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Abstract

Side-channel attacks have repeatedly falsified the assumption that cryptosystems are black
boxes. Leakage-resilient cryptography studies the robustness of cryptographic constructions
when an unforeseen revelation of information occurs. In this context, recently, Benhamouda,
Degwekar, Ishai, and Rabin (CRYPTO–2018) motivated the study of the local leakage re-
silience of secret-sharing schemes against an adversary who obtains independent leakage from
each secret share.

Motivated by applications in secure computation, Benhamouda et al. (CRYPTO–2018)
initiated the study of the local leakage resilience of Shamir’s secret-sharing scheme, an essen-
tial primitive for nearly all threshold cryptography. The objective is to achieve local leakage
resilience with as small a fractional reconstruction threshold as possible. Previously, Ben-
hamouda et al. showed that the reconstruction threshold k being at least 0.907 times the
number of parties n is sufficient for Shamir’s secret-sharing scheme to be resilient against ar-
bitrary single-bit local leakage from each secret share. After that, Maji et al. (CRYPTO–2021)
and Benhamouda et al. (Journal of Cryptology–2021) independently lowered this threshold to
k/n ⩾ 0.8675 and k/n ⩾ 0.85, respectively.

This paper contributes to this line of research and proves that k/n ⩾ 0.78 is sufficient.
Next, motivated by applications in GMW-style leakage-resilient secure computation, our work
extends this bound to a more general adversary who corrupts some parties (obtaining their
entire secret shares) and obtains leakage from the remaining honest parties’ secret shares.

Our technical analysis proceeds by Fourier analysis and accurately estimates an exponential
sum arising in this analysis.

1 Introduction

Starting with the works of Koch et al. [Koc96, KJJ99], innovative and sophisticated side-channel
attacks have repeatedly falsified the assumption that cryptosystems are impervious black-boxes.
Leakage-resilient cryptography formalizes and provides provable security guarantees against such
information leakages, including unforeseen ones. Substantial research has examined the feasibility
and efficiency of leakage-resilient cryptography against diverse models of potential leakages during
the last few decades (refer to the excellent survey [KR19]).

In this context, recently, Benhamouda, Degwekar, Ishai, and Rabin [BDIR18] motivated the
study of the local leakage resilience of secret-sharing schemes against an adversary who obtains
independent leakage from each secret share (this primitive was also implicitly defined in [GK18]).
A locally leakage-resilient secret-sharing scheme ensures that the leakage’s joint distribution is
statistically independent of the secret. Intriguingly, this concept is closely related to the fasci-
nating problem of repairing codes; c.f., for example, Guruswami and Wootter’s reconstruction
algorithm [GW16, GW17] and subsequent works [TYB17, GR17, DDKM18, MBW19]. The ad-
versary does not need to reconstruct the entire secret to preclude leakage-resilience; obtaining
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any partial information to distinguish two secrets suffices. For example, over characteristic-two
fields, an appropriate one-bit leakage from each share of a linear secret-sharing scheme, deter-
mines the least significant bit of the secret. The construction of leakage-resilient secret-sharing
schemes [ADN+19, SV19, BS19, KMS19, BIS19, FY19, FY20, CGG+20, MSV20] and the char-
acterization of leakage-resilience of prevalent secret-sharing schemes [HIMV19, CGN19, LCG+20,
MNP+21, AMN+21] has been fairly challenging.

Secret-sharing schemes are typical in GMW-style [GMW87] secure multi-party computation
protocols. Motivated by this application, Benhamouda et al. [BDIR18] initiated the study of
the local leakage-resilience of Shamir’s secret-sharing scheme, an essential primitive for nearly
all threshold cryptography. The goal is to achieve local leakage resilience with the minimum
ratio k/n, where n is the number of parties and k is the reconstruction threshold. Reducing
this fractional reconstruction threshold k/n entails that a smaller fraction of honest parties can
ensure the security of the GMW-style MPC protocol. Benhamouda et al. [BDIR18] proved that
Shamir’s secret-sharing scheme over prime fields is locally leakage-resilient against arbitrary one-
bit leakage from each secret share when k/n ⩾ 0.907. After that, Maji et al. [MPSW21] and
Benhamouda et al. [BDIR21] independently improved this lower bound to k/n ⩾ 0.8675 and
k/n ⩾ 0.85, respectively.

Summary of our results. This work contributes to this research and proves that Shamir’s
secret-sharing scheme is one-bit locally leakage-resilient if k/n ⩾ 0.78. More generally, in secure
multi-party computation, an insider attacker can corrupt a subset of parties and obtain their
secret shares. In this scenario, the secret-sharing scheme must remain secure even against these
stronger adversaries who obtain the secret shares of the corrupted parties and leakage from the
honest parties’ secret shares. Motivated by this application, our work extends the leakage-resilience
bound for Shamir’s secret-sharing scheme to these more general adversaries. Our technical analysis
proceeds by Fourier analysis over a prime field and accurately estimates an exponential sum arising
in this analysis.

1.1 Our Contribution

This section, first, introduces some notations to facilitate a high-level presentation of our results
(refer to Section 2 for details). Let F represent an arbitrary finite field and Fp represent the prime
field of order p. Fix an n-party secret-sharing scheme for arbitrary secrets in F and each party
gets a secret share in F . An (n,m) local leakage function τ⃗ = (τ1, τ2, . . . , τn) is a collection of
m-bit leakage functions τi : F → {0, 1}m, for i ∈ {1, . . . , n}. Let τ⃗(s) be the joint distribution
of (the output of) the (n,m) leakage function τ⃗ over the sample space ({0, 1}m)

n
defined by the

experiment: (i) sample random secret shares (h1, h2, . . . , hn) ∈ Fn for the secret s ∈ F and (ii)
output the leakage (τ1(h1), τ2(h2), . . . , τn(hn)) ∈ ({0, 1}m)

n
. A secret-sharing scheme is (m, ε)-

locally leakage resilient if for any m-bit leakage function τ⃗ = (τ1, τ2, . . . , τn), and for any pair of
secrets s0, s1 ∈ F , the statistical distance between the joint leakage distributions τ⃗(s0) and τ⃗(s1)
is at most ε.

Leakage resilience of Shamir’s secret-sharing. Our work considers Shamir secret-sharing
schemes involving n parties with a reconstruction threshold k over Fp, denoted as ShamirSS(n, k).
Our first result shows that ShamirSS(n, k) is leakage-resilient if k ⩾ 0.78n against eavesdropping
attackers who obtain local leakage from all secret shares.

Theorem 1. Let κ > (2 log2 π − 1)/(3 log2 π − 2) =: c. For any n, k ∈ N and prime p ⩾ p0(κ)
satisfying 1 ⩾ k/n ⩾ κ, ShamirSS(n, k) over Fp is (1, ε)-locally leakage resilient, where ε =
2−(3 log2 π−2)(κ−c)·n.

For example, in the theorem above, κ = 0.78 suffices.
Extension to insider attacks. Consider a more general adversary who corrupts θ parties

indexed by the size-θ subset Θ ⊆ {1, . . . , n}. The adversary obtains their entire secret shares, and
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gets m-bit leakage from the secret share of each uncorrupted party. To study this leakage model,
consider a leakage function τ⃗ = (τ1, τ2, . . . , τn), parameterized by a size-θ subset Θ ⊆ {1, . . . , n}
of corrupted parties. The functions satisfy τi(x) = x (for i ∈ Θ) and τj : F → {0, 1}m (for
j ∈ {1, . . . , n} \ Θ). A secret-sharing scheme is (θ,m, ε)-locally leakage resilient if the statistical
distance between the joint leakage distributions τ⃗(s0) and τ⃗(s1) is at most ε for any two secrets
s0, s1 ∈ F and leakage function τ⃗ corresponding to any size-θ subset Θ. In particular, the leakage
model of Theorem 1 corresponds to the case θ = 0.

Theorem 2. Let κ > (2 log2 π − 1)/(3 log2 π − 2) =: c. For any n, k, θ ∈ N and prime p ⩾ p0(κ)
satisfying 1 ⩾ (k−θ)/(n−θ) ⩾ κ, ShamirSS(n, k) over Fp is (θ, 1, ε)-locally leakage resilient, where
ε = 2−(3 log2 π−2)(κ−c)(n−θ).

Despite the possibility that the insider attacker on ShamirSS(n, k) may be more potent than the
eavesdropping attacker on ShamirSS(n−θ, k−θ), our proof bounds both distinguishing advantages
by an identical quantity.

Remark. Theorem 1 and Theorem 2 extend to the Massey secret-sharing scheme [Mas01] corre-
sponding to any maximum distance separable [MS77] linear codes over prime fields. For clarity of
presentation, this draft interprets the consequences of our technical result using applications to
Shamir’s secret-sharing scheme.

Leakage resilience of maximum distance separable (MDS) codes. For a distribution
X over the sample space Fn

p and a leakage function τ⃗ , the joint distribution τ⃗(X) is defined by
the experiment: (i) sample x⃗ from X and (ii) output the leakage (τ1(x1), τ2(x2), . . . , τn(xn)). For
any code C ⊆ Fn

p , we overload our notation and use C to represent the uniform distribution over
the code C. The following technical result leads to Theorem 1 and Theorem 2.

Theorem 3. Let C be an [n, k]Fp
MDS code. Let τ⃗ = (τ1, τ2, . . . , τn) be a local leakage function,

where τi : Fp → {0, 1}. Then, the following bound holds.

SD
(
τ⃗(C) , τ⃗(Fn

p )
)
⩽

(
2− 1

p2

)n−k (
2

p sin(π/p)

)3k−2n+1

.

This upper-bound expression yields meaningful bounds even for specific values of p. For example,
(assuming n = p− 1) (1) for κ = 0.99, any prime p ⩾ 5 is sufficient, (2) for κ = 0.85, any p ⩾ 13
suffices, and (3) for κ = 0.78, any p ⩾ 1531 works (refer to www.desmos.com/calculator/buatuebkvb
for the plot).

1.2 Technical Overview

This section presents a high-level overview of our technical approach. We refer the readers to
[Rao07] for Fourier basics. Fix an arbitrary [n, k]F MDS code C. Fix the local leakage function
τ⃗ = (τ1, τ2, . . . , τn) that leaks 1-bit from every secret share. Let 1i,ℓi be the indicator function of the
set {x : τi(x) = ℓi} ⊆ F . Choose arbitrary secrets s0, s1 ∈ F . As established in [BDIR18, MNP+21,
MPSW21], the statistical distances SD

(
τ⃗(C) , τ⃗(Fn

p )
)
(and, furthermore, SD (τ⃗(s0) , τ⃗(s1))) are

upper-bounded by the following Fourier-analytic proxy.∑
ℓ⃗∈{0,1}n

∑
α⃗∈C⊥\{0⃗}

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣. (1)

Next, we utilize the Fourier properties of 1-bit leakage function (see Claim 3) to rewrite the proxy
as follows. ∑

ℓ⃗∈{0,1}n

∑
α⃗∈C⊥\{0⃗}

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣ = ∑

α⃗∈C⊥\{0⃗}

n∏
i=1

bi,αi , (2)
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where bi,αi
:= 1 if αi = 0, and bi,αi

:= 2 ·
∣∣∣1̂i,0(αi)

∣∣∣, otherwise (Lemma 2). This rearrangement of

terms removes (i) the summation over all possible leakage values ℓ⃗ ∈ {0, 1}n, and (ii) the necessity
to bound the Fourier coefficients of the functions 1i,ℓi at 0. This step is key to precisely estimating

this exponential sum. To obtain the above equation, we partition the set of codewords in C⊥ \ {⃗0}
into sets AI that contains codewords in C⊥ \ {⃗0} whose indices of non-zero coordinates are exactly
in I, and then extensively apply the Fourier properties (see Claim 3) of one-bit leakage functions.

After that, we use a similar idea as in [BDIR18]. That is, we partition the set {1, . . . , n} into
three sets I1, I2, J , where I1 and I2 are information sets of the dual code C⊥. For brevity, let
D′ = C⊥ \ {⃗0}. Then, applying the Cauchy-Schwartz inequality yields

∑
α⃗∈D′

n∏
i=1

bi,αi
⩽

√∑
α⃗∈D′

∏
i∈I1

b2i,αi
·
√∑

α⃗∈D′

∏
i∈I2

b2i,αi
· max
α⃗∈D′

∏
i∈J

bi,αi

Finally, we bound individual terms on the right-hand side separately using Fourier properties of
leakage functions and properties of the MDS code C⊥. We bound the first two terms (Claim 1)
using (1) I1 and I2 are information sets, and (2) the L2 norm of the Fourier coefficients of the
leakage function are bounded using Parseval’s identity. The upper bound on the final term follows
from the upper bound of 2/π on the non-zero Fourier coefficients bi,αi

(see Imported Lemma 2).

2 Preliminaries

Notation. For any two distribution A and B over the same finite sample space, the statistical dis-
tance between the two distributions, denoted as SD (A , B), is defined as 1

2

∑
x|Pr[A = x]− Pr[B = x]|.

We denote [n] := {1, 2, . . . , n}. For any vector v⃗ and I ⊆ [n], the vector v⃗I represents the vector
(vi : i ∈ I). For any set A, we denote the indicator function of the set A as 1A. That is, 1A(x) = 1
if x ∈ A and 0 otherwise.

2.1 Codes and Secret-sharing Schemes

We use the following notations for error-correcting codes as consistent with [MS77].

Linear Codes. A linear code C over a finite field F of length n and rank k is a k-dimension vector
subspace of Fn, referred to as an [n, k]F -code. The distance of a linear code is the minimum weight
of a non-zero codeword. An [n, k]F -code is maximum distance separable (MDS) if its distance is
(n− k + 1).

Fact 1. The dual code C⊥ of an [n, k]F MDS code C is itself an [n, n− k]F MDS code.

Generalized Reed-Solomon Codes. A generalized Reed-Solomon code over prime field F with
message length k and block length n consists of an encoding function Enc : F k → Fn and decoding
function Dec : Fn → F k. It is specified by the distinct evaluation places α⃗ = (α1, . . . , αn), and a

scaling vector β⃗ = (β1, . . . , βn) ∈ (F ∗)
n
. Given α⃗ and β⃗, the encoding function is

Enc(m1, . . . ,mk) := (β1 · f(α1), . . . , βn · f(αn)) ,

where f(X) := m1 +m2X + · · ·+mkX
k−1.

Fact 2. Generalized Reed-Solomon codes are MDS.
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Threshold Secret Sharing Scheme For any two positive integers k < n, an (n, k)F -secret-
sharing scheme over a finite field F consists of two functions Share and Rec. Share is a randomized
function that takes a secret s ∈ F and outputs Share(s) = (Share(s)1, . . . ,Share(s)n) ∈ Fn. The
pair of functions (Share,Rec) satisfies the following requirements.

• Correctness. For any secret s ∈ F and a set of parties {i1, i2, . . . , it} ⊆ {1, 2, . . . , n} such
that t ⩾ k, we have

Pr[Rec(Share(s)i1 , . . . ,Share(s)it) = s] = 1.

• Privacy. For any two secret s0, s1 ∈ F and a set of parties {i1, i2, . . . , it} ⊆ {1, 2, . . . , n}
such that t < k, we have

SD
((

Share(s0)i1 , . . . ,Share(s0)it

)
,
(
Share(s1)i1 , . . . ,Share(s1)it

))
= 0.

Shamir’s Secret-sharing. Let F be a prime field. For any positive integer k ⩽ n and evaluation
places α⃗ = (α1, . . . , αn) the following conditions are satisfied. (1) For all 1 ⩽ i ⩽ n, αi ∈ F ∗, and
(2) for all 1 ⩽ i < j ⩽ n, αi ̸= αj . The corresponding Shamir’s secret sharing, represented as
ShamirSS(n, k), is defined as follows.

• Given secret s ∈ F , Share(s) picks a random polynomial f [X] ∈ F (X)/Xk conditioned on
f(0) = s. For every 1 ⩽ i ⩽ n, the ith share of Share(s) is f(αi) .

• Given shares (Share(s)i1 , . . . ,Share(s)it), Rec interpolates to obtain the unique polynomial
f ∈ F [X]/Xk such that f(αij ) = Share(s)ij for all 1 ⩽ j ⩽ t, and outputs f(0) to be the
reconstructred secret.

Fact 3. The set of all possible secret shares of secret s = 0 of an [n, k]F Shamir’s secret-sharing
is an [n, k − 1]F generalized Reed-Solomon code.

2.2 Local Leakage-resilient Secret Sharing Schemes

Local Leakage. Fix a finite field F and an n-party secret-sharing scheme for secrets s ∈ F in
which each party gets a secret share in F . An (n,m) local leakage function τ⃗ = (τ1, τ2, . . . , τn) is a
collection of m-bit leakage functions τi : F → {0, 1}m for i ∈ [n]. Let τ⃗(s) be the joint distribution
of the (n,m) leakage function τ⃗ over the sample space ({0, 1}m)n defined by the experiment (i)
sample secret shares (h1, h2, . . . , hn) for the secret s (ii) output (τ1(h1), τ2(h2), . . . , τn(hn)).

Definition 1. A secret sharing scheme for n parties is a (m, ε)-local leakage-resilient, if, for any
two secrets s0, s1 ∈ F , and any local leakage function τ⃗ that leaks m bits from every share locally,
it holds that

SD (τ⃗(s0) , τ⃗(s1)) ⩽ ε.

2.3 Fourier Analysis Basics

We use discrete Fourier analysis on prime field F of order p. Define ω := exp(2πı/p). For any
functions f, g : F → C, define their inner-product

⟨f, g⟩ :=
1

p

∑
x∈F

f(x) · g(x),

where z is the complex conjugate of z ∈ C. For z ∈ C, |z| :=
√
zz. For any α ∈ F , define the

function f̂ : F → C as follows.

f̂(α) :=
1

p

∑
x∈F

f(x) · ω−αx.
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The Fourier transform maps the function f to the function f̂ . This transformation is a full-rank
linear mapping, i.e., only the zero function has zero Fourier. In particular, it satisfies the following
identities.
Fourier Inversion Formula. f(x) =

∑
α∈F f̂(α) · ωαx.

Parseval’s Identity. 1
p

∑
x∈F |f(x)|

2
=
∑

α∈F

∣∣∣f̂(α)∣∣∣2.
For more details on Fourier basics, see [Rao07].

3 Technical Proofs

This section proves Theorem 1 and Theorem 2 from Theorem 3, and then proves Theorem 3.

3.1 Proofs of Theorem 1 and Theorem 2

Observe that Theorem 1 follows from Theorem 2 by fixing θ = 0. Therefore, it suffices to prove
Theorem 2. First, we prove the following lemma that is needed for the proof.

Lemma 1. Let τ⃗ = (τ1, τ2, . . . , τn) be a leakage function such that τi(x) = x for every x ∈ F and
i ∈ Θ, and τi : F → {0, 1} for every i ∈ [n] \ Θ. Define 1i,ℓi(x) = 1 if τi(x) = ℓi and 1i,ℓi(x) = 0
otherwise. Let C ⊆ Fn be the set of all the possible secret shares of the secret zero. Then, for any
secrets s0, s1 ∈ F , the following bound holds.

SD (τ⃗(s0) , τ⃗(s1)) ⩽
∑

ℓ⃗∈{0,1}n−θ

∑
α⃗∈D⊥\{0⃗}

∏
i/∈Θ

∣∣∣1̂i,ℓi(αi)
∣∣∣,

where D⊥ is the code obtained from puncturing all coordinates in Θ of every codeword in C⊥.

Intuitively, the statistical distance is bounded by the Fourier analytic proxy of the ShamirSS(n −
θ, k − θ). We remark that D is a (punctured) generalized Reed-Solomon code. Observe that a
punctured MDS code is MDS as well.

Proof of Lemma 1. Observe that 1i,ℓi(x) = 1 if and only if x = ℓi, for leakage value ℓi and i ∈ Θ.
Therefore, the magnitude of every Fourier coefficients of the function 1i,ℓi is constant. That is,∣∣∣1̂i,ℓi(α)

∣∣∣ = 1/p for every i ∈ Θ, ℓi ∈ F , α ∈ F . For brevity, let Ω = [n] \ Θ. Note that
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ℓ⃗ = (ℓ1, ℓ2, . . . , ℓn), where ℓi ∈ F for every i ∈ Θ and ℓj ∈ {0, 1} for every i ∈ Ω. Thus, we have

SD (τ⃗(s0) , τ⃗(s1))

⩽
∑
ℓ⃗

∑
α⃗∈C⊥\{0⃗}

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣ (Fourier-analytic proxy)

=
∑

ℓ⃗Ω∈{0,1}n−θ

∑
α⃗∈C⊥\{0⃗}

∑
ℓ⃗Θ∈|F |θ

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣

=
∑

ℓ⃗Ω∈{0,1}n−θ

∑
α⃗∈C⊥\{0⃗}

∏
i∈Ω

∣∣∣1̂i,ℓi(αi)
∣∣∣ ∑
ℓ⃗Θ∈|F |θ

1

pθ

=
∑

ℓ⃗Ω∈{0,1}n−θ

∑
α⃗∈C⊥\{0⃗}

∑
ℓ⃗Θ∈|F |θ

1

pθ

∏
i∈Ω

∣∣∣1̂i,ℓi(αi)
∣∣∣

=
∑

ℓ⃗Ω∈{0,1}n−θ

∑
α⃗∈C⊥\{0⃗}

∏
i∈Ω

∣∣∣1̂i,ℓi(αi)
∣∣∣

=
∑

ℓ⃗∈{0,1}n−θ

∑
α⃗∈D⊥\{0⃗}

∏
i/∈Θ

∣∣∣1̂i,ℓi(αi)
∣∣∣,

which competes the proof.

Proof of Theorem 2. Consider ShamirSS(n, k) over F (a prime field of order p). Let C ⊆ Fn be
the the set of all possible secret shares of the secret 0 of the [n, k]F Shamir’s secret sharing. Let
C ⊆ Fn be the set of all possible secret shares of the secret s = 0 in ShamirSS(n, k). Note that
C is an [n, k − 1]F MDS code and C⊥ is an [n, n − k + 1]F MDS code. Let Θ be an arbitrary
size-θ subset of {1, 2, . . . , n}. Let D⊥ be the code obtained from puncturing all coordinates in Θ
of every codeword in C⊥. Observe that D⊥ is an [n− θ, n− (k− θ) + 1]F MDS code, and D is an
[n− θ, (k − θ)− 1] MDS code. By Lemma 1, we have

SD (τ⃗(s0) , τ⃗(s1)) ⩽
∑

ℓ⃗∈{0,1}n−θ

∑
α⃗∈D⊥\{0⃗}

∏
i/∈Θ

∣∣∣1̂i,ℓi(αi)
∣∣∣.

Applying Theorem 3 to the MDS code D , the statistical distance is bounded above by(
2− 1

p2

)(n−θ)−(k−θ−1)

·
(

2

p sin(π/p)

)3(k−θ−1)−2(n−θ)+1

.

Asymptotically, as the prime p → ∞, the right-hand side expression tends (from above) to

2(n−θ)−(k−θ) · (2/π)3(k−θ)−2(n−θ)

=2(n−θ)(2 log2 π−1)−(k−θ)(3 log2 π−2).

Therefore, if (k − θ)/(n− θ) > (2 log2 π − 1)/(3 log2 π − 2) ≈ 0.7795, the ShamirSS(n, k) is locally
leakage-resilient for sufficiently large p.

3.2 Proof of Theorem 3

This section states the claims needed to prove Theorem 3. We prove these claims in the subsequent
subsections.
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Imported Lemma 1 ([BDIR18]). Let C be any [n, k]F MDS code. Let τ⃗ = (τ1, τ2, . . . , τn) be
any 1-bit leakage functions where τi : F → {0, 1}. Define 1i,ℓi(x) = 1, if τi(x) = ℓi; otherwise, 0.
Then, the following bound holds.

2SD
(
τ⃗(C) , τ⃗(Fn

p )
)
⩽

∑
ℓ⃗∈{0,1}n

∑
α⃗∈C⊥\{0⃗}

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣.

We remark that, for any two secrets s0, s1 ∈ F , the quantity SD (τ⃗(s0) , τ⃗(s1)) is also bounded
by the Fourier-analytic proxy above. One does not need to apply a triangle inequality, use the
bound in the imported lemma, and incur a multiplicative factor-2 loss in the upper bound.

Lemma 2. Let C be any [n, k]F MDS code. Let τ⃗ = (τ1, τ2, . . . , τn) be any 1-bit leakage function
where τi : F → {0, 1}. Define 1i,ℓi(x) = 1, if τi(x) = ℓi; otherwise, 0. Then, it holds that

∑
ℓ⃗∈{0,1}n

∑
α⃗∈C⊥\{0⃗}

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣ = ∑

α⃗∈C⊥\{0⃗}

n∏
i=1

bi,αi ,

where, for i ∈ {1, . . . , n} and αi ∈ F , we have

bi,αi
:=

{
1, if αi = 0, and

2 ·
∣∣∣1̂i,0(αi)

∣∣∣, otherwise.

Claim 1. Let k, n ∈ N be such that k ⩽ n ⩽ 2k. Let C be any [n, k]F MDS code. Let τ⃗ =
(τ1, τ2, . . . , τn) be any 1-bit leakage functions where τi : F → {0, 1}. Let I1, I2, J be an arbitrary
partition of {1, 2, . . . , n} such that information sets satisfy |I1| = |I2| = n− k. Then, it holds that

∑
α⃗∈C⊥\{0⃗}

n∏
i=1

bi,αi ⩽

(
2− 1

p2

)n−k

· max
α⃗∈C⊥\{0⃗}

∏
i∈J

bi,αi .

Claim 2. The following bound holds.

max
α⃗∈C⊥\{0⃗}

∏
i∈J

bi,αi ⩽

(
2

p sin(π/p)

)3k−2n+1

.

Proof of Theorem 3. We have

2SD
(
τ⃗(C) , τ⃗(Fn

p )
)

⩽
∑

ℓ⃗∈{0,1}n

∑
α⃗∈C⊥\{0⃗}

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣ (Imported Lemma 1)

=
∑

α⃗∈C⊥\{0⃗}

n∏
i=1

bi,αi
(Lemma 2)

⩽ (2− 1/p2)n−k · max
α⃗∈C⊥\{0⃗}

∏
i∈J

bi,αi (Claim 1)

⩽ (2− 1/p2)n−k ·
(

2

p sin(π/p)

)3k−2n+1

, (Claim 2)

whence the theorem.
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3.3 Proof of Lemma 2

Recall that AI is the set of all codewords in C⊥ whose non-zero coordinates are in the set I and
zero coordinates are not in I. The fact that C⊥ is an [n, n− k]F MDS code implies that

A∅ = {⃗0}, and AI = ∅ for every 0 < |I| ⩽ k (3)

Let
(
[n]
w

)
denote the set of all size-w subsets of {1, . . . , n}. The following properties of the Fourier

coefficients of leakage functions will be the key to prove Lemma 2.

Claim 3. Let S and T be a partition of F . The the following statements hold.

1. 1̂S(0) + 1̂T (0) = 1.

2. 1̂S(α) = −1̂T (α), for every α ∈ F \ {0}.

The proof of Claim 3 follows from the linearity of Fourier transform and the (functional) identity
1S + 1T = 1. Using Claim 3, we shall prove the following result.

Claim 4. For any I ⊆ {1, . . . , n} and any α⃗ ∈ AI , the following identity holds.

∑
ℓ⃗∈{0,1}n

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣ = 2|I| ·

∏
i∈I

∣∣∣1̂i,0(αi)
∣∣∣.

Proof of Claim 4. Since α⃗ ∈ AI , we know exactly the positions of Fourier coefficients at zero.
Observe that the two sets τ−1

i (0) and τ−1
i (1) are a partition of F since τi is one-bit leakage

function. Based on this information, the left-hand side term can be rewritten as follows.

∑
ℓ⃗∈{0,1}n

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣

=
∑

ℓ⃗∈{0,1}n

(∏
i∈I

∣∣∣1̂i,ℓi(αi)
∣∣∣)
∏

i ̸∈I

∣∣∣1̂i,ℓi(αi)
∣∣∣


=
∑

ℓ⃗I∈{0,1}w

∑
ℓ⃗Ī∈{0,1}n−w

(∏
i∈I

∣∣∣1̂i,ℓi(αi)
∣∣∣)
∏

i ̸∈I

∣∣∣1̂i,ℓi(0)
∣∣∣


=
∑

ℓ⃗I∈{0,1}w

(∏
i∈I

∣∣∣1̂i,ℓi(αi)
∣∣∣)
 ∑

ℓ⃗Ī∈{0,1}n−w

∏
i ̸∈I

∣∣∣1̂i,ℓi(0)
∣∣∣


=
∑

ℓ⃗I∈{0,1}w

(∏
i∈I

∣∣∣1̂i,ℓi(αi)
∣∣∣)
∏

i ̸∈I

∑
ℓi∈{0,1}

∣∣∣1̂i,ℓi(0)
∣∣∣


=
∑

ℓ⃗I∈{0,1}w

(∏
i∈I

∣∣∣1̂i,0(αi)
∣∣∣)
∏

i ̸∈I

1

 (Claim 3)

= 2|I| ·
∏
i∈I

∣∣∣1̂i,0(αi)
∣∣∣.

Now, we are ready to prove Lemma 2.
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Proof of Lemma 2. We have

∑
ℓ⃗∈{0,1}n

∑
α⃗∈C⊥\{0⃗}

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣

=
∑

ℓ⃗∈{0,1}n

n∑
w=1

∑
I∈([n]

w )

∑
α⃗∈AI

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣

=
∑

ℓ⃗∈{0,1}n

n∑
w=k+1

∑
I∈([n]

w )

∑
α⃗∈AI

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣ (Fact 3)

=

n∑
w=k+1

∑
I∈([n]

w )

∑
α⃗∈AI

 ∑
ℓ⃗∈{0,1}n

n∏
i=1

∣∣∣1̂i,ℓi(αi)
∣∣∣


=

n∑
w=k+1

∑
I∈([n]

w )

∑
α⃗∈AI

(
2w ·

∏
i∈I

∣∣∣1̂i,0(αi)
∣∣∣) (Claim 4)

=

n∑
w=k+1

∑
I∈([n]

w )

∑
α⃗∈AI

∏
i∈I

(
2 ·
∣∣∣1̂i,0(αi)

∣∣∣)

=
∑

α⃗∈C⊥\{0⃗}

n∏
i=1

bi,αi
.

3.4 Proof of Claim 1

We need the following bound for the proof of Claim 1.

Claim 5. It holds that
∑

αi∈F b2i,αi
⩽ 2− 1/p2 for every 1 ⩽ i ⩽ n.

Proof of Claim 5. Let δ = Ex∈F [1i,ℓi(x)] = 1̂i,ℓi(0). Observe that δ is of the form a/p for some
0 ⩽ a ⩽ p. This implies that |1− 2δ| ⩾ 1/p. Then, by Parseval’s identity, it holds that

4
∑

αi∈F∗

∣∣∣1̂i,ℓi(αi)
∣∣∣2 = 4

(∑
αi∈F

∣∣∣1̂i,ℓi(αi)
∣∣∣2)− 4

∣∣∣1̂i,ℓi(0)
∣∣∣2

= 4(δ − δ2)

Therefore, we have ∑
αi∈F

b2i,αi
= 1 +

∑
αi∈F∗

b2i,αi
= 1 +

∑
αi∈F∗

41̂i,ℓi(αi)
2

= 1 + 4(δ − δ2) = 2− (1− 2δ)2

⩽ 2− 1/p2.

The final inequality follows from |1− 2δ| ⩾ 1/p.

Next, we prove Claim 1.

Proof of Claim 1. We use a similar idea as in [BDIR18] to prove the claim. For any vector v⃗ and
I ⊆ [n], the vector v⃗I represents the vector (vi : i ∈ I). For brevity, we denote C⊥ \ {⃗0} as D′.
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Recall that C⊥ is an [n, n − k]F MDS code. This implies that any set of n − k coordinates is an
information set. Since |I1| = |I2| = n− k, it holds that

{α⃗I1 : α⃗ ∈ C⊥} = {α⃗I2 : α⃗ ∈ C⊥} = Fn−k.

Therefore, we have

∑
α⃗∈D′

n∏
i=1

bi,αi

⩽

√∑
α⃗∈D′

∏
i∈I1

b2i,αi
·
√∑

α⃗∈D′

∏
i∈I2∪J

b2i,αi
(Cauchy-Schwartz’s Inequality)

⩽

√∑
α⃗∈D′

∏
i∈I1

b2i,αi
·
√∑

α⃗∈D′

∏
i∈I2

b2i,αi
· max
α⃗∈D′

∏
i∈J

bi,αi

⩽
√ ∑

α⃗∈C⊥

∏
i∈I1

b2i,αi
·
√ ∑

α⃗∈C⊥

∏
i∈I2

b2i,αi
· max
α⃗∈D′

∏
i∈J

bi,αi

⩽

√∏
i∈I1

∑
αi∈F

b2i,αi
·
√∏

i∈I2

∑
αi∈F

b2i,αi
· max
α⃗∈D′

∏
i∈J

bi,αi

⩽
√
2|I1| ·

√
2|I2| · max

α⃗∈D′

∏
i∈J

bi,αi
(Claim 5)

=
(
2− 1/p2

)n−k · max
α⃗∈D′

∏
i∈J

bi,αi .

3.5 Proof of Claim 2

We shall use the following result to prove the claim.

Imported Lemma 2 ([BDIR18]). It holds that bi,αi ⩽
2

p sin(π/p) for every αi ∈ F ∗.

Proof of Claim 2. First, observe that α⃗ has at least k+1 non-zero coordinates for any α⃗ ∈ C⊥\{⃗0}
since C⊥ is an [n, n− k]F MDS code. This implies that vector α⃗J has at least (k + 1)− 2(n− k)
non-zero coordinates. Imported Lemma 2 and the fact that bi,0 = 1 imply that

∏
i∈J

bi,αi
⩽

(
2

p sin(π/p)

)3k−2n+1

,

which completes the proof.

4 Comparison of Technical Approaches

This section compares our technical approaches with previous ones.

Comparison with [BDIR18, BDIR21] Benhamouda et al. relied on estimating the Fourier-
analytic proxy (Equation 1). Our analysis, however, employs the properties of the one-bit leakage
function to simplify the Fourier proxy. This simplification (Equation 2) removes the summation

over the leakage value ℓ⃗ ∈ {0, 1}n, which, in turn, results in a tighter bound after applying similar
bounding techniques (e.g., Cauchy-Schwartz).
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Comparison with [MPSW21] Apart from its fascinating result on the leakage-resilience of
random linear codes, Maji et al. also improved the threshold from k ⩾ 0.907n to k ⩾ 8675n for any
Shamir’s secret-sharing scheme. One of their technical novelty is to analyze the proxy using the
precise information on the holes of the codeword. That is, they partition the dual code C⊥ into
subsets AI , which enables a tighter bound on the summation within each subset. We adopt similar
ideas and sum over each subset AI first. However, by additionally using special properties of one-
bit leakage function, we perform an identical transformation to simply the proxy into Equation 2.
Therefore, our analysis gives rise to an even tighter bound.

Comparison with [MNP+21] Maji et al. considered leakage resilience of Shamir’s secret
sharing schemes as well, but against a rather weak family of leakage functions (namely, the physical-
bit leakage). Their analysis is also based on the Fourier-analytic approach. However, it crucially
relies on that the ℓ1-norm of the Fourier coefficients of the physical-bit leakage is small, which does
not hold in general for arbitrary leakage functions. Therefore, it is not evident if their analysis is
applicable to general leakage functions.
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