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Abstract. Secure non-interactive simulation (SNIS), introduced in EU-
ROCRYPT 2022, is the information-theoretic analog of pseudo-correlation
generators. SNIS allows parties, starting with samples of a source cor-
related private randomness, to non-interactively and securely transform
them into samples from a different correlated private randomness. Deter-
mining the feasibility, rate, and capacity of SNIS is natural and essential
for efficient secure computation.

This work initiates the study of SNIS, where the target distribution
(U, V ) is a random sample from the binary symmetric or erasure chan-
nels; however, the source distribution can be arbitrary. In this context,
our work presents the following results.
1. Characterization of all sources that facilitate such SNIS.
2. An upper and lower bound on their maximum achievable rate.
3. Instances where non-linear reductions achieve optimal efficiency; how-

ever, any linear reduction is insecure.

Our work builds on the algebraization of the simulation-based definition
of SNIS as an approximate eigenvector problem. The following founda-
tional and general technical contributions of ours are the underpinnings
of the aforementioned results.
1. Characterization of Markov and adjoint Markov operators’ effect on

the Fourier spectrum of reduction functions.
2. A new concentration phenomenon in the Fourier spectrum of reduc-

tion functions.
3. A powerful statistical-to-perfect lemma with broad consequences to

feasibility and rate characterization of SNIS.

Our technical analysis relies on Fourier analysis over large alphabets
with arbitrary measure, the orthogonal Efron-Stein decomposition, and
junta theorems of Kindler-Safra and Friedgut. Our work establishes a
fascinating connection between the rate of SNIS and the maximal corre-
lations of the source and target distributions, a prominent information-
theoretic property. Our technical approach motivates the new problem
of “security-preserving dimension reduction” in harmonic analysis, which
may be of independent and broader interest.
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1 Introduction

Khorasgani, Maji, and Nguyen [31] introduced secure non-interactive simula-
tion (SNIS) as an information-theoretic analog of pseudo-correlation genera-
tor [10, 11]. Independently, motivated by studying cryptographic complexity [7,
36, 35, 6, 42], Agarwal, Narayanan, Pathak, Prabhakaran, Prabhakaran, and
Rehan [1] introduced the same primitive as secure non-interactive reduction. In
the two-party setting (refer to Figure 1), Alice and Bob start with n indepen-
dent samples of correlated private randomness (X,Y ), the source distribution.
Non-interactively, Alice and Bob compute U = fn(Xn) and V = gn(Y n), where
fn(·) and gn(·) are reduction functions,1 and the joint distribution (U, V ) is the
target distribution. This construction is a SNIS of the target distribution (U, V )
from the source distribution (X,Y ) if it is simulation-secure [13, 12, 14]. SNIS
security against semi-honest or malicious adversaries is identical.

(xn, yn)
$←− (X,Y )⊗n

Alice

xn

U⊗m 3 u′ = fn(xn, rA)

rA
$←− RA Bob

yn

v′ = gn(yn, rB) ∈ V⊗m

rB
$←− RB

Fig. 1. System model for secure non-interactive simulation: SNIS.

Motivating Application: Correlation generators [31]. Secure computation [55, 25]
protocols often offload most of their computationally and cryptographically ex-
pensive components to an offline procedure [37, 8, 16, 43]. This offline procedure
has high computation and communication costs, and it generates structured cor-
related private randomness like Beaver triples [5]. However, several inexpensive
sources of correlated private randomness also facilitate secure computation, like,
correlated samples from noise sources [32]. Therefore, a natural solution is to
non-interactively and securely convert these inexpensive correlations into ones
used in secure computation protocols.

Boyle et al. [10, 11] introduced pseudo-correlation generators to achieve this
objective against computationally bounded adversaries. Recently, Khorasgani et al. [31]

1 The reduction functions fn(·) and gn(·) are randomized and use independent pri-
vate randomness; however, for brevity, the randomness is being excluded from the
formal representation. Strong sample-preserving derandomization results (i.e., the
derandomized reductions use an identical number of source samples and produce an
identical number of target samples) for SNIS [31] indicate the uselessness of inde-
pendent private randomness.
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introduced the information-theoretic analog of this primitive, modeled by the
system in Figure 1, to study the feasibility and rate of SNIS, which has straight-
forward consequences to the efficiency of secure computation.

Security & rate definition of SNIS [31]. Readers should follow the system in Fig-
ure 1 for the discussion below. For feasibility considerations, substitute m = 1 in
Figure 1. Khorashgani et al. [31] said that a SNIS of (U, V ) from (X,Y )⊗n using
reduction functions fn, gn has insecurity ν(n) if the following three conditions
are satisfied.

1. Correctness. The joint distribution of the output samples (u′, v′) is ν(n)-
close to the target distribution (U, V ) in statistical (i.e., total variational)
distance.

2. Security against a corrupt Alice. Fix any (u, v) in the support of the target
distribution (U, V ). The distribution of xn conditioned on u′ = u and v′ = v
is ν(n)-close to being independent of v.2

3. Security against a corrupt Bob. Likewise, for any (u, v) in the support of the
target distribution (U, V ), the conditional distribution (Y n|U ′ = u, V ′ = v)
is ν(n)-close to being independent of u.

[31] presented simulation-based security definition that unifies these three con-

ditions. We represent this definition by the notation: “(U, V ) vν(n)fn,gn
(X,Y )⊗n.”

Fix the source (X,Y ) and the target (U, V ). To discuss (the single-letter char-
acterization of) rate, Khorasgani et al. [31] consider a SNIS family of (U, V )⊗m(n)

from (X,Y )⊗n using reduction function fn, gn with insecurity ν(n), parameter-
ized by n ∈ {1, 2, . . . }. The (production) rate, represented by R( (U, V ), (X,Y ) ),
is the supremum of the maximum achievable m(n)/n as n → ∞ and ν(n) → 0
over all possible families of reductions.

Relation to other primitives and additional motivation. One-way secure com-
putation [21, 2] uses one additional round of communication to transform the
samples from source distributions into samples from a target distribution. Non-
interactive correlation distillation [41, 40, 54, 9, 15] restricts SNIS to the target
distribution (U, V ) being the independent coin distribution. SNIS is the crypto-
graphic extension of non-interactive simulation of joint distribution [20, 53, 49,
29, 30, 24, 17, 23] from information theory.

This non-cryptographic simulation problem (either non-interactive or with
rate-limited communication) has diverse applications, for example, as discussed
in [30], spanning from game-theoretic coordination in a network against an ad-
versary to control a dynamical system over a distributed network. These appli-
cations naturally extend to the cryptographic context with adversarial agents,
granting additional independent motivation to study SNIS.

2 The conditional distribution (A|B = b) is ν-close to being independent of b if there is
a distribution A∗ such that the statistical distance between A∗ and the conditional
distribution (A|B = b) is at most ν for any b ∈ Supp(B).
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Our problem statement. This work considers the simulation of two particular
target distributions (U, V ) (refer to Figure 2).

1. Noise from the binary symmetric channel. Alice outputs uniformly random
u ∈ {+1,−1} and Bob outputs v ∈ {+1,−1} such that, for each u, the
probability of u 6= v is ε ∈ (0, 1/2). We represent this correlated private
randomness by BSS(ρ), where ρ = (1−2ε). Therefore, for example, BSS(1/2)
is a distribution where Alice and Bob samples disagree with probability 1/4.

2. Noise from the binary erasure channel. Alice outputs uniformly random u ∈
{+1,−1} and Bob outputs v ∈ {u, 0} such that, for each u, the probability
of v = 0 is ε ∈ (0, 1). We represent this correlated private randomness by
BES(ρ), where ρ =

√
1− ε. So, BES(

√
1/2) has erasure probability 1/2.

This work parameterizes the channels by their maximal correlation ρ for brevity
in our technical presentation (see Section 4.2 for formal definition). [31] proved
that a SNIS of BSS(ρ′) from BSS(ρ) exists if and only if ρ′ = ρk, for some
k ∈ {1, 2, . . . }. Furthermore, if this SNIS is feasible, it has a rate of 1/k: each
party outputs the product of k samples of their source – a linear reduction.
Similarly, a SNIS of BES(ρ′) from BES(ρ) exists if and only if ρ′ = ρk, for some
k ∈ {1, 2, . . . }. This SNIS also has a rate of 1/k, and linear reductions are rate-
achieving.

+1

−1

+1

−1

1− ε

ε
ε

1− ε

BSS(ρ = 1− 2ε)

+1

−1

+1

−1

0

1− ε

ε

ε

1− ε

BES(ρ =
√

1− ε)

Fig. 2. Random correlated noise generated by the binary symmetric channel (BSS)
and the binary erasure channel (BES) with maximal correlation ρ.

Our work aims to study the feasibility and efficiency of SNIS in generating
BSS and BES samples. The source distribution (X,Y ) can be arbitrary; they
may have arbitrary-size sample spaces, and their marginal distributions need
not be uniform or identical. Among other results, we shall show the power of
non-linear constructions – SNIS instances that are securely realizable only using
non-linear reductions that are also rate-achieving. Like [31], our work pursues a
Fourier analytic approach to this problem; however, they studied SNIS with the
source distributions restricted to BSS and BES. Our investigation of SNIS rate,
among others, is beyond the scope of [1]’s work.
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Summary of our results. We present an exhaustive characterization of all source
distributions that yield secure SNIS of BSS and BES target distributions. Fur-
thermore, if the insecurity of a SNIS is sufficiently small, then one can slightly
edit the reduction functions to convert them into perfectly secure SNIS. Next,
we present (positive constant) lower and upper bounds on the production rate
of such SNIS. Finally, we exhibit SNIS instances where non-linear reduction
functions achieve optimal rate (also demonstrating the tightness of our rate
estimates); however, every linear reduction is constant insecure. We efficiently
searched the space of all reductions (guided by our technical results) to iden-
tify this fascinating non-linear reduction – even the authors were unaware of its
existence.

These cryptographic consequences rely on several foundational and technical
contributions of ours, which may be of independent and broader interest. We
build on the [31]’s framework for algebraizing SNIS from arbitrary source dis-
tributions using the source’s Markov and the adjoint Markov operators (refer to
Section 4.4 and Section B for definition and illustrative examples). This alge-
braization translates SNIS into an approximate eigenvector formulation for ap-
propriate linear operators, where the reduction functions are their eigenvectors.
Next, we quantify the impact of these linear operators on the Fourier spectrum
of the reduction functions. Our proof relies on a critical synergy between the lin-
ear operators and the reduction functions over the orthogonal Efron-Stein basis.
Our work shows that this quantification entails a concentration of the Fourier
spectrum of the reductions on low-degree terms. Fascinatingly, our bound on the
degree depends on the maximal correlations of the source and the target distri-
butions. Finally, we apply appropriate junta theorems (i.e., dimension reduction)
to prove the closeness of SNIS reductions to juntas (a.k.a., canonical reductions).

Consequently, one obtains a potent technical tool: the statistical to perfect
lemma. This lemma, for instance, implies the following highly non-trivial phe-
nomena for any source and target pair.

1. One can error-correct any statistically-secure SNIS into a perfect SNIS.
2. The total number of canonical SNIS candidates is constant.
3. The rate of any feasible SNIS is a positive constant.

Such phenomena are rare in cryptography (cf., [27] for an example). Our Fourier
concentration results and their consequences via junta theorems, as far as the
authors understand, seem beyond the spectral techniques of [1].

The presentation above is only a high-level overview of our proof strategy,
highlighting its primary landmarks. There are several subtleties to address and
technical challenges to overcome, which we further elaborate in Section 2.2.

Overview of the paper. Section 2 presents an informal overview of our results and
technical approach. Section 3 summarizes related works, and open problems and
research directions (in cryptography, theoretical computer science, and harmonic
analysis) motivated by our work. Section 4 introduces the preliminaries. Section 5
proves our results pertaining to determining the feasibility of SNIS. Section 6
presents our rate estimation results. Section 7 has results pertaining to 2 × 2
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sources. Section 8 presents the remaining results. Omitted proofs are provided
in the supporting materials.

2 Overview of our Contributions

2.1 Overview of Our Results

This section presents an informal summary of our results and a technical overview
of the proof. In the presentation below, without loss of generality, we assume that
the SNIS reductions are deterministic (see, for example, the derandomization re-
sults of Imported Theorem 7 and Imported Theorem 8 from [31]).

Feasibility characterization of SNIS from arbitrary sources. We present
an efficient algorithm to determine whether a statistically secure SNIS of BSS/BES
from the source (X,Y ) is feasible or not (see Corollary 1). Theorem 1 states that
if the simulation error of a SNIS of BSS/BES from the source (X,Y ) is less than
c/n, where c a suitable positive constant, one can edit the reduction functions
into a perfect secure SNIS. Furthermore, these perfectly-secure reductions are
canonical reductions that are Boolean constant-juntas. That is, they depend on a
constant number of input variables, which entails that the total number of such
canonical candidate reductions is only a constant. Therefore, one can exhaus-
tively search for all such canonical reductions to determine if a SNIS of BSS/BES
from (X,Y ) is possible.

Estimating rate of SNIS from arbitrary sources. We prove that if a SNIS is
feasible, it has a positive constant rate (see Corollary 2). Fix a BSS/BES target.
To lower-bound the rate of such SNIS by a positive constant, observe that if
a SNIS of BSS/BES from (X,Y ) is feasible, there is a canonical SNIS, which
is perfectly secure, and the reduction functions are constant-juntas. One can
partition the samples of (X,Y )⊗n into constant-size blocks, apply the canonical
reduction to each block, and obtain one target sample from each block. This
construction has a positive constant rate. Such results are rare in cryptography
and challenging to prove for secure computation (cf., [28, 27] for examples).

Theorem 5 upper-bounds the rate of SNIS of BSS/BES from any target distri-
bution using the maximal correlation [26, 49, 3, 48, 4] of the target distribution
(refer to Section 4.2 for the definition of maximal correlation) and the eigenvalue
of the Markov operator TT (refer to Section 4.4) of the source distribution. We
emphasize that this upper bound is only for perfectly secure SNIS. This restric-
tion is unsurprising because, as demonstrated in [31], even estimating the rate of
simulating BSS from BSS is known only for perfectly secure SNIS. [31] present
evidence that overcoming this hurdle may require advances in harmonic analysis.

Our upper bounds for BSS and BES are tight as demonstrated by (1) the
rate of self-simulation of BSS and BES [31], and (2) the reduction of BSS(1/2)
and BES(

√
1/2) from the ROLE correlation (defined below), whose maximal

correlation is
√

1/2.
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We clarify that this upper bound also extends to randomized perfectly-secure
SNIS because the sample-preserving derandomization of [31] preserves perfect
security.

Power of non-linear reductions. The random oblivious linear-function evalu-
ation [51] (ROLE) source samples uniformly and independently random a, b, c ∈
{0, 1}, provides Alice x = (a, b), and provides Bob y = (c, d), where d = a · c⊕ b.
Section B shows that the maximal correlation of ROLE is

√
1/2. Recall that

BSS(1/2) is a random correlated sample from the binary symmetric channel
where parties’ samples are different with probability 1/4.

We show that there is an optimal rate-1/2 SNIS of BSS(1/2) from ROLE
using non-linear reductions (refer to the protocol in Figure 3 and the discussion in
Section 8.3); however, any SNIS of BSS(1/2) from ROLE using linear reductions
is constant-insecure (refer to Lemma 4).3 The optimality of the rate follows from
the upper bound of Theorem 5. In the optimal protocol each party’s output
indicates whether their source samples form a ROLE correlation or not.

Source. Alice gets (a1, b1, a2, b2) and Bob gets (c1, d2, c2, d2) such that
a1, b1, c1, a2, b2, c2 are chosen uniformly and independently at random from the set
{0, 1} and d1 = a1 · c1 ⊕ b1 and d2 = a2 · c2 ⊕ b2.

Reductions.

1. Alice outputs u = +1, if b2 = a1 · a2 ⊕ b1; otherwise, u = −1.
2. Bob outputs v = +1, if d2 = c1 · c2 ⊕ d1; otherwise, v = −1.

Source. (In multiplicative notation.) Alice gets (A1, B1, A2, B2) and Bob gets
(C1, D2, C2, D2) such that A1, B1, C1, A2, B2, C2 are chosen uniformly and indepen-
dently at random from the set {+1,−1} and D1 = 1

2
· (1 +A1 + C1 −A1 · C1) · B1

and D2 = 1
2
· (1 +A2 + C2 −A2 · C2) ·B2.

Reductions.

1. Alice outputs U = 1
2
· (1 +A1 +A2 −A1 ·A2) ·B1 ·B2.

2. Bob outputs V = 1
2
· (1 + C1 + C2 − C1 · C2) ·D1 ·D2.

Fig. 3. SNIS of BSS(1/2) from ROLE achieving optimal production rate 1/2. The top
half of the figure presents the reduction using ROLE as defined for elements in {0, 1}.
The bottom half presents the equivalent reduction using the multiplicative notation
0 7→ +1 and 1 7→ −1. In the multiplicative representation, the Fourier spectrum of
each reduction is explicit. One can verify that the (1) reduction functions are non-
linear and (2) their Fourier weights are not concentrated on terms of identical degree.

The previous best construction (as far as the authors are aware) uses three
ROLEs and one round of communication to implement a 1-out-of-4 bit-OT.

3 Observe that “linearity” of a reduction may depend on how the samples of the source
are “named.” We prove our impossibility result is an strong sense. For any renaming
of the samples, we show that linear constructions are constant insecure.
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Alice feeds a random permutation of (u, u, u, 1 − u), where u
$←− {0, 1}, into

the 1-out-of-4 bit-OT. Bob chooses to receive the bit v at a random position
i ∈ {1, 2, 3, 4}. In comparison, our construction uses one less ROLE sample
and no communication, which significantly impacts the efficiency of this secure
computation.4

Similarly, there is an optimal rate-1 SNIS of BES(
√

1/2) from ROLE using
non-linear reductions (refer to Section 8.3 and the protocol in Section E.4); how-
ever, any SNIS using linear reductions is constant-insecure (refer to Lemma 4).
The optimality of this protocol follows from Theorem 5. Furthermore, the spec-
trums of these reduction functions are not concentrated on terms with an iden-
tical degree.

Additional Result: explicit characterization of SNIS of BSS from 2× 2
sources. Let the target distribution be BSS(ρ′) and (X,Y ) be an arbitrary
source such that the support size of both its marginals is two. We prove in The-
orem 6 that if the source (X,Y ) 6= BSS(ρ) or (X,Y ) = BSS(ρ) but ρ′ 6= ρk, for
all k ∈ {1, 2, . . . }, then any SNIS of BSS(ρ′) from (X,Y ) is constant insecure. If
(X,Y ) = BSS(ρ), ρ′ = ρk, for some k ∈ {1, 2, . . . }, and BSS(ρ′) vνf,g BSS(ρ) for
a sufficiently small ν, then one can slightly edit the reduction function to obtain
new reduction functions f∗, g∗ that are k-homogeneous5 and BSS(ρ′) v0

f∗,g∗

BSS(ρ) – a result already proved in [31]. The proof of Theorem 6 (addition-
ally) depends on (1) Theorem 8: a statistical-to-perfect lemma for BSS target
from arbitrary 2× 2 source, and (2) Theorem 9: the characterization of sources
facilitating perfect SNIS of BSS target.

Remark 1. For 2×2 sources, our definition of “sufficiently small simulation error”
is slightly different from the arbitrary source case. In the 2 × 2 source case,
“sufficiently small simulation error” is a (global) constant. For arbitrary sources,
“sufficiently small simulation error” is c/n, where c is a global constant. This
variation is a consequence of the different junta theorems our analysis uses.

Additional Result: explicit characterization of SNIS of BES from 2× 2
sources. We show that any SNIS of BES from a 2×2 source is constant insecure
(refer to Theorem 7). This generalizes the impossibility of SNIS of BES from
BSS [31].

Additional Result: necessary condition for SNIS feasibility. Theorem 11
presents easy-to-test necessary conditions for the feasibility of SNIS of BSS or
BES from (eigenvalues of the) Markov operator of the source distribution. Our
“eigenvalue test” (derived independently) is identical to the test introduced in
[1].

Additional Result: Incompleteness of string OT. Random samples from
the string oblivious transfer functionality, parameterized by ` ∈ {1, 2, . . . },
4 We identified all reductions realizing this SNIS at an optimal rate. All the reductions

were essentially equivalent to each other. However, we chose this particular reduction
because it admits an elegant intuitive formulation.

5 A homogeneous function is a linear combination of terms with an identical degree.
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gives Alice two random `-bit strings (x0, x1) ∈ {0, 1}2` and gives Bob (b, xb) ∈
{0, 1}`+1

, where b is a uniformly random bit (see Definition 8). Lemma 5 states
that this family (for ` ∈ {1, 2, . . . }) of random samples from the string oblivious
transfer is not complete for SNIS because all of them have maximum correlation√

1/2. This family cannot yield a SNIS of any target with maximal correlation

>
√

1/2, because of Imported Theorem 2, Imported Theorem 1.
This family is complete for one-way secure computation [21]. [1] show that a

single source cannot be complete for SNIS.

2.2 Overview of Our Technical Contributions

This section presents a high-level intuition of our foundational and technical
contributions. It is instructive to read this section with SNIS for BSS target as
a representative example. SNIS for BES target encounters a technical subtlety,
which we resolve towards the end.

Our starting point. For an arbitrary source (X,Y ), Khorasgani et al. [31]
algebraically captured the simulation-based security definition of SNIS using
the Markov (T) and the adjoint-Markov (T) operators associated with (X,Y ).
If a SNIS has a small simulation error, the reduction functions f and g are
approximate eigenvectors of the linear operators TT and TT, respectively.

Characterization of Markov operator’s effect on the Fourier spectrum.
It is essential to accurately characterize the impact on the Fourier spectrum when
applying the TT linear operator on the reduction f and applying the TT linear
operator on the reduction g. The marginal distributions of the source need not
be uniform or identical to each other, complicating this technical challenge even
further. We were unable to approach this challenge directly.

Instead, we used the Efron-Stein orthogonal basis for this analysis step (see
Section 4.5). Our linear operators synergize well with the reduction functions
over this basis, and one bounds the effect of these operators on the reduction
functions using the maximum correlation of the source (X,Y ) (see Proposition 5
and Proposition 6). Finally, we return to the Fourier basis and translate the
bounds on the Fourier spectrum using Proposition 7.

Fourier concentration. The approximate eigenvector problem (a consequence
of the SNIS definition) and the characterization of the Markov and adjoint-
Markov operators’ impact on the Fourier spectrum yields new Fourier concen-
tration results. For 2 × 2 sources, we prove that the Fourier spectrum of the
solutions of the approximate eigenvector problem (in particular, the reduction
functions) are concentrated on terms of a fixed degree (see Theorem 10). [31]
proved this concentration result for the particular cases of BSS and BES sources.

For arbitrary sources, we show that the Fourier spectrum is concentrated
on low-degree terms (see Theorem 3). This relaxation in concentration is also
necessary; i.e., we show perfectly secure reductions constructing BSS(1/2) and
BES(

√
1/2) from the ROLE source whose spectrums are not concentrated on

only one degree. This Fourier concentration phenomenon is a manifestation of
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“security” and distinguishes our problems from those arising in non-interactive
simulation (i.e., SNIS without security) [20, 53, 49, 29, 30, 24, 17, 23].

Statistical to perfect lemma. The set of all reductions with Fourier spectrum
concentrated on low-degree multi-linear is still potentially huge. Using appropri-
ate junta theorems, Theorem 1 shows that Boolean functions satisfying such
Fourier concentration properties are (close to) juntas. Since these juntas depend
only on a constant number of inputs, the total number of such candidate juntas
is also a constant. Therefore, this result implies that (1) SNIS is either perfectly
secure or constant-insecure, (2) The size of the set of all canonical SNIS of (U, V )
from (X,Y ) is a constant, and (3) Any feasible SNIS has a positive constant rate.
Furthermore, these juntas yield perfectly-secure SNIS.

The consequences of this result are immense. For a particular number of
source samples n and (sufficiently small constant) insecurity budget ν(n), our
analysis determines whether such a SNIS exists or not. Furthermore, a constant-
time algorithm can search for the witness reductions. For example, an exhaustive
search algorithm discovered all SNIS of BSS(1/2) from ROLE, uncovering fasci-
nating new reductions.

A technical subtlety. A careful reader would recognize that the junta theorems we
mention apply only to Boolean functions. Therefore, the analysis outline above
applies to Boolean reduction functions, for example, when the target is BSS.

However, when the target is BES, one encounters a technical hurdle. Although
the reduction function f is Boolean, the reduction function g is not Boolean –
it is three-valued. We assessed that general junta theorems for functions with
a bounded number of different outputs were insufficient for our context. Conse-
quently, we followed a different proof strategy relying on the security of SNIS.

1. First, using the proof outline above, one concludes that the reduction f is
close to a constant-junta.

2. Next, the security condition states that Tf is close to (a scalar multiple of)
the reduction function g, from which we conclude that g is itself close to a
constant-junta.

3 Additional Discussion

3.1 Prior Related Works

Non-interactive simulation [20, 53, 49, 29, 30, 24, 17, 23], non-interactive corre-
lation distillation [41, 40, 54, 9, 15], and one-way secure computation [21, 2]
are well-studied research directions in information theory and cryptography.
Recently, [31] and [1] motivated secure non-interactive simulation from effi-
ciency considerations in secure computation and study of cryptographic com-
plexity [7, 36, 35, 6, 42].

Non-interactive simulation considers the fundamental question of deciding
whether a target distribution is simulatable from the source distribution. Se-
curity is not a concern in this primitive; therefore, erasure of information from
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parties’ views is permissible. In particular, they consider the “gap” version of
this question: one determines whether such simulation is possible under an error
threshold, or any such simulation must have an error that is a constant (greater
than one) higher than the threshold. The general Fourier concentration phe-
nomenon for Boolean functions (discovered in [31] and our work) is unique to
SNIS, which, the authors believe, distinguishes SNIS research from its insecure
analog.

[31] introduced SNIS and studied the feasibility and rate of SNIS among BSS
and BES distributions. Our work considers SNIS of BSS and BES distributions
from arbitrary source distributions, a significant generalization of the research
scope that requires new and more powerful harmonic analysis techniques.

[1] study SNIS through the lens of spectral analysis. The authors believe that
the Fourier concentration results and their consequences (for example, the sta-
tistical to perfect lemma, the constant size of the set of all canonical reductions,
and constant positive rate results) are beyond the scope of spectral analysis
techniques.

3.2 Open Problems

Our work highlights the need to develop a more powerful harmonic analysis
toolkit specific to cryptography. For example, a more powerful junta theorem
for “secure” reduction functions would lead to stronger feasibility and rate char-
acterizations and innovative secure protocol design (as illustrated by our rate-1/2
SNIS of BSS(1/2) from ROLE).

Another essential technical step in our analysis relied on the junta theorems
to identify perfectly secure junta reductions if a SNIS had a sufficiently small
simulation error. However, motivated by secure computation applications that
can use constant-insecure precomputation (for example, [27]), it is meaningful
to perform this dimension reduction even when the simulation error is a con-
stant that is not too small. Towards this objective, a logical research direction is
to seek a “security-preserving dimension reduction” (see Conjecture 1). For ex-
ample, in non-interactive correlation research, “correlation-preserving dimension
reduction” is an essential step. An analogous result in the cryptographic context
shall help determine the feasibility of SNIS even when the insecurity budget is
not too small.

The authors believe that it is not a coincidence that the upper bound on the
SNIS rate depends on the maximum correlation of the source and target distri-
butions. This raises the possibility that tight rate and capacity characterization
of SNIS is closely related to the maximum correlation of the source and target
distributions. This investigation is related to identifying monotones for secure
computation, cf., [50, 52, 45, 46, 47].

This work primarily considers multiple samples from one source, and a natu-
ral extension would be to consider samples from a family of sources. For example,
one can simultaneously consider a correlated source and independent coins to
fold the derandomization results within the technical analysis itself. [31] and our
work consider BSS and BES targets and discrete sources. A natural question is to

10



extend the analysis to incorporate more complex targets or continuous sources,
like the additive white Gaussian noise source.

The introductory works on SNIS ([31, 1] and this work) consider two-party
SNIS. Extending SNIS to the multi-party setting motivated by applications to
multi-party computation is natural. Instead of the non-interactive setting, one
can also consider the rate-limited communication model motivated by applica-
tions to leakage-resilient secure computation.

Beyond SNIS, feasibility, rate, and capacity questions are pertinent in the
one-way secure computation model [21]. There are several open problems in
feasibility, and no non-trivial rate/capacity results are known. The gap between
non-linear and linear reduction functions in SNIS further increases the challenge
of analyzing this model.

4 Preliminaries

4.1 Notation

We denote [n] as the set {1, 2, . . . , n} and N<m = {0, 1, . . . ,m − 1}. For two
functions f, g : Ω → R, the equation f = g implies that f(x) = g(x), for every
x ∈ Ω. We use Ω to denote the sample spaces, and π usually denotes a probabil-
ity distribution. (Ωx, Ωy) is a joint probability space. For x ∈ Ωnx , we represent
xi ∈ Ωx as the i-th coordinate of x. A Boolean function is a {±1}-valued func-
tion.
Correlated Spaces. We use (X,Y ) to denote the joint distribution over (Ωx, Ωy)
with probability mass function π, and πx, πy to denote the marginal probability
distributions of X and Y , respectively. Sometimes we will use (Ωx×Ωy, π) to de-
note the joint distribution. We sometimes use notation (X,Y )ρ to emphasize that
its maximal correlation (defined in Section 4.2) is ρ. We always use the following
notation for the expectation of functions f ∈ L2(Ωnx , πx

⊗n), g ∈ L2(Ωny , πy
⊗n)

over correlated spaces.

E[f ] := E
x∼πx

⊗n
[f(x)], E[g] := E

y∼πy
⊗n

[g(y)], E[fg] := E
(x,y)∼π⊗n

[f(x) · g(y)]

Statistical Distance. The statistical distance (total variation distance) be-
tween two distributions P and Q over a finite sample space Ω is defined as
SD (P,Q) = 1

2

∑
x∈Ω |P (x)−Q(x)|.

4.2 Maximal Correlation

We define maximal correlation and its properties in this subsection.

Definition 1 (Maximal Correlation [26, 22, 49, 3, 48, 4]). The Hirschfeld-
Gebelein-Rényi maximal correlation of (X,Y ) is defined as

ρ(X;Y ) := max
E[f ]=E[g]=0

E[f2]=E[g2]=1

E[f(X)g(Y )]

11



For example, the maximal correlation of BSS with flipping probability ε is
|1− 2ε| for every ε ∈ [0, 1], and the maximal correlation of BES with erasure
probability ε is

√
1− ε [56]. Note that maximal correlation of any distribution

is always between 0 and 1.

Imported Theorem 1 (Tensorization [49]) If (X1, Y1)ρ1 and (X2, Y2)ρ2 are
independent, then the maximal correlation of (X1, X2;Y1, Y2) is equal to max(ρ1, ρ2)
and so if (X1, Y1), (X2, Y2) are i.i.d., then it is equal to ρ1 = ρ2.

Imported Theorem 2 (Data Processing [49]) Let (X,Y ) be a joint distri-
bution. Then, for any pair of (even randomized) functions, we ρ(f(X), g(Y )) 6
ρ(X,Y ).

One can compute maximal correlation as follows.

Proposition 1 ([49]). The maximal correlation of a finite joint distribution
(X,Y ) is the square root of the second largest eigenvalue of the Markov operator
TT, where T and T are Markov and adjoint Markov operator associated with
(X,Y ).

4.3 Fourier Analysis Basics

We follow the notation of [44] to introduce some background in Fourier analysis
over product measure.

Fourier Analysis over Higher Alphabet

Definition 2. Let (Ω, π) be a finite probability space where |Ω| > 2 and π denote
a probability distribution over Ω. Let π⊗n denote the product probability distri-
bution on Ωn such that π⊗n(x1x2 . . . xn) =

∏n
i=1 π(xi). For n ∈ N, we write

L2(Ωn, π⊗n) to denote the real inner product space of functions f : Ωn → R
with inner product

〈f, g〉π⊗n = E
x∼π⊗n

[f(x)g(x)].

Moreover, the Lp-norm of a function f ∈ L2(Ωn, π⊗n) is defined as

‖f‖p := E
x∼π⊗n

[|f(x)|p]1/p.

We define the distance between two functions f, g ∈ L2(Ω,µ) as ‖f − g‖1. Note
that if f, g are bounded i.e. |f(x)| 6 α and |g(x)| 6 α for every x ∈ Ω,

then ‖f − g‖22 6 2α‖f − g‖1. In particular, for Boolean valued functions f, g,

‖f − g‖22 6 2‖f − g‖1 = 4 Prx∼µ[f(x) 6= g(x)]. Therefore,

Claim 1 Suppose f ∈ L2(Ω,µ) such that |f(x)| 6 α for every x ∈ Ω. Then, we

have ‖f‖22 6 α · ‖f‖1.

12



Definition 3. A Fourier basis for an inner product space L2(Ω, π) is an or-
thonormal basis φ0, φ1, . . . , φm−1 with φ0 ≡ 1, where by orthonormal, we mean
that for any i 6= j, 〈φi, φj〉 = 0 and for any i, 〈φi, φi〉 = 1.

It can be shown that if φ0, φ1, . . . , φm−1 is a Fourier basis for L2(Ω, π), then the
collection (φ)α∈Nn

<m
where φα(x) :=

∏n
i=1 φαi(xi) (each αi ∈ {0, 1, . . . ,m− 1})

is a Fourier basis for L2(Ωn, π⊗n). Note that the size of the basis (φ)α∈Nn
<m

is
mn.

Definition 4. Fix a Fourier basis φ0, φ1, . . . , φm−1 for L2(Ω, π), then every f ∈
L2(Ωn, π⊗n) can be uniquely written as f =

∑
α∈Nn

<m
f̂(α)φα where f̂(α) =

〈f, φα〉. The real number f̂(α) is called the Fourier coefficient of f at α.

For α ∈ Nn<m, we denote |α| := |{i ∈ [n] : αi 6= 0}|. The Fourier weight of f

at degree k is defined as W k[f ] :=
∑
α:|α|=k f̂(α)2. The Fourier weight of f at

degree strictly greater than k is defined as W>k[f ] :=
∑
α:|α|>k f̂(α)2. We say

that the degree of a function f ∈ L2(Ωn, π⊗n), denoted by deg(f), is the largest

value of |α| such that f̂(α) 6= 0. For every coordinate i ∈ [n], the i-th influence

of f , denoted by Infi[f ], is defined as Infi[f ] :=
∑
α : αi 6=0 f̂(α)2. And the total

influence is defined as Inf(f) :=
∑n
i=1 Infi[f ] =

∑
α|α|f̂(α)2 =

∑n
k=1 k ·W k[f ].

Biased Fourier Analysis over Boolean Cube. In the special case when
Ω = {±1}, we define the product Fourier basis functions φS for S ⊆ [n] as

φS(x) =
∏
i∈S

φ(xi) =
∏
i∈S

(
xi − µ
σ

)
,

where p = π(−1), µ = 1− 2p, σ = 2
√
p
√

1− p.

Definition 5 (Junta Function). A function f : Ωn → {±1} is called a k-junta
for k ∈ N if it depends on at most k of its inputs coordinates; in other words,
f(x) = g(xi1 , xi2 , . . . , xik), where i1, i2, . . . , ik ∈ [n]. Informally, we say that f is
a “junta” if it depends on only a constant number of coordinates. We also say
that f is ε-close to a k-junta function h if ‖f − h‖1 6 ε.

4.4 Markov Operator

Definition 6 (Markov Operator [38]). The Markov operator associated with
joint distribution (X,Y ), denoted by T, maps a function g ∈ Lp(Ωy, πy) to a
function Tg ∈ Lp(Ωx, πx) by the following map:

(Tg)(x) := E[g(Y ) | X = x],

where (X,Y ) is distributed according to π.
Furthermore, we define the adjoint operator of T, denoted as T, maps a

function f ∈ Lp(Ωx, πx) to a function Tf ∈ Lp(Ωy, πy) by the following map:

(Tf)(y) = E[f(X) | Y = y].
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Note that the two operators T and T have the following property.

〈Tg, f〉πx = 〈g,Tf〉πy = E[f(Xn)g(Y n)].

Moreover, both Markov operators T and T are linear operators. Both TT and
TT are also Markov operator. We want to emphasize that the largest eigenvalue
of any Markov operator is always 1.

Proposition 2. Let T,T be respectively the Markov and adjoint operator as-
sociated with the 2-by-2 distribution (X,Y )

⊗n
ρ . Let 1 = λ0 > λ1 > 0 be the

eigenvalues of TT
(1)

. Then, it holds that ρ =
√
λ1. Moreover, the set of all

eigenvalues of TT and TT is {1, ρ2, ρ4, . . . , ρ2n}.

Proposition 3. [49] Suppose (X,Y ) is a finite joint distribution over (Ωx, Ωy).
Let π denote the probability mass function of (X,Y ) and T and T respectively
denote the Markov operator and the adjoint Markov operator associated with
(X,Y ). Let (X,X ′) be the joint distribution over (Ωx × Ωx, µ) such that the
marginal distribution µx is the same as πx and the associated Markov operator
of (X,X ′) is TT. Then, the marginal distributions of (X,X ′) are the same, in
other words, µx = µx′ . Furthermore, we have ρ(Ωx×Ωx, µ) = ρ2, where ρ is the
maximal correlation of (X,Y ).

This result shows that for f ∈ L2(Ωx, πx), we have (TT)f ∈ L2(Ωx, πx).

4.5 Efron-stein Decomposition

We shall use orthogonal Efron-stein decomposition as one of the main technical
tools.

Definition 7 (Efron-Stein decomposition (Chapter 8 [44]Chapter 8)).

Let {(Ωi, µi)}`i=1 be discrete probability spaces and let (Ω,µ) =
∏`
i=1(Ωi, µi).

The Effron-Stein decomposition of f : Ω → R is defined as f =
∑
S⊆[n] f

=S

where the functions f=S satisfy (1) f=S depends only on xS, and (2) for all
S 6⊆ S′ and all xS′ , E[f=S |XS′ = xS′ ] = 0.

Proposition 4 ([18]). Efron-Stein decomposition exists and is unique.

The following propositions give the relation between Markov operators and
Efron-stein decompositions. The first proposition shows that the Efron-Stein
decomposition commutes with Markov Operator.

Proposition 5 ([38, 39] Proposition 2.11). Let (Xn, Y n) be a joint distri-
bution over (Ωnx × Ωny , π

⊗n). Let T(i) be the Markov operator associated with

(Xi, Yi). Let T = ⊗ni=1T
(i), and consider a function g ∈ L2(Ωny , πy

⊗n). Then,

the Efron-Stein decomposition of g satisfies (Tg)=S = T(g=S).

The next proposition shows that Tg depends on the low degree expansion of g.
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Proposition 6 ([39] Proposition 2.12). Assuming the setting of Proposi-
tion 5 and let ρ be the maximal correlation of the distribution (X,Y ). Then for
all g ∈ L2(Ωny , πy

⊗n) it holds that
∥∥Tg=S∥∥

2
6 ρ|S|

∥∥g=S∥∥
2
.

The next proposition shows the connection between Fourier decomposition and
Efron-Stein decomposition.

Proposition 7 ([44] Proposition 8.36). Let f ∈ L2(Ωn, π⊗n) have the or-
thogonal decomposition f =

∑
S⊆[n] f

=S, and let {φH}H∈Ωn be an orthonormal

Fourier basis for L2(Ωn, π⊗n). Then f=S =
∑
α : Supp(α)=S f̂(α)φα. In particu-

lar, when Ω = {±1} we have f=S = f̂(S)φS.

This implies that
∥∥f=S∥∥2

2
=
∑
α : Supp(α)=S f̂(α)2. Therefore, it holds thatW k[f ] =∑

|S|=k
∥∥f=S∥∥2

2
, and W>k[f ] =

∑
|S|>k

∥∥f=S∥∥2
2
.

4.6 Imported Theorems

Imported Theorem 3 (Kindler-Safra Junta Theorem [33, 34]) Fix d >
0. There exists ε0 = ε0(d) and constant C such that for every ε < ε0, if
f : {±1}n → {±1} satisfies W>d[f ] = ε then there exists a Cd-junta and de-

gree d function f̃ : {±1}n → {±1} such that
∥∥∥f − f̃∥∥∥2

2
6 (ε+ Cdε5/4).

Imported Theorem 4 (Friedgut’s Junta Theorem [19, 44]) There exists
a global constant M such that the following holds. Let (Ω, π) be a finite probability
space such that every outcome has probability at least λ. If f ∈ L2(Ωn, πn)
has range {±1} and 0 < ε 6 1, then f is ε-close to a (1/λ)M ·Inf(f)/ε-junta
h : Ωn → {±1}, i.e., Prx∼π⊗n [f(x) 6= h(x)] 6 ε.

5 Characterization of SNIS from arbitrary Sources

This section presents our feasibility characterization of SNIS from arbitrary joint
distributions stated below.

Corollary 1 (Feasibility Characterization). There is an algorithm that takes
as input a constant c > 0, a source (X,Y ), and a target (U, V ) ∈ {BSS(ρ′),BES(ρ′)},
and

1. outputs YES, if there is an infinite family of reduction functions {fn, gn}
satisfying (U, V ) vνnfn,gn (X,Y )

⊗n
and νn 6 c/n, and

2. outputs NO, otherwise.

In the YES instance, the algorithm additionally outputs a pair of reduction func-
tions f∗ : Ωn0

x → {±1} and g∗ : Ωn0
y → {±1} that witness a perfect-SNIS con-

struction for some n0 = n0(c, ρ, ρ′) ∈ N where ρ represents the maximal corre-
lation of source (X,Y ). Furthermore, the algorithm’s running time is bounded
and computable.
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This theorem says that there is an algorithm that can determine whether there is
a statistically SNIS of BSS/BES from a given source. The algorithm also outputs
a canonical (perfect) SNIS construction in the YES instance. Corollary 1 follows
from the following statistical to perfect results.

Theorem 1 (Statistical-to-perfect). Let (X,Y ) be an arbitrary joint dis-
tribution and (U, V ) ∈ {BSS(ρ′),BES(ρ′)}. For any c > 0, there are positive
constants n0, d,D such that the following result holds. If (U, V ) vνf,g (X,Y )⊗n,

for some n > n0, and ν 6 c/n, then f is νd-close to a D-junta reduction
function f∗, and g is νd-close to a D-junta reduction function g∗ such that
(U, V ) v0

f∗,g∗ (X,Y )⊗n.

We remark that the constant D does not depend on n but might depend on the
source, the target, the constant c, and the implicit constant in the Friedgut’s
junta theorem (Imported Theorem 4). Assuming this theorem, Figure 4 gives an
algorithm for Corollary 1. We provide the proof of Theorem 1 when (U, V ) =

SNISFeasChar ((X,Y ), (U, V ), c) :

1. Let D = D(ρ′, (X,Y ), c) be the constant defined in Theorem 1.
2. Consider all functions f : ΩDx → {±1}, and g : ΩDy → {±1}

– Return YES, if there exist f∗, g∗ such that BSS(ρ′) v0
f∗,g∗ (X,Y )⊗D.

– Return NO, otherwise.

Fig. 4. An algorithm to decide the feasibility of SNIS of BSS(ρ′) from samples of (X,Y )

BSS(ρ′) in Section 5.1, and when (U, V ) = BES(ρ′) in Section 5.2. At a high
level, our proof strategy for BES is similar to the strategy for BSS except one
technical challenge due to Bob’s reduction function, which is not a Boolean-
valued function.

5.1 Statistical to Perfect: BSS target

Consider a SNIS of BSS(ρ′) vνf,g (X,Y )ρ
⊗n

where (X,Y ) is an arbitrary joint

distribution, f ∈ L2(Ωnx , πx
⊗n) and g ∈ L2(Ωny , πy

⊗n).

Step 1: Algebraization of SNIS and approximate eigenvalue problem. Following
a similar idea as in [31], we extend the algebraization of simulation-based SNIS
to arbitrary source distribution as follows.

Theorem 2 (BSS Algebraization of Security). For any ρ′ ∈ (0, 1) and any
joint distribution (X,Y ), the following statements hold.

1. If BSS(ρ′) vνf,g (X,Y )
⊗n

, then E[f ] 6 ν, E[g] 6 ν,
∥∥Tf − ρ′g∥∥

1
6 4ν, and

‖Tg − ρ′f‖1 6 4ν.
2. If E[f ] 6 ν, E[g] 6 ν,

∥∥Tf − ρ′g∥∥
1

6 ν, and ‖Tg − ρ′f‖1 6 ν, then

BSS(ρ′) v2ν
f,g (X,Y )

⊗n
.
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This theorem gives a qualitative equivalence of the simulation-based definition
and the algebraized definition. Next, composing the two L1-norm constraints

yields
∥∥∥TTf − ρ′2f∥∥∥

1
6 8ν and

∥∥∥TTg − ρ′2g∥∥∥
1
6 8ν. This implies that f and g

are an approximate eigenvector of the two operators TT and TT, respectively.

Claim 2 (Approximate eigenvalue constraint) Suppose BSS(ρ′) vνf,g (X,Y )
⊗n

,

then
∥∥∥TTf − ρ′2f∥∥∥

1
6 8ν, and

∥∥∥TTg − ρ′2g∥∥∥
1
6 8ν.6

Step 2: Effect of Markov operators on Fourier spectrum of reduction functions.
Let {φα} and {ψα} be some Fourier bases for L2(Ωnx , πx

⊗n) and L2(Ωny , πy
⊗n),

respectively. As common in Fourier analysis, it is natural to look at the effect of
the Markov operators on the Fourier characters. However, we don’t know how to
control the behavior of TTφα and TTψα. To circumvent this bottleneck, we take
a detour and look at the effect of these operators on the orthogonal (Efron-Stein)
decomposition. Let f =

∑
S⊆[n] f

=S and g =
∑
S⊆[n] g

=S be the orthogonal de-

composition. [39] showed that the decomposition has two important properties:
(1) it commutes with the Markov operators (Proposition 5) and (2) the higher
order terms in the decomposition of TTf =

∑
S⊆[n](TTf)=S have significantly

smaller L2 norm compared to the L2 norm of the corresponding higher order
terms in the decomposition of f (Proposition 6 and similarly for TTg and g).
This help us first to rewrite

(TTf)=S = (TT)f=S = TTf=S , and (TTg)=S = TTg=S ,

and then bound them as:∥∥TTf=S∥∥
2
6 ρ2|S|‖f‖2, and

∥∥TTg=S∥∥
2
6 ρ2|S|‖g‖2

Step 3: Fourier concentration, low total influence, and junta properties of reduc-
tion functions. Those inequalities above together with the connection between
orthogonal decomposition and the Fourier decomposition (Proposition 7) yields
that Fourier spectrum of f and g are concentrated on low-degree terms.

Theorem 3. Suppose there exist reduction functions f : Ωnx → {±1} and g : Ωny →
{±1} such that BSS(ρ′) vδf,g (X,Y )

⊗n
for some δ > 0.7 Then, the following

bounds hold.

W>k[f ] :=
∑

α : |α|>k

f̂(α)2 6
(1 + ρ′)2

(ρ2(k+1) − ρ′2)2
· δ, and

W>k[g] :=
∑

α : |α|>k

ĝ(α)2 6
(1 + ρ′)2

(ρ2(k+1) − ρ′2)2
· δ,

where k ∈ N such that ρk > ρ′ > ρk+1.

6 Note that in general the operator TT (or TT) is not equal to the noise operator Tρ.
7 It is possible that δ depends on n.
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Observe that if the Fourier weight of a function is mostly concentrated on low-
degree terms, then the function has small total influence (Claim 3).

Claim 3 (Concentrated on low degree implies low influence) Let f be a
Boolean-valued function in L2(Ωn, µ⊗n). If W>k[f ] 6 δ, then Inf[f ] 6 k + nδ.

In particular, when δ is sufficiently small, the total influence of reduction func-
tions f, g are constant (not depend on n). This allows us to invoke the Friedgut’s
junta theorem (Imported Theorem 4) and conclude that reduction functions are
close to some junta functions.

Step 4: Must be Perfect. Since junta functions f̃ and g̃ depend on a constant
number of variables, so does Tf̃ and Tg̃. Observe that two distinct bounded
junta functions are always constant far (Claim 4).

Claim 4 (Distinct Bounded Junta are Far) Suppose h : Ωnx → {±1} and
` : Ωny → {±1} are two D-junta Boolean functions in L2(Ωnx , πx) and L2(Ωny , πy),

respectively. If Th 6= ρ′`, then there exists a constant c that depends only on
ρ′, D, (X,Y ) such that

∥∥Th− ρ′`∥∥
2
> c. Similarly, if T` 6= ρ′h, then there exists

a constant d that depends only on ρ′, D, (X,Y ) such that ‖T`− ρ′h‖2 > d.

In particular, if Tf̃ 6= ρ′g̃, then they are constant far, which implies a constant
insecurity; similarly, if Tg̃ 6= ρ′f̃ , then they are constant far, which also implies a
constant insecurity. Thus, it must hold that Tf̃ = ρ′g̃ and Tg̃ = ρ′f̃ . The junta
property of f̃ , f̃ and f are close, and E[f ] is small imply that E[f̃ ] = 0. Similarly,
it holds that E[g̃] = 0. Therefore, f̃ and g̃ witness a perfect construction.

Proof of Theorem 3. Observe that
∣∣∣(TTf − ρ′2f)(x)

∣∣∣ 6 2, and
∣∣∣(TTg − ρ′2g)(x)

∣∣∣ 6
2 for every x by the contraction property of Markov operator and boundedness
of functions f and g. Observe that if a bounded function has small L1 norm so
does its L2 norm square. Thus, we have∥∥∥TTf − ρ′2f∥∥∥2

2
6 2δ, and

∥∥∥TTg − ρ′2g∥∥∥2
2
6 2δ. (1)

Let f =
∑
S⊆[n] f

=S be the orthogonal decomposition of f . Then, we have∥∥∥TTf − ρ′2f∥∥∥2
2

=
∑
S⊆[n]

∥∥∥TTf=S − ρ′2f=S∥∥∥2
2

(Orthogonal property)

>
∑

S : |S|>k

∥∥∥TTf=S − ρ′2f=S∥∥∥2
2

(Property of norms)

>
∑

S : |S|>k

∣∣∣ ∥∥TTf=S∥∥
2
− ρ′2

∥∥f=S∥∥
2

∣∣∣2 (Triangle inequality)

By Proposition 6, we have
∥∥TTf=S∥∥

2
6 ρ2|S|

∥∥f=S∥∥
2
. This implies that, for

every S ⊆ [n] satisfying |S| > k,∥∥TTf=S∥∥
2
− ρ′2

∥∥f=S∥∥
2
6 (ρ2|S| − ρ′2)

∥∥f=S∥∥
2
6 0, (2)
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where the last inequality follows from ρ2|S| − ρ′2 6 ρ2(k+1) − ρ′2 6 0 for every
|S| > k, and

∥∥f=S∥∥
2
> 0. Thus, squaring both sides of inequality 2 for each

|S| > k yields∥∥TTf − ρ′2f∥∥2
2
>

∑
S : |S|>k

(ρ2|S| − ρ′2)2
∥∥f=S∥∥2

2

> min
S : |S|>k

(ρ2|S| − ρ′2)2
∑

S : |S|>k

∥∥f=S∥∥2
2

= (ρ2(k+1) − ρ′2)2 W>k[f ]

This together with the inequality (1) implies that W>k[f ] 6 (1+ρ′)2

(ρ2(k+1)−ρ′2)2 · δ.

Similarly, it also holds that W>k[g] 6 (1+ρ′)2

(ρ2(k+1)−ρ′2)2 · δ, as desired.

5.2 Statistical to Perfect: BES target

Consider a SNIS of BES(ρ′) vνf,g (X,Y )ρ
⊗n

where (X,Y ) is an arbitrary joint

distribution, f ∈ L2(Ωnx , πx
⊗n) and g ∈ L2(Ωny , πy

⊗n). Step 2 and step 4 basi-
cally are the same as these steps in Section 5.1. So we shall discuss steps 1 and
3 only.

Step 1: Algebraization of SNIS and approximate eigenvalue problem. We use a
similar idea as in [31] to extend the algebraization to arbitrary source.

Theorem 4 (BES target Algebraization of Security). For any ρ′ ∈ (0, 1),
and any joint distribution (X,Y ), the following statements hold.

1. If BES(ρ′) vνf,g (X,Y )
⊗n

, then E[f ] 6 ν, E[g] 6 ν,
∥∥Tf − g∥∥

1
6 4ν, and∥∥∥Tg − ρ′2f∥∥∥

1
6 4ν.

2. If E[f ] 6 ν, E[g] 6 ν,
∥∥Tf − g∥∥

1
6 ν, and

∥∥∥Tg − ρ′2f∥∥∥
1
6 ν, then BES(ρ′) v2ν

f,g

(X,Y )
⊗n

.

Claim 5 (Approximate eigenvalue constraint) Suppose BES(ρ′) vνf,g (X,Y )
⊗n

,

then
∥∥∥TTf − ρ′2f∥∥∥

1
6 8ν, and

∥∥∥TTg − ρ′2g∥∥∥
1
6 8ν.

Step 3: Fourier concentration, low total influence, and junta properties. When
the target is a BSS both the ranges of reduction functions are Boolean, so the
junta theorems can be applied for both functions. On the other hand, when
the target is a BES, the existing junta theorem for functions with more than
two values is not good enough for us. To overcome this barrier, we first use
the same idea to show that Alice’s reduction function f is close to a junta
function f∗ : Ωnx → {±1}, and then prove that Bob’s reduction function g is also
close to a junta function using the security constraint

∥∥Tf∗ − g∥∥
1
6 ν. More

concretely, since f∗ is a junta function, so does Tf∗. This together with the
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security constraint imply that g is close to a the junta function Tf∗ whose range
is not necessarily {±1, 0}. However, we can round each value of (Tf∗)(y) to the
closest value in {±1, 0}. The rounded function is still a junta function and close
to the original function Tf∗. Therefore, g is close to the rounded junta function
by triangle inequality. We formalize this step at follows.

Claim 6 Suppose f∗ : Ωnx → {±1} is a junta function and g : Ωny → {±1, 0} is

an arbitrary function such that
∥∥Tf∗ − g∥∥

1
6 δ for some δ > 0. Then, there

exist a junta function g∗ : Ωny → {±1, 0} such that g is Θ(
√
δ)-close to g∗.

6 Estimation of Rate from arbitrary Sources

As a consequence of the statistical to perfect theorem (Theorem 1), we can lower
bound the rate by a positive constant, if it is feasible.

Corollary 2 (Constant Rate Lower Bound). Fix a constant c > 0, a source
(X,Y ), and a target (U, V ) ∈ {BSS(ρ′),BES(ρ′)} for ρ′ ∈ (0, 1). If there exists an

infinite family of reduction functions {fn, gn} such that (U, V ) vν(n)fn,gn
(X,Y )

⊗n
,

and ν(n) 6 c/n, then the production rate R( (U, V ), (X,Y ) ) > 1/D for some
constant D = D((X,Y ), ρ′, c).

We note that the constant D is the number of input variables that perfect
reduction functions depend on. Next, we prove an upper bound the rate of perfect
SNIS.

Theorem 5 (Perfect Security Rate). Let (U, V ) ∈ {BSS(ρ′),BES(ρ′)} for
ρ′ ∈ (0, 1). If (U, V )

⊗m v0
~f,~g

(X,Y )
⊗n
ρ for some m,n ∈ N, then m/n 6 1/blogσ ρ

′c,
where σ2 is the smallest non-zero eigenvalue of the operator TT for the source
(X,Y ).

Remark 2. For the SNIS self-reduction of BSS or BES, [31] showed that ρ′ = ρk

for some k ∈ N and the rate m/n 6 1/k matching our bound here since σ = ρ,
where ρ is the maximal correlation of the source (X,Y ). The ROLE distribution
has maximal correlation ρ = 1/

√
2 and σ = 1/

√
2. Thus, when (X,Y ) = ROLE,

the rate is upper bounded by 1/2. Our new construction realizes this bound,
demonstrating its optimality.

Proof of Theorem 5. We shall prove for the case (U, V ) = BSS. The proof for
the case (U, V ) = BES is almost identical. Suppose BSS(ρ′)

⊗m v0
~f,~g

(X,Y )
⊗n

for some m,n ∈ N and (deterministic) reduction functions ~f = (f1, · · · , fm)
and ~g = (g1, · · · , gm). For ρ′′ = ρ′

m
, there is a linear deterministic construction

realizing BSS(ρ′′) v0 BSS(ρ′). By sequential composition Imported Theorem 5,
it holds that BSS(ρ′′) v0 (X,Y )

⊗n
. Let T,T denote the Markov operator and the

adjoint Markov operator associated with (X,Y ). Note that TT is non-negative

20



definite (see [49] for a proof). Let 1 = λ1 > λ2 > . . . > λt = σ2 > 0 are all non-

zero eigenvalues of TT. Then, according to Theorem 1, we have ρ′′
2

=
∏t
i=2 λ

ki
i ,

where ki ∈ N such that
∑t
i=2 ki 6 n. This implies that

ρ′′
2

= ρ′
2m

=

t∏
i=2

λkii > λk2+...+ktt = σ2(k2+...+kt) > σ2n.

Taking the logarithm of base σ < 1 of both sides yields 2m logσ ρ
′ 6 2n which

implies that m/n 6 1/ logσ ρ
′ as desired.

7 Characterization of BSS/ BES from 2-by-2 Distributions

In this section, we present a more explicit characterization of BSS/BES from a
2-by-2 source. The following theorem states that SNIS of BSS(ρ′) from (X,Y )ρ is
possible if and only if the source is a BSS(ρ) such that ρ′ = ρk for some positive
integer k.

Theorem 6 (Characterization of BSS from 2-by-2). Fix a 2-by-2 distribu-
tion (X,Y )ρ, and also BSS(ρ′).

1. If (X,Y )ρ 6= BSS(ρ) or ρ′ 6= ρk for all k ∈ N: There is a positive constant
c = c(ρ, ρ′) such that BSS(ρ′) vν (X,Y )⊗n, for any n ∈ N, implies that
ν > c.

2. If (X,Y )ρ = BSS(ρ) and ρ′ = ρk, for some k ∈ N: There are positive
constants c = c(ρ, ρ′) and d = d(ρ, ρ′) such that the following result holds.
If BSS(ρ′) vνf,g BSS(ρ)⊗n, for any n ∈ N, and ν 6 c, then f is νd-close to

a reduction function f∗ and g is νd-close to a reduction function g∗ such
that BSS(ρ′) v0

f∗,g∗ BSS(ρ)⊗n. Furthermore, f∗ = g∗ is a k-homogeneous8

Boolean function.

Next, we show that SNIS of BES from a 2-by-2 source is impossible. This re-
sult implies that, for example, any construction of BES from a Z-channel with
randomized input has constant security.

Theorem 7 (Characterization of BES from 2-by-2). Fix a 2-by-2 distri-
bution (X,Y )ρ, and also BES(ρ′). There are positive constants c = c(ρ, ρ′) such
that if BES(ρ′) vνf,g (X,Y )⊗n for some n ∈ N, then the simulation error ν is at
least c.

We shall first prove the Theorem 6, and then we provide a proof of Theorem 7
in Section 7.3.
Proof outline of Theorem 6. First, we show that if there is a statistical
SNIS of BSS(ρ′) from (X,Y )

⊗n
, then a perfect construction exists (Theorem 8).

Next, we characterize for which 2-by-2 distribution (X,Y ) there exists a perfect-
SNIS of BSS(ρ′) from (X,Y )

⊗n
. Theorem 9 says that (X,Y ) must be a BSS.

8 A function f : {±1}n → {±1} is k-homogeneous if all the terms in the multi-linear
expansion of f has degree k.
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Finally we conclude the proof by using the characterization of SNIS between
BSS distributions in [31].

Theorem 8 (Statistical-to-perfect of BSS from 2-by-2). Let ρ′ ∈ (0, 1) and
(X,Y )ρ be an arbitrary 2-by-2 joint distribution. There are positive constants
c = c((X,Y )ρ, ρ

′), d = d((X,Y )ρ, ρ
′), and D = D((X,Y )ρ, ρ

′) such that the
following result holds. If BSS(ρ′) vνf,g (X,Y )⊗nρ , for any n ∈ N, and ν 6 c, then

f is νd-close to a D-junta reduction function f∗, and g is νd-close to a D-junta
reduction function g∗ such that BSS(ε′) v0

f∗,g∗ (X,Y )⊗nρ . Furthermore, ρ′ = ρk,

and Wk[f∗] = Wk[g∗] = 1.

Informally, there is a statistical SNIS of BSS(ε′) from (X,Y ) if and only if
(X,Y )ρ = BSS(ρ) for some ρ satisfying ρ′ = ρk for some k ∈ N. Furthermore,
any statistical reduction functions can be error-corrected to junta ones that
witness a perfect construction.

Theorem 9 (Characterization of Perfect-SNIS of BSS from 2-by-2).
Suppose there exists n ∈ N and Boolean functions f, g : {±1}n → {±1} such
that BSS(ρ′) v0

f,g (X,Y )
⊗n

. Then, the distribution (X,Y ) must be a BSS(ρ)

such that ρ′ = ρk for some positive integer k 6 n.

As a consequence of Theorem 6, the rate for perfect SNIS of BSS from an
arbitrary 2-by-2 distribution is completely settled, while the rate for statistical
security (even if the source is BSS) is still open.

Corollary 3. If (X,Y ) 6= BSS(ρ) for all ρ ∈ (0, 1) or ρ′ 6= ρk for all k ∈ N,
then the rate of BSS(ρ′) from (X,Y ) is zero. Otherwise, it is shown in [31] that
the maximum achievable rate is 1/k in perfect SNIS.

7.1 Statistical to Perfect

This section presents the proof of the statistical to perfect (Theorem 8) when
the source is a 2-by-2 distribution. The proof idea is similar to the general case.
For 2-by-2 distribution, we are able to characterize more precise the effect of
Markov operators on Fourier coefficients. We remark that Fourier basis and the
orthogonal Efron-Stein basis are the same in this case.

Proof Outline of Theorem 8. Consider a SNIS of BSS(ρ′) vνf,g (X,Y )ρ
⊗n

where (X,Y ) is a 2-by-2 distribution and f, g : {±1}n → {±1}.

Step 1: Algebraization of SNIS and approximate eigenvalue problem. This step
is identical to the first step in the case (X,Y ) is a 2-by-2 distribution discussed
in Section 7.1.
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Step 2: Effect of Markov operators on Fourier spectrum of reduction functions. If
TT and/or TT is equal to the Bonami-Beckner operator Tγ for some appropriate

γ, which happens when (X,Y ) = BSS, then the Tγ operator scales f̂(S) propor-
tional to γ|S|, which, in turn, solves the approximate eigenvalue problem nicely
as done in [31]. However, both TT and TT are not equal to Tρ in general. We
overcome this bottleneck by characterizing the effect of these Markov operators
on the Fourier coefficients as follows.

Lemma 1. Let {φS}S⊆[n] be a biased Fourier basis for L2(Ωnx , πx
⊗n), and {ψS}S⊆[n]

be a biased Fourier basis for L2(Ωny , πy
⊗n). Then, for any S ⊆ [n], it holds that

TTφS = ρ2|S|φS , and TTψS = ρ2|S|ψS .

Consequently, for any real-valued functions f ∈ L2(Xn, πx⊗n) and g ∈ L2(Ωny , πy
⊗n),

the Fourier expansion of TTf and TTg is given by

TTf =
∑
S⊆[n]

ρ2|S|f̂(S)φS , and TTg =
∑
S⊆[n]

ρ2|S|ĝ(S)ψS .

One can view this lemma as an analog/extension of TρχS = ρ|S|χS and Tρf =∑
S ρ
|S|f̂(S)χS to correlated space. Intuitively, the TT and TT operator scales

f̂(S) and ĝ(S) proportional to ρ2|S|, respectively. Lemma 1 is crucial to prove
the concentration of Fourier spectrum of reduction functions.

Step 3: Fourier concentration and junta properties of reduction functions. Recall
that the maximal correlation ρ is the square root of the second largest eigenvalue
of TT and TT as well, and {1, ρ2, ρ4, . . .} are the set of all eigenvalues of the two

Markov operators as well (Proposition 2). Consequently, if ρ′
2 6∈ {ρ2, ρ4, . . .},

then TTf and TTg cannot be close to ρ′
2
f and ρ′

2
g, respectively. When f and g

are Boolean functions, there will be constant gap between TTf and ρ′
2
f , which

implies that the simulation error ν is at least a constant.
On the other hand, if ρ′

2
= ρ2k or equivalently ρ′ = ρk for some k ∈ N, for

any |S| 6= k, the weight on f̂(S) contributes to the gap between TTf and ρ′
2
f .

As a consequence, most of the Fourier weight of f is concentrated on S such
that |S| = k. We formalize this argument as follows.

Theorem 10 (Constant Insecurity or Close to Low Degree Junta). Sup-

pose that
∥∥∥TTf − ρ′2f∥∥∥

1
= δ1,

∥∥∥TTg − ρ′2g∥∥∥
1

= δ2. Then the following state-

ments hold.

1. If ρt+1 < ρ′ < ρt, then min(δ1, δ2) > 1
2 min((ρ′

2 − ρ2t)2, (ρ′2 − ρ2(t+1))2).
2. If ρ′ = ρk for some k ∈ [n], then there exists D = D(k) such that

(a) The functions f and g are 2δ1
(1−ρ2)2ρ4k , and 2δ2

(1−ρ2)2ρ4k concentrated on

degree k, respectively.
(b) There exist Boolean degree-k D-junta functions f̃ , g̃ : {±1}n → {±1}

such that
∥∥∥f − f̃∥∥∥2

2
6 σ1 + Dσ

5/4
1 , and ‖g − g̃‖22 6 σ2 + Dσ

5/4
2 , where

σ1 = 2
(1−ρ2)2ρ4k · δ1 and σ2 = 2

(1−ρ2)2ρ4k · δ2.
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In the above claim, we use the Kindler-Safra junta theorem [34, 33] (see Im-
ported Theorem 3) to infer that f is close to a junta function from the Fourier
concentration property. The junta property is crucial to show the existence of a
perfect construction.

Step 4: Must be perfect. This step is similar to the step 4 in the general case.
Using the junta properties, one conclude that there exists a perfect construction.

7.2 Perfect-SNIS Characterization

In this section, we prove Theorem 9. We need the following result for the proof.

Claim 7 Suppose f is a Boolean function in L2({±1}n, π⊗n) such that Wk[f ] =
1. Then, the distribution π must be the uniform distribution over {±1}.

The following result is needed to prove Claim 7. First let us introduce some nota-
tion. Let f : {±1}n → {±1} be a Boolean function. For each p ∈ (0, 1), we write
a Boolean function f as f (p) when viewing f as an element of L2({±1}n), πp

⊗n),
where πp is a distribution over {±1} such that πp(−1) = p and πp(1) = 1 − p.
Observe that σ = 2

√
p
√

1− p is the standard deviation of the distribution.

Claim 8 If W6k[f (p)] = 1, then Wk[f (1/2)] = Wk[f (p)]/σ2k where σ = 2
√
p(1− p).

Intuitively, this claim says that the Fourier weight measured over the p-biased
distribution on a particular degree is equal to the product of the Fourier weight
measured over the uniform distribution on the same degree and a power of the
standard deviation the p-biased distribution.

Proof (Proof of Claim 7). Let p := π(−1). It follows from Claim 8 that Wk[f (p)] 6
σ2kWk[f (1/2)]. Since f is Boolean it follows from Parseval identity that Wk[f (1/2)] 6
1, and so 1 = Wk[f (p)] 6 σ2k which implies that σ = 1 and so p = 1/2. Therefore,
the distribution π is uniform.

Now we are ready to prove Theorem 9 as follow.

Proof (of Theorem 9). Suppose there exists n ∈ N and Boolean functions f, g : {±1}n →
{±1} such that BSS(ρ′) v0

f,g (X,Y )
⊗n

. Then, applying Theorem 1 for insecurity

bound ν = 0 yields ρ′ = ρk for some k ∈ N, and Wk[f ] = Wk[g] = 1, where ρ is
the maximal correlation of (X,Y ). By Claim 7, both the marginal distributions
πx and πy must be uniform distribution over {±1}. This implies that the joint
distribution (X,Y ) is a BSS(ε) for some ε ∈ (0, 1/2). Using the fact that the the
maximal correlation of BSS(ε) = ρ and the result from [31], one concludes that
ρ′ = ρk.
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7.3 Proof Outline of Theorem 7

The proof of Theorem 7 is similar to the proof of Theorem 6 except that here
we again use the same idea that we applied in BES from arbitrary to deal with
the non-binary range of Bob’s reduction function. Again, we have a statistical
to perfect result. Similar to Theorem 9, we can show that the source must be a
BSS. We conclude the proof by using the impossibility result of simulating BES
from BSS even in the (non-secure) NIS due to reverse hypercontractivity.

8 Additional Results and Discussions

8.1 Necessary Condition on Eigenvalues

Theorem 11. Let (X,Y ) be an arbitrary joint distribution whose Markov opera-

tor and adjoint are respectively T(1) and T
(1)

, and let (U, V ) ∈ {BSS(ρ′),BES(ρ′)}
for ρ′ ∈ (0, 1). For any c > 0, there are positive constants n0 and d = d((X,Y ), ρ′)
such that the following result holds. If (U, V ) vνf,g (X,Y )⊗n, for some n > n0,

and ν 6 c/n, then ρ′
2

=
∏t
i=1 λ

ki
i , where 1 = λ1 > λ2 > . . . > λt are all

eigenvalues of (TT)(1), and ki ∈ N such that
∑t
i=1 ki = n.

By the reduction of statistical to perfect (Theorem 1), without loss of gen-
erality, assume that BSS(ρ′) v0

f,g (X,Y )
⊗n

. Theorem 2 and Claim 2 imply that

TTf = ρ′
2
f . This means that ρ′

2
is an eigenvalue of the Markov operator TT.

Suppose 1 = λ1 > λ2 > . . . > λt be all eigenvalues of (TT)(1), then it follows

from tensorization property of eigenvalues (Lemma 6) that ρ′
2

=
∏t
i=1 λ

ki
i for

some ki ∈ N such that k1 + k2 + · · ·+ kt = n, as desired. As a consequence, we
have the following result.

Corollary 4. There is no complete joint distribution in SNIS.

8.2 Decidability

Corollary 1 gives an algorithm to decide whether there is a statistical SNIS of
BSS(ρ′) from (X,Y ) with insecurity bound ν(n) = O(1/n). In (non-secure) NIS,
[24, 17, 23] considered a different problem of decidability called gap decidability.
Given a constant δ > 0, a source (X,Y) and a target (U, V ), the goal is to
distinguish between (1) there exists a n0 ∈ N such that (U, V ) can be non-
interactively simulated (not necessarily secure) from (X,Y )

⊗n0 with error at
most δ and (2) for any n ∈ N, any simulation of (U, V ) from (X,Y )

⊗n
has

error at least cδ, where c is some constant. The gap decidability of BSS from an
arbitrary source in SNIS is still open. We formulate this problem as follows.

SNIS gap decidability problem. Given any c > 1, δ > 0, a source (X,Y ),
and a target BSS(ρ′). Distinguish between the following 2 cases:

1. There exist n0 ∈ N and functions f : Ωn0
x → {±1} and g : Ωn0

y → {±1} such

that SNIS of BSS(ρ) from (X,Y )
⊗n0 has simulation error at most δ.
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2. For any n ∈ N and f : Ωnx → {±1} and g : Ωny → {±1}, SNIS of BSS(ρ) from

(X,Y )
⊗n

has simulation error at least cδ.

When the source is a 2-by-2 distribution, our characterization solves this problem
and we know for sure it is a Yes instance when the threshold δ is less than the
constant in our Theorem 8. We conjecture the following “junta theorem over
correlated space”/“dimension reduction preserving security” that would help
to solve the gap decidability problem. In the following, we abuse the notation
and let T,T denote the Markov operator and adjoint Markov operator of both
(X,Y )

⊗n
and (X,Y )

⊗n0 .

Conjecture 1. Given any δ > 0, and f : Ωnx → {±1} and g : Ωny → {±1} sat-

isfying E[f ] 6 δ,E[g] 6 δ,
∥∥Tf − ρ′g∥∥

1
6 δ and ‖Tg − ρ′f‖1 6 δ, there exist

n0 = n0((X,Y ), ρ′, δ), functions f∗ : Ωn0
x → {±1} and g∗ : Ωn0

y → {±1} such
that

(i) |E[f∗]− E[f ]| 6 2δ, (ii) |E[g∗]− E[g]| 6 2δ,

(iii)
∥∥Tf∗ − ρ′g∗∥∥

1
6 2δ, and (iv) ‖Tg∗ − ρ′f∗‖1 6 2δ.

The conjecture holds true when the source is 2-by-2 and δ is a small enough
constant due to our characterization theorem.

The requirement that both f∗ and g∗ remains Boolean-valued functions is
unique to security constraint in SNIS. In contrast, the reduction functions in NIS
setting [24] only need to be bounded functions since they only need to preserve
the correlation (see Theorem 3.1 in [24]) not the security.

8.3 On Power of Non-linear Constructions

Lemma 2 (Non-linear constructions of BSS(1/2) from ROLE). There are
exactly 16 perfect non linear SNIS constructions of BSS(1/2) from two samples
of ROLE.

By implementing our exhaustive search algorithm, we found 16 perfect construc-
tions provided in Appendix E.3.

Lemma 3. There is a perfect non linear SNIS construction of BES(
√

1/2) from
one sample of ROLE.

Next, we shall show that there is no SNIS construction of BSS(1/2)/BES(
√

1/2)
from n independent samples of ROLE for any n ∈ N.

Lemma 4. For any naming of the samples from the ROLE distribution, any n ∈
N, any SNIS of BSS(1/2) or BES(

√
1/2) from ROLE⊗n with linear reductions

has a constant simulation error.

We provide a proof of Lemma 4 in Appendix E.3

Corollary 5. Fix a constant c > 0, then the following statements hold.
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1. There exists an infinite family of reduction functions {fn, gn} such that

BSS(ρ′) vν(n)fn,gn
ROLE⊗n and ν(n) 6 c/n if and only if ρ′ = 1/2k for some

k ∈ N.
2. There exists an infinite family of reduction functions {fn, gn} such that

BES(ρ′) vν(n)fn,gn
ROLE⊗n and ν(n) 6 c/n if and only if ρ′ = 1/

√
2
k

for
some k ∈ N.

8.4 Incompleteness of string-ROT

Garg et al. [21] initiated the study of one way secure computation (OWSC).
One of the results they proved was that the family of string-ROT is complete in
OWSC when considering negligible error. An open question in [21] was the com-
pleteness of finite channels in OWSC which has been recently solved by [2]. They
provide a construction of string-ROT using bit-ROT with inverse polynomial er-
ror. This means that bit-ROT can be used to realize randomized functionalities
with inverse polynomial error in OWSC. [2] also rule out the existence of any
complete finite channel when considering negligible error. [1] show that there is
no complete joint distribution in SNIS setting. We show that even the family of
string-ROT is not complete.

Definition 8. The `-bit string random oblivious transfer source, represented as
ROT (`), samples uniformly and independently random x1, x2 ∈ {0, 1}` and a bit
b ∈ {0, 1}n, provides Alice (x1, x2), and provides Bob (b, xb).

In contrast to the completeness result in OWSC, we show that the family of
string-ROT is not complete.

Lemma 5. The family of string-ROT is not complete for SNIS.

This lemma follows from the fact that the maximal correlation of ROT (`) =
1/
√

2 for every ` ∈ N (Claim 16) and the data processing inequality (Imported
Theorem 2).
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tributions: The hirschfeld-gebelein-rényi maximal correlation and the hypercon-
tractivity ribbon. In 2012 50th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 1057–1064. IEEE, 2012. 2, 9

30. Sudeep Kamath and Venkat Anantharam. On non-interactive simulation of joint
distributions. IEEE Transactions on Information Theory, 62(6):3419–3435, 2016.
2, 9

29

https://doi.org/10.1007/PL00009809
https://doi.org/10.1007/978-3-662-48000-7_10
https://doi.org/10.4230/LIPIcs.CCC.2018.28
https://doi.org/10.4230/LIPIcs.CCC.2018.28
https://doi.org/10.4230 / LIPIcs.CCC.2018.28
https://doi.org/10.1109/FOCS.2016.65
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1017/S0305004100013517
https://doi.org/10.1007/978-3-642-22792-9_38
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32


31. Hamidreza Amini Khorasgani, Hemanta K. Maji, and Hai H. Nguyen. Secure non-
interactive simulation: Feasibility & rate. To appear at EUROCRYPT 2022, 2022.
URL: https://eprint.iacr.org/2020/252.pdf. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 19,
20, 22, 23, 24, 34, 35

32. Joe Kilian. More general completeness theorems for secure two-party compu-
tation. In 32nd ACM STOC, pages 316–324. ACM Press, May 2000. doi:

10.1145/335305.335342. 1
33. Guy Kindler. Property Testing PCP. PhD thesis, Tel-Aviv University, 2002. 15,

24
34. Guy Kindler and Shmuel Safra. Noise-resistant boolean functions are juntas.

preprint, 2002. 15, 24
35. Daniel Kraschewski, Hemanta K. Maji, Manoj Prabhakaran, and Amit Sahai. A

full characterization of completeness for two-party randomized function evaluation.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 659–676. Springer, Heidelberg, May 2014. doi:10.1007/

978-3-642-55220-5_36. 1, 9
36. Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of

multi-party computation functionalities. In Manoj Prabhakaran and Amit Sa-
hai, editors, Secure Multi-Party Computation, volume 10 of Cryptology and
Information Security Series, pages 249–283. IOS Press, 2013. doi:10.3233/

978-1-61499-169-4-249. 1, 9
37. Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure

two-party computation system. In Matt Blaze, editor, USENIX Security 2004,
pages 287–302. USENIX Association, August 2004. 1

38. Elchanan Mossel. Gaussian bounds for noise correlation of functions and tight
analysis of long codes. In 49th FOCS, pages 156–165. IEEE Computer Society
Press, October 2008. doi:10.1109/FOCS.2008.44. 13, 14

39. Elchanan Mossel. Gaussian bounds for noise correlation of functions. Geometric
and Functional Analysis, 19(6):1713–1756, 2010. 14, 15, 17

40. Elchanan Mossel and Ryan O’Donnell. Coin flipping from a cosmic source: On error
correction of truly random bits. Random Structures & Algorithms, 26(4):418–436,
2005. doi:10.1002/rsa.20062. 2, 9

41. Elchanan Mossel, Ryan O’Donnell, Oded Regev, Jeffrey E Steif, and Benny Su-
dakov. Non-interactive correlation distillation, inhomogeneous markov chains, and
the reverse bonami-beckner inequality. Israel Journal of Mathematics, 154(1):299–
336, 2006. 2, 9

42. Varun Narayanan, Manoj Prabhakaran, and Vinod M. Prabhakaran. Zero-
communication reductions. In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020, Part III, volume 12552 of LNCS, pages 274–304. Springer, Heidelberg,
November 2020. doi:10.1007/978-3-030-64381-2_10. 1, 9

43. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai She-
shank Burra. A new approach to practical active-secure two-party computa-
tion. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, vol-
ume 7417 of LNCS, pages 681–700. Springer, Heidelberg, August 2012. doi:

10.1007/978-3-642-32009-5_40. 1
44. Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

12, 14, 15
45. Vinod M. Prabhakaran and Manoj Prabhakaran. Assisted common information.

In IEEE International Symposium on Information Theory, ISIT 2010, June 13-
18, 2010, Austin, Texas, USA, Proceedings, pages 2602–2606. IEEE, 2010. doi:

10.1109/ISIT.2010.5513743. 10

30

https://eprint.iacr.org/2020/252.pdf
https://doi.org/10.1145/335305.335342
https://doi.org/10.1145/335305.335342
https://doi.org/10.1007/978-3-642-55220-5_36
https://doi.org/10.1007/978-3-642-55220-5_36
https://doi.org/10.3233/978-1-61499-169-4-249
https://doi.org/10.3233/978-1-61499-169-4-249
https://doi.org/10.1109/FOCS.2008.44
https://doi.org/10.1002/rsa.20062
https://doi.org/10.1007/978-3-030-64381-2_10
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1109/ISIT.2010.5513743
https://doi.org/10.1109/ISIT.2010.5513743


46. Vinod M. Prabhakaran and Manoj Prabhakaran. Assisted common information:
Further results. In Alexander Kuleshov, Vladimir M. Blinovsky, and Anthony
Ephremides, editors, 2011 IEEE International Symposium on Information Theory
Proceedings, ISIT 2011, St. Petersburg, Russia, July 31 - August 5, 2011, pages
2861–2865. IEEE, 2011. doi:10.1109/ISIT.2011.6034098. 10

47. Vinod M. Prabhakaran and Manoj Prabhakaran. Assisted common information
with an application to secure two-party sampling. IEEE Trans. Inf. Theory,
60(6):3413–3434, 2014. doi:10.1109/TIT.2014.2316011. 10
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A More on Preliminaries

Proposition 8 (Maximal correlation of a 2-by-2 distribution). Suppose
Ωx = Ωy = {±1} and π(1, 1) = a, π(1,−1) = b, π(−1, 1) = c, and π(−1,−1) =
d, where 0 6 a, b, c, d 6 1 and a + b + c + d = 1. The maximal correlation of
(X,Y ) is the following:

ρ =
|ad− bc|√

(a+ b)(c+ d)(a+ c)(b+ d)
.

Proof. When Ωx = Ωy = {±1} and π(1, 1) = a, π(1,−1) = b, π(−1, 1) =
c, and π(−1,−1) = d, where 0 6 a, b, c, d 6 1 and a + b + c + d = 1. Then
πx(1) = a + b, π(−1) = c + d, πy(1) = a + c, π(−1) = b + d. For any function
f ∈ Lp({±1}, πx) and g ∈ Lp({±1}, πy), we have

(Tg)(1) =
a

a+ b
· g(1) +

b

a+ b
· g(−1)

(Tg)(−1) =
c

c+ d
· g(1) +

d

c+ d
· g(−1)

(Tf)(1) =
a

a+ c
· f(1) +

c

a+ c
· f(−1)

(Tf)(−1) =
b

b+ d
· f(1) +

d

b+ d
· f(−1)

Note that, in this case, the maximal correlation of (X,Y ) is

ρ =
|ad− bc|√

(a+ b)(c+ d)(a+ c)(b+ d)
.

When a = d = (1 + γ)/4 and b = c = (1− γ)/4, the operator T is the Bonami-
Beckner operator, denoted as Tγ .

Lemma 6. Let {λi}mi=1 and {µj}nj=1 represent respectively the set of all eigen-
values of the real matrices Am×m and Bn×n, then the set of eigenvalues of A⊗B
is {λiµj}m n

i=1 j=1. Moreover, if v is an eigenvector of A corresponding to eigen-
value λ and w is an eigenvector of B corresponding to eigenvalue µ, then v⊗w
is an eigenvector of A ⊗ B corresponding to the eigenvalue λ · µ. Furthermore,
if {vi}pi=1 and {wj}qj=1 represent respectively a basis for the eigenspace of A and
B, then the set {vi ⊗ wj}p q

i=1 j=1 is a basis of the eigenspace of A⊗B.

Claim 9 (Contraction Property) Suppose T is a Markov operator. Then,
for any function g, we have ‖Tg‖1 6 ‖g‖1.

B Examples: Markov operator, adjoint-Markov operator,
and Maximal Correlation

Maximal Correlation of BSS: For BSS with noise characteristics ε, we have

T = T =

[
1− ε ε
ε 1− ε

]
.
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The eigenvalues of TT are 1 and (1− 2ε)
2
. Therefore, the maximal correlation

of BSS with noise characteristic ε is ρ = 1− 2ε [56].

For BES with erasure probability ε, we have

T =

[
1− ε ε 0

0 ε 1− ε

]
, and T =

 1 0
1/2 1/2
0 1

 .
The eigenvalues of TT are 1 and (1− ε). Therefore, the maximal correlation of
BES with erasure probability ε is ρ =

√
1− ε [56].

For ROLE, we have

T =


1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2

 , and T =


1/2 0 0 1/2
1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

 .
The eigenvalues of

TT =


1/2 1/4 0 1/4
1/4 1/2 1/4 0
0 1/4 1/2 1/4

1/4 0 1/4 1/2


are 1, 1/2, 1/2, 0. So, the maximal correlation of ROLE is

√
1/2.

C Other Imported Theorems

Imported Theorem 5 (Sequential Composition [31]) For joint distribu-
tion P,Q, and R, suppose we have

P vνf,g Q, and Q vν
′

f,g R.

Then, the following holds.

P vν+ν
′

f◦f ′,g◦g′ R.

Imported Theorem 6 (Projection [31]) Suppose P,Q are two joint distri-
butions. Suppose P⊗m vνf,g Q. Then, it holds that P vνf,g Q.

Derandomization theorem: we had the following two derandomization theo-
rems where the second one is the one that we want to use:

Imported Theorem 7 (Derandomization: Feasibility results[31]) Let (X,Y )
be a complete joint distribution. Consider a randomized SNIS (U, V ) vνf,g (X,Y )⊗n

with nA and nB Alice and Bob private randomness complexities, respectively.
Then, there exists a deterministic SNIS (U, V ) vν′f ′,g′ (X,Y )⊗n

′
such that (for

large-enough k ∈ N)

n′ = k · nA + k · nB + n, and

ν′ = (nA + nB) · exp(−Θ(k)) + ν.
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Imported Theorem 8 (Derandomization of Reduction Functions[31])
Let (U, V ) and (X,Y ) be two joint distributions over U×V and X×Y respectively
such that (U, V ) is a redundancy-free joint distribution. Let n ∈ N and ν ∈ [0, 1].
Let RA and RB be two random variables defined respectively over RA and RB
such that RA is independent of both RB and Xn; RB is independent of both Y n

and RA. Suppose there exist randomized reduction functions f : Xn ×RA → U ,
and g : Yn × RB → V such that (U, V ) vνf,g (X,Y )

⊗n
. Then, there exists a

constant γ(which depends on the target distribution (U, V )), and (deterministic)
reduction functions f ′ : Xn → U , and g′ : Yn → V such that:

1. (U, V ) vγν
1/4

f ′,g′ (X,Y )
⊗n

.

2. SD (f(Xn, RA), f ′(Xn)) 6 γ × ν 1
4 and SD (g(Y n, RB), g′(Y n)) 6 γ × ν 1

4 .

D Omitted Proofs

D.1 Proof of Claim 3

Letm be the size the domainΩ. Applying Parseval’s identity for function f yields∑
α∈N<m

n
f̂(α)2 =

∑n
i=1 W

i[f ] = 1. From the basic formula of total influence, we
have

Inf[f ] =

n∑
i=1

i ·Wi[f ]

=

k∑
i=1

i ·Wi[f ] +

n∑
i=k+1

i ·Wi[f ]

6 k ·
k∑
i=1

Wi[f ] + n ·
n∑

i=k+1

Wi[f ]

6 k · 1 + n · δ,

which completes the proof.

D.2 Proof of Claim 6

Note that Tf∗ : Ωy
n → [−1, 1]. We define the function g∗ : Ωy

n → {±1, 0}
whose output is achieved by rounding the output of Tf∗ to the closest value
in {±1, 0}. Since f∗ is a junta it follows that Tf∗ is also a junta. Note that

Pry∼Ωy

[∣∣g(y)− Tf∗(y)
∣∣ > √δ] 6

√
δ and so

∥∥g∗ − Tf∗
∥∥ 6 2

√
δ. Therefore, it

follows from triangle inequality that ‖g − g∗‖1 6 2
√
δ + δ 6 3

√
δ.

D.3 Proof of Lemma 1

It suffices to prove the following claim.
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Claim 10 The following equalities hold.

TψS = ρ|S| · φS , and TφS = ρ|S| · ψS ,

where ρ = ad−bc√
pq(1−p)(1−q)

. Furthermore, the following equations hold.

TTφS = ρ2|S| · φS , and TTψS = ρ2|S| · ψS .

Remark 3. The quantity ρ defined in the above claim has the same magnitude
as the maximal correlation of the joint distribution (X,Y ). When ad > bc, it
is exactly the maximal correlation of (X,Y ). This result can be viewed as a
generalization of equation TρχS = ρ|S| · χS , where Tρ is the Bonami-Beckner
noise operator, and χS : {±1}n → {±1} is the function defined as χS =

∏
i∈S xi

(a Fourier basis over the uniform measure).

Proof of Claim 10 In the following expressions, (Xn, Y n) is always sampled
from π⊗n. For every xn ∈ Ωn, we have

TψS(xn) = E[ψS(Y n)|Xn = xn]

= E
yn∼(Y n|Xn=xn)

∏
i∈S

(
yi − µy
σy

)
=
∏
i∈S

E
yi∼(Yi|Xi=xi)

(
yi − µy
σy

)
=
∏
i∈S

ρ ·
(
xi − µx
σx

)
(Claim 11)

= ρ|S|φS(xn)

Similarly, we also have TφS = ρ|S|ψS .

Claim 11 The following equation holds.

E
yi∼Yi|Xi=xi

(
yi − µy
σy

)
= ρ ·

(
xi − µx
σx

)
Proof. We do case analysis on xi.

Case 1: If xi = 1, the left hand side can be simplified as

E
yi∼Yi|Xi=1

(
yi − µy
σy

)
=

a

a+ b
· 1− µy

σy
+

b

a+ b
· −1− µy

σy

=
a

a+ b
· 2(b+ d)

2
√
b+ d

√
a+ c

+
b

a+ b
· −2(a+ c)√

b+ d
√
a+ c

=
ad− bc

(a+ b)
√
b+ d

√
a+ c
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The right hand side can be rewritten as

ρ ·
(

1− µx
σx

)
= ρ · 2(c+ d)

2
√
a+ b

√
c+ d

=
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
· (c+ d)√

a+ b
√
c+ d

=
ad− bc

(a+ b)
√
b+ d

√
a+ c

Case 2: If xi = −1, the left hand side can be simplified as

E
yi∼Yi|Xi=−1

(
yi − µy
σy

)
=

c

c+ d
· 1− µy

σy
+

d

c+ d
· −1− µy

σy

=
c

c+ d
· 2(b+ d)

2
√
b+ d

√
a+ c

+
d

c+ d
· −2(a+ c)√

b+ d
√
a+ c

=
bc− ad

(c+ d)
√
b+ d

√
a+ c

The right hand side can be rewritten as

ρ ·
(
−1− µx
σx

)
= ρ · −2(a+ b)

2
√
a+ b

√
c+ d

=
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
· −(a+ b)√

a+ b
√
c+ d

=
bc− ad

(c+ d)
√
b+ d

√
a+ c

In both cases, it holds that Eyi∼Yi|Xi=xi

(
yi−µy

σy

)
= ρ·

(
xi−µx

σx

)
, which completes

the first part of the claim.
Next, we prove the second part of the claim.

TTφS = T(TφS) = T(ρ|S|ψS) = ρ|S| · TψS = ρ|S| · ρ|S|ψS = ρ2|S| · φS

Similarly, it also holds that TTψS = ρ|S|φS , which completes the proof.

D.4 Proof of Theorem 6

By Theorem 2, it holds that E[f ] 6 ν, E[g] 6 ν,
∥∥Tf − g∥∥

1
6 4ν, and ‖Tg − ρ′f‖1 6

4ν. Applying triangle inequality for the the last two constraints yields
∥∥TTf − ρ′f∥∥

1
6

8ν. Now, consider two cases as follows.
Case 1: ρt+1 < ρ′ < ρt for some t ∈ [n], then by the first case of Theorem 10,∥∥∥TTf − ρ′2f∥∥∥

1
>

1

2
min((ρ′

2 − ρ2t)2, (ρ′2 − ρ2(t+1))2).
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This implies that the insecurity ν is at least 1
16 min((ρ′

2−ρ2t)2, (ρ′2−ρ2(t+1))2),
which is a constant.

Case 2: ρ′ = ρk for some k ∈ N. Then by Theorem 10, there exist degree-k
D-junta functions f∗, g∗ : {±1}n → {±1} such that f∗ ∈  L2({±1}, πx), g∗ ∈
L2({±1}n, πy), and

‖f − f∗‖22 6 σ1 +Dσ
5/4
1 , (3)

‖g − g∗‖22 6 σ2 +Dσ
5/4
2 , (4)

where σ1 = 2
(1−ρ2)2ρ4k · δ1 and σ2 = 2

(1−ρ2)2ρ4k · δ2, and Wk[f∗] > 1− 2δ1
(1−ρ2)2ρ4k ,

Wk[g∗] > 1− 2δ2
(1−ρ2)2ρ4k . Using these facts and triangle inequality, it is easy to see

that f∗, g∗ witness a statistical SNIS of BSS(ρ′) from (X,Y )
⊗n

. Next, it follows
from Claim 4 that f∗, g∗ witness a perfect SNIS of BSS(ρ′) from (X,Y )

⊗n
, and

Wk[f∗] = Wk[g∗] = 1.

D.5 Proof of Claim 4

Since h is a J-junta function, so does Th. Observe that Th is bounded function,
that is,

∣∣(Th)(x)
∣∣ 6 1 for every x ∈ {±1}. Note that ρ′ · ` is also a bounded J-

junta function because ` is a Boolean J-junta function and ρ′ ∈ (0, 1). Therefore,
if Th 6= ρ′ · `, then

∥∥Th− ρ′ · `∥∥
2

must be a constant value that depends only on
J, ε′, (X,Y ).

Proof of Theorem 10. First, note that TT is a Markov operator. Since∣∣(TTf)(x)
∣∣ 6 1 and f(x) ∈ {±1} for every x, we have

∣∣∣(TTf)(x)− ρ′2 · f(x)
∣∣∣ 6 1 + ρ′

2
6 2 for every x.

It implies that

∥∥∥TTf − ρ′2f∥∥∥2
2

= E
x

[
(TTf)(x)− ρ′2 · f(x)

]2
6 2E

x

∣∣∣(TTf)(x)− ρ′2 · f(x)
∣∣∣ 6 2δ1

Now, consider 2 cases as follows.
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Case 1: If ρt+1 < ρ′ < ρt for some t ∈ [n]. We have∥∥∥TTf − ρ′2f∥∥∥
1
>

1

2

∥∥∥TTf − ρ′2f∥∥∥2
2

(Claim 1)

=
1

2

∥∥∥∥∥∥TT
∑
S⊆[n]

f̂(S)φS

− ρ′2
∑
S⊆[n]

f̂(S)φS

∥∥∥∥∥∥
2

2

(Fourier expansion)

=
1

2

∥∥∥∥∥∥
∑
S⊆[n]

f̂(S)
(
TTφS − ρ′

2
φS

)∥∥∥∥∥∥
2

2

(Linearity of Markov Operator.)

=
1

2

∥∥∥∥∥∥
∑
S⊆[n]

f̂(S)
(
ρ2|S|φS − ρ′

2
φS

)∥∥∥∥∥∥
2

2

(Claim 10)

=
1

2

∑
S⊆[n]

(ρ2|S| − ρ′2)2f̂(S)2

(Orthonormality of Fourier Basis)

>
1

2
min((ρ′

2 − ρ2t)2, (ρ′2 − ρ2(t+1))2) ·
∑
S⊆[n]

f̂(S)2

=
1

2
min((ρ′

2 − ρ2t)2, (ρ′ − ρ2(t+1))2) (Parseval)

Case 2: ρ′ = ρk for some k ∈ N. Observe that
∣∣∣ρ2|S| − ρ′2∣∣∣ > ∣∣ρ2(k+1) − ρ2k

∣∣ for

any |S| 6= k. Therefore, we have∑
S : |S|6=k

(ρ2(k+1) − ρ2k)2f̂(S)2 6
∑

S : |S|6=k

(ρ2|S| − ρ2k)2f̂(S)2

=
∑
S⊆[n]

(ρ2|S| − ρ2k)2f̂(S)2

=
∥∥∥TTf − ρ′2f∥∥∥2

2

6 2δ1.

This implies that W 6=k[f ] =
∑
S : |S|6=k f̂(S)2 6 2δ1

(1−ρ2)2ρ4k , as desired. Similarly, it

also holds that W 6=k[g] 6 2δ2
(1−ρ2)2ρ4k . Finally, by Imported Theorem 3, there exist

Boolean degree-k D-junta functions f̃ , g̃ : {±1}n → {±1} such that
∥∥∥f − f̃∥∥∥2

2
6

σ1 + Dσ
5/4
1 , and ‖g − g̃‖22 6 σ2 + Dσ

5/4
2 , where σ1 = 2

(1−ρ2)2ρ4k · δ1 and σ2 =
2

(1−ρ2)2ρ4k · δ2, which completes the proof.
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D.6 Proof of Claim 8

Let χS(x) =
∏
i∈S xi be the Fourier basis of L2({±1}n, π1/2⊗n). Let φS(x) =∏

i∈S
(
xi−µ
σ

)
be the Fourier basis of L2({±1}n, πp⊗n). We use these two bases

to express the same function f in two different ways. Since W6k[f (p)] = 1, we

have f̂ (p)(S) = 0 when |S| > k. Therefore, we have the following:

f(x) = f (p)(x) =
∑
|S|6k

f̂ (p)(S)
∏
i∈S

(
xi − µ
σ

)
f(x) = f (1/2)(x) =

∑
S⊆[n]

f̂ (1/2)(S)
∏
i∈S

xi

This implies that f̂ (1/2)(S) = 1
σk f̂ (p)(S) for every S ⊆ [n] such that |S| = k.

Therefore, we complete the proof by

Wk[f (1/2)] =
∑
|S|=k

f̂ (1/2)(S)2 =
1

σ2k

∑
|S|=k

f̂ (p)(S)2 =
1

σ2k
Wk[f (p)].

E New Constructions

E.1 SNIS of BSS from a 3-by-3 distribution

v = +1 v = −1
0 1 2

u = +1 0 3/8 1/12 1/24

u = −1
1 1/12 3/16 1/16
2 1/24 1/16 1/16

Table 1. SNIS of BSS(ε′ = 1/4) from one sample of a distribution (X,Y ) over X ×Y
where |X | = |Y| = 3.

Suppose Alice has (a1, b1) and (a2, b2), and Bob has (c1, d1) and (c2, d2) such
that di = aici ⊕ bi. We are using bit representation {0, 1}.

E.2 SNIS of BSS from a 4-by-4 distribution

Let (X,Y ) be the the distribution with the following probability mass distribu-
tion. One can verify that the above matrix has four eigenvalues λ1 = 1, λ2 =
a + b − c − d, λ3 = a + c − b − d, λ4 = a + d − b − c with associated eigenvec-
tors v1 = (1, 1, 1, 1), v2 = (1, 1,−1,−1), v3 = (1,−1, 1,−1), v4 = (1,−1,−1, 1),
respectively.
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a b c d

b a d c

c d a b

d c b a

Table 2. A 4-by-4 distribution, where a, b, c, d > 0 and a+ b+ c+ d = 1/4

Claim 12 There is a perfect SNIS of BSS(ε′) from one sample of (X,Y ) if and
only if ρ′ = λi for some i ∈ {2, 3, 4}, where ρ′ = 1− 2ε′.

Proof. The forward direction follows from Theorem 11. For the backward direc-
tion, suppose ρ′ = λi, one can verify that the reduction functions f = g = vi
witness a perfect construction.

We can generalize this as follows.

Claim 13 There is a perfect SNIS of BSS(ε′) from n samples of (X,Y ) if and

only if ρ′ =
∏4
i=1 λ

ti
i , where ρ′ = 1− 2ε′, and

∑4
i=1 ti = n.

This claim follows from parallel and sequential compositions theorems.

E.3 SNIS of BSS from ROLE

Non-linear constructions. We list 4 constructions (following ROLE notation)
found by exhaustive search.

f1(a1, b1, a2, b2) = 0.5(−1− (−1)a1 − (−1)a2 + (−1)a1+a2)(−1)b1+b2

g1(c1, d1, c2, d2) = 0.5(−1− (−1)c1 − (−1)c2 + (−1)c1+c2)(−1)d1+d2

f2(a1, b1, a2, b2) = 0.5(−1− (−1)a1 + (−1)a2 − (−1)a1+a2)(−1)b1+b2

g2(c1, d1, c2, d2) = 0.5(−1 + (−1)c1 − (−1)c2 − (−1)c1+c2)(−1)d1+d2

f3(a1, b1, a2, b2) = 0.5(−1 + (−1)a1 − (−1)a2 − (−1)a1+a2)(−1)b1+b2

g3(c1, d1, c2, d2) = 0.5(−1− (−1)c1 + (−1)c2 − (−1)c1+c2)(−1)d1+d2

f4(a1, b1, a2, b2) = 0.5(+1− (−1)a1 − (−1)a2 − (−1)a1+a2)(−1)b1+b2

g4(c1, d1, c2, d2) = 0.5(−1 + (−1)c1 + (−1)c2 + (−1)c1+c2)(−1)d1+d2

Observe that if a pair of reduction functions (f, g) witnesses secure con-
struction, so does (f,−g), (−f, g), or (−f,−g). Thus, there are 16 perfect SNIS
constructions of BSS(1/2) from bit ROLE in total.

No linear construction exists. We show that there does not exist any linear
construction of BSS from ROLE.
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Definition 9 (Linear Construction). We say that there is a linear SNIS of
BSS(ε) from ROLE if there exist reduction functions f, g : {00, 01, 10, 11}n →
{±1} such that BSS(ε) v0

f,g ROLE
⊗n and at least one of the four sets

f−1(+1), f−1(1), g−1(+1), g−1(−1)

is a vector space over {0, 1}, where the probability mass distribution of ROLE is
one the two following matrices corresponding to two different namings.

1/2 0 1/2 0
1/2 0 0 1/2
0 1/2 1/2 0
0 1/2 0 1/2

 or


1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 0 1/2
0 1/2 1/2 0


Reduction. Without loss of generality, we can change to the reduction func-
tion f, g : {+1 + 1,+1 − 1,−1 + 1,−1 − 1}n → {±1}. So f, g witness a lin-
ear construction if BSS(ε) v0

f,g ROLE⊗n and at least one of the four sets

f−1(+1), f−1(1), g−1(+1), g−1(−1) is a vector space over {±1}. Here a set V ⊆
{±1}2n is a vector space if it is close under coordinate-wise multiplication.

Claim 14 Reduction functions f, g : {±1}2n → {±1} witness a linear SNIS of
BSS(ε) from ROLE⊗n if and only if f = χS or g = χS for some S ⊆ [n], where
χS(x) =

∏
i∈S xi.

Proof. W.L.O.G, suppose f−1(+1) is a vector space. It follows from the algebraic
definition of SNIS that f must be a balanced function. This implies that f−1(+1)
is a vector space of dimension 2n− 1 of {±1}2n, and f−1(−1) is its coset. It is
easy to see that f must be a non-zero character χS for some S.

There will be 4! = 24 different ways of naming the ROLE distribution, each of
them corresponds to a permutation of rows of the following matrix.

ROLE =


1/2 0 1/2 0
1/2 0 0 1/2
0 1/2 1/2 0
0 1/2 0 1/2


Using the claim above, we can see that linear function f or g (in the vector form)
is the tensorization of the following basis functions (vectors) e0, e1, e2, e3, : {±1}2 →
{±1}.

e0(x) = 1, e1 = x1, e2(x) = x2, e3(x) = x1 · x2.

Note that in the vector form e1 = [1, 1,−1,−1]T , e2 = [1,−1, 1,−1]T , e3 =
[1,−1,−1, 1]T . Let r1, r2, r3, r4 be the rows of ROLE. Observe that

r1 · e1 = 0, r1 · e2 = 1, r1 · e3 = 0

r2 · e1 = 0, r2 · e2 = 0, r2 · e3 = 1

r3 · e1 = 0, r3 · e2 = 0, r3 · e3 = −1

r4 · e1 = 0, r4 · e2 = −1, r4 · e3 = 0
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Suppose g is a linear function. Let p be a permutation of {1, 2, 3, 4}. Let ROLEp
be the matrix obtained by permuting the rows of ROLE according to p. Let T
and T be the Markov and associated Markov operators of ROLEp. Since T is
a Markov matrix, Te0 = e0. From the observation above, it is easy to see that
Te1 = [0, 0, 0, 0]T , and both vectors Te2 and Te3 satisfy that two coordinates of
them are 0, one coordinate is 1, and the other is −1. This together with g is {±1}-
valued function imply that for any non-constant linear function g, at least half
of the coordinates of the vector Tf are 0. Therefore, ‖Tg − ρ′f‖1 > 1

2 ·
1
2 = 1/4.

Similarly, one can argue that if f is a linear function, then
∥∥Tf − ρ′g∥∥

1
> 1/4.

The proof for BES is similar.

E.4 SNIS of BES from ROLE

In this subsection, we present a SNIS simulation of BES(
√

1/2) from ROLE

(ROLE) with rate 1. Suppose Alice is given (a, b) ∈ {0, 1}2 and Bob is given

(c, d) ∈ {0, 1}2 where (a, b) and (c, d) is a sample of ROLE construction. Then,
the reduction function of Alice is f(a, b) = (−1)b and the reduction function of

Bob is g(c, d) = ((−1)c+1)(−1)d
2 .

E.5 On in-completeness of string-ROT distributions

This section shows that even the family of string-ROT is not complete in SNIS.

Claim 15 For any ` ∈ N, it holds that ρm(ROT (`) = 1√
2

.

To prove this claim, it suffices this to prove the following result.

Claim 16 Let T and T be the Markov and assosiated Markov’s operator of
ROT (`), respectively. Let λ1 > λ2 > . . . > λ2L be the eigenvalues of the matrix
T · T, where L = 2`. Then, it holds that λ1 = 1, λ2L = 0 and λi = 1/2 for every
1 < i < 2L.

Proof. Let In denote the n× n identity matrix. Let 1n denote the n× n matrix
with all one entries. First, note that T · T is a 2L× 2L square matrix. One can
verify that

T · T =

[
(1/2) · IL (1/2L) · 1L

(1/2L) · 1L (1/2) · IL

]
Then, Claim 16 follows from basic algebra.
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