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Abstract. Noise, which cannot be eliminated or controlled by parties,
is an incredible facilitator of cryptography. For example, highly efficient
secure computation protocols based on independent samples from the
doubly symmetric binary source (BSS) are known. A modular technique
of extending these protocols to diverse forms of other noise without in-
curring any loss of round and communication complexity is the follow-
ing strategy. Parties, beginning with multiple samples from an arbitrary
noise source, non-interactively, albeit, securely, simulate the BSS sam-
ples. After that, they can use custom-designed efficient multi-party so-
lutions for BSS.

Khorasgani, Maji, and Nguyen (EPRINT-2020) introduce the notion of
secure non-interactive simulation (SNIS) as a natural cryptographic ex-
tension of concepts like non-interactive simulation and non-interactive
correlation distillation in theoretical computer science and information
theory. In SNIS, the parties apply local reduction functions to their sam-
ples to produce the samples of another distribution. This work studies
the decidability problem of whether a sample from the noise (X,Y’) can
securely and non-interactively simulate BSS samples. As is standard in
analyzing non-interactive simulations, our work relies on Fourier ana-
lytic techniques to approach this decidability problem. Our work begins
by algebraizing the simulation-based security definition of SNIS. Then,
using this algebraized definition of security, we analyze the properties of
the Fourier spectrum of the reduction functions.

Given (X,Y) and BSS with parameter e, our objective is to distinguish
between the following two cases. (A) Does there exist a SNIS from BSS(¢)
to (X,Y') with d-insecurity? (B) Do all SNIS from BSS(e) to (X, Y) incur
§’-insecurity, where 6’ > §? We prove that there exists a bounded com-
putable time algorithm achieving this objective for the following cases.
(1) § = O(1/n) and &' = positive constant, and (2) § = positive con-
stant, and 6’ = another (larger) positive constant. We also prove that
6 = 0 is achievable only when (X,Y") is another BSS, where (X,Y) is an
arbitrary distribution over {—1,1} x {—1,1}. Furthermore, given (X,Y),
we provide a sufficient test determining is simulating BSS samples incurs
a constant-insecurity, irrespective of the number of samples of (X,Y).
Technically, our work proceeds by demonstrating that the weight of the
Fourier spectrum of the reduction functions is at most O (d) on higher-
order components, where ¢ is the insecurity of the SNIS.
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Binary symmetric source, Decidability characterization, Biased discrete Fourier
analysis, Efron-Stein decomposition, Junta theorem, Dimension reduction, Markov
operator.



1 Introduction

Noise, which cannot be eliminated or controlled by parties, is an incredible facil-
itator of cryptography. Using interaction and private independent randomness,
mutually distrusting parties can leverage such correlated noise to compute se-
curely over their private data. For example, Rabin [40, 41] and Crépeau [8]
constructed general secure computation [49, 20] protocols from erasure channels.
Such correlated noise seems necessary for secure computation because it is highly
unlikely that shared randomness alone can enable general secure multi-party
computation [17, 32, 33]. Crépeau and Kilian [9, 10] proved that samples from
noisy channels, particularly, the binary symmetric channels, suffice for general
secure computation. After that, a significant body of highly influential research
demonstrated the feasibility of realizing general secure computation from diverse
and unreliable noise sources [28, 29, 12, 30, 11, 45, 46, 27, 6]. In particular, ran-
dom samples from these noisy channels suffice for general secure computation
while incurring a small increase in round and communication complexity [44].

We also know highly efficient secure computation protocols from the cor-
related samples of the doubly symmetric binary source. A doubly symmetric
binary source with parameter €, represented by BSS(e), provides the first party
independent and uniformly random elements z1,...,z, € {—1,1}. For every
i € {1,...,n}, the second party gets a correlated y; € {—1, 1} such that y; = =;
with probability (1 — ¢); otherwise, y; = —z; with probability . These pro-
tocols efficiently use these samples (vis-a-vis, the number of samples required
to compute an arbitrary circuit of fixed size securely) and have a small round
and communication complexity [30, 44, 24, 23]. A modular technique of extend-
ing these protocols to diverse forms of other noise without incurring any loss
of round and communication complexity is the following strategy. Parties be-
gin with multiple samples of an arbitrary noise source (X,Y’) and they securely
convert them into samples of (U, V) = BSS(e) without any interaction, a.k.a.,
secure non-interactive simulation [26].
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Fig. 1. Pictorial summary of the system for secure non-interactive joint simulation.

Secure non-interactive simulation. Khorasgani, Maji, and Nguyen [26]
introduced the notion of secure non-interactive simulation of joint distributions.
The high-level objective of this cryptographic primitive is to non-interactively
and securely simulate samples from a distribution (U,V) when the parties al-



ready have multiple independent samples from another distribution (X,Y"). This
cryptographic primitive is a natural cryptographic extension of highly influen-
tial concepts in theoretical computer science and information theory, like, non-
interactive simulation (beginning with the seminal works of Gécs and Kérner [16],
Witsenhausen [43], and Wyner [47]), non-interactive correlation distillation [38,
36, 48, 3, 7]. The sequel succinctly presents the intuition underlying this concept
(for formal definition refer to Appendix F).

Refer to Figure 1 for the following discussion. Let (X,Y") be a joint distribu-
tion over the sample space X x ). The system samples n independent samples
drawn according to the distribution (X,Y’). That is, (z",y™) ~ (X,Y)®". The
system delivers the samples ™ to Alice and y™ to Bob. Alice applies a local re-
duction function f,: X™ — U to her sample 2™ € X™ and outputs v’ = f,(z").
Similarly, Bob applies a local reduction function g,: Y™ — V to her sample
y™ € Y™ and outputs v’ = g, (y™).

There exists a secure non-interactive joint simulation (SNIS) of (U, V') from
(X,Y) with insecurity tolerance § € [0,1], if the following three conditions are
satisfied.

1. The correctness of the non-interactive simulation ensures that the distribu-
tion of the joint samples (u’,v") when (2™, y™) ~ (X, Y)®" is d-close to the
distribution (U, V') (in the statistical distance).

2. The security against an adversarial Alice insists that there exists a (random-
ized) simulator Sim 4 : U — X™ such that the real distribution (X", f,,(X™), g, (Y™))
is d-close to the ideal distribution (Sima(U),U, V).

3. Similarly, the security against an adversarial Bob insists that there exists a
simulator Simpg: V — Y™ such that the distribution (f,(X"),g,(Y™),Y™)
is d-close to the distribution (U, V, Simp(V)).

Tersely, one represents this secure reduction as (U, V) Efcm g (X Y)®",

Problem statement. In general, given two noise sources (X,Y") and (U, V),
one needs to determine whether there exists a secure non-interactive simulation
of (U, V) samples from the samples of (X,Y). More formally, given the source
distribution (X,Y), the target distribution (U, V) and an insecurity tolerance
d € 10,1], does there exist n € N and reduction functions f,, and g, witnessing
a secure non-interactive reduction? Our work studies this decidability problem
(referred to as, decidability of SNIS) specifically for the case where (U, V) =
BSS(e).

Relation to the decidability on non-interactive simulation. Start-
ing with the seminal works of Gécs and Koérner [16], Witsenhausen [43], and
Wyner [47], deciding whether non-interactive simulation (NIS) of (U,V) us-
ing (X,Y) is possible or not has been a challenging problem. Only recently,
progress on the decidability of (the gap-version of) the general problem was
made [19, 13, 18].

Our decidability problem studies the general decidability of non-interactive
simulation with the additional constraint of security. There is no outright ev-
idence whether our decidability problem reduces to this existing literature. In
particular, the tests of [19] does not extend to the decidability of SNIS because



they rely on generating samples from correlated Gaussians, which is insecure
(see Appendix D for a discussion). Our technical approach employs tools from
biased Fourier analysis that are similar to those used in the literature of NIS.

1.1 Owur Contribution

To enable the algebraic treatment of our problem, our paper algebraizes the
simulation-based security definition of SNIS (refer to Claim 1). This algebraiza-
tion ensures that the insecurity of simulation-secure SNIS is a two-factor ap-
proximation of the insecurity of algebraic-secure SNIS. For example, perfectly
simulation-secure SNIS remains perfectly algebraic-secure SNIS, and statisti-
cally simulation-secure SNIS remains statistically algebraic-secure SNIS. In the
sequel, consequently, we rely only on the algebraic definition of security.

Our results prove the feasibility to distinguish whether a SNIS with J-insecurity
exists or any SNIS must be ¢’-insecure, where ¢’ > §. That is, we solve the gap-
version of the decidability problem, similar to the literature of decidability in
NIS [19, 13, 18]. This gap is inherent to the technical tools used in this area (see,
for example, the discussion in [13]).

Result I. Given (X,Y) and (U,V) = BSS(¢’), we prove that there exists
a bounded computable time algorithm that distinguishes between the following
two cases.

1. BSS(e) reduces to (X,Y)®" with §,, = O(1/n) insecurity.
2. The reduction of BSS(¢) to (X,Y)* has a constant insecurity.

A distribution is redundancy-free if both its marginal distributions have full
support.

Informal Theorem 1 Let (X,Y) be a redundancy-free finite joint distribution
over (£2,12), ¢ € (0,1/2), and § > 0 be the insecurity parameter. There exists
an algorithm running in bounded computable time that distinguishes between the
following two cases.

1. There exists a sequence of insecurity parameters 6,, = O(1/n) and a sequence
of reduction functions fr,gn: 2™ — {—1,1} such that for infinitely many n,
we have BSS(e’) E%_’gn (X, V)%™,

2. For all n € N, and reduction functions fpn,gn: 2" — {—1,1}, it is the case
that BSS(¢') Z5 , (X, ¥)*".

Typically, in cryptography, one insists on d,, being negligible in n. Our result
applies even for the case of §, = O(1/n) insecurity as well. It is instructive to
remind the reader that our result does not imply that either BSS(g’) reduces
to (X,Y) with O(1/n)-insecurity, or this reduction must incur a constant in-
security. Our result states that it is possible to distinguishes these two cases.
Theorem 6 presents the formal restatement of this result.

Furthermore, we prove that certain distributions (X,Y") can yield a SNIS to
BSS(¢’) only with constant-insecurity. The following result is a corollary of (the
technical) Informal Theorem 4 discussed later in this section.



Corollary 1. For any &' € (0, %), any p € [0,1], and any joint distribution
(X,Y) over {—1,1} x {—1,1} of mazimal correlation p, the insecurity of any
protocol for non-interactive secure simulation of BSS(e') from (X,Y) using ar-
bitrary number of independent samples is at least

imin <((1 —2¢')? — ka)Q , ((1 —2e')?% — p2(k+1)>2> 7

where k € N such that p* > (1 — 2¢’) > pk+l,

The maximal correlation of (X,Y) is defined in Subsection 2.4 and is efficiently
computable. Observe that our result states that even using a large number of
samples of (X,Y") does not help securely realize BSS(¢’) with a statistically small
insecurity. This result demonstrates the power of interaction in secure compu-
tation protocols because samples from any complete [30] (X,Y’) can securely
realize samples from BSS(e’) using an interactive protocol.

Result II. If one is interested in perfectly secure SNIS, then we prove that
(X,Y) must be BSS(¢), such that (1 —2¢)* = (1 —2¢’), where k € N and (X,Y)
is a joint distribution over {—1,1} x {—1,1}.

Informal Theorem 2 Let ¢’ € (0,1/2) and (X,Y) be an arbitrary joint distri-
bution over {—1,1} x {—1,1}. Suppose there exists n € N and Boolean functions
frygn: {=1,1}" = {=1,1} such that BSS(¢') €} (X, Y)®™. Then, the dis-
tribution (X,Y) must be a BSS(e), where (1—2¢') = (1—2¢)*, wheren > k € N.

[26] proved a restricted version of this result. They show that if (X,Y’) = BSS(¢),
then (1—2¢)¥ = (1—2¢’), and the parity reduction realizes the SNIS. Theorem 1
formally restates this informal theorem.

Result III. We know that efficiently general secure computation can be
founded on (sufficiently small) constant-insecure samples of BSS(e’), see, for
example, [23]. So, it suffices to securely realize BSS(¢’) with a constant insecurity.
Towards, this objective, we demonstrate that it is possible to distinguish whether
BSS(g’) reduces to (X,Y)™ with d-insecurity, where 0 is a constant, or any SNIS
of BSS(¢’) from (X,Y)* is ¢ - §-insecure, where ¢ > 1 is a constant.

Informal Theorem 3 Let &' € (0,1/2) and (X,Y) be an arbitrary joint distri-
bution over {—1,1} x {—1,1}. There exist ¢ > 0, dg > 0 such that the following
statement holds. For any insecurity parameter d < &g, there is an algorithm run-
ning in bounded computable time that distinguishes between the following two
cases.

1. There ezists n € N and reduction functions fn, gn: {—1,1}" — {—1,1} such
that BSS(¢') C% , (X, Y)*".

2. For allm € N, and reduction functions fp,gn: {—1,1}" = {=1,1}, it must
be the case that BSS(e') Z5° (X, Y)®",

We remind the reader that ¢ - d must be less than one; otherwise, item 2 above
is always false. Theorem 5 is the formal restatement of this result.



Technical results. We summarize two technical tools that are central to
most of the results presented above. First, we prove a necessary condition for
SNIS of BSS(g’) from (X,Y)* with 6 — 0 insecurity.

Informal Theorem 4 Let (X,Y) be a redundancy-free joint distribution over
{-1,1} x {—1,1} with mazimal correlation p. Suppose there exist a sequence
On € 10,1] converging to 0, and a sequence of reduction functions fn, g, such that

BSS(¢’) Efc:7gn (X,Y)®". Then, there exists k € N such that (1 — 2&')? = p?*.

We emphasize that this test is not sufficient. Corollary 1, presented above, is a
consequence of this result (formally restated as Theorem 3).
Finally, we prove a concentration of Fourier weight for SNIS.

Informal Theorem 5 Let p € [0,1] and &’ € (0,1/2). There exists a constant
c > 0 such that the following holds. Suppose there exists n € N, a finite joint
distribution (X,Y) over (£2,£2) and reduction functions fp,gn: X™ — {—1,1}
such that BSS(g”) E‘;Z,gn (X,Y)®" for some 6, > 0, and the mazimal correlation
of (X,Y) is p. Then, the Fourier weight (with respect to the biased Fourier bases)

of both f, and g, on degrees greater than k is at most ¢ - 6y.

We use this result (Theorem 2 restates the formal version) to highlight how
our technical approach diverges from the techniques of [19, 13, 18] for NIS-
decidability. In NIS-decidability, [19, 13, 18] rely on the invariance principle [35]
to arrive at a similar conclusion as Theorem 2. However, the invariance principle
preserves correlation, but not the security of the reduction. Consequently, our
technical approach uses appropriate junta theorems [15, 31] to circumvent this
bottleneck. (See Appendix D for a more detail discussions)

1.2 Technical Overview

The proofs of the decidability problems Informal Theorem 3 and Informal The-
orem 1 follow a sequence of steps described below. Let ¢’ € (0,1/2), p’ =1 —2¢’
and (X,Y) be an arbitrary finite joint distribution with maximal correlation p
(refer to Subsection 2.4 for the definition). Let 7, and m, be the marginal distri-
bution of X and Y, respectively. Let T be the Markov operator associated with
(X,Y) (see Subsection 2.5 for the formal definition).

Step 1: Algebraization of Security. We first give an algebraized definition
of SNIS of BSS from any finite joint distribution (see Definition 2). We show that
if the insecurity in the simulation-based definition is , then it is at most 20 in
the algebraic definition, and vice-versa (refer to Claim 1). This result implies
that the gap version of SNIS with respect to the simulation-based definition is
decidable if and only if the gap version of SNIS with respect to the algebraic
definition is decidable.

For brevity, we shall use f,, to represent f,(X™) and g, to represent g,(Y™)
in this document.

Claim 1. Let (X,Y) be a finite distribution over (X,)) with probability mass
distribution . Let m, and my be the two marginal distributions. Let fp, gn: X™ —



{—1,1} such that f, € L*(X",7,®"), g, € L*(Y", 7,®™), and § is some insecu-
rity parameter. Let T and T, respectively, be the Markov operator and the adjoint
Markov associated with the source distribution (X,Y). Then, the following state-
ments hold.

1. IfBSS(e) T4 (X, Y)®", then E[fn] < 6, Elgn] <6, [|T®"gn — p' - full; <
26, and HT@mfn —p' gl <26.
1
2. If E[fn] <0, E[gn] <4, HT®ngn - Pl : fn||1 <4, and HT(men N P' "In
5, then BSS(¢) C¥ _ (X,Y)"".

<

1

Appendix A proves Claim 1.

Step 2: Fourier Concentration of Reduction Functions. Next, we show
that if a pair of reduction functions f,, g,: 2" — {—1,1} achieves d-insecurity,
the Fourier tails, which is the summation of the square of all high degree Fourier
coefficients, of both these reduction functions is O (d). The technical tool to prove
this result relies on the orthogonal (Efron-Stein) decomposition technique and a
few other technical results (refer to Proposition 5, Proposition 6) from [35], which
sate that the higher order terms in the Efron-Stein decomposition of T®"g,, have
very small Lo norm compared to the Lo norm of the corresponding higher order
terms in the Efron-Stein decomposition of g, if the maximal correlation of (X,Y)
is strictly less than 1. In the setting of Informal Theorem 1 (4,, = O(1/n)), it
implies that the total influence of the reduction function is a constant that does
not depend on n (refer to Corollary 2). This step does not change the reduction
functions but gives Fourier concentration property of the reduction functions.

Step 3: Dimension Reduction by Applying Junta Theorem. In In-
formal Theorem 3, when the insecurity bound ¢ is sufficiently small, the Fourier
tails of reduction functions is small enough so that we can apply Bourgain’s
Junta Theorem (over biased measures) [5, 31]. In Informal Theorem 1, apply-
ing the generalized Friedgut’s Junta Theorem [15] for function with constant
total influence also gives us two junta functions. In both cases, this step always
gives us two constant-size junta functions fn, gn: 2" — {—1,1} that are close to
the two original reduction functions f,, g, in L; norm, respectively. Our proof
shows that if BSS(e") C§ (X,Y)®", then BSS(e) g?@ (X,Y)®". Since

n:9gn Jns9n
frn and g, are junta functions, it is clear that there exists ng € N and func-

tions fng, gng : £2™° — {—1, 1} such that BSS(¢’) E‘}' i (X,Y)®" if and only if

BSS(e') E(};ovgno (X,Y)®"™ for any & (refer to Theorem 7, Theorem 4).

Step 4: Solving the Decidability Problems. This step is identical to the
step in [19, 13, 18]. Once we have the constant ng, an algorithm for deciding
the SNIS problems works as follows. The algorithm brute forces over all possible
reduction functions fn,, gn,: 2™ — {—1,1}. If the algorithm finds any func-
tions fpg, Gne such that BSS(g’) E‘}no,no (X, Y)®n°, it outputs Yes. Otherwise, it
returns No.

Remainder of the results. Finally, we give an overview for Informal The-
orem 2 and Informal Theorem 4. Let ¢’ € (0,1/2), p’ =1 —2¢’ and (X,Y) be



an arbitrary 2-by-2 joint distribution with maximal correlation p. Let m, and
my be the marginal distribution of X and Y, respectively. Let T" be the Markov
operator associated with (X,Y).

First, we show that if there exist a sequence d,, converging to 0 and sequences
of reduction functions f,,, g, such that we can simulate BSS(¢’) with §,, insecurity
using reduction functions f,,g,, then (p’ )2 = p?* for some positive integer k
using biased Fourier analysis over Boolean hypercube. The main technical tool
is a generalization of the equation T),xs = pxgs to correlated spaces, that is,
Tos = p-1hs and Thpg = p-¢bg, where T, is the Bonami-Beckner noise operator, T’
and T is the Markov operator and the adjoint operator associated with the source
distribution (X,Y), and xs, ¢s,1s are Fourier bases over the uniform measure,
mz-biased measure, and 7,-biased measure, respectively (Claim 4). With this
additional technical tool, we can further prove that the Fourier spectrum of
reduction functions (mostly) concentrated on a constant degree k. This helps us
to show that there exists a constant ¢ such that mingcp, (o2 — pl¥)? < ¢4, for
infinitely many n, which implies that p'> = p?* for some k € N since §,, converges
to 0.

In the perfect security case, the Fourier spectrum of the reduction functions
fn,gn over biased measures m,,7,, respectively, are all concentrated on some
constant degree k (Claim 2). We show that there does not exist any such func-
tions unless both the measures 7, 7, are uniform (Claim 3).

Figure 2 summarizes the high-level overview of the dependence between our
technical results, i.e., which results are used to prove which results.

2 Preliminaries

2.1 Notation

We denote [n] as the set {1,2,...,n} and N, = {0,1,...,m — 1}. For two
functions f,g: 2 — R, the equation f = g means that f(z) = g(z) for every
x € 2. We use X, YV,U,V, or {2 to denote the sample spaces, and 7w usually
denotes a probability distribution. (X, )) is a joint probability space. For z” €
X™ we represent x; € X as the i-th coordinate of ™. A Boolean function is
a {—1,1}-valued function. Sometimes we omit the n when it is clear from the
context.

Correlated Spaces. We usually use (X,Y’) denotes the joint distribution
over (X,Y) with probability mass function =, and 7., T, denote the marginal
probability distributions of X and Y, respectively. Sometimes we will use (X x
Y, m) to denote the joint distribution. In this paper, we always use the following
notation for the expectation of functions f,, € L(X", 7,%"), g, € L*(Y", 7, %)
over correlated spaces.

Blfd= B, [hE)LEel= B ")

(wn 7yn),vﬂr@‘n



| Claim 5 —{ Claim 87 |Proposition 6| | Claim 2| | Claim 3]
Claim 6 ’ Claim 7 ‘ ’ Claim 9 ‘ ‘ Theorem 1 ‘

‘ Theorem 3 & Corollary 1 ‘ Theorem 2 Corollary 2

’ Imported Theorem 2 }—»’ Theorem 4 ‘ ’ Theorem 7 }(—{ Imported Theorem 3 ‘
\

Fig. 2. The diagram of claims, propositions and theorems. An arrow from one result to
another result means that the first result is used to prove the second result. Highlighted
nodes represent our final results.

We say that a joint distribution (X,Y') is redundancy-free if the sizes of the
support of the two marginal distributions ., 7, are |X| and |Y|, respectively. In
this paper, we consider only redundancy-free joint distributions.

Statistical Distance. The statistical distance (total variation distance) be-
tween two distributions P and @ over a finite sample space (2 is defined as

Binary Symmetric Source. A binary symmetric source with flipping prob-
ability ¢ € (0, 1), denoted as BSS(¢), is a joint distribution over the sample space
{-1,1} x {—1,1} such that if (X,Y) ~ BSS(¢), then Pr[X = 1Y = —1] =
PrlX =-1,Y =1 =¢/2,and Pr[X = 1,Y = 1] =Pr[X = -1,Y = —1] =
(1 —¢)/2. We write p = |1 — 2¢| to denote the correlation of the source BES(e).

Definition 1 (Junta Function). A function f: {—1,1}" — {—1,1} is called
a k-junta for k € N if it depends on at most k inputs of coordinate; in other
words, f(x) = g(xiy, Tiy,s .., %4,), Where i1,2,...,9 € [n]. Informally, we say
that f is a “junta” if it depends on only a constant number of coordinates.

2.2 Secure Non-interactive Simulation: Definition

Appendix F recalls the notion of secure non-interactive simulation of joint dis-
tributions using a simulation-based security definition as defined in [26].



In this paper we are mainly focus on the case that the target distribution is
a BSS. We give an algebrized definition of simulating BSS from any distribution
as follows.

Definition 2 (Algebraic Definition). Let (X,Y) be correlated random vari-
ables distributed according to (X x Y, ). We say that BSS(¢') C%  (X,Y)
if there exists reduction functions f, € L*(X™,7,%™), gn € L2(Y™, m,%™) such
that

1. Correctness: E[f,] <, Elgn] < 0, and E[fngn] < 0.
2. Corrupted Alice:

HT®ngn - /)/ . f”Hl < 67

where T is the Markov operator associated with the source distribution (X,Y).
3. Corrupted Bob:

<94

— )

&
HT nfn _pl “Gn L

where T is the adjoint Markov operator associated with (X,Y).

We provide a proof showing that this algebraic definition and the original (simulation-
based) definition of SNIS are 2-approximate, in term of insecurity parameter, of
each other in Appendix A.

Problem 1 (GAP — ALG — SNIS((X,Y))). Let (X,Y) be a joint distribution over
the sample space (X,)), and (U, V) be a joint distribution over the sample space
(U, V), and let 4,6’ > 0 be some insecurity parameters, distinguish between the
following two cases:

1. There exists a positive integer n, and functions f,,: X - U and g: V" — V
such that (U, V) C4 (X, V)"

2. For every positive integer n, and for every reduction functions f,,: X™ — U
and g: Y — V, we have (U, V) Z§ . (X,Y)®".

fngn

Remarks. When 4’ = c¢d for some constant ¢ > 1, we call it multiplicative
gap-SNIS. When ¢’ = 0 + ¢ for some € > 0, we call it additive gap-SNIS.

2.3 Fourier Analysis Basics

We recall some background in Fourier analysis over product measure that we
will use in this paper. We follow the notation of [39].

Fourier Analysis over Higher Alphabet

Definition 3. Let (£2,7) be a finite probability space where |2 > 2 and 7 de-
notes a probability distribution over £2. Let #®™ denotes the product probability
distribution on 2" and T®"(x122...2,) = [[1y 7(z;). For n € N, we write
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L2(02™,7®") to denote the real inner product space of functions f: 2" — R
with inner product

(fs@romn = E _ [f(a")g(z")].

2o ®n

Moreover, the L,-norm of a function f € L*(2™,7®") is defined as

1flp = B [F@HIPP.

~TOn

Definition 4. A Fourier basis for an inner product space L?(£2,7) is an or-
thonormal basis ¢g, P1, ..., Om—1 with ¢g = 1, where by orthonormal, we mean
that for any i # j, (65, @) = 0 and for any i, (¢i, ¢:) = L.

It can be shown that if ¢g, ¢1, ..., ¢m_1 is a Fourier basis for L?(£2, "), then
the collection (¢)aenn, (each a; € {0,1,...,m — 1}) is a Fourier basis for
LQ(Q”7 7r®").

Definition 5. Fiz a Fourier basis ¢g, ¢1, ..., ¢m_1 for L?(§2,m), then every f €
L2(0Q", 7®") can be uniquely written as f = ZQGNZ fla)pa where f(a) =

~

(fy @a). The real number f(a) is called the Fourier coefficient of f on .

The Fourier weight of f at degree k is defined as W*[f] := 2 oSupp(a)=k f(S)Q.
We also denote W=*[f] := 35 g0 aysk F(9)2.

For a € NS™ we denote |a| := |{i € [n]: a; # 0}|. We say that the degree
of a function f € L?(02",7®"), denoted by deg(f), is the largest value of |«

~

such that f(«) # 0. For every coordinate ¢ € [n], we denote Inf;[f] as the i-th
influence of f and Inf(f) as the total influence of f.

Proposition 1. For any real-valued function f € L*(2",7%"), if deg(f) = k
for some k € N. Then Inf(f) < k.

Biased Fourier Analysis over Boolean Cube. In the special case when
2 ={-1,1}, we define the product Fourier basis functions ¢g for S C [n] as

os(r) = [T o) = [[ (”“;“) ,

i€S €S

where p = m(=1),u=1—2p,0 = 2,/p\/T —p.

2.4 Maximal Correlation

We recall the definition of maximal correlation of a joint distribution and its
properties in this subsection.

11



Definition 6 (Maximal Correlation [22, 43, 1, 42, 2]). Let (X,Y) be
a finite joint distribution over (X,)) with probability mass function w. The
Hirschfeld-Gebelein-Renyi mazimal correlation of (X,Y) is defined as follows:

X;Y):= max E ,
p(X;Y) (Jax [f4]

where S represents the set of all real-valued function f € L*(X,n;) and g €
L3(Y,my) satisfying the following two conditions:

Elf*) =Elg*] = 1.
In case that S = 0 (which happens precisely when at least one of X and Y is
constant almost surely), p(X;Y) is defined to be 0.

For example, the maximal correlation of BSS(e) is |1 — 2¢| for every € € [0, 1].
Note that maximal correlation of any distribution is always between 0 and 1.

Imported Theorem 1 (Tensorization [43]) If (X1,Y1) and (X2,Y2) are in-
dependent, then

p(X1, X2:Y1,Ys) = max{p(X1; Y1), p(X2,Y2)}
and so if (X1,Y1), (X2,Y2) are i.i.d., then p(X1, Xo;Y1,Y2) = p(X1;Y1).

The following proposition shows that maximal correlation is an easily com-
putable quantity.

Proposition 2 ([43]). The mazimal correlation of a finite joint distribution
(X,Y) is the second largest singular value of the Markov operator T (defined in
Subsection 2.5) associated with (X,Y), in other words, it is the square root of
the second largest eigenvalue of the Markov operator TT, where T is the adjoint
Markov operator of T.

2.5 Markov Operator

Definition 7 (Markov Operator [34]). Let (X,Y) be a finite distribution
over (X,)) with probability mass distribution w. The Markov operator associated
with this distribution, denoted by T', maps a function g € LP(Y,m,) to a function
Tg e LP(X,7,) by the following map:

(Tg)(x) := E[g(Y) | X = ],
where (X,Y) is distributed according to w. Furthermore, we define the adjoint
operator of T, denoted as T, maps a function f € LP(X,7;) to a function

Tf e LP(Y,m,) by the following map:

Tf(y) =EIf(X) | Y =y].

12



Note that the two operators 7' and T have the following property.

(Tg, )z, = (9. Tf)r, = Elfu(X")gn(Y")].

Ezample 1. When X = Y = {-1,1} and n(1,1) = a,n(1,-1) = b,w(-1,1) =
¢, and w(—1,—1) = d, where 0 < a,b,¢,d < 1 and a+b+c¢+d = 1. Then
(1) =a+bn(-1) =c+d, my(1) = a+ ¢, m(—1) = b+ d. For any function
felLP({-1,1},m;) and g € LP({-1,1},7,), we have

a

(Tg)(1) = 5 9(1) + — (=)
(Tg)(~1) =~ g(1) + —= (1)
THO) = - F)+ - (1)
TH1) = g ) + e F-1)

Note that, in this case, the maximal correlation of (X,Y) is
. lad — be]
Via+b)(ct+d)(at+e)b+d)

When a =d= (14 p)/4 and b = c = (1 — p)/4, the operator T is the Bonami-
Beckner operator, denoted as T,.

Proposition 3. [43] Let (X,Y) be a finite distribution over (X,Y) with proba-
bility mass distribution w. Let T and T be the Markov operator and the adjoint
Markov operator associated with (X,Y). Let (X x X, ) be the distribution such
that its associated Markov operator is TT and 7, = v,. Then the marginal dis-
tributions of (X x X,v) are the same, in other words, v, = v,,. Furthermore, we
have p(X x X, ) = p?, where p is the mazimal correlation of (X,Y).

This result show that for f € L?(X,m,), we have (TT)f € L*(X, 7).

2.6 Efron-stein Decomposition

We shall use Efron-stein decomposition as one of the main technical tools to
prove Informal Theorem 2 and Informal Theorem 5.

Definition 8 (Efron-Stein decomposition). Let (£21, 1), (22, pi2), - - ., (¢, o)

be discrete probability spaces and let (2, 1) = Hle(()i, wi). The Effron-Stein de-
composition of f: 2 — R is defined as

f=> 5
5C[n]

where the functions f=° satisfy:

13



— =5 depends only on xg.
— For all S € 8" and all xs/, E[f~°(Xs)|Xs = x5:] =0

Proposition 4 ([14]). Efron-Stein decomposition exists and is unique.

The following propositions give the relation between Markov operators and
Efron-stein decompositions. The first proposition shows that the Efron-Stein
decomposition commutes with Markov Operator.

Proposition 5 ([34, 35] Proposition 2.11). Let (X™,Y™) be a joint dis-
tribution over (X™ X y"m@"). Let T; be the Markov operator associated with
(X:,Y:). Let T®™ = @, T;, and consider a function g, € LP(Y™, 7,®™). Then,
the Efron-Stein decomposition of g, satisfies:

(T®ngn):S =T (Q:S)'

The next proposition shows that 7®"g, depends on the low degree expansion
of g,.

Proposition 6 ([35] Proposition 2.12). Assuming the setting of Proposi-
tion &5 and let p be the maximal correlation of the distribution (X,Y). Then for
all g, € LP(Y™, 7,%™) it holds that

172" g%, < P g, -

The next proposition shows the connection between Fourier decomposition and
Efron-Stein decomposition.

Proposition 7 ([39] Proposition 8.36). Let f € L?(2",7®") have the or-
thogonal decomposition f = ng[n] =2, and let {¢5}Heon be an orthonormal
Fourier basis for L?(2", 7®™). Then

== 3 fla)sa

o: Supp(a)=S
In particular, when 2 = {—1,1} we have f=° = f(S)(i)s.

This implies that ||f:S||§ =20 Supp(a) f(oz)Q. Therefore, it holds that W¥[f] =
s 17515 and WE(f] = 3 g0 15752

3 SNIS Characterization: BSS from 2-by-2 Distribution

In this section we present the characterization result for SNIS of BSS from any
arbitrary 2-by-2 distribution with 0-insecurity (perfect security). First we restate
the Informal Theorem 2 as follows.

14



Theorem 1. [Perfect-SNIS Characterization] Let €' € (0,1/2) and (X,Y) be
an arbitrary 2-by-2 joint distribution. Suppose there exists n € N and Boolean

functions fn, gn: {—1,1}" = {=1,1} such that BSS(e’) E?cmgn (X,Y)®". Then,
the distribution (X,Y) must be a BSS(e), where (1 —2¢")? = (1 —2¢)?* for some

positive integer k < n.

We remark that Theorem 1 implies that the perfect SNIS problem from an
arbitrary 2-by-2 source distribution to BSS is decidable in constant time.

3.1 Proof of Theorem 1

Assuming Claim 2 and Claim 3 (presented in the next subsection), we present a
prove of Theorem 1 as follows.

Suppose there exists n € N and Boolean functions f,,¢g,: {—1,1}" — {-1,1}
such that BSS(¢') C% (X, Y)®". Then, by Claim 2, we have (1—2¢") = p* for
some k € N, and Wk[f,,] = W¥[g,] = 1, where p is the maximal correlation of
(X,Y). By Claim 3, both the marginal distribution 7, and m, must be uniform
distribution over {—1,1}, which implies that the joint distribution (X,Y) is a
BSS(e) for some € € (0,1). Using the fact that the the maximal correlation of
BSS(e) = |1 — 2¢|, one can conclude that (1 — 2¢")? = (1 — 2¢)?*.

3.2 Claims needed for Theorem 1

We state all the claims that is needed for the proof of Theorem 1, and provide
their proofs in Subsection 3.4.

Claim 2. Let (X,Y) be a 2-by-2 joint distribution over ({—1,1},{—1,1}) with
probability mass distribution m and €' € (0,1/2). Suppose there exist n € N, and
Frsgn s {=1,1}" = {=1,1} such that BSS(e') T}, (X,Y). Then, the following
statements hold:

s9n

1. There exists a positive integer k such that p' = p*, where p is the mazimal
correlation of the source distribution (X,Y) and p' =1 — 2¢’.

2. Furthermore, W¥[f,] = W¥[g,] = 1, where the Fourier coefficients of fn,gn
are with respect to the inner products over ;@™ and 7,*™, respectively.

Claim 3. Suppose f is a Boolean function in L*>({—1,1}", 7®") such that W*[f]
1. Then, it must be the case that the distribution w is the uniform distribution
over {—1,1}.

3.3 Properties of Markov Operators and Biased Fourier Bases

In this subsection, we prove some technical results showing relation between
maximal correlation, Markov operators, and Fourier bases. We will use them as
one of the main technical tools to prove claims in this section and Theorem 3
Let (X,Y) be a joint distribution over ({—1,1},{—1,1}) with probability mass

15



function 7. Let T'and T be the Markov operator and the adjoint Markov operator

associated with (X,Y"). Suppose 7 = [ for 0 < a,b, c,d such that a+b+c+

a
cd
d=1. Let p=c+dand g =b+d. Let {¢s}scpn be a biased Fourier basis for
L2(X™, 7w, ®"), and {¢s}sc[y) be a biased Fourier basis for L*(Y", 7, ®") defined

as follows.

65 =11 (””‘“) and (o) =[] (y;y“y> ,

o
i=1 z i=1

where pi, = 1-2p, py = 1-2q,0, = 2,/p\/1 — p, and oy = 2,/q/1 — q. Assuming
these settings, we claim the following results.

Claim 4. The following equalities hold.

n 7N
T"pg = pl¥ - g, and T "ps = pl°l - s,

where p = ——34=b¢__ Purthermore, the following equations hold.
vra(1—p)(1—q)

(TT) " ¢s = 219! b, and (TT)*" s = p*5' - s.

Remarks. The quantity p defined in the above claim has the same magnitude
as the maximal correlation of the joint distribution (X,Y’). When ad > be, it
is exactly the maximal correlation of (X,Y’). This result can be viewed as a
generalization of equation Tp®nXS = pI8I. xg, where T, is the Bonami-Becker
noise operator, and yg: {—1,1}" — {—1,1} is the function defined as ys =
[I;cs i (a Fourier basis over uniform measure).

We provide a proof of Claim 4 in Appendix B. The following result is a
corollary of Claim 4.

Claim 5. For any S, H C [n], the following equalities hold.

Tomgs(H) = T gs(H) = {g’ =5

otherwise.

— = = 28| ifH =8
(IT)*"6s(H) = (TT)™"bs(H) = {g o

otherwise.

3.4 Proofs of claims for Theorem 1
We present the proofs of the two claims used to prove Theorem 1.

Proof (of Claim 2). We shall use orthogonal (Efron-Stein) decomposition to
prove this claim. We write f,, and g, in terms of the orthogonal decomposition

as follows.
fo=> £ and g, = > g3°
SCln] SC[n]
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By linearity of the Markov operator and by Proposition 5,

T f =T [ Y %) = D T 5 = Y (1" f)=5,
SCln

SCln] SC|n]
=Rn N — f®n : RN —
T =T" | 2 0" = 2 T 0= T )™
SCln] SCln] SCln]

Since T®"g,, = p' - f, and by uniqueness of the orthogonal decomposition, it
must be the case that T®"g=5 = o' - f=9 for every S. Similarly, we also have

7" % =p' - g9 for every S. These two equations imply that

(IT)™" 75 = p2- 175,

By Proposition 7 and Claim 4, we have

(IT *>®”f:S—< )" (Ja(S) - ¢5) = fu(S) - (TT) " b5 = fu(S) - p?'! - §s, and
/2 f_ /2 fn( ) ¢S

Tt implies that f,,(S)-(p’2—p2S!) = 0 for every S. So for every S either f,(S) =0
or p'2 = p?I51 | Since there exists S* such that f,(S*) # 0, it must be the case

that p'? = p?*, where k = |S*|. Furthermore, /7: S) = 0 for every S satisfying
p*=p
|S| # k, in other words, W¥[f,] = 1. Analogously, we can show that W¥[g,] = 1.

Proof (of Claim 3). Let ¢s = [[,c5 (¥5%) be a Fourier basis over L?({—1,1}", 7®"),

where p = Prr(z) = —1],u = 1 — 2p, 0 = 2,/p\/T — p. Since W*[f] = 1, it can
be written as

=Y fS)es@) = Y F(s) <T>

|S|=k |S|=k

Substitute z =1 = (1,1,...,1) e {-1,1}" and z = -1 = (—1,-1,...,—1) €
{=1,1}" yields

= (1) S Fismaen= (-

|S|=k

k
)Y )
|S|=k
It it clearly that le‘:k # 0 since f(1) # 0. Using the fact that f is boolean-
valued function, we have f(1)? = f(—1)2. Therefore, we have
2 2
A R C1— )\ R
= S
(1) (T i) =(F1) (X s

|S|=k |S|=k
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It implies that

(5 - ()

which can happen only when g = 0. In other words, 7 is a uniform distribution
over {—1,1}, which completes the proof.

4 Fourier Concentration Property of Reduction Functions

We shall prove Informal Theorem 5 in this section, which will be used as a main
technical lemma to prove Informal Theorem 3 and Informal Theorem 1.

Theorem 2. Let p € [0,1] and &’ € (0,1/2). Suppose there exists n € N, a
finite joint distribution (X,Y) over (£2, £2) with probability mass function = and
reduction functions fpn,gn: X™ — {—1,1} such that BSS(¢’) E‘sz,gn (X,Y)®"
for some 6, > 0 and the maximal correlation of (X,Y) is p. Then, the following

bounds hold.

(1+p)?

k e TraN2
S: [S|>k P P
k . a2 (1L+p)?
w> [gn] = Z gn(S) < m On,
5:|S[>k P P

where p' =1—2¢, f, € L*(2",m,%"), g, € L*(2",7,%™), and k € N such that
pk Z pl > pk+1'

Intuitively, Theorem 2 says that the Fourier spectrum of reduction functions
are mostly concentrated on low degree parts. As a consequence, when §, =
O(1/n), the reduction functions have constant total influence. We state it as
following and prove it in Subsection 4.3

Corollary 2. Assume the setting of Theorem 2, if 6,, = co/n for some constant
co > 0, then we have

(1+p)%co
(24D _ 22

(14 p)?co

Inf(fn) S k + (p2(k+1) _ p,2)27

and Inf(g,) < k+

4.1 Required Claims for Theorem 2

Assuming the setting of Theorem 2 and the following notation, we state the
claims that is needed to prove the theorem. Let T' and T denote respectively the
Markov operator and the corresponding adjoint operator associated with the
distribution (X,Y). Note that f, € L*(2",m,%"), g, € L*(2", m,®"), T®"g,, €
L2(0Q", w,%™), and T®nfn e L*(2",m,®™). Let f, = > 5Cn] 9% and g, =
> sCn] g% be the Efron-stein decompositions of f,, and g,.
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Claim 6. The following inequalities hold.

/@D £ = 2 < (14 ).

S (14 p)dn, and H(TT)®ngn =% ga|,

Furthermore, we have

(@) f = 1 < (14 Y200, and |(T1)" g0 = % gu| | < (140?00

Claim 7. For every S C [n] such that |S| > k, the following bound holds.

sl ey Pl 9 Vi P I C (Pl 1M

Claim 8. The following equation holds.

= 3 |l@D® s - |

2
2
SC|[n]

7 O 2 2
H(TT) fn_p 'fn )

In particular, when 2 = {—1,1}, we have

H(TT)an 0% fn z = > 7 (58 _pfz)Q
SCin]

The next claim say that the 7" and T operators are contractive.

Claim 9. The following inequalities hold.

n =&
|7 gull, < lgully = 1, and ||T*" 1,

I, <l =1

We provide the proofs of these claims in Appendix C.

4.2 Proof of Theorem 2

Assuming Claim 6, Claim 7, Claim 8, we present a proof of Theorem 2 as follows.

Clearly, the function (TT)®n fn—p' - fn is bounded from above by 1+ p’. So it
follows from Claim 6 and that

| s 1 < 14 %0

Let fr, =3 SCn] f% be the Efron-Stein decomposition of f. Then, we have
7 O7 2 2
| @) g = 1

7\ O p— = .
= Z H(TT) fnsfp'2~fnSH Claim 8
SC(n]

2
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> 3 a0
5. |1S|>k 2
> Z H(TT)Qan:SHQ—pQ'an:SHQ‘Q Triangle Ing.
S: |S|>k
= S e I P B Claim 7
S:|S|>k
> (=
S:|S|>k
= S
S:|S|>k

N2
, therefore W>*[f,] < % “Op.-

Recall that W>k[f,,] = 3. S|k an:S|

Similarly, W>*[g,] < % - 0, which completes the proof.

4.3 Proof of Corollary 2

Let m be the size the domain (2. From the basic formula of total influence and
the fact that Y y<m f(@)® = 321 W' (fn) = 1, we have

Inf(fa) = > lalfula)?

OLEN#"L

i=1

k
i=1
c (L+p)?
<k-l1+n- — AT )2
(1+p)?
’ (p2(k+1) — pr2)2

Theorem 2

=k+c

Analogously, Inf(g,) < k+ %7 which completes the proof.

5 Lower Bound for Minimum Insecurity

We prove Informal Theorem 4 and Corollary 1 in this section. We first restate
the theorem as follows.

Theorem 3. Let (X,Y) be a redundancy-free 2-by-2 joint distribution with
mazximal correlation p. Suppose there exist a sequence 6,, € [0,1] converging to 0,
and a sequence of reduction functions fy, gn such that BSS(g’) o (X, Y)®".

*f‘n,vgn
Then, there exists k € N such that (1 — 2¢")? = p?*.
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Theorem 3 gives a necessary condition for SNIS of BSS(¢’) from an arbitrary
2-by-2 source distribution with o(1)-insecurity. As consequences, if p’2 # p* for
every k € N, any secure protocol simulating BSS(¢’) has constant insecurity. We
state all the claims that is needed for the proof of Theorem 3.

5.1 Proof of Theorem 3

Let p = 1 —2¢’. Let T and T denote, respectively, the Markov operator and
the corresponding adjoint operator associated with the distribution (X,Y"). Let
7 be the probability mass function of (X,Y’). Moreover, we assume that f,, €
L*(2", 7,®™) and g, € L*(£2",7,%™). Applying Claim 8 yields

@D f = 52 £ 2: > "(TT)®”f§S—P'2'f5SHz
SCin)
_ a2 (208 _ 2\’
S%;L] fn(S) (P P )

Together with Claim 6, it implies that

2 14+ /)2
: 2|5 12 ( P

min <p —p ) S ——qah55  On-

Sg[n] 1- pgzljﬁ)),;;k

Now, since BSS(&’) E‘}Z’g” for infinitely many n and lim,,_,, §, = 0, we have

2 1_|_ /)2
T N € 0 R S _
mén (p p ) < lim (3775, On nh—>Holo 6p =0.

n—0o 1 _— P g
Therefore, it must be the case that there exists S* such that p2 = p?*, where
k=15*.

5.2 Proof of Corollary 1

Next, we give a proof of Corollary 1. Applying Claim 8 yields

e 2_ Tran2 2|S|_/22> : 2|s|_/22
H(TT) fo—=0"fa Q—S%:]fn(é’) (p p ) > min (p p )

By Claim 6, we have (14 p)?8, > mingciy (,02|S| - p’2)2. This implies that
Op > %min ((p’2 — p2k)2 , (p'2 _ p2(k+1))2) .
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6 Decidability of SNIS: BSS from 2-by-2 Distribution

In this section, we shall prove Informal Theorem 3. First we state the technical
which will be used to prove the theorem. Let ¢’ € (0,1/2) and (X,Y) be an
arbitrary 2-by-2 joint distribution. There exist §o > 0 and ¢ > 0 such that the
following statement holds.

Theorem 4 (Dimension Reduction 2-by-2). Let (X,Y) be a 2-by-2 distri-
bution over ({—1,1},{—1,1}) with mazimal correlation p such that X and Y
are respectively p-biased and q-biased distributions i.e. Pr[X = —1] = p and

PrlY = —1]=q. Let ' € (0,1/2), p =1—-2¢', k = % where k € N
such that p* > (1-2¢) > PPt and fix d > k. There exists 0 < §p < 1,
ng € N, such that for any 0 < § < dg, for any n € N, any reduction func-

tions fn,gn: {=1,1}" = {—1,1} satisfying BSS(¢') Cf (X,Y)®", there exist

functions fny, gny: {—1,1}" — {—1,1} such that BSS(&’) Eﬁ?g‘?j (X, V)",

Furthermore, ng is a computable function in the parameters of the problem. In
particular, one may take

ng = 2kM /0% + 2k M /nlok

p q

and 0g = min(do(p), do(q)), where
So(p) = min(n,** /(M - k), (d/k — 1)* -0, % /(2w - 1064%))

bo(q) = min(n2® /(M - k), (d/r — 1)* - %%/ (26 - 1064))
where k € N such that p* > (1 — 2¢') > p**1, and M is a global constant (refer
to Imported Theorem 2) and
= (1 L V21— p) V22 and e = (1+ g V21— q) )12,
We shall use the following result to prove Theorem 4.

Imported Theorem 2 (Kindler and Safra[31]) There exists a constant M

such that for every k € N the following holds. Let f: {—1,1}" — {=1,1} be a
2

Boolean function, define € := Z\S\>k ’f(S) , where f(S) is with respect to p

biased measure, denote T :=n%% /M (where n, = (1+p~1/2(1 —p)~1/2)71/2 =

O(p'/*)). If e < 7 then f is an ((1 4 1064n, **(22)1/*)e, k/7)-junta.

o~

We first restate Informal Theorem 3 in the following and then prove it.

Theorem 5. Let (X,Y) be a 2-by-2 distribution over ({—1,1},{-1,1}) with
mazximal correlation p such that X and Y are respectively p-biased and g-biased
distributions i.e. Pr[X = —1] = p and Pr[Y = —1] = ¢q. Let ¢/ € (0,1/2),
p=1-2", k= % where k € N such that p* > (1 — 2¢') > pFtl.
There exist 69 > 0, ¢ > 0 and ng € N, such that the following statement holds.
For any insecurity parameter § < &y, there is an algorithm running in bounded
computable time O(22"°) that distinguishes between the following two cases.
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1. There exist n € N and reduction functions fn,gn: {—1,1}" — {=1,1} such
that BSS(e') T4, (X, V)"

2. For allm € N, and reduction functions fp,gn: {—1,1}" = {=1,1}, it must
be the case that BSS(e') Z5° (X, Y)®",

One may take g, c,ng as follows:

ng = 2kM /0% + 2k M /nlok

do = min(do(p), do(q))

So(p) := min(n,®* /(M - k), (d/rx — 1)* - 0% /(26 - 1064%))
Bo(a) = min(g®* /(M - ), (/s — 1) 71 /(25 - 1064))
d=r+1
mp = (1+p 21 —p)~1/2)712
ng=(1+q /2(1—q) /2712

and M is a global constant (refer to Imported Theorem 2).

6.1 Proof of Theorem 5

Definition 9. Given a joint distribution (X,Y) with probability mass function
w, mazimal correlation p, and constant ¢ > 0, there exists an algorithm such
that for any § > 0,

Assuming Theorem 4, we prove the Theorem 5 as follows. According to
Claim 1, in order to decide the problem GAP — SNIS — SIM((X,Y"),BSS(¢’), m, p,d’, )
it suffices to decide the problem GAP — SNIS — ALG((X,Y"), BSS(¢’), m, p, 2¢, %)

Let ¢ = CZ' and 6 = 24.

In the following, assuming (X,Y") is 2-by-2 distribution, we prove that we can
decide GAP — SNIS — ALG((X,Y),BSS(¢’),, p,d,c) for the constant ¢ = 5(1 +
k) and any § < 0y where Jp is introduced in Theorem 4. For YES instance of
GAP — SNIS — ALG((X,Y),BSS(e’), 7, p, 0, ¢), there exists n € N and reduction
functions f, gn: {—1,1}" — {—1,1} satisfying BSS(¢’) Eéfn,gn (X,Y)®". Then,
for an appropriate choice of parameters in Theorem 4, there exists functions
JrosGno: {—1,1}" — {—1,1} such that BSS(g’) E;ijii)j (X,Y)®"™ where ng
is introduced in that theorem. Moreover, we set d = 1 + k in Theorem 4. This

implies the following:

Elfno] < (5+4K)8, Elgn,] < (54 4K)6, Elfnogn,] < (5 +4K)6
||T®nogn0 -9 fnng < (5 +4k)9J,

e

T frg — P 9no

) < (5 +4r)4,

for § < 0 (for o refer to Theorem 4 ).
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For NO instance of GAP — SNIS — ALG((X,Y"),BSS(¢), 7, p,d,¢), for all n, in
particular n = ng, there are no reduction functions fp,, gn,: {—1,1}™ — {—1,1}
satisfying the following inequalities:

E[fno] < (5+5K)8, Elgn,] < (5+5k)d, E[fnggn,] < (5+5k)d
||T®nogn0 - pl : fnng < (5 + 5’1)67

T

| < (54506,

fno _p/'gno 1

Now, we brute force over all possible functions fn,, gn,: {—1,1}" — {-1,1}

to check if there exists any function satisfying BSS(e’) E;i:r%gi)f (X, Y)®™ or not.
If such reduction functions exist, then the algorithm outputs YES, and outputs

NO otherwise. This brute force can be done in O (22"0 ) time.

6.2 Dimension Reduction

The proof of Theorem 4 follows the step 2 and step 3 as described in Subsec-
tion 1.2. Let (X,Y) be a 2-by-2 distribution over ({—1,1},{—1,1}) such that
X and Y are respectively p-biased and g¢-biased distribution, and &’ € (0,1/2).
Let § < dg, which will be specified later. We denote k to be the positive inte-
ger such that p* > p’ > p#*1. Let M be the constant in the Imported Theo-
rem 2. It follows from Theorem 2 that W>*[f,] < x§ and W>*[g,] < k6, where

(1+p")?
(p2h 1) —pr2y2 -

We shall apply Imported Theorem 2 on function f,. First, we set ¢ = & -
6. We require § < (d/k — 1)* - n%% /(2K - 1064*) (for d > k) to have s(1 +
1064np_4k(2/<a6)1/4) < d and so

R =

(1 4 1064n, **(2¢)!/*)e < dé.

Moreover, we need to have § < 1% /(M - k) to satisfy the condition ¢ < 7 in
the theorem. So we set dg(p) := min(ni /(M - k), (d/k —1)* - nt%% /(2 - 1064%)).
Moreover, J, = k/T7 = kM/ n;Gk. Similarly, we can apply Imported Theorem 2
on g, and get do(q) := min(ni%* /(M - k), (d/k — 1)* - i /(2 - 1064*)) and
Jq = k/T = kEM/1%%. We set 6y = min(do(p), do(q))-

It implies that there exist two junta functions f,,gn: {—1,1}" — {-1,1}
such that they are d - 6-close to fy, g, in Ly norm, respectively. More precisely,
fn and gp, respectively, depend on J, = kM /n}% and J, = kM /nl variables.

|2 = Fa], = 2Prlfue™) # Fule™)) < 20,
190 = gnlly = 2Prlgn (") # ga(2")] < 2d6
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Next, we show that the insecurity obtained when simulating BSS(¢’) from
(X,Y) using the reduction functions f,, g, is at most dd. By Triangle inequal-
ity and the contraction property of averaging operator, in particular Markov
operator, we have

fros. -

< |[|7%"gn — T®”9n||1 %" g0 = o full, + | £ = o X

= 175" (G = g)ll, + 17" g0 = o' Full, + 0/ = £,

SHgn_g;t”l"i_”T®ngn_pan1 +p (fn_fn) 1

< 2d§+ 8§+ 2p'ds
= (14 (2+20")d)d
< (1+4d)é

Similarly, we have HT@mfn —p'gnll < (14 4d)d. Since f,,g, are 2dé-close in

Li-norm to f,, gn, and E[f,] < 6, ]E[gn] < §, it follows that E[f,] < (142d)d and

[fn} < (1 4 2d)d. Using the fact that fn and g, are respectively Jp-junta and
Jg-junta, there exist ng = J, + J, = O (k) and two functions fy,, gny: 2™ —
{-=1,1} such that

|72 = # £, = 17700, = o, = (1 4+ 405,
HT®"fn — p’g‘nHl = |79 frg — £/ gno |,

Elfn,] = Elfn] < (1 +2d)3, Elgn,] = Elgn] < (14 2d)6.

,< (14 4d)é and

It implies that BSS(g’) Ei‘::?j (X,Y)®"™ which completes the proof.

7 Decidability of SNIS: BSS from Arbitrary m-by-m
Source Distribution

In this section, we shall restate and prove Informal Theorem 1.

Theorem 6. Let (X,Y) be a redundancy-free finite joint distribution over (§2,12),
g’ € (0,1/2), and § > 0 be an arbitrary insecurity parameter. There exists an
algorithm running in bounded computable time that distinguishes between the
following two cases:

1. There exist a sequence of insecurity parameters 6, = O(1/n) and a sequence
of reduction functions fr,gn: 2" — {=1,1} such that for infinitely many n,
we have BSS(e’) E‘sf L (X0 Y)e",

2. For alln € N, and reductwn functzons frsgn: 27 — {=1,1}, it is the case
that BSS(e') ,megn (X, Y)
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The following result is the main technical lemma for the proof of the above
theorem.

Theorem 7. Let (X,Y) be a finite distribution over (£2,§2) with maximal cor-
relation p, and €’ € (0,1/2). For any constant &' > 0, there exists ng € N such
that for any sequence of insecurity parameters 6, < co/n, for some constant
co > 0, and any sequence of reduction functions fr,gn: 2™ — {—1,1} satisfying
BSS(&") E(}Z,gn (X,Y)®", there exist functions fng,gn: 2 — {—1,1} such
that BSS(e') £F | (X, V)",

Furthermore, ng is a computable function in the parameters of the problem.

In particular, one may take ng = (1/)\)0((’”“":0)/5,), where k € N satisfying
\2

P> 1 =2 > phtl k= %, and X\ is the minimum probability of any

outcome.

To prove this, we shall apply Imported Theorem 3. Intuitively, it says that for
any Boolean-valued functions with the total influence at most K there exits a
20(K)_junta function that is close to the given function in L;-norm.

Imported Theorem 3 Friedgut’s Junta Theorem for general product
space domains[15, 39]: Let (£2,m) be a finite probability space such that every
outcome has probability at least \. If f € L?(£2",7") has range {—1,1} and
0 < e <1, then f is e-close to a (1/N)°UN/E) junta h: " — {~1,1}, i.e.,
Prm"~7r®" [f(xn) 7& h(mn)] S €.

7.1 Proof of Theorem 6

Assuming Theorem 7, we present the proof of Theorem 6 here.

Suppose we are in YES instance, then let ¢’ = §/5 and invoke Theorem 7 to
get the constant ng € N. Then, we are sure that there exist reduction functions
fno and gy, such that BSS(g’) Efc"mgno (X,Y)®",

Now, suppose we are in NO, then for any n and (in particular for n = ng) we
have BSS(e') Z5 (X, V)"

We brute force over all functions fn,, gn,: 2" — {—1,1} for ny mentioned
in Theorem 7. If there exists any pair of reduction functions f,,,, gn, satisfying

BSS(e") E(}novgno (X,Y)®"™ output YES, otherwise output NO. The running time

of this algorithm is O(2/1°").

7.2 Dimension Reduction

The proof of Theorem 7 is similar to the proof of Theorem 4 except applying
Friedgut’s junta theorem instead of Bourgain’s junta theorem in the dimension
reduction step.

Let (X,Y) be a finite distribution over ({2, 2), and &’ € (0,1/2). Let §’ > 0. For
any n >= c¢o/d’, which implies that d,, = co/n < §, satisfying BSS(e’) E‘IS{;%
(X, Y)®"7 it follows from Corollary 2 that the total influence of both f,, and g,
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are at most k+ k- cg. By Imported Theorem 3, there exist two J-junta functions
frsGn: 2" — {—1,1} such that

fo=fa = 2Prlfala") # fala™)] < 26,
lgn = gnlly = 2Prlgn(a") # gn(2™)] < 26"

and |J| = (1/)\)0((’””'00)/5/), where ) is the constant defined in Imported Theo-
rem 3. Next, we show that the insecurity obtained when simulating BSS(¢’) from
(X,Y) using the reduction functions f,, g, is at most 5§’. By Triangle inequal-
ity and the contraction property of averaging operator, in particular Markov
operator, we have

HT‘X’"g} =P fal],
<TG = T g, + [T g0 = 0 full, + [ £ = £
= TG = g [, + [T 90 = ' Full, + [}/ (1 = £
< Nlgn = Gally + [|T%"gn — o' full, + 0 || (Fn = fn) ’1

<25+ 24 4(20)
< 5

Similarly, we have HT®n J—
norm to fn, gn, and E[fn] < 260", E[gn] < 26, it follows that E[f,] < 3¢’ and

E| fn} < 3¢’. Using the fact that f, and g, are junta functions, there exist
ng = (1/)\)0((’“"’”'00)/6/) and two functions f,,, gn,: 2™ — {—1,1} such that

< 5¢'. Since fn,gn are 6’-close in L;-
1

HT®"9~n - p’an1 = |T%™ gny — ' fo ||, » and
HT®n‘f" B p’g}Hl = [T fug — pl9"0||1 » and
Elfno] = Elfn] < 36, and Elgn,] = Elgn] < 30".

It implies that BSS(g’) E?‘:O’ oy (X,Y)®" which completes the proof.
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A Proof of Claim 1

We use a hybrid-argument to prove this claim. Without loss of generality, we can
assume that the simulator will reverse sample z™ from the input u. That is, for
every u € {—1,1} the Sim 4 outputs 2™ with probability 0 if ™ ¢ f, !(u) since if
there is such an ™ we can construct a new simulator that shifts the probability
of that #™ to the probability of some other element in f~!(u) and achieve the
security at least as good as the original simulator. Observe that on an input
u € {=1,1} a “good” simulator should reverse sample z™, which implies that
any “good” simulator behaves almost the same as Sim 4.

From these observations, we define a Sima(u) as follows. On input w, it
outputs 2" with probability 2 Pr[X™ = x"] if 2™ € f,!(u) and with probability
0 otherwise. Effectively, Sim 4 (U) outputs ™ with Pr[X"™ = z"]. First, we claim
that

SO ((SHHA(). ULV, (X, fulX"), 607 ) = [T — ',

Intuitively, the quantity [T®"g, (z™) — p’ fn(z™)| measures how good the simu-
lation is on input ™. Note that it might be the case that Sim 4(z) is not a valid
simulator if for any u € {—1,1}, 23" () Pr[X" = 2" # 1.

Forward Implication. If BSS(¢') Efcm g (X, Y)®", there exists a simulator
Simga: {—1,1} — 2™ such that

By the discussion above, it must be the case that Sim(A) is é-close to Sima.
Therefore, by triangle inequality, one can show that

17" gr — o fu|; < SD ((Sima(U),U, V), (X™, fu(X™),gn(Y")) )+ <26

The inequalities E[f,,]d follows from the fact that f,,(X™) is d-close to U, which is
a uniform distribution for BSS. Similarly, we have E[g,] < § and HT@W fn—0'9n

20.
Reverse Implication. Suppose there exist function f,,, g, such that E[f,] <

6, Elgn) <0, [|[T®"gn —p"- full, <6, and HT®nfn —p gnH1 < 6. Recall that

1

if 23 nep1y Pr[X™ = 2] # 1, then Simy is not a valid simulator. However,
this will not be an issue since from the fact that E[f,]0, we can construct a
valid simulator Simy4 from Simy with incurring at most additional § insecurity.
Therefore, the simulation error is at most 24.

We provide more details of the discussion above as follows. Suppose Sim 4 (u)
outputs z" with probability 2(Pr[X" = 2"] + €,n) if 2" € f,;1(u), and with
probability 0 otherwise, where e, € [0,1]. This implies that Sim4(U) outputs
™ with probability Pr[X™ = a"] + e4n. Clearly SD (Sim4(U), X™) < ¢, which
implies that Y .. |ezn| < 6. Similarly, E[f,(X"™)] < ¢ since SD (f,,(X™),U) < 4.

Observe that for a fixed 2™ € f~1(1) three quantities 1 |(T®"g,)(z™) — o' fn(z™)],
and |Pr[g,(Y") = 1| X" =2™,] — (1 = &')], and |Pr[g,(Y") = =1| X" = z"] — &/|
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are the same. Using this fact, we have

[T g = 0" fall,
=E|(T%"gn —p’-fn)(X”)|
= 3 Pr{X" = 27 [(T®7 g )(2") — - fula™)|

= S PHXT =] () @) — e

= ST PrX" = & [Prlga(Y") = X" = 2"] — (1 — )
# S PN =t Prlga (V) = 11X =) =

= SD ((SA).U,V) , (X" fu(X").gu(Y™))

Using this equation, one can verify that, by triangle inequality,

SD( (SimA(U)?U7 V) ) (Xn7fn(Xn)’gn(Yn)) )
> SD ( (Sma(U),U.V) , (X", fu(X"), gu(¥")) Z le2]
=T g = 0" fall, = Y lean]

which implies that ||[T%"g, — p’ - full; < 28 since > . [ezn| < §. With an anal-
ogous argument, one can show that HT@mfn -0 gnH <26 and E[g,] < 0.
1

The proof of the other direction is similar.

B Omitted Proofs in Section 3

Proof of Claim 4. In the following expressions, (X™,Y™) is always sampled from
7®", For every " € 2", we have

"]

< Oy >

T")s(a") = Elps(Y")| X" ==

Yn |X"_$”

Al
:zesyMY\X—x (
I (72

€S

= plSlps(am)

Claim 10

Similarly, we also have T = plSlg.
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Claim 10. The following equation holds.

i — Li — Ko
g (05) = ()
yi~vYi| Xi=x; Oy Oz

Proof. We do case analysis on ;.

Case 1: If x; = 1, the left hand side can be simplified as

. _1_My

E (yi_”y>: o lopy 0
yinYi| Xi=1 oy a+b oy a+b

Oy

b —2(a+c¢)

_a 2(b+d)

N a+b.2\/m\/m

B ad — bc
(a+bVb+dya+e

The right hand side can be rewritten as

.(1_%)__ e+ d)
P\, )T 9atbvetd

ad — be

a+b Vb+dvate

(c+4d)

Vatbctd(atobtd vatb/etd

ad — be
(a+b)Vb+dya+ec

Case 2: If x; = —1, the left hand side can be simplified as

._1_uy

E (yi_“y>: ¢ lopy, d
yi~Yi|Xi=—1 Oy c+d Oy c+d

Ty
d —2(a+c)

o 2(b+d)

T ctd 2brdyate
B bc — ad
C(c+dVb+dyate

The right hand side can be rewritten as

(—1—%)_ —2(a +1b)
p Oy -’ 2va 4+ bve+d

ad — be

C+d.\/b+d\/a+c

—(a+0b)

Ja+tb)ctd(atobrd Vatb/etd

_ bc — ad
(c+d)Vb+dya+c

Yi—Hy

In either of the cases, it’s always the case that E,, v, x,=, (7) =

(M), which completes the proof.
Oz
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C Omitted Proofs in Section 4

First we prove that if a real-valued function is bounded and its L; norm is
bounded, then the Lo norm of this function is also bounded.

Claim 11. Suppose f € L*($2,p) such that || f||;, < o and |f(z)| < B for every
x € 2. Then, we have ||fH§ < af.

Proof. We have

I£15 = ELf(2)*] = Bl f()") < E[l f(2)| - 8] = 8- E[f (@)I] = 8- | fll, < ab.

C.1 Proof of Claim 4

First we recall the notation. Let p € [0,1] and & € (0,1/2). Let (X,Y) be a
joint distribution over ({2,(2) with probability mass function 7 and maximal
correlation p. Let T and T denote respectively the Markov operator and the

corresponding adjoint operator associated with the distribution (X,Y’). Note
that f, € L*(2",m,%"), g, € L*(2", m,%"), T®g, € L*(w",7,%"), and

Fen n n = =
T fo € LW, my®"). Let fo = Ygcp fros and gn = Ygcp 9 be the
Efron-stein decompositions of f,, and g,.

C.2 Proof of Claim 6

Since BSS(e’) E‘;:’gn (X,Y)®", we have two inequalities | T®"g, — o full; < 0n
and HT®nfn —p'gnl| < 6n. Note that (TT)®nfn € L™, 7,%"). Applying
1

triangle inequality and contraction property of averaging operator, we get

’(TT)®nfn - plzfn

1
— ®n n
(TT) Jn— plT® 9n

7" (T®nfn - P/9n>

|
|

< ’T@)”fn —0'gn
(

AT g0 = 021

|+ 70— 5l

AT g0 =0 full,

Similarly, we have H(TT)QQngn — 02 gnll < (1+p")d,. Next, by a direct appli-
1

cation of Claim 11 yields

|@T)" f = 2 g, < (14 9200, and [T g0 = 92 gu| < (14 0)26.
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C.3 Proof of Claim 7

By Proposition 6, we have ||T®"fn:S||2 < plsl ||fn:SH27 which implies that ||T®nfn:SH2 <
PS5, < o N1 £75 |, when [S| > k. Therefore, we have

e 25l = o 15 < o A5, = o 1], < 0

Taking the absolute value of both sides yields
7o 175, = o2 115 l) = |2 15l — 2 750
C.4 Proof of Claim 8

By orthogonal property of Efron-Stein decomposition and the commute property
(Proposition 5), we have

H(TT)mfn — 0% fn

2
=@ (Z f;S> AR DN
? S SCln] 2
2

= X (@D 575 =02 177)

SCln] 9

/2 fn:SH

2
2

|
o™
3
S
®
<5

When 2 = {-1,1}, let ¢5 and s be two Fouier basis with respect to 7, and
my respectively. We have

— @n ._ _ 2
Z H(TT) fnS_pQ' nSH2
SCln]

= 3 @) (7u(s) - 65) - o2 Fal) - 05| Claim 4
SCln]
= Z fn H TT) "5 — p? ¢>SH

S sre X (@D s - Ge®) Parsewa
SCln]

RCIn]

Z E(S)2 (p2\5\ — pl2)2 Claim 5

SC[n]

which completes the proof.
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C.5 Proof of Claim 9
By triangle inequality, we have

HT®n9nH1 = E [Elg.(Y")|X" =2"]|

TNy ®n

< E _Ellga(Y")[[X" = 2"

TnET,On

I, ®n

=1

where (X™,Y™) is sampled according to 7. Since the range of g, is {—1,1},
it is clearly that ||g,|; = 1. Similarly HT@mfn <|\ful; =1
1

D Related works

In this section, we shall first review the approaches used in [19, 13, 18] to prove
that non-interactive simulation (NIS) problem is decidable and then discuss why
they can not be used to prove decidability of the secure non-interactive simula-
tion (SNIS) problem.

[19], for the first time, proves that the gap version of NIS can be decided.
They solve this problem for the case that the target distribution is a 2-by-2 joint
distribution. Their main contribution is reducing the problem to the case that
the source distribution is one sample of correlated Gaussian distribution. Then,
combining Witsenhausen [43], and an invariance principle introduced in [37, 35]
(inspired by Borell’s noise stability theorem [4]) provides them with a precise
characterization of joint distributions that can be simulated from a correlated
Gaussian distribution. However, when the target distribution is k-by-k for some
k > 2, then their approach is not enough for two main reasons: First, Borrel’s
theorem is not available for k& > 2, second, for £ > 2 it is not the case that a
distribution (U, V') can be specified by E[U],E[V] and Pr[U = V].

The authors of [13] manage to address this issue by following a similar high
level framework of using regularity lemma and invariance principle introduced in
[19] along with some more advanced techniques like a new smoothing argument
inspired by learning theory and potential function argument in complexity the-
ory. While In [18], the authors uses a different approach from [13], they follow
the same framework of [19] and again reduce the problem to Gaussian for the
general case k > 2. In this section, we will argue why this approach can not be
used to prove decidability of SNIS problem.

The invariance principle guarantees that the correlation of two low-influential
functions is almost the same as the correlation of appropriate threshold functions
applied on one sample of a p-correlated gaussian distribution. Finally, they use
Witsenhausen theorem to simulate this threshold function applied on guassian
sample using a constant number of source samples.
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Definition 10 (Gaussian Stability). [19] Let @ be the cumulative distribution
function (CDF) of a standard N(0,1) gaussian distribution and (G1,G2) be a
p-correlated gaussian distribution. Given p € [—1,1] and u,v € [—1,1], define

P,(Gy) := sign <¢1 (1;“) - G1>
Q,(Gs) = sign <q§1 <1 ; ”) - Gg)

Lp(p,v) = E[Pu(G1) - Q,(G2)]
Pu(G1) Q_,(G2)).

L,(v) = —E[P,(
Note that E[P,(G1)] = 1 and E[Q, (G2)] = v = E[-Q_, (Ga)].

Lemma 1 (Simulating Threshold on gaussians). [43] For any joint dis-
tribution (X,Y) with mazimal correlation p, any arbitrary ( > 0, there ex-
istsn € N (n = O(ﬁ)) such that for all p,v € [=1,1], there exist
functions P,: X™ — [-1,1] and Q,: Y™ — [—1,1] such that |E[P,] — u| <

C/2,|E[Q.] — v| < (/2 and
E[P.(X™)Qu(Y™)] = Ty, v)| < ¢

Now, we claim that above lemma does not necessarily provide us with a se-
cure simulation. The reason is that for u = v %, the joint distribution
(P.(G1),Q,(G2)) is BSS when (G1,G2) is a p-correlated Gaussian distribu-
tion. Suppose that the parameter of this BSS is ¢’. Now, if we choose (X,Y)
to be a redundancy-free 2-by-2 joint distribution with a maximal correlation 7
such that there is no integer k satisfying 72¢ = (1 — 2¢’)2, according to Corol-
lary 1 there will be a lower bound on minimum insecurity. This implies that the

constructions in Lemma 1 might be insecure.

G
G1

E Known Results on Junta

Definition 11. [31] A Boolean function f: {—1,1}" — {—1,1} is called (¢, J)
Junta with respect to a biased measure ,, if there exists a subset J C [n] of size
J and a function g which only depends on coordinates in the set J such that
Prymy, [f (@) = g(2)] > 1~ <.

Theorem 8. Friedgut’s Junta Theorem(15, 39]: Let f: {-1,1}" — {-1,1}
and let 0 < € < 1. Then, f is e-close to an exp(O(I[f]/¢))-junta. Indeed, there
is a set J C [n] with |J| < exp(O(I/e)) such that f’s Fourier spectrum is 2e-
concentrated on {S C J : |S| < I[f]/e}.

Theorem 9. Bourgain’s Junta Theorem/[5]: For any function f: {—1,1}" —

{=1,1}, any positive integer k, any positive real numbers ~,e, there exists a

constant ¢y, such that if 37 g -y, ]?(S)2 < €y ck™7705 then f is e-close to a

eo(x«z)
€

-junta.
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Imported Theorem 4 (Theorem 3.4 of [39]) Suppose f: {0,1}" — {—1,1}
has deg(f) < d, then f is a d2971 junta.

Kindler and Safra [31] and Hatami [21] generalize Bourgain’s Theorem to
general p-biased. [25] shows how to deduce similar results for p-biased measure
from uniform measure for some statements related to Fourier expansion.

F Secure Non-Interactive Simulation: Definition

We recall the notion of secure non-interactive simulation of joint distributions
using a simulation-based security definition as defined in [26].

If there exists reductions functions f,, g, such that the insecurity is at most
6(n) as defined above then we say that (U, V) reduces to (X,Y)*" via reduc-
v(n)

tion functions fn, g, with insecurity at most 6(n), represented by (U, V) C;"

(X, Y)®n. Suppose (X,Y) is a joint distribution over the sample space X x ),
and (U,V) be a joint distribution over the sample space U x V. For n € N,
suppose fp: X™ — U and g,: Y" — V be two reduction functions.

In the real world, we have the following experiment.

1. A trusted third party samples (™, y") & (X,Y)®", and delivers " € X"
to Alice and y™ € Y™ to Bob.
2. Alice outputs u’ = f,,(z™), and Bob outputs v’ = g, (y").

The following conditions are required for the security.

1. The case of no corruption. Suppose the environment does not corrupt
any party. So, it receives (U, V) as output from the two parties in the ideal
world. In the real world, the simulator receives (f,(X"™), g»(Y™) as output.
If this reduction has at most v(n) insecurity, then the following must hold.

SD((WU, V), (fu(X"),gn(Y™))) < 6(n).

2. The case of Corrupt Alice. Suppose the environment statically corrupt
Alice. In the real world, the simulator receives (X", f(X™), g, (Y™)). In
the ideal world, we have a simulator Sim4: U — X™ that receives u from
the ideal functionality, and outputs (Sim4(u),u) to the environment. The
environment’s view is the random variable (Sim4 (U), U, V). If this reduction
has at most v(n) insecurity, then the following must hold.

SD( (SlmA(U)7U’ V) ’ (Xnafn(Xn)’gn(Yn)) ) < 6(”)

3. The case of Corrupt Bob. Analogously, there exists a simulator for Bob
Simp: V — Y" and the following must hold if this reduction has at most
v(n) insecurity.
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Definition 12 (Secure Non-interactive Simulation). Let (X,Y) be a joint
distribution over the sample space (X,Y), and (U,V) be a joint distribution
over the sample space (U, V). We say that the distribution (U, V) can be securely
and non-interactively simulated using distribution (X,Y), denoted as (U, V) C
(X,Y), if there exists ng € N such that for every n > ng there exist reduction
functions frn: X™ = U, gn: Y™ — V, and insecurity bound §(n) satisfying

(U, V) =X (X, Y)®", and lim §(n) = 0.

n—oo
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