x, y|u]p[u]/P[x, y] = |X ||Y|
∑

u∈U(y)

P[x, y|u]p[u]

≤ |X ||Y|
∑

u∈U(y)

P[y|u]p[u] < |X ||Y|θ
∑

u∈U(y)

P[u] ≤ |X ||Y|θ.

For nodes v ∈ L(y), we have P[y|u] ≥ θ for all u� v. Recall that v does not have an ancestor in F θX .
So, it must be the case that, for all x, x′ ∈ X we have P[v|x, y] ≤ (1 + δ)NP[v|x′, y]. Since f(·, y) is not a

18

constant function, there exists x′ ∈ X such that f(x, y) 6= f(x′, y). We can partition the set L(y) into two
sets:

1. C(y): Those transcripts v ∈ L(y) whose associated output is f(x, y), i.e. those transcripts which
provide correct output when the input is (x, y), and

2. W (y): Those transcripts v ∈ L(y) whose associated output is 6= f(x, y), i.e. those transcript which
provide wrong output when the input is (x, y).

Since, the simulation error is at most ν0, we can conclude that P[W (y)|x, y] ≤ ν0. Further, observe that
the output associated with the transcripts in C(y) are incorrect for input (x′, y). Therefore, P[C(y)|x′, y] ≤
ν0. But, P[C(y)|x, y] ≤ (1 + δ)NP[C(y)|x′, y] ≤ (1 + δ)Nν0. Now, we can claim that the P[L(y)|x, y] ≤
(1 + (1 + δ)N)ν0.

Adding these two results, we can conclude that

P[S|x, y] ≤ p∗ − 4ν0

Now, we consider any (x, y) ∈ X×Y such that f(·, y) is a constant function. Since f is undecomposable
at the top-most level, there exists x′ ∈ X and y′ ∈ Y such that f(x′, y) = f(x′, y′) and f(·, y′) is not a
constant function. Thus, by security condition, we can conclude that the final transcript distributions induced
by (x, y) and (x′, y′) have at most 4ν0 statistical distance. Thus, to complete the proof of the theorem12 :

P[S|x, y] ≤ P[S|x′, y′] + 4ν0 ≤ p∗

5.4 Bounding probability of event F 0
Y ≺(F θ

X ∪ F θ
Y)

Claim 5.4. On executing the augmented protocol with a random input pair (x, y), P[F 0
Y ≺(F θX ∪F θY)] is at

most (1 + (1 + δ)N)|X ||Y|θ. The same bound holds for P[F 0
X ≺(F θX ∪ F θY)].

Proof. Let S be the set of nodes v ∈ F 0
Y such that for all u� v, u 6∈ F θX ∪F θY , i.e. v≺(F θX ∪F θY). We shall

bound P[S|x, y], for each input pair (x, y) ∈ X × Y . Fix an input pair (x, y). Let U(x, y) be the frontier of
nodes v where for the first time P[x|v] < θ or P[y|v] < θ. Let L(x, y) = {u|u ∈ S, and u≺U(x, y)} be
the part of S which is strictly above U(x, y). We shall bound P[S|x, y] ≤ P[U(x, y)|x, y] +P[L(x, y)|x, y],
by bounding the two terms separately.

P[U(x, y)|x, y] =
∑

v∈U(x,y)

P[v|x, y] =
∑

v∈U(x,y)

P[x, y|v] · P[v]/P[x, y]

≤ |X ||Y|
∑

v∈U(x,y)

min{P[x|v], P[y|v]} · P[v] < θ|X ||Y|
∑

v∈U(x,y)

P[v] ≤ θ|X ||Y|

To bound P[L(x, y)|x, y], we partition L(x, y) into Lx̃(x, y) ⊆ L(x, y), one for each x̃ ∈ X \ {x},
such that for v ∈ Lx̃(x, y), v is included in F 0

Y because ∃y′, y′′ such that P[v|Bpred(v); x̃, y′] > (1 +

12 We note that this bound is not restricted only to the uniform distribution over input pairs. In fact, for any input pair distribution
such that P[x, y] is a function of the output f(x, y), P[S] ≤ p∗.

19

δ)P[v|Bpred(v); x̃, y′′]. Note that x̃ 6= x, otherwise v ∈ F θY . By definition of L(x, y), we have v≺(F θX ∪
F θY ∪ U(x, y)), i.e. v≺F θY . This implies that:

P[x̃|v] < θ

Observe that for all u� v ∈ L(x, y), we have P[y|u] ≥ θ. But v≺F θX . Which implies:

P[v|x, y] ≤ (1 + δ)NP[v|x̃, y]

Now, P[v|x̃, y] ≤ P[v|x̃]/P[y|x̃] = |Y|P[v|x̃]. So for v ∈ Lx̃(x, y),

P[v|x, y] ≤ (1 + δ)N |Y|P[v|x̃] = (1 + δ)N |X ||Y|P[x̃|v]P[v]

≤ (1 + δ)N |X ||Y|θP[v].

Hence, P[L(x, y)|x, y] ≤ (1 + δ)N |X ||Y|θ∑v∈L(x,y) P[v] ≤ (1 + δ)N |X ||Y|θ. Putting this together with
the above bound on P[U(x, y)|x, y] we get, for all (x, y), P[S|x, y] ≤ (1 + (1 + δ)N)θ|X ||Y|. Hence,
P[S] ≤ (1 + (1 + δ)N)θ|X ||Y|.

5.5 Bounding the probability of event F̃X

This section carries out the technical heart of the proof. For convenience we define µ = (1 + δ)N , δ′ = (1 +
δ)1/(|X |−1)− 1 and δ′′ = (1 + δ)1/(|Y|−1)− 1. Note that with δ = 1

N , µ = O(1) and δ′, δ′′ = Ω(1
N(|X |+|Y|))

(where |X |, |Y| > 1).

Claim 5.5. There exist ε̂0, ε̂1 = εΩ(1) poly(κ|X ||Y|), such that the probability of the augmented protocol
with uniformly random inputs reaching F̃X is

P[F̃X] ≤ 2µ2|X |2|Y|(1 + δ′)N
θδ′

(4ν0 + ε̂0 + 2ε̂1) .

The same bound, with δ′′ instead of δ′, holds for P[›FY].

We focus on proving the first part of this claim (the second part being symmetrical). That is, we are in-
terested in bounding the probability that, on executing Π with uniformly random inputs (x, y), the transcript
reaches a node in F̃X = {u|u ∈ F θX and @z ∈ F 0

Y s.t. z�Apred(u)}.
We break the full proof of the claim into three parts:

1. Part 1. We shall show that there exist F̂X ⊆ F̃X such that P[F̂X] ≥ P[F̃X]/(|X ||Y|)2, and there
are x̂0, x̂1 ∈ X and ŷ0, ŷ1 ∈ Y , such that f(x̂0, ŷ0) = f(x̂1, ŷ0), and P[F̂X |x̂0, ŷ1] is comparable to
P[F̂X] (with uniformly random inputs (x, y)), and for every u ∈ F̂X , ŷ1 sufficiently distinguishes x̂0

and x̂1. More precisely,

P[F̂X |x̂0, ŷ1] ≥ θ|Y|
(1 + δ)N

P[F̂X], (4)

and for all u ∈ F̂X , if w = Apred(u), then P[u|w; x̂0, ŷ1] ≥ (1+δ)1/(|X |−1)P[u|w; x̂1, ŷ1], and hence

P[u|w; x̂0, ŷ1]− P[u|w; x̂1, ŷ1] ≥ δ′

1 + δ′
P[u|w; x̂0, ŷ1]. (5)

where δ′ = (1 + δ)1/(|X |−1) − 1.

20

2. Part 2. We shall also show that P[ŜX |x̂0, ŷ1], where ŜX = F̂X ∩ Achildren, must be “small” if the
protocol is secure. (For a node u ∈ ŜX , Apred(u) ∈ Anodes.)

3. Part 3. Then we shall show that P[R̂X |x̂0, ŷ1], where R̂X = F̂X\Achildren, must be small if the
protocol is secure. (For a node u ∈ R̂X , Apred(u) ∈ Achildren.)

Since P[F̂X |x̂0, ŷ1] = P[R̂X |x̂0, ŷ1] +P[ŜX |x̂0, ŷ1], Parts 2 and 3 imply that P[F̂X |x̂0, ŷ1] is small as
well. Further, by Part 1, P[F̂X] and, thus, P[F̃X] is small as well.

The error terms ε̂0 and ε̂1 appear in Parts 2 and 3 respectively, from Claim 5.6 and Claim 5.7. The
claims are consequences of the independence properties obtained by Eve of Lemma A.1. Below we state the
former claim (and show how it follows from Lemma A.2 proven in Appendix A), which states that Alice’s
message is almost independent of Bob’s input, conditioned on Eve’s view thus far.

Claim 5.6. For all x ∈ X , y, y′ ∈ Y , if W ⊆ Anodes is such that for all w ∈W , P[y|w;x],P[y′|w;x] ≥ σ
for σ = 1

poly(|X ||Y|) , then, for ε ≤ 1/ poly(κ|X ||Y|) (for some polynomial) and an error parameter ε̂0 =

εΩ(1) poly(κ|X ||Y|), we have∑
w∈W

P[w|x, y] · SD ({chldrn(w)|w;x, y}, {chldrn(w)|w;x, y′}) ≤ Nε̂0, (6)

where {chldrn(w)|w;x, y} and {chldrn(w)|w;x, y′} stand for the distribution of the next node after w (i.e.,
Alice’s message at w) in T+ when Π is executed with inputs (x, y) and (x, y′) respectively.

Proof. Lemma A.2, stated in terms of a traversal of the tree T+, partitions the nodes at each level in the tree
into three sets, a low-probability setW i

0 such that P[W i
0|x, y] ≤ ε′,W i

1 such that forw ∈W i
1, P[y|w;x] < ε′

or P[y′|w;x] < ε′ and W i
2 such that for w ∈ W i

2, SD ({chldrn(w)|w;x, y}, {chldrn(w)|w;x, y′}) ≤ ε′.
Note that W i

1 ∩W = ∅ because (for sufficiently small values of ε), ε′ = εΩ(1) poly(κ|X ||Y|) < σ. So,∑
w∈W

P[w|x, y] · SD ({chldrn(w)|w;x, y}, {chldrn(w)|w;x, y′})
≤
∑
i

∑
w∈W i

0

P[w|x, y] +
∑
i

∑
w∈W i

2

P[w|x, y]ε′ ≤ Nε′ +Nε′ ≤ Nε̂0,

where ε̂0 = 2ε′

We mention a few other technical inequalities that are useful in the proof.

For u ∈ F̃X , if w = Apred(u), then w is strictly above the frontier F 0
Y , and hence

P[w|x̂0, ŷ0] ≥ 1

(1 + δ)N
P[w|x̂0, ŷ1]. (7)

For any subset W of nodes,

−2Nν0 ≤
∑
w∈W

P[w|x̂0, ŷ0]− P[w|x̂1, ŷ0] ≤ 2Nν0, (8)

because f(x̂0, ŷ0) = f(x̂1, ŷ0) and by the security guarantee of Π, restricted to the intersection of W with
the frontier corresponding to a fixed round number, this summation is at most 2ν0 (since in the ideal world,

21

the simulated views are identical, and for each execution, the error from the simulated distribution is at most
ν0).

It will be useful to relate
∑
w∈W (P[w|x̂0, ŷ0]

∑
u∈Sw g(u,w)) to

∑
w∈W (P[w|x̂1, ŷ0]

∑
u∈Sw g(u,w)),

where for all w ∈W ,
∑
u∈Sw g(u,w) ≤ 1. This arises for us when Sw forms part of a frontier, and g(u,w)

is a probability distribution (possibly conditioned on w) or statistical distance between two probability dis-
tributions.∑

w∈W
P[w|x̂1, ŷ0]

∑
u∈Sw

g(u,w)

=
∑
w∈W

P[w|x̂0, ŷ0]
∑
u∈Sw

g(u,w)−
∑
w∈W

(P[w|x̂0, ŷ0]− P[w|x̂1, ŷ0])
∑
u∈Sw

g(u,w)

=
∑
w∈W

P[w|x̂0, ŷ0]
∑
u∈Sw

g(u,w)± 2Nν0 (By Eq. 8.) (9)

Here, we applied Eq. 8 to two subsets of W (where (P[w|x̂0, ŷ0]− P[w|x̂1, ŷ0]) is positive and negative,
respectively.) and also used the fact that

∑
u∈Sw g(u,w) ≤ 1.

Part 1. We define F̂X and (x̂0, x̂1, ŷ0, ŷ1).

For any node u ∈ F θX , there exists y∗u ∈ Y and some x, x′ ∈ X such that P[u|w;x, y∗u] > (1 +
δ)P[u|w;x′, y∗u], where w = Apred(u). W.l.o.g, we consider x which maximizes P[u|w;x, y∗u]; we call
the maximum value α(u, y∗u). Since f is not row-decomposable at the top-level, there exist a sequence of
t+ 1 ≤ |X | values x0, · · · , xt such that

• x0 = x, xt = x′ (and hence P[u|w;x0, y
∗
u] > (1 + δ)P[u|w;xt, y

∗
u]);

• for every i = 0, · · · , t− 1, there exists yi ∈ Y such that f(xi, yi) = f(xi+1, yi).

Then, there exists an i such that P[u|w;xi, y
∗
u] > (1+δ)1/tP[u|w;xi+1, y

∗
u] and P[u|w;xi, y

∗
u] > P[u|w;x0, y

∗
u]/(1+

δ). We will denote the nodes (xi, xi+1, yi) by (xu, x
′
u, yu). Thus, for every node u ∈ F θX , there are nodes

(xu, x
′
u, yu, y

∗
u) such that

• f(xu, yu) = f(x′u, yu), and

• P[u|w;xu, y
∗
u] > (1 + δ)1/tP[u|w;x′u, y

∗
u] and P[u|w;xu, y

∗
u] > α(u, y∗u)/(1 + δ).

Suppose that P[F̃X] = p; i.e., when the protocol is executed with a random input pair (x, y), with
probability p, the transcript passes through some u ∈ F̃X . Since there are at most |X |2|Y|2 values for the
tuples (xu, x

′
u, yu, y

∗
u), we can find a tuple (x̂0, x̂1, ŷ0, ŷ1) such that the transcript passes through u ∈ F̃X

with (xu, x
′
u, yu, y

∗
u) = (x̂0, x̂1, ŷ0, ŷ1) with probability at least p′ = p/(|X |2|Y|2). We define F̂X ⊆ F̃X as

containing those u with (xu, x
′
u, yu, y

∗
u) = (x̂0, x̂1, ŷ0, ŷ1). Then P[F̂X] ≥ p′.

For w = Apred(u) for u ∈ F̂X , w is strictly above F θX , and hence P[w|x̂0, ŷ1] ≥ P[w|ŷ1]/(1 + δ)N−1.
(Since w has a child u, we upper-bound its depth by N − 1.)

22

Also, since for u ∈ F̂X we have P[u|w; x̂0, ŷ1] ≥ α(u, ŷ1)/(1 + δ) ≥ P[u|w; ŷ1]/(1 + δ), we get that

P[F̂X |x̂0, ŷ1] =
∑
w

P[w|x̂0, ŷ1]
∑
u∈”FX ,

Apred(u)=w

P[u|w; x̂0, ŷ1]

≥ 1

(1 + δ)N

∑
w

P[w|ŷ1]
∑
u∈”FX ,

Apred(u)=w

P[u|w; ŷ1]

≥ 1

(1 + δ)N
P[F̂X |ŷ1].

Finally, note that for u ∈ F̂X , P[ŷ1|u] ≥ θ and hence

P[F̂X |ŷ1] =
∑
u∈”FX P[u|ŷ1] =

∑
u∈”FX |Y|P[ŷ1|u]P[u] ≥ θ|Y|P[F̂X].

Hence,

P[F̂X |x̂0, ŷ1] ≥ θ|Y|
(1 + δ)N

P[F̂X].

Part 2. This part is in fact similar to the argument in [MPR09], except that we need to rely on the in-
dependence guarantee from Claim 5.6 to say that Alice’s message is (almost) independent of Bob’s input,
conditioned on the (augmented) transcript so far. We shall show that |P[ŜX |x̂0, ŷ0] − P[ŜX |x̂1, ŷ0]| is sig-
nificant if P[ŜX |x̂0, ŷ1] is significant. However, since f(x̂0, ŷ0) = f(x̂1, ŷ0), the former must be “small”,
and hence the latter too must be small.

Since ŜX is part of a frontier, for all x, y,

P[ŜX |x, y] =
∑
u∈ŜX

P[u|x, y] =
∑

w∈Anodes
P[w|x, y]

∑
u∈ŜX

Apred(u)=w

P[u|w;x, y].

For u ∈ ŜX , w = Apred(u) is u’s parent, an Alice node which is strictly above F 0
Y .

P[ŜX |x̂0, ŷ0] =
∑
w

P[w|x̂0, ŷ0]
∑
u∈ŜX

Apred(u)=w

P[u|w; x̂0, ŷ0]

=
∑
w

P[w|x̂0, ŷ0]
∑
u∈ŜX

Apred(u)=w

P[u|w; x̂0, ŷ1]±Nε̂0 (By Eq. 6.)

Note that Eq. 6 can be applied above, since the summation is over w strictly above F 0
Y (since w = Apred(u)

for u ∈ ŜX), and for such w, P[y|w;x] > 1
(1+δ)N |Y| = 1

poly(|X ||Y|) .

23

P[ŜX |x̂1, ŷ0] =
∑
w

P[w|x̂1, ŷ0]
∑
u∈ŜX

Apred(u)=w

P[u|w; x̂1, ŷ0]

=
∑
w

P[w|x̂1, ŷ0]
∑
u∈ŜX

Apred(u)=w

P[u|w; x̂1, ŷ1]±Nε̂0 (By Eq. 6.)

=
∑
w

P[w|x̂0, ŷ0]
∑
u∈ŜX

Apred(u)=w

P[u|w; x̂1, ŷ1]± 2Nν0 ±Nε̂0 (By Eq. 9.)

The above expressions for P[ŜX |x̂0, ŷ0] and P[ŜX |x̂1, ŷ0], combined with Eq. 5 and Eq. 7 let us relate
their difference to P[ŜX |x̂0, ŷ1], as follows.

P[ŜX |x̂0, ŷ0]− P[ŜX |x̂1, ŷ0]

≥
∑
w

P[w|x̂0, ŷ0]
∑
u∈ŜX

Apred(u)=w

(P[u|w; x̂0, ŷ1]− P[u|w; x̂1, ŷ1])− 2N(ν0 + ε̂0)

≥
Ç

δ′

1 + δ′

å∑
w

P[w|x̂0, ŷ0]
∑
u∈ŜX

Apred(u)=w

P[u|w; x̂0, ŷ1]− 2N(ν0 + ε̂0)

≥
Ç

δ′

(1 + δ′)(1 + δ)N

å∑
w

P[w|x̂0, ŷ1]
∑
u∈ŜX

Apred(u)=w

P[u|w; x̂0, ŷ1]− 2N(ν0 + ε̂0)

≥
Ç

δ′

(1 + δ′)(1 + δ)N

å
P[ŜX |x̂0, ŷ1]− 2N(ν0 + ε̂0)

Part 3. We shall consider an attack when the protocol is run with inputs (x̂0, ŷ0) or (x̂1, ŷ0) (which must
be indistinguishable for security). We shall show that if P[R̂X |x̂0, ŷ1] is significant, then the curious Bob’s
output is significantly correlated with Alice’s input x (biased more towards 0 when x = x̂0). This will
contradict the security of the protocol, since in the ideal world, Bob’s input ŷ0 cannot distinguish between
Alice’s input being x̂0 or x̂1.

The probability that the execution with input (x̂0, ŷ0) reaches a node w = Apred(u) for u ∈ R̂X is
significant if this probability is significant in the execution with input (x̂0, ŷ1), since each such w falls
above the F 0

Y frontier, and replacing ŷ1 with ŷ0 causes only a constant factor change in the probabilities. In
Figure 4 we describe a curious Bob who can, at such a point, mentally substitute its input ŷ0 with ŷ1 and
simulate the augmented execution (inluding – and this is the non-trivial part – the answers from the oracle)
till before the next Alice message. The probability that this simulated execution goes through R̂X remains
significant when Alice’s input is x̂0 (since the simulated execution will have input (x̂0, ŷ1)). At the same
time, the probability of the execution with (x̂1, ŷ1) hitting each node in R̂X differs by a significant factor
from that when Alice’s input is x̂0 (Eq. 5). This will let the curious Bob distinguish between when Alice’s
input is x̂0 and when it is x̂1, even though Bob’s real input is ŷ0, leading to a contradiction.

24

Curious Bob: Learning what Eve learns, with a different input

VB,ŷ0(w)

VB,ŷ1(w)

VA,x(w) VE(w)

Figure 3: Simulating the oracle answers dur-
ing exploration. The ovals represent the sets
of queries in the views VA,x(w), VE(w),
VB,ŷ0(w) and VB,ŷ1(w). Queries already an-
swered in VE(w) (blue) or in the hypotheti-
cal Bob view VB,ŷ1(w) (orange) are answered
according to these views. Answers to the re-
maining queries in Q(VB,ŷ0(w)) (green), are
freshly sampled, i.e. answered according to
O′′. All other queries are answered using the
actual random oracle O. When the “safety”
condition Eq. 10 holds, i.e., the orange and
green regions (which have “edited” answers)
do not intersect the gray region, this yields a
perfect simulation (see Eq. 12).

Bob is given ŷ0 as input, and Alice is given a uniformly
random element from x ← {x̂0, x̂1} as input. Alice
and Bob execute the protocol honestly, with access to
a random oracle O. But at the end Bob carries out the
following computation.
For every Alice node w in the augmented transcript,
which is strictly above F 0

Y , Bob carries out an explo-
ration as follows. He samples a view VB,ŷ1(w) for
himself with input ŷ1, conditioned on node w (and in
particular Eve’s view VE(w)). Bob mentally carries
out the execution with the hypothetical view VB,ŷ1(w),
till the next message from Alice (i.e., Eve queries, fol-
lowed by Bob’s own queries and his message in the
protocol, and then further Eve queries) by simulating
an oracle O′ defined as follows. Below, VB,ŷ0(w) de-
notes the actual view of Bob in the protocol at that
point, O is the actual oracle and O′′ is a freshly sam-
pled independent random oracle. On query q,

• if q ∈ Q(VB,ŷ1(w)) ∪ Q(VE(w)), answer ac-
cording to VB,ŷ1(w) or VE(w);a

• else, if q ∈ Q(VB,ŷ0(w)), answer according to
O′′;

• else, answer according to O.

Let the set of nodes encountered by Bob during this
exploration (over explorations from every Alice node
w) be Exŷ0,ŷ1 , where x is Alice’s input, and Bob substi-
tutes ŷ0 with ŷ1 for exploration. If Exŷ0,ŷ1 ∩ R̂X 6= ∅,
then Bob outputs 0; else he outputs 1.

aAs VB,ŷ1(w) is conditioned on VE(w), if q ∈ Q(VB,ŷ1(w)) ∩Q(VE(w)), both views will have the same answer for q.

Figure 4: Curious Bob strategy to show that P[R̂X |x̂0, ŷ1] is small.

25

Before we prove this, we define a game and state a sub-claim, which will help us with the analysis (for
which we will derive yet another game based on this).

Game Gy′(x, y). An oracleO, and random tapes for Alice and Bob are picked at random. Then, Alice and
Bob execute the protocol Π using oracle O and the chosen random tapes, with inputs x and y respectively;
at each node w ∈ Achildren in the transcript path, we define VA,x(w), VB,y(w) and VE(w) as the views of
Alice, Bob and Eve respectively. Further, at each such node w that is strictly above the frontier F 0

Y (i.e.,
@z ∈ F 0

Y , z�w.), we pick a random view for Bob conditioned on w and input y′. Let VB,y′(w) represent
that Bob view.

We define the event safe(w) to occur in this game for a node w where VB,y′(w) is sampled (i.e., child of
an Alice node that is strictly above F 0

Y), if

Q (VA,x(w)) ∩ (Q(VB,y(w)) ∪ Q(VB,y′(w))
) ⊆ Q(VE(w)) (10)

Claim 5.7. For any x ∈ X , y, y′ ∈ Y , in the game Gy
′
(x, y), for an error parameter ε̂1 = εΩ(1) poly(κ|X ||Y|),

we have ∑
w

P[w|x, y′]P′x[safe(w)|w] ≤ Nε̂1 (11)

(where the summation is over w for which safe(w) is defined: i.e., w ∈ Achildren such that w≺F 0
Y).

Proof. This follows from Lemma A.3. At every level Li, Lemma A.3 guarantees that
∑

w∈Li
P[y|w;x]≥ε′

P[w ∧

safe(W)] ≤ ε′ for ε′ = εΩ(1) poly(κ|X ||Y|). For w≺F 0
Y , we have P[y|w;x] ≥ 1

(1+δ)N |Y| > ε′. Hence the
sum in the claim is bounded by Nε′. We set ε̂1 = ε′.

Two Experiments: Ĝ(x) and G′(x). Now, we define two experiments Ĝ(x) and G′(x) as follows:

Ĝ(x) (which corresponds to the curious attack above) is the same as Gŷ1(x, ŷ0), but with the following
addition. At each node w ∈ Achildren above F 0

Y in the transcript path, we carry out an “exploration” of
Eve’s steps and Bob’s step till the next message from Alice (Eve, Bob, Eve), using the view sampled for
ŷ1. This exploration is carried out as defined above for the curious Bob strategy (Figure 4). For simplifying
notation, we make the following definition. For a node u and w = Apred(u), we define the probability of
the exploration starting at w visiting u as

P̂x[u|w] = Pr
Ĝ(x)

[u reached in exploration from w|w reached in execution].

We also define P̂x[u] = P[w|x, ŷ0]P̂x[u|w] to be the probability of the exploration reaching u ∈ R̂X (not
conditioned on visiting w = Apred(u)).

Note that in the right-hand side of the equation, we have P[w|x, ŷ0], i.e. the node w is generated with
Alice interacting with her input x and Bob with his input ŷ0. After reaching w, Bob samples a new view
conditioned on his input being ŷ1 and proceed to explore till Alice is supposed to send the next message.
This part of the probability, i.e. probability of reaching a node u conditioned on reaching w is expressed by
the term P̂x[u|w]. We point out that P̂x[u|w] is not necessarily equal to P[u|w, x, ŷ1] since the exploration
uses a simulated oracle that is simulated without knowing x. (However, as we shall see, it will be closely
related to the latter.)

26

G′(x) is in fact, the same as Gŷ0(x, ŷ1) (note the reversal of roles for ŷ0 and ŷ1): i.e., an execution with
inputs (x, ŷ1), along with sampling Bob’s view for input ŷ0 at each node w ∈ Achildren encountered that
is strictly above F 0

Y . This experiment involves no exploration. Now, for a node u and w = Apred(u), we
define the probability of the execution visiting u, conditioned on it having visited w, as

P′x[u|w] = Pr
G′(x)

[u reached in the execution |w reached in execution].

We also define P′x[u] = P[w|x, ŷ1]P′x[u|w] to be the probability of the execution reaching u (not conditioned
on visiting w = Apred(u)). Note that in this experiment the only significance of ŷ0 is in defining the event
safe(w). In particular, there is no exploration phase or switching of inputs, and the execution considered
for defining the probability P′x[u|w] is simply the same as a faithful execution of the original augmented
protocol. Thus, P′x[u|w] = P[u|w, x, ŷ1].

A priori, there is no direct relation between the probability terms P̂x[u|w] and P′x[u|w]. This is because
the sampling of the Bob view in Ĝ(x) is not correlated with the view of Alice given Eve’s view; while, on the
other hand, Bob’s view in G′(x) could possibly be correlated with Alice’s view even when Eve view is given.
But, by additionally conditioning on the event safe(w), these two probabilities are identical. More formally,
we have the following key observation:13 For all x, for all u,w such thatw = Apred(u), P̂x[w, safe(w)] > 0
and P′x[w, safe(w)] > 0,

P̂x[u|w, safe(w)] = P′x[u|w, safe(w)]. (12)

This is because, given a node w, in either experiment, the set of Alice views, the set of Bob views with
input ŷ0 and the set of Bob views with input ŷ1 each compatible with the view in w (individually) are
determined. On conditioning on safe(w), the distribution over triplets of views (one from each of the three
sets) is the same in both experiments: they correspond to pairs of edges in the “views graph” at w, with
both edges incident on the same Alice view, and the probability of a pair is (before conditioning) product
of the probabilities on the two edges (according to distributions obtained by conditioning on ŷ0 and ŷ1),
and the conditioning removes all those pairs of edges that violate the safety condition; these operations
(multiplication and safety condition) are symmetric in ŷ0,ŷ1 and hence, both the distributions are the same.
Now, conditioned on safe(w), the exploration in Ĝ(x) for a triplet of views is identical to the execution in
G′(x) for the same triplet.

Assuming that P[R̂X |x̂0, ŷ1] is significant, we are interested in lower-bounding P̂x̂0 [R̂X]− P̂x̂1 [R̂X].

For x ∈ {x̂0, x̂1}, we have:

P̂x[R̂X] =
∑
u∈”RX P̂x[u] =

∑
w

à
P[w|x, ŷ0]

∑
u∈”RX ,

Apred(u)=w

P̂x[u|w]

í
Note that the last summation will be over w ∈ Achildren that are strictly above F 0

Y , since we consider only
those w for which there exists some u ∈ R̂X with Apred(u) = w.

13We shall use this claim for w strictly above F 0
Y . It can be seen that if only one of P̂x[w, safe(w)] and P′x[w, safe(w)] is

positive, then by the convention in Footnote 10, the node w cannot be strictly above F 0
Y . Hence the claim will be applicable.

Alternately, similar to the normal form for protocols mentioned in Footnote 10, we can assume w.l.o.g that for all w ∈ Achildren,
P̂x[w, safe(w)] > 0 and P′x[w, safe(w)] > 0, so that the claim holds for all w.

27

Fix a nodew and consider u ∈ R̂X such that Apred(u) = w. Then, (using the convention in Footnote 10),

P̂x[u|w] = P̂x[u, safe(w)|w] + P̂x[u, safe(w)|w]

= P̂x[u|w, safe(w)]P̂x[safe(w)|w] + P̂x[u, safe(w)|w]

= P̂x[u|w, safe(w)]− P̂x[u|w, safe(w)]P̂x[safe(w)|w] + P̂x[u, safe(w)|w]

= P̂x[u|w, safe(w)] + (P̂x[u|w, safe(w)]− P̂x[u|w, safe(w)])P̂x[safe(w)|w]

The sums
∑
u∈”RX ,Apred(u)=w

P̂x[u|w, safe(w)]P̂x[safe(w)|w] and
∑
u∈”RX ,Apred(u)=w

P̂x[u|w, safe(w)]P̂x[safe(w)|w]

are both bounded by P̂x[safe(w)|w]. Thus we can write

P̂x[R̂X] =
∑
w

Ç
P[w|x, ŷ0]

∑
u∈”RX ,

Apred(u)=w

P̂x[u|w]

å
=
∑
w

Ç
P[w|x, ŷ0]

∑
u∈”RX ,

Apred(u)=w

P̂x[u|w, safe(w)]

å
±
∑
w

P[w|x, ŷ0]P̂x[safe(w)|w]

=
∑
w

Ç
P[w|x, ŷ0]

∑
u∈”RX ,

Apred(u)=w

P̂x[u|w, safe(w)]

å
±Nε̂1 (13)

where the last step follows by Claim 5.7. Note that P′x[R̂X] = P[R̂X |x, ŷ1].

In our derivation below, we shall rely on conditioning the experiments Ĝ(x) and G′(x) on the event
safe(·). To facilitate our arguments we relate certain probabilities when conditioned on safe(·) and other-
wise.

Claim 5.8. The following two inequalities hold:

∑
w

P[w|x̂0, ŷ1]
∑

u∈”RX ,
Apred(u)=w

P′x̂0 [u|w, safe(w)] =

Ç∑
w

P[w|x̂0, ŷ1]
∑

u∈”RX ,
Apred(u)=w

P′x̂0 [u|w]

å
±Nε̂1 (14)

∑
w

P[w|x̂0, ŷ1]
∑

u∈”RX ,
Apred(u)=w

P′x̂1 [u|w, safe(w)] =

Ç∑
w

P[w|x̂0, ŷ1]
∑

u∈”RX ,
Apred(u)=w

P′x̂1 [u|w]

å
± (1 + δ)N (Nε̂1 + 2Nν0).

(15)

Proof. Firstly,

∑
u∈”RX ,

Apred(u)=w

P′x[u|w, safe(w)] =

Ç ∑
u∈”RX ,

Apred(u)=w

P′x[u|w]

å
± P′x[safe(w)|w] (16)

28

We get Eq. 14 as follows:∑
w

P[w|x̂0, ŷ1]
∑

u∈”RX ,
Apred(u)=w

P′x̂0 [u|w, safe(w)]

=

Ç∑
w

P[w|x̂0, ŷ1]
∑

u∈”RX ,
Apred(u)=w

P′x̂0 [u|w]

å
±
Ç∑

w

P[w|x̂0, ŷ1]P′x̂0 [safe(w)|w]

å
By Eq. 16.

=

Ç∑
w

P[w|x̂0, ŷ1]
∑

u∈”RX ,
Apred(u)=w

P′x̂0 [u|w]

å
±Nε̂1 By Eq. 11.

To prove Eq. 15, first we note the following:∑
w

P[w|x̂0, ŷ0]P′x̂1 [safe(w)|w] ≤
∑
w

P[w|x̂1, ŷ0]P′x̂1 [safe(w)|w] + 2Nν0 By Eq. 9.

≤ Nε̂1 + 2Nν0 By Eq. 11. (17)

∑
w

P[w|x̂0, ŷ1]P′x̂1 [safe(w)|w] ≤ (1 + δ)N
∑
w

P[w|x̂0, ŷ0]P′x̂1 [safe(w)|w]

≤ (1 + δ)N (Nε̂1 + 2Nν0) By Eq. 17. (18)

Hence, we conclude∑
w

P[w|x̂0, ŷ1]
∑

u∈”RX ,
Apred(u)=w

P′x̂1 [u|w, safe(w)]

=
∑
w

Ç
P[w|x̂0, ŷ1]

∑
u∈”RX ,

Apred(u)=w

P′x̂1 [u|w]

å
±
∑
w

P[w|x̂0, ŷ1]P′x̂1 [safe(w)|w] By Eq. 16.

=
∑
w

P[w|x̂0, ŷ1]

Ç ∑
u∈”RX ,

Apred(u)=w

P′x̂1 [u|w]

å
± (1 + δ)N (Nε̂1 + 2Nν0) By Eq. 18.

To lower bound P̂x̂0 [R̂X]− P̂x̂1 [R̂X] we proceed as follows:

P̂x̂0 [R̂X]− P̂x̂1 [R̂X]

≥
∑
w

[
P[w|x̂0, ŷ0]

(∑
u∈”RX ,

Apred(u)=w

P̂x̂0 [u|w, safe(w)]

)

29

− P[w|x̂1, ŷ0]

(∑
u∈”RX ,

Apred(u)=w

P̂x̂1 [u|w, safe(w)]

)]
− 2Nε̂1 By Eq. 13.

=
∑
w

[
P[w|x̂0, ŷ0]

(∑
u∈”RX ,

Apred(u)=w

P′x̂0 [u|w, safe(w)]

)

− P[w|x̂1, ŷ0]

(∑
u∈”RX ,

Apred(u)=w

P′x̂1 [u|w, safe(w)]

)]
− 2Nε̂1 By Eq. 12 (and Footnote 13).

≥
∑
w

(
P[w|x̂0, ŷ0]

∑
u∈”RX ,

Apred(u)=w

(
P′x̂0 [u|w, safe(w)]− P′x̂1 [u|w, safe(w)]

))

− 2N(ν0 + ε̂1) By Eq. 9.

≥
∑
w

(
P[w|x̂0, ŷ1]

(1 + δ)N

∑
u∈”RX ,

Apred(u)=w

(
P′x̂0 [u|w, safe(w)]− P′x̂1 [u|w, safe(w)]

))

− 2N(ν0 + ε̂1) By Eq. 7.

≥
∑
w

(
P[w|x̂0, ŷ1]

(1 + δ)N

∑
u∈”RX ,

Apred(u)=w

(
P′x̂0 [u|w]− P′x̂1 [u|w]

))

− 2N(ν0 + ε̂1)− Nε̂1

(1 + δ)N
− (2Nν0 +Nε̂1) By Eq. 14 and Eq. 15.

=
∑
w

(
P[w|x̂0, ŷ1]

(1 + δ)N

∑
u∈”RX ,

Apred(u)=w

(
P[u|w; x̂0, ŷ1]− P[u|w; x̂1, ŷ1]

))

− 2N(ν0 + ε̂1)− Nε̂1

(1 + δ)N
− (2Nν0 +Nε̂1) By definition of P′x[u|w].

≥
∑
w

(
P[w|x̂0, ŷ1]

(1 + δ)N

∑
u∈”RX ,

Apred(u)=w

(δ′

1 + δ′

)
P[u|w; x̂0, ŷ1]

)
− 4N(ν0 + ε̂1) By Eq. 5.

≥ δ′

(1 + δ′)(1 + δ)N
P[R̂X |x̂0, ŷ1]− 4N(ν0 + ε̂1)

Putting things Together Let us define µ = (1 + δ)N and recall that δ′ = (1 + δ)1/(|X |−1) − 1. From Part
2 and 3, we obtain a lower-bound on the distinguishing advantage obtained in terms of P[ŜX |x̂0, ŷ1] and
P[R̂X |x̂0, ŷ1]. We can assume that this advantages are ρS and ρR respectively. But we know that simulation

30

error is ν0, so ρS + ρR ≤ 2ν0. Thus, we obtain the following bounds:

P[ŜX |x̂0, ŷ1] ≤ (1 + δ′)µ
δ′

(ρS + 2N(ν0 + ε̂0))

P[R̂X |x̂0, ŷ1] ≤ (1 + δ′)µ
δ′

(ρR + 4N(ν0 + ε̂1))

Finally, we can obtain a bound on the overall bad event P[F̃X]:

P[F̃X] ≤ |X |2|Y|2P[F̂X]

≤ µ|X |2|Y|
θ

P[F̂X |x̂0, ŷ1]

=
µ|X |2|Y|

θ

Ä
P[ŜX |x̂0, ŷ1] + P[R̂X |x̂0, ŷ1]

ä
≤ 2µ2|X |2|Y|(1 + δ′)N

θδ′
(4ν0 + ε̂0 + 2ε̂1)

This completes the proof of Claim 5.5, and in turn that of Claim 5.1. As discussed in Section 5.2, this
(combined with Claim 5.3), is used to prove Theorem 1.1.

6 Beyond Semi-Honest Security
In this section we prove Theorem 1.2, which tells us that in the context of building 2-party SFE proto-
cols secure against active adversaries, a random oracle is only useful as a means for securely realizing the
commitment functionality, denoted by FCOM. This holds true for both UC and standalone security.

Theorem 1.2 (Restated.) For a deterministic finite 2-party function f , the following statements are equiv-
alent:

1. f has a statistically UC-secure SFE protocol in the random oracle model.
2. f has a statistically standalone-secure SFE protocol in the random oracle model.
3. f has a statistically UC-secure SFE protocol in the FCOM-hybrid model.
4. f has a statistically standalone-secure SFE protocol in the FCOM-hybrid model.

Proof. Clearly, (1) ⇒ (2) and (3) ⇒ (4). That (3) ⇒ (1) and (4) ⇒ (2) follow from the fact that in the
random oracle model, we can UC-securely implement the FCOM functionality. (This implication holds not
only for deterministic SFE, but also for reactive or randomized functionalities as well.)

To complete the proof we shall show that (2) ⇒ (3). So suppose f has a standalone secure protocol
using a random oracle. Let f ′ be a redundancy free function obtained by removing redundant inputs one by
one from f (see Footnote 4). Then, it is enough to show (2′) ⇒ (3′) where (2′) and (3′) are identical to
(2) and (3), but with f replaced by f ′ (because, (2) ⇔ (2′) and (3) ⇔ (3′) [MPR10, KM11]). Now, if f ′

has a standalone secure protocol in the FCOM-hybrid model, then the same protocol is semi-honest secure
as well. Further, by replacing FCOM by a trivial protocol for commitment with semi-honest security, we
obtain a semi-honest secure protocol for f ′ in the plain model. Then, by Claim 5.2, f ′ must be isomorphic
to a symmetric function f ′′ which has a semi-honest secure protocol in the plain model. That is f ′′ must
be decomposable. Then, by a result in [MPR09], f ′′ has a UC secure protocol in the FCOM-hybrid model.
Since f ′′ is isomorphic to f ′, the latter also has UC secure protocol in the FCOM-hybrid model, proving (3′)
as desired.

31

7 Black-Box Separations
The random oracle model is of interest not only as an abstract theoretical framework, but also because it
models a (strong) one-way function. Thus, informally, the impossibility results in the random oracle model
translate to impossibility of constructions that rely on a one-way function as its sole computational primitive.
This intuition can be formalized as black-box separation results, following [IR89, RTV04].

For our black-box separation results, we shall follow the definitions as introduced by [RTV04] with mi-
nor modifications. Following [RTV04], we consider primitives to be specified as pairs of the form (FQ, RQ).
The set FQ is a set of functions that are candidate implementations of primitiveQ. For example, for the one-
way function primitive (represented by OWF) the set FOWF consists of all functions defined over {0, 1}∗.
The set RQ is a set of pairs (Q,M), where Q is a candidate implementation of Q and M is an adversary
which breaks the security of Q. (Sometimes we shall abuse the notation and write (Π,M) ∈ RQ if Π im-
plements a function Q such that (Q,M) ∈ RQ.) Continuing our example of OWF, (Q,M) would consist
of one-way functions Q where the inverter M inverts non-negligible fraction of outputs of Q.

Next, we recall the definition of fully black-box reductions (or as presented below, fully black-box
constructions) as introduced in [RTV04]. Below, we say that a (possibly non-uniform) algorithm is efficient
if it is probabilistic polynomial time (PPT).

Definition 7.1 (Fully Black-box Constructions). A fully black-box construction of a primitive P from an-
other primitive Q consists of a pair of efficient oracle algorithms (Π, S), such that the following two condi-
tions hold:

1. Correct Implementation: For any Q ∈ FQ, ΠQ implements a function P ∈ FP .

2. Security: For any Q ∈ FQ and any (possibly inefficient) adversary A that breaks the security of
ΠQ, the reduction SQ,A breaks the security of Q as an implementation of Q. That is, ∀A,∀Q ∈ FQ,
(ΠQ, A) ∈ RP ⇒ (Q,SQ,A) ∈ RQ.

We emphasize that the construction Π and the reduction S are efficient.

Constructions that Preserve the Security Parameter. As is standard in cryptographic constructions, we
shall associate a security parameter with primitives and state security condition in terms of it. Formally, we
shall consider that any primitive P , the input to any P ∈ FP has a security parameter encoded as part of its
inputs. We prove our separation results with a technical restriction on blackbox constructions, namely that
the constructions respect the security parameter: that is, in a black-box construction of P from Q, when the
implementation ΠQ, for Q ∈ FQ, is given an input with security parameter κ, it always invokes Q with the
same security parameter κ. However, there is no such restriction on the security reduction S.

For Q ∈ FQ, we denote by Qi the restriction of Q to inputs which have security parameter i. We
will often identify Q with the infinite tuple (Q1, Q2, . . .). For a security parameter respecting construction
(Π, S), when invoked with security parameter κ, ΠQ will access only Qκ. There is no such restriction of
the security reduction S. When invoked with security parameter κ, SQ,A (for an adversary A attacking Π)
is expected to invert points in the range of Qκ. To perform this inversion, SQ,A is permitted access Qκ′ , for
all values of κ′ ∈ N (including κ′ 6= κ), and in particular can invoke ΠQ and AQ with different security
parameters κ′.

This restriction is not as limiting as it may appear at first, since we can define primitives like one-way
function to allow access to a range of input lengths for a single value of the security parameter. (See the

32

definition of OWFζ below.)

Below we define the various primitives used to formalize our results. The primitives are formally speci-
fied by the F and R sets as mentioned above. We shall specify the functions in F separately for each value
of the security parameter. We consider the machinesM in all the definitions below as non-uniform machines
(with non-uniform advice for each security parameter); however, one could relax the security definition of
any of the primitives to consider only uniform M , and by requiring the fully black-box construction to also
be uniform, our results hold unchanged.

One-Way Function Primitive OWF. First, for simplicity, we consider a one-way function primitive OWF
which considers the security parameter as the input length itself.14

• FOWF consists of all functions from {0, 1}∗ to {0, 1}∗, and the security parameter is the length of the
input.
• (Q,M) ∈ ROWF if there is a non-negligible function δ such that for infinitely many κ ∈ N,

Pr[Q(M(y)) = y : x
$←{0, 1}κ, y = Q(x)] > δ(κ).

Primitive for Semi-honest Secure SFE Protocol. For a 2-party function f : X × Y → ZA × ZB , we
define the primitive SFEf corresponding to a semi-honest secure protocol for evaluating f . For simplicity,
we consider the domain and range of f itself to be finite and fixed (independent of the security parameter).15

A protocol Π will be identified with the next message function of the protocol. One of its inputs is the
security parameter κ.

• Π ∈ FSFEf if the protocol defined by Π is “correct”, i.e. for all (x, y) ∈ X×Y , the pair of outputs from
Alice and Bob when they execute Π with security parameter κ and inputs (x, y), is (a, b) = f(x, y)
except with probability negligible in κ.
• An adversary Adv breaks Π, i.e. (Π,Adv) ∈ RSFEf if there exists (x, x′, y, y′) such that

1. f(x, y) = f(x, y′) and |Pr[Adv(V
Π(x,y)
B) = 1]− Pr[Adv(V

Π(x,y′)
B) = 1]| > δ(κ), or

2. f(x, y) = f(x′, y) and |Pr[Adv(V
Π(x,y)
A) = 1]− Pr[Adv(V

Π(x′,y)
A) = 1]| > δ(κ),

where V Π(x,y)
A and V Π(x,y)

B stand for Alice’s and Bob’s views after executing Π with inputs (x, y) and
the advantage δ(κ) is non-negligible in κ.

Note that we used a game-based definition of semi-honest security. This is in general weaker than the stan-
dard simulation based definition of semi-honest security (unless simulation with unbounded computational
power is considered, in which case they are identical). Since we are ruling out blackbox constructions of
SFEf , using a weaker definition of security for SFEf makes our result only stronger.

One-Way Function Primitive OWFζ . Since we consider only security-parameter preserving construc-
tions, a construction using the primitive OWF above can access the one-way function on inputs of length
exactly equal to the security-parameter. This limits the implications of a separation result, as it leaves open
the possibility that a construction that uses a one-way function on more than one input length could be se-
cure. To rule out this possibility as well, we consider a more elaborate primitive and rule out fully black-box

14This is the same one-way function primitive as considered in [RTV04]. However, in the case of security parameter preserving
constructions, this primitive prevents the construction from using the one-way function with any other input length other than the
security parameter. Later we remove this restriction by considering the primitives OWFζ defined below.

15One could consider f to have infinite domains and range, and define restrictions of f , fκ : Xκ × Yκ → ZA,κ × ZB,κ,
where X1 ⊆ X2 ⊆ · · · X etc., with efficient representations for the subdomains and subrange. Our results hold as long as
|Xκ|, |Yκ| ≤ poly(κ). We omit such a formalization for the sake of simplicity.

33

construction of SFEf from this primitive as well. Formally, we define a primitive OWFζ for each polynomial
ζ as follows.

For any function g : {0, 1}∗ → {0, 1}∗, let gζ be defined as follows: gζ(κ, x) = g(x) if |x| ≤ ζ(κ) and
gζ(κ, x) = 0 otherwise. LetWζ

i = {gζ(i, ·)|g : {0, 1}∗ → {0, 1}∗}.
• FOWFζ = Wζ

1 ×Wζ
2 × · · · . That is, for Q ∈ FOWFζ , Q = (Q1, Q2, . . .), the function Qκ is of the

form gζ(κ, ·) for some function g.
• (Q,M) ∈ ROWFζ if there is a non-negligible function δ such that for infinitely many κ ∈ N,

Pr[Q(κ,M(κ, y)) = y : x
$←{0, 1}1 ∪ · · · ∪ {0, 1}ζ(κ), y = Q(κ, x)] > δ(κ).

Theorem 7.2. For a deterministic two-party function f , SFEf (semi-honest secure protocol for f) the fol-
lowing statements are equivalent:

(1) f has a perfectly semi-honest secure protocol (in the plain model).
(2) SFEf has a security-parameter preserving fully black-box construction from OWF.
(3) SFEf has a security-parameter preserving fully black-box construction from OWFζ , for some poly-

nomial ζ.

We prove this theorem in Appendix C.

8 Open Problems and Future Work
We have shown a black-box separation between one-way functions and semi-honest SFE protocols for 2-
party secure function evaluation for any function which does not have already have a semi-honest SFE
protocol in the plain model. Intuitively, this introduces new worlds between “minicrypt” and “cryptoma-
nia” [Imp95], corresponding to where these functions have semi-honest SFE protocols. There are several
interesting questions that this gives rise to. We mention a few directions below.

1. Our result relies on the combinatorial characterization of undecomposable function evaluations. In
particular, our strategy is not able to “compile out” the random oracle completely in the context of 2-party
deterministic semi-honest function evaluation, i.e., we are not able to rule out that access to a random oracle
could enable secure computation (of say, a randomized functionality) that cannot be achieved by a protocol
in the plain model. Understanding the precise power of random oracles in the context of secure computation
in its full generality (especially, for randomized functions) remains open.

2. The separation of OT from one-way functions (implicit) in [IR89] was strengthened to separate OT
from public-key encryption in [GKM+00]. In on going work, we give a similar strengthening of our results,
separating every function which does not have a semi-honest SFE protocol in the plain model (undecom-
posable functions, among symmetric functions) from public-key encryption. This, in particular, would give
an alternate proof for the result in [GKM+00].

3. In this work we do not show that (semi-honest) SFE for the various functions we separate from one-
way functions really correspond to new worlds in Impagliazzo’s universe. In particular, we do not separate
them from the “OT protocol” primitive. Indeed, one could hope to prove our current results by simply
showing that SFE for all the functions we considered can, in a fully black-box manner, yield an OT protocol.
But we conjecture that such a construction simply does not exist. We leave it open to fully understand the
relationship between the worlds corresponding to (semi-honest) SFE protocols for the different functions,
and in particular, find out if there is an infinite hierarchy of such distinct worlds.

34

References
[BBCR10] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive commu-

nication. In Leonard J. Schulman, editor, STOC, pages 67–76. ACM, 2010. 1

[Bea89] Donald Beaver. Perfect privacy for two-party protocols. In Joan Feigenbaum and Michael Mer-
ritt, editors, Proceedings of DIMACS Workshop on Distributed Computing and Cryptography,
volume 2, pages 65–77. American Mathematical Society, 1989. 1, 4, 8

[BM07] Boaz Barak and Mohammad Mahmoody. Lower bounds on signatures from symmetric primi-
tives. In FOCS: IEEE Symposium on Foundations of Computer Science (FOCS), 2007. 4

[BM09] Boaz Barak and Mohammad Mahmoody. Merkle puzzles are optimal - an O(n2)-query attack
on any key exchange from a random oracle. In Shai Halevi, editor, CRYPTO, volume 5677 of
Lecture Notes in Computer Science, pages 374–390. Springer, 2009. 3, 4, 5, 7, 8, 39

[BMM99] Amos Beimel, Tal Malkin, and Silvio Micali. The all-or-nothing nature of two-party secure
computation. In CRYPTO, pages 80–97, 1999. 1

[BPR+08] Dan Boneh, Periklis A. Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis, and Brent Waters.
On the impossibility of basing identity based encryption on trapdoor permutations. In FOCS,
pages 283–292. IEEE Computer Society, 2008. 1, 4

[CI93] Richard Cleve and Russell Impagliazzo. Martingales, collective coin flipping and discrete
control processes (extended abstract), 1993. 1, 4

[CK89] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy (extended abstract). In
David S. Johnson, editor, STOC, pages 62–72. ACM, 1989. 1, 4

[DLMM11] Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin. On black-
box complexity of optimally-fair coin-tossing. In Theory of Cryptography Conference - TCC
2011, 2011. 4, 7, 39

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the efficiency
of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246, 2005. 4

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh Viswanathan. The
relationship between public key encryption and oblivious transfer. In FOCS, pages 325–335.
IEEE Computer Society, 2000. 1, 4, 34

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trapdoor func-
tions on trapdoor predicates. In FOCS, pages 126–135, 2001. 1, 4

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In TCC, pages
412–426, 2008. 4

[HHRS07] Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding collisions in inter-
active protocols - a tight lower bound on the round complexity of statistically-hiding commit-
ments. In FOCS, pages 669–679. IEEE Computer Society, 2007. 4

35

[HNO+09] Iftach Haitner, Minh-Huyen Nguyen, Shien Jin Ong, Omer Reingold, and Salil P. Vadhan.
Statistically hiding commitments and statistical zero-knowledge arguments from any one-way
function. SIAM J. Comput., 39(3):1153–1218, 2009. 4

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In FOCS, pages 230–235. IEEE, 1989. 4

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Structure in Complexity
Theory Conference, pages 134–147, 1995. 4, 34

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In David S. Johnson, editor, STOC, pages 44–61. ACM, 1989. 1, 3, 4, 5, 7, 8,
10, 32, 34

[Kil91] Joe Kilian. A general completeness theorem for two-party games. In STOC, pages 553–560.
ACM, 1991. 1

[KKMO00] Joe Kilian, Eyal Kushilevitz, Silvio Micali, and Rafail Ostrovsky. Reducibility and complete-
ness in private computations. SIAM J. Comput., 29(4):1189–1208, 2000. 1

[KM11] Daniel Kraschewski and Jörn Müller-Quade. Completeness theorems with constructive proofs
for finite deterministic 2-party functions. In TCC, 2011. 1, 31

[KMR09] Robin Künzler, Jörn Müller-Quade, and Dominik Raub. Secure computability of functions in
the it setting with dishonest majority and applications to long-term security. In Omer Reingold,
editor, TCC, volume 5444 of Lecture Notes in Computer Science, pages 238–255. Springer,
2009. 4

[Kre11] Gunnar Kreitz. A zero-one law for secure multi-party computation with ternary outputs. In
Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 382–399.
Springer, 2011. 1

[KST99] Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the efficiency of one-way
permutation-based hash functions. In FOCS, pages 535–542, 1999. 4

[KSY11] Jonathan Katz, Dominique Schröder, and Arkady Yerukhimovich. Impossibility of blind signa-
tures from one-way permutations. In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes
in Computer Science, pages 615–629. Springer, 2011. 1, 4

[Kus89] Eyal Kushilevitz. Privacy and communication complexity. In FOCS, pages 416–421. IEEE,
1989. 1, 2, 4, 8

[LTW05] Henry C. Lin, Luca Trevisan, and Hoeteck Wee. On hardness amplification of one-way func-
tions. In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages
34–49. Springer, 2005. 4

[Maj11] Hemanta K. Maji. On Computational Intractability Assumptions in Cryptography. PhD thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign, 2011. 4, 6

36

[MM11] Takahiro Matsuda and Kanta Matsuura. On black-box separations among injective one-way
functions. In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science,
pages 597–614. Springer, 2011. 1, 4

[MOPR11] Hemanta K. Maji, Pichayoot Ouppaphan, Manoj Prabhakaran, and Mike Rosulek. Exploring
the limits of common coins using frontier analysis of protocols. In TCC, 2011. 1, 2, 4, 18

[MPR09] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of multi-party compu-
tation problems: The case of 2-party symmetric secure function evaluation. In Omer Reingold,
editor, TCC, volume 5444 of Lecture Notes in Computer Science, pages 256–273. Springer,
2009. Full version available from IACR Eprint Archive: http://eprint.iacr.org. 1,
2, 4, 5, 23, 31

[MPR10] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A zero-one law for cryptographic
complexity with respect to computational uc security. In CRYPTO, pages 595–612, 2010. 1,
31

[Ost91] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In Structure in Complexity Theory Conference, pages 133–138, 1991. 4

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-trivial zero-
knowledge. Technical Report TR-93-073, International Computer Science Institute, Berkeley,
CA, November 1993. Preliminary version in Proc. 2nd Israeli Symp. on Theory of Computing
and Systems, 1993, pp. 3–17. 4

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between crypto-
graphic primitives. In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2004. 3, 4, 9, 32, 33

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions be based
on general assumptions? In EUROCRYPT, pages 334–345, 1998. 1, 4

37

http://eprint.iacr.org

A Independence Learners

A.1 Some Notations

Before, we proceed, we introduce some notations used in this section.

A.1.1 Random Variables.

We use bold letters to emphasize the nature of a random variable (e.g., x). By Supp(x) we denote {x |
Pr[x = x] > 0}. By x $← x we mean that x is sampled according to the distribution of the random variable
x. We usually use the same letter to denote a sample from a random variable. When we say an event occurs
with negligible probability denoted by negl(κ), we mean it occurs with probability κ−ω(1). We call two
random variables x,y (or their corresponding distributions) ε-close if their statistical distance, defined as
SD(x,y) = 1

2 ·
∑
s∈Supp(x)∪Supp(y) |Pr[x = s]− Pr[y = s]| is at most ε. By x ≡ y we denote that the

random variables x and y are distributed identically.

By (x1,x2, . . .) we denote a (perhaps infinite) sequence of correlated random variables where xi is
the random variable of the ith coordinate. For correlated random variables (x,y), by (x × y) we refer
to a new random variable that samples independent copies for x and y (i.e., sample two pairs (x1, y1) ←
(x,y), (x2, y2)

$← (x,y) and output (x1, y2)). For correlated random variables (x,y) and y ∈ Supp(y) by
(x | y = y) we denote the random variable x conditioned on y = y. When it is clear from the context we
simply write (x | y) instead of (x | y = y).

A.1.2 Two Party Protocols

In the proofs in this section, we mostly analyze the protocols by rounds rather than frontiers. Hence it will be
convenient to introduce notation involving round numbers (rather than nodes in the transcript tree). Below
we describe notation associated with Alice; similar notation is associated with Bob as well.

1. µ = (µ1, µ2, . . .) denotes the transcript generated during the interaction where the ith message is sent
by Alice, if i is odd, and it is sent by Bob, if i is even. By µ(i) we denote (µ1, . . . , µi).

2. Let PA denote the set of oracle query-answer pairs obtained by Alice from the oracle. By P (i)
A we de-

note the set of query-answers obtained by Alice before µ(i) is sent. QA and Q(i)
A are defined similarly

to PA and P (i)
A while only containing the queries. Namely, using the query-operatorQ defined earlier

it, holds that QA = Q(PA) and Q(i)
A = Q(P

(i)
A).

3. VA denotes the view of Alice which is equal to (x, rA, PA, µ), where rA denotes the private random-
tape of Alice. By V (i)

A we denote the view of Alice till the message µ(i) is sent which is equal to
(x, rA, P

(i)
A , µ(i−1))

A Public Query Strategy. For a 2-party protocol Π in theO model, we define a public query strategy Eve
as a deterministic algorithm which takes as input a prefix µ(i) of the messages of an execution of Π and a
set P (i−1)

E of query-answer pairs from O (standing for the queries that she has asked previously), and then
adaptively queries O multiple times. The view of Eve, denoted by VE , is equal to (µ, PE). We also define
V (i+1) = (P

(i+1)
E , µ(i)) as the view of Eve before µi+1 is sent.

38

We define the query complexity of a public query strategy Eve for a protocol Π to be the maximum
number of queries Eve makes to O over an entire augmented execution of Π and Eve.

A Round. For an odd i, the ith round starts right after the (i− 1)st message is received by Alice and starts
asking its oracle queries (which are contained in Q(i)

A). When Alice sends µi the ith round continues when
Eve asks its oracle queries (contained in P (i)

E). This round ends when Eve is done with asking her oracle
queries. For an even i, the definition of the ith round is similar (switching between Alice and Bob).

A.2 Independence Learner

The following lemma was implicit in the work of [BM09] and was proved explicitly in [DLMM11] (here,
for simplicity, we use this lemma with more relaxed parameters).

Lemma A.1 (Independence Learner for Protocols with No Input [BM09, DLMM11]). Let Π be anN -round
input-less randomized two-party protocol using a random oracleO, withm query complexity. Then, for any
threshold 0 ≤ ε ≤ 1, Π has a public query strategy Eve (who only observes the public messages) with query
complexity poly(m/ε), such that with probability at least 1−ε over the choice of the view of Eve: VE

$←VE

the following holds. (Recall that VE = (PE , µ) and V (i)
E is the part of VE that corresponds to the first i

rounds).

1. (1− ε)-Independence: For every i ∈ [N] the following distributions are ε-close:(
(V

(i)
A | V

(i)
E)× (V

(i)
B | V

(i)
E)

)
and

(
(V

(i)
A ,V

(i)
B) | V (i)

E

)
.

Namely, if we sample the views of Alice and Bob jointly conditioned on V (i)
E , this joint distribution is

ε-close to the product distribution in which Alice and Bob’s views are sampled independently (each
conditioned on the same V (i)

E).

2. ε-Lightness: For every q 6∈ Q(i)
E (where Q(i)

E = Q(V
(i)
E)) it holds that

P
V

(i)
A

$←(V
(i)
A |V

(i)
E)

[q ∈ Q(V
(i)
A)] ≤ ε and P

V
(i)
B

$←(V
(i)
B |V

(i)
E)

[q ∈ Q(V
(i)
B)] ≤ ε.

A.3 Using the Independence Learner

The Independence Learner of Lemma A.1 is not directly useful in our context. We need two additional
technical properties ensured by the independence learner which are mentioned below.

The first lemma formalizes the intuition that a curious eavesdropper when run with appropriate parame-
ters can ensure that whenever Alice sends a message in the protocol she can only add information about her
input and not Bob’s input.

Lemma A.2 (Independence Learner for Likely Inputs). Let Π be a secure protocol for some secure function
evaluation relative to a random oracle O and Alice asks m queries to the random oracle. Suppose X and
Y are, respectively, the set of inputs for Alice and Bob. We run Eve with input parameter ε < 1 over Π

assuming that Π is run with x̃ $←X and ỹ $←Y . Let x ∈ X and y, y′ ∈ Y be fixed inputs. Then for some
ε′ = εΩ(1)(m · |X |)O(1), if we run the protocol Π with inputs x and y together the curious eavesdropper
Eve, for every even i ∈ [N] (i.e., Bob sends µi), with probability at least 1 − ε′ over the choice of the view
of Eve V (i)

E
$←V

(i)
E at least one of the following holds:

39

1. P[y | V (i)
E , x] < ε′,

2. P[y′ | V (i)
E , x] < ε′, or

3. SD((µi+1 | V (i)
E , x, y), (µi+1 | V (i)

E , x, y′)) ≤ ε′.

The second lemma is slightly more technical. The curious eavesdropper of Lemma A.1 ensures that all
intersection queries are covered with high probability when Alice and Bob execute the protocol with actual
inputs x and y. We need a stronger version of this result. We want to claim that even if Bob pretends to
change his input to y′ and samples a corresponding local view, the intersection queries of this “hypothetical
view” are also covered by the actual Eve view with high probability. This ensures that we can sample a
consistent random oracle even without the knowledge of actual Alice input x while simulating the hypothet-
ical view. Looking ahead, this lemma shall be useful when Bob launches a curious attack by changing his
private input appropriately.

Lemma A.3 (Bounding Collisions of Queries for Likely Inputs). Let Π be a secure protocol for some secure
function evaluation relative to a random oracle O in which Alice asks m queries to the random oracle.
Suppose X and Y are, respectively, the set of inputs for Alice and Bob. We run Eve with input parameter
ε < 1 over Π assuming that Π is run with x̃ $←X and ỹ $←Y . Let x ∈ X , y, y′ ∈ Y be some fixed inputs.
Suppose we perform the following samplings:

(V
(i)
E , Q

(i)
B , Q

(i+1)
A)

$← (V
(i)
E ,Q

(i)
B ,Q

(i+1)
A | x, y) and Q′(i)B

$← (Q
(i)
B | V

(i)
E , µi+1, y

′).

In the second sampling: the protocol is executed with inputs x, y and Alice’s message µi+1 is generated,
and after that we sample a view of Bob for the first i rounds conditioned on V (i)

E , µi+1 and Bob’s input being
y′. Then for some ε′ = εΩ(1)(m · |X | · |Y|)O(1) with probability at least 1− ε′ it holds that either

1. P[y′ | V (i)
E , x] < ε′, or

2. Q(i+1)
A ∩ (Q

(i)
B ∪Q′

(i)
B) ⊆ Q(V

(i)
E).

Before proving Lemma A.2 and Lemma A.3 we need to develop some general tools of probability.

A.4 General Useful Lemmas

A corollary to Lemma 2.1 is that the actual inputs of Alice and Bob will not become “unlikely” conditioned
on Eve’s view, except with small probability.

Corollary A.4. Suppose Alice and Bob run a two party protocol with inputs x, y chosen from an arbitrary
distribution and suppose Eve is some public query strategy. Then the probability that at some point during
the protocol it holds that P[(x, y)|u] < θ where u is the view of Eve so far, is at most θ/P[(x, y)] (if the
inputs are chosen uniformly at random from the sets X ,Y , this probability is at most θ|X ||X |).

Proof. Corollary A.4 follows by a direct application of Lemma 2.1 by using the event X corresponds to
the case that (x, y) are the inputs, and the sequence of random variables (m1,m2, . . .) corresponds to the
sequence of the bits representing the view of Eve.

40

The following lemma states that if two random variables a,b are statistically close, they will “remain
close” even if we condition on a “likely event” defined over their supports.

Lemma A.5. Let a,b be two random variables such that SD(a,b) ≤ ε. Suppose E ⊆ Supp(a)∪Supp(b)
be an event such that P[a ∈ E] ≥ δ > 0 and P[b ∈ E] > 0. Define aE ≡ (a | E) and bE ≡ (b | E).
Then, SD(aE ,bE) ≤ ε/δ.

Proof. First, we prove a weaker bound of 3ε/2δ and then will sharpen the analysis to obtain the optimal
bound of ε/δ.

Let α = P[a ∈ E] and β = P[b ∈ E]. Recall, we are guaranteed that α ≥ δ > 0 and β > 0.
Moreover,

∑
s∈E |P[a = s]− P[b = s]| ≤ 2ε and |α− β| ≤ ε, because SD(a,b) ≤ ε. Observe that

P[aE = s] = P[a = s]/α and P[bE = s] = P[b = s]/β, for s ∈ E. Therefore, we can perform the
following simplification:

SD(aE ,bE) =
1

2

∑
s∈E

∣∣∣∣∣P[a = s]

α
− P[b = s]

β

∣∣∣∣∣
≤
(

1

2

∑
s∈E

∣∣∣∣∣P[a = s]

α
− P[b = s]

α

∣∣∣∣∣
)

+

(
1

2

∑
s∈E

∣∣∣∣∣P[b = s]

α
− P[b = s]

β

∣∣∣∣∣
)

≤
Å

2ε

2α

ã
+

Ç |α− β|
2α

å
≤ 3ε

2α
≤ 3ε

2δ

With a more careful case analysis, the upper bound can be improved to ε/δ (which is tight). Consider
these two cases:

1. Case α ≥ β: We shall partition the set E into three sets E1, E2 and E3 as follows:

E1 = {s|s ∈ E,P[a = s]/α ≥ P[b = s]/β}
E2 = {s|s ∈ E,P[a = s] ≥ P[b = s] but P[a = s]/α < P[b = s]/β}
E3 = {s|s ∈ E,P[a = s] < P[b = s]}

Let ui = P[a ∈ Ei] and vi = P[b ∈ Ei], where i ∈ {1, 2, 3}. We shall use the following constraints:
v2 ≤ u2, v3 ≤ u3 + ε and v1 ≥ u1 − ε. Now, consider the following manipulation:

SD(aE ,bE) =
1

2

∑
s∈E

∣∣∣∣∣P[a = s]

α
− b = s

β

∣∣∣∣∣
=

1

2

ïÅ
u1

α
− v1

β

ã
−
Å
u2

α
− v2

β

ã
−
Å
u3

α
− v3

β

ãò
=
u1

α
− v1

v1 + v2 + v3

≤ u1

α
− v1

v1 + u2 + v3
(∵ v2 ≤ u2)

≤ u1

α
− v1

v1 + u2 + u3 + ε
(∵ v3 ≤ u3 + ε)

≤ u1

α
− u1 − ε
u1 + u2 + u3

(∵ v1 ≥ u1 − ε)

=
ε

α
≤ ε

δ

41

2. Case α < β: We shall partition the set E into three sets E1, E2 and E3 as follows:

E1 = {s|s ∈ E,P[a = s] ≥ P[b = s]}
E2 = {s|s ∈ E,P[a = s] < P[b = s] but P[a = s]/α ≥ P[b = s]/β}
E3 = {s|s ∈ E,P[a = s]/α < P[b = s]/β}

Let ui = P[a ∈ Ei] and vi = P[b ∈ Ei], where i ∈ {1, 2, 3}. We shall use the following constraints:
v2 > u2, v3 ≤ u3 + ε and v1 ≥ u1 − ε. Now, consider the following manipulation:

SD(aE ,bE) =
1

2

∑
s∈E

∣∣∣∣∣P[a = s]

α
− b = s

β

∣∣∣∣∣
=

1

2

ïÅ
u1

α
− v1

β

ã
+

Å
u2

α
− v2

β

ã
−
Å
u3

α
− v3

β

ãò
=

v3

v1 + v2 + v3
− u3

α

<
v3

v1 + u2 + v3
− u3

α
(∵ v2 > u2)

≤ u3 + ε

v1 + u2 + u3 + ε
− u3

α
(∵ v3 ≤ u3 + ε)

≤ u3 + ε

u1 + u2 + u3
− u3

α
(∵ v1 ≥ u1 − ε)

=
ε

α
≤ ε

δ

This completes the proof that SD(aE ,bE) ≤ ε/δ. Equality holds if and only if, {s|P[a = s] 6= P[b =
s]} ⊆ E and P[a ∈ E] = δ.

The following lemma states that if two random are close to being independent iff they are close to the
product of their marginal distribution.

Lemma A.6. Let (a,b) be jointly distributed random variables such that SD((a,b), (u×v)) ≤ ε for some
random variables u and v. Then it holds that SD((a,b), (a× b)) ≤ 3ε.

Proof. SD((a,b), (u × v)) ≤ ε implies that SD(a,u) ≤ ε and SD(b,v) ≤ ε. Therefore, by two applica-
tions of triangle inequality it holds that: SD((a,b), (a × b)) ≤ SD((a,b), (u × v)) + SD((u × v), (a ×
v)) + SD((a× v), (a× b)) ≤ 3ε.

The following lemma states that whenever two random variables (a,b) are close to being independent,
then they will remain so, even if we sample a conditioned on some partial leakage c as a function of b.

Lemma A.7. Let (a,b) be jointly distributed random variables such that SD((a,b), (a×b)) ≤ ε. Suppose
c = f(b) is a possibly randomized function of b, where the random tape for f(·) is chosen uniformly and
independently at random. Given a sample for (b, f(b) = c), let a′ be another random variable sampled
from the distribution (a | c). Then it holds that SD((b,a′), (b× a)) ≤ ε.

42

Proof. Suppose f(b; r) is the deterministic function where r is the random tape used to evaluate the ran-
domized function f . This case reduces to the deterministic case as follows:

SD((b,a′), (b× a)) ≤ SD((b,a′, r), (b× a× r)) = SD(((b× r),a′), ((b× r)× a))

Henceforth, we can assume, without loss of generality, that f is a deterministic function. In this case:

2SD((b,a′), (b× a)) =
∑
a

∑
b

P[b = b] · |P[a = a|c = f(b)]− P[a = a]|

=
∑
a

∑
c

∑
b∈f−1(c)

P[b = b] · |P[a = a|c]− P[a = a]|

=
∑
a

∑
c

P[c = c] · |P[a = a|c]− P[a = a]|

=
∑
a

∑
c

|P[a = a, c = c]− P[a = a]P[c = c]|

=
∑
a

∑
c

∣∣∣∣∣∣ ∑
b∈f−1(c)

(P[a = a,b = b]− P[a = a]P[b = b])

∣∣∣∣∣∣
≤
∑
a

∑
c

∑
b∈f−1(c)

|P[a = a,b = b]− P[a = a]P[b = b]|

= 2SD((b,a), (b× a)).

A.5 Proving Lemma A.2 and Lemma A.3

We shall prove both Lemma A.2 and Lemma A.3 both using the following intermediate lemma.

Lemma A.8. Suppose V (i)
E is the view of Eve by the end of the ith round with respect to the two party

protocol in which the inputs are chosen at random and is such that the (1−ε)-Independence and ε-Lightness
properties hold conditioned on V (i)

E . Suppose x ∈ X , y ∈ Y are such that P[x, y | V (i)
E] ≥ γ and m is the

total number Alice’s queries. Then both of the following hold:

1. P[Q
(i+1)
A ∩Q(i)

B 6⊆ Q
(i)
E | V

(i)
E , x, y] ≤ O(mε/γ).

2. The following two are O(mε/γ)-close:

(V
(i+1)
A ,V

(i)
B | V

(i)
E , x, y) and ((V

(i+1)
A | V (i)

E , x)× (V
(i)
B | V

(i)
E , y)).

Before proving Lemma A.8 we shall see how it can be used to prove Lemma A.2 and Lemma A.3.

A.5.1 Proof of Lemma A.2

For simplicity, we shall use another parameter 0 < σ < 1 and prove the following result: With probability
at least 1− ε− σ|X | over the choice of the Eve view V

(i)
E

$←V
(i)
E at least one of the following holds:

1. P[y | V (i)
E , x] < σ,

2. P[y′ | V (i)
E , x] < σ, or

43

3. SD((µi+1 | V (i)
E , x, y), (µi+1 | V (i)

E , x, y′)) ≤ O(mε/σ2) where m is the number of oracle queries
asked by Alice during the protocol.

Then Lemma A.2 follows by setting ε = σ3 and taking ε′ = max(σ, ε + σ|X |,mε/σ2) in the above
mentioned statement.

By Lemma A.1, with probability at least 1 − ε over the choice of V (i)
E , the (1 − ε)-Independence and

ε-Lightness properties both hold. Corollary A.4 implies that with probability at least 1−σ|X |, we shall have
P[x|V (i)

E] ≥ σ. By union bound, both these events hold with probability at least 1− ε− σ|X |. Henceforth,
we shall assume that both these conditions hold for our choice of V (i)

E .

For our choice of V (i)
E , if one of the first two cases of Lemma A.2 holds then we are done. Suppose this

is not the case. Then, we have P[y | V (i)
E , x] ≥ σ and P[y′ | V (i)

E , x] ≥ σ. Therefore we can conclude that
both pairs of inputs (x, y) and (x, y′) are “likely” conditioned on V (i)

E . More formally:

P[x, y | V (i)
E] ≥ P[x | V (i)

E] · P[y | V (i)
E , x] ≥ σ2 and similarly P[x, y′ | V (i)

E] ≥ σ2

So, currently we are considering V (i)
E such that P[x, y|V (i)

E] ≥ σ2, P[x, y′|V (i)
E] ≥ σ2; and (1 − ε)-

Independence and ε-Lightness guarantees hold. Therefore Lemma A.2 follows by the second part of
Lemma A.8 because (V

(i+1)
A | V (i)

E , x) is independent of y and y′ and µi+1 is a function of V (i+1)
A .

A.5.2 Proof of Lemma A.3

Similarly to the proof of Lemma A.2, we use another parameter 0 < σ < 1 and prove the following
statement: With probability 1−O(ε+ σ|X | · |Y|+mε/σ2) over the samples at least one of the following
is true:

1. P[y′ | V (i)
E , x] < σ, or

2. Q(i+1)
A ∩ (Q

(i)
B ∪Q′

(i)
B) ⊆ Q(V

(i)
E).

Lemma A.3 follows by setting σ3 = ε and ε′ = ε+ σ|X | · |Y|+mε/σ2 in the above mentioned statement.

Recall that with probability at least 1 − ε, the sampled Eve view V
(i)
E has the (1 − ε)-Independence

and the ε-Lightness properties. Henceforth, we shall restrict ourselves to such V (i)
E . By Corollary A.4 we

conclude that with probability at least 1 − σ|X | it holds that P[x | V (i)
E] ≥ σ. If P[y′|V (i)

E , x] < σ for this
Eve view V

(i)
E , then we are done. So, assume on the contrary that P[y′|V (i)

E , x] ≥ σ, which implies that:

P[x, y′ | V (i)
E] ≥ P[x | V (i)

E] · P[y′ | V (i)
E , x] ≥ σ2

Since (x, y)
$← X × Y , we can apply Corollary A.4 directly to conclude that with probability at least

1 − σ2|X ||Y|, P[x, y | V (i)
E] ≥ σ2. By union bound, we can assume that all these properties hold with

probability 1−O(ε+ σ|X | · |Y|). Henceforth, we shall assume that V (i)
E satisfies these conditions.

First, using P[x, y | V (i)
E] ≥ σ2 and by a direct application of Lemma A.8 we can conclude that with

probability 1 − O(mε/σ2), it holds that Q(i+1)
A ∩ Q(i)

B ⊆ Q(V
(i)
E). Thus, it suffices to show that with

44

probability 1 − O(mε/σ2), it holds that Q(i+1)
A ∩ Q′(i)B ⊆ Q(V

(i)
E), in which case Lemma A.3 would

trivially follow by a union bound from these two results.

Lets define ‹V (i)
B and ‹Q(i)

B similar to V (i)
B and Q(i)

B with the only difference that we sample them condi-
tioned on the input y′. Then the same exact proof as for the case of likely input y, can be applied to the case
of likely input y′ and conclude that with probability 1−O(mε/σ2), it holds that Q(i+1)

A ∩ ‹Q(i)
B ⊆ Q(V

(i)
E).

We emphasize that the distributions ‹V (i)
B and V ′(i)B are not identical. Although, both are sampled based on

Bob input being y′ and Eve view being V (i)
E , the latter is additionally conditioned on the next message µi+1

of Alice. Here, we shall be leveraging Lemma A.7.

So, consider an Eve view V
(i)
E with the following properties:

1. (1− ε)-Independence and ε-Lightness properties hold, and

2. P[x, y′|V (i)
E , x, y′] ≥ σ2.

Let (V
(i+1)
A , ‹V(i)

B) represent the joint Alice-Bob views when Alice has input x and Bob has input y′.
By Lemma A.8, we know that this distribution is O(mε/σ2) close to the distribution (V

(i+1)
A |V (i)

E , x) ×
(‹V(i)

B |V
(i)
E , y′). Let (V

(i+1)
A ,V′(i)B) represent the joint Alice-Bob views when Alice has input x, Bob has

input y′ as picked in our experiment, i.e. Bob’s view is additionally conditioned on the next message µi+1.
Considering µi+1 as a leakage on V (i+1)

A , we can conclude that (V
(i+1)
A ,V′(i)B) is also O(mε/σ2) close

to (V
(i+1)
A |V (i)

E , x) × (‹V(i)
B |V

(i)
E , y′), by Lemma A.7. Consequently, the distributions (V

(i+1)
A , ‹V(i)

B) and
(V

(i+1)
A ,V′(i)B) are O(mε/σ2) close.

Recall that the probability of the event Q(i+1)
A ∩ ‹Q(i)

B ⊆ Q(V
(i)
E) when Alice-Bob views are sampled

according to (V
(i+1)
A , ‹V(i)

B) is 1 − O(mε/σ2). So, the probability of the same event when Alice-Bob
joint views are sampled according to (V

(i+1)
A ,V′(i)B) is also 1 − O(mε/σ2). This concludes the proof of

Lemma A.3.

A.5.3 Proof of Lemma A.8

Finally we prove Lemma A.8. Recall that with respect to the Eve view V
(i)
E , (1 − ε)-Independence and

ε-Lightness hold, when the protocol is run with uniformly chosen x ∈ X and y ∈ Y . Consider the space
of all Alice and Bob private views and random oracles such that V (i)

E is produced as the view of Eve. We
know by Lemma A.1 that the distribution of (V

(i)
A ,V

(i)
B |V

(i)
E) is ε close to a distribution (UA × UB) ≡

(V
(i)
A |V

(i)
E)× (V

(i)
B |V

(i)
E).

Additionally, we are also given that P[x, y|V (i)
E] ≥ γ. Now, consider the event E such that x and y are

actually the local inputs in sampled Alice and Bob views V (i)
A and V (i)

B . By Lemma A.5, we can conclude
that (V

(i)
A ,V

(i)
B |V

(i)
E , x, y) is ε/γ close to the distribution (UA ×UB|x, y) ≡ (UA|x)× (UB|y). Now, ob-

serve that when Alice and Bob views are sampled according to (V
(i)
A ,V

(i)
B |V

(i)
E , x, y), then they also satisfy

ε/γ-Lightness property. Otherwise we can use the fact that P[x, y|V (i)
E] ≥ γ to show that (V

(i)
A ,V

(i)
B |V

(i)
E)

does not satisfy the ε-Lightness property. Now, since the distribution (V
(i)
A ,V

(i)
B |V

(i)
E , x, y) has ε/γ-

Lightness property and is ε/γ close to the product distribution (UA|x) × (UB|y), this implies that the
distribution (V

(i)
A ,V

(i)
B |V

(i)
E , x, y) satisfies (1 − ε′)-Independence and ε′-Lightness properties, where ε′ =

45

ε/γ. Next, based on these properties, we shall first prove the first part of Lemma A.8 by showing that
P[Q(V

(i+1)
A) ∩Q(V

(i)
B) 6⊆ Q(V

(i)
E)|V (i)

E , x, y] ≤ O(mε′).

We define several hybrid experiments where the distribution of V (i+1)
A and V (i)

B is defined differently in
each of them. We are interested in comparing the probability pi of the bad event B defined as Q(V

(i+1)
A) ∩

Q(V
(i)
B) 6⊆ Q(V

(i)
E) in the game Gamei.

Game0: In this game the views V (i+1)
A and V (i)

B are jointly sampled consistent with V (i)
E and local inputs

x and y.

Game1: This game is indeed a perfect lazy simulation of Game0:

1. Sample (V
(i)
A , V

(i)
B) according to the distribution (V

(i)
A ,V

(i)
B |V

(i)
E , x, y).

2. Start the next message generation algorithm for Alice. If any query q asked by Alice is already
contained in Q(V

(i)
A) ∪ Q(V

(i)
E) ∪ Q(V

(i)
B), then it is consistently answered. Otherwise, a uniformly

random answer is provided.

So, the probability p1 of the bad event Q(V
(i+1)
A) ∩Q(V

(i)
B) 6⊆ Q(V

(i)
E) in this game is still equal to p0.

Game2: In this game

1. Alice and Bob views are drawn according to (V
(i)
A |V

(i)
E , x)× (V

(i)
B |V

(i)
E , y).

2. Start the next message generation algorithm for Alice with respecting the answers to Bob’s private
queries. Namely, if any query q asked by Alice is already contained inQ(V

(i)
A)∪Q(V

(i)
E)∪Q(V

(i)
B),

then it is consistently answered. Otherwise, an uniformly random answer is provided.

By (1− ε′)-Independence we know that Game1 and Game2 are ε′ close, so p1 ≤ p2 + ε′.

Now, we shall bound p2. Recall that ε′-Lightness of (V
(i)
B |V

(i)
E , y) implies that any query not already

answered in V (i)
E occurs with probability at most ε′ in a Bob view V

(i)
B

$← (V
(i)
B |V

(i)
E , y). So, the probability

of m new queries of Alice hitting any query of Bob view V
(i)
B

$← (V
(i)
B |V

(i)
E , y) is at most mε′, by union

bound. So, p2 ≤ mε′. This implies that p0 = p1 ≤ p2 + ε′ ≤ (m + 1)ε′. This completes the proof of the
first part of Lemma A.8.

Proving the Second part of Lemma A.8. In our previous hybrids, we showed that the joint distribution
of views (V

(i+1)
A ,V

(i)
B) in Game0 and Game2 are ε′ far.

Consider the following Game3 as the next hybrid following Game2: In this game

1. Alice and Bob views are drawn according to (V
(i)
A |V

(i)
E , x)× (V

(i)
B |V

(i)
E , y).

2. Start the next message generation algorithm for Alice without respecting the answers to Bob’s private
queries. Namely, if any query q asked by Alice is already contained in Q(V

(i)
A) ∪ Q(V

(i)
E), then it is

consistently answered. Otherwise, an uniformly random answer is provided.

46

If the bad event Q(V
(i+1)
A) ∩ Q(V

(i)
B) 6⊆ Q(V

(i)
E) does not occur, then the distribution of Alice-Bob

joint views sampled in Game2 and Game3 are identical. Further, the distribution of Alice views in Game3

is identical to (V
(i+1)
A |V (i)

E , x). Note, that by the same argument at in Game3, the probability p3 of the bad
event is at most mε′, because the argument was independent of how Alice queries were answered. So, the
joint distribution of views (V

(i+1)
A ,V

(i)
B) in Game2 and Game3 are at most max{p2, p3} ≤ mε′ far.

Therefore, the statistical distance between (V
(i+1)
A ,V

(i)
B |V

(i)
E , x, y) and (V

(i+1)
A |V (i)

E , x)× (V
(i)
B |VE , y)

is at most (m+ 1)ε′. Thus, the second part of Lemma A.8 follows.

B Some Examples for Intuition

B.1 Undecomposable Functions

We give examples of some representative undecomposable functions in Figure 5, Figure 6 and Figure 7

0 1

1 1

Ö è
Figure 5: A Complete (and Undecomposable) Function.

1 1 2

4 0 2

4 3 3

â ì
Figure 6: An Incomplete but Undecomposable Function (Minimum |X |+ |Y|).

1 1 3 4

3 2 2 4

3 4 1 1

2 4 3 2

Figure 7: An Incomplete but Undecomposable Function (Minimum |Z|).

B.2 Decomposable Example

Let us consider the example of computing maximum of Alice and Bob inputs, where Alice’s input set is
{1, 3, 5} and Bob’s input set is {0, 2, 4}. This function is decomposable and its decomposition provides a
perfectly semi-honest secure protocol, see Figure 8. The semi-honest protocol is as follows:

47

Protocol to compute maximum of Alice and Bob inputs:

1. If Alice’s input is 5, then she announces the outcome to be 5; Otherwise she asks Bob to
proceed.

2. If Bob’s input is 4, then he announced the outcome to be 4; Otherwise he asks Alice to
proceed.

3. If Alice’s input is 3, then she announces the outcome to be 3; Otherwise she asks Bob to
proceed.

4. Now, Alice’s input is 1 for certain. If Bob’s input is 2, then he announces the outcome to
be 2; Otherwise the outcome is 1.

0 2 4

1 1 2 4

3 3 3 4

5 5 5 5

A

B

A

B

21

3

4

5

Figure 8: Decomposition of a Decomposable Function

C Black-box Separation Proof

Proof of Theorem 7.2. It is immediate that (1) ⇒ (2) ⇒ (3). We shall show that (3) ⇒ (1). In fact, for
clarity, first we shall show (2)⇒ (1) before extending the argument to show (3)⇒ (1).

We rely on the following claim.

Claim C.1. Let f be a a deterministic two-party function which does not have a perfectly semi-honest secure
protocol. For any security-parameter preserving fully black-box construction (Π, S) of SFEf from OWF,
there exist Q ∈ FOWF and an oracle algorithm Adv such that (ΠQ,AdvQ) ∈ RSFEf and (Q,SQ,Adv

Q
) 6∈

ROWF.

Before proving this claim, we note that it indeed shows (2)⇒ (1), as follows. Suppose, for the sake of
contradiction, (Π, S) is a security-parameter preserving PPT-secure fully black-box construction of SFEf
from OWF, for some deterministic two-party function f which does not have a perfectly semi-honest secure
protocol. For (Π, S), let Q ∈ FOWF and Adv be as guaranteed in Claim C.1. Let A stand for AdvQ.
The claim guarantees that (ΠQ, A) ∈ RSFEf . Consequently, by the security guarantee of fully black-box
construction, we have (Q,SQ,A) ∈ ROWF. But this contradicts the guarantee from Claim C.1.

Proof of Claim C.1. Let Uκ = {g : {0, 1}κ → {0, 1}κ} denote the set of all length preserving functions
over {0, 1}κ. Let U = U1 × U2 ×· · ·.

48

Note that since Π is security-parameter preserving, ΠQ accesses only Qκ. Implicit in the proof of
Theorem 1.1 is an adversary Adv such that, for Qκ

$←Uκ the adversary AdvQκ breaks the security of ΠQκ

(as an implementation of SFEf) with advantage δ(κ) > 1/ poly(κ), by asking poly(κ) queries to Qκ. This
will be the adversary Adv in the statement of the claim.

Next, we need to find a deterministic function Q such that AdvQ breaks ΠQ, but there does not exist any
efficient reduction S such that SQ,Adv

Q
breaks Q as a OWF implementation.

We show the existence of such a Q by the probabilistic method. For this, first we define Vκ ⊆ Uκ for
each κ ∈ N as follows. As mentioned above, AdvQκ has an advantage of δ(κ) > 1/ poly(κ) in breaking
ΠQκ , where Qκ

$← Uκ. Then, by an averaging argument, for a subset Vκ ⊆ Uκ with |Vκ||Uκ| ≥ δ(κ), it holds

that for all Qκ ∈ Vκ, AdvQκ has an advantage at least δ(κ)/2 in the SFEf security game for ΠQκ . Now, we
pick Qκ

$←Vκ independently for each security parameter κ. Q will be the composite oracle (Q1, Q2, . . .).

By construction, (ΠQ,AdvQ) ∈ RSFEf with probability 1, since for allQκ ∈ Vκ, AdvQκ has a significant
advantage (as a function of κ) in the security game. To complete the proof, we need to show that with positive
probability Q is such that (Q,SQ,Adv

Q
) 6∈ ROWF.

Consider again Qκ
$←Uκ (rather than Qκ

$←Vκ, which we shall return to shortly). For each κ, for each
choice of Qκ = (Q1, . . . , Qκ−1, Qκ+1, . . .), define the (inefficient) machine TQκ such that TQκQκ

simulates

SQ,Adv
Q

: for this, TQκ internally simulates all of Q except Qκ, which it accesses through oracle calls. Even
though TQκ is inefficient, since S is efficient, the number of oracle queries it makes is bounded by poly(κ).
W.l.o.g, we can assume that a machine TQκ can invert an input y with respect to its oracle, only if one of
its oracle queries is answered by y (by adding a final query, in which it queries the oracle at its output).
But when Qκ

$←Uκ this happens with only negligible probability for a machine making polynomially many
queries, because each distinct query is answered by a κ-bit string chosen uniformly at random which has a
probability of 1

2κ of being equal to y.

Thus, if Qκ
$←Uκ, then for each choice of Qκ, the probability that SQ,Adv

Q
has a non-negligible advan-

tage in breaking Q at κ is ν(κ) for some negligible function ν. Then if if Qκ
$← Vκ, this probability is at

most ν(κ) |Uκ||Vκ| which is also negligible (since |Vκ||Uκ| ≥ δ(κ)/2).

Then, by a union bound over all κ ≥ κ0 for a sufficiently large value of κ0, the probability that SQ,Adv
Q

has a non-negligible advantage in breaking Q at some κ ≥ κ0 is
∑∞
κ=κ0 ν(κ) < 1 (and can in fact be made

arbitrarily close to 0, by choosing κ0 large enough). In particular, there exists Q such that SQ,Adv
Q

does
not have a non-negligible advantage in breaking O at infinitely many values of κ. That is, (Q,SQ,Adv

Q
) 6∈

ROWF.

Extending to OWFζ . The above argument can be easily extended to show (3) ⇒ (1), to complete the
proof. Fix a polynomial ζ. Then, in the above argument consider the set Wκ := {gζ(κ, ·)|g : {0, 1}∗ →
{0, 1}κ} (i.e., set of functions that map x, |x| ≤ ζ(κ) to y ∈ {0, 1}κ), instead of Uκ. We remark that for the
adversary from the proof of Theorem 1.1 it was not crucial that the random oracle has input domain {0, 1}κ,
or that the oracle is length-preserving, as long as the queries are answered independent of each other. The
rest of the argument, including the fact that an inverter making polynomial queries to an oracle Wκ

$←Wκ

can have only a negligible success probability, remains unchanged.

49

	Introduction
	Our Results
	Related Work
	Technical Overview
	Frontier Analysis Meets Random Oracles
	Using the Independence Learner

	Preliminaries
	Secure Evaluation of 2-Party Functions
	Random Oracles
	Frontiers

	Transcript Tree and Other Notation
	Overview of Our Analysis
	Detailed Proof of [thm:main]Theorem 1.1
	Frontier Ordering
	Proof of [thm:main]Theorem 1.1
	Bounding probability of events FX and FY
	Bounding probability of event F0Y(FX FY)
	Bounding the probability of event

	Beyond Semi-Honest Security
	Black-Box Separations
	Open Problems and Future Work
	References
	Independence Learners
	Some Notations
	Random Variables.
	Two Party Protocols

	Independence Learner
	Using the Independence Learner
	General Useful Lemmas
	Proving [lem:IL-Input]Lemma A.2 and [lem:NoCol]Lemma A.3
	Proof of [lem:IL-Input]Lemma A.2
	Proof of [lem:NoCol]Lemma A.3
	Proof of [lem:Inter]Lemma A.8

	Some Examples for Intuition
	Undecomposable Functions
	Decomposable Example

	Black-box Separation Proof

