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Abstract
In a seminal work, Ishai et al. (FOCS–2006) studied the viability of designing unconditionally secure
protocols for key agreement and secure multi-party computation (MPC) using an anonymous bulletin
board (ABB) as a building block. While their results establish the feasibility of key agreement and
honest-majority MPC in the ABB model, the optimality of protocols with respect to their round and
communication complexity is not studied. This paper enriches this study of unconditional security
in the ABB model in multiple ways.

We present a key agreement protocol with a novel combinatorial insight to offer a 200% throughput
over the (FOCS–2006) study; i.e., using the same number of messages, we can (almost) double
the bit-length of the agreed key. We also prove the near optimality of our approach.
We offer unconditionally secure protocols for the binary erasure channel and string oblivious
transfer functionalities. Our BEC and (chosen message) random string oblivious transfer protocols
employ one-shot access to an ABB and a single message from a sender and a receiver. We
demonstrate the round optimality of our BEC constructions. Furthermore, we present a non-
interactive (random) string oblivious transfer protocol.

Central to our technical contributions is the abstraction of a distributional variant of the random
ABB functionality. Investigating the concrete efficiency of founding MPC from this primitive leads
to fascinating new mathematical challenges in well-established MPC models, which will be of broader
interest to the community.
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1 Introduction

Securely realizing unconditionally secure cryptographic primitives is a topic of immense
value and has a rich history. This work revisits a particularly surprising work by Ishai et
al. [24] that analyzes the possibility of performing cryptography with unconditional security
using an anonymous bulletin board (ABB). Ishai et al. establish unconditional security for
prominent cryptographic tasks such as key agreement and honest-majority secure multiparty
computation (MPC) based solely on access to an ABB that allows a sender to publish her
message without revealing her identity. In particular, they demonstrate that ABB is sufficient
to implement unconditionally secure point-to-point channels between two parties without
making any other assumption. Ishai et al. then extend it to achieve MPC with unconditional
security in the presence of an honest majority, diversifying the primitives that facilitate
secure computation. Interestingly, they complement these constructions by showing the
impossibility of unconditional secure computation using anonymous broadcast in the absence
of an honest majority.

Since the publication of the paper by Ishai et al. in 2006, the field of anonymous
communication has witnessed tremendous growth: the anonymous communication network
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Tor [16] serves more than two million unique users daily using an overlay network of several
thousand nodes all over the Internet. As the use of blockchains brings users’ financial
dealing to the (public) Internet, there have been significant efforts towards introducing and
improving anonymity over the Internet. Startups such as Nym [15] and xx.network [39,40]
are developing generic anonymous communication networks to break the link between users’
identity and their transactions, and several blockchain projects have started incorporating
anonymous communications, such as Tor and I2P, in their designs [23]. Academic literature on
anonymous communication, as well as protocol implementations, have significantly expanded
in the last two decades [1, 6, 13, 17, 28]. It is safe to say that ABBs are prevalent on the
Internet today. Motivated by these real-world applications, our goal is to understand the
efficacy and concrete efficiency of developing cryptography assuming access to such an ABB.

The utility of the ABB towards unconditional security is easy to illustrate using Ishai et al.’s
[24] elegant key agreement protocol between Alice and Bob against an honest-but-curious
adversary. Alice and Bob independently pick random integers (say rA and rB , respectively)
and publish those to the anonymous broadcast channel. The agreed single secret bit is 1 if
rA > rB and 0 if rA < rB. If rA = rB, then Alice and Bob fail to establish the secret bit
and rerun the protocol. Notice that Alice and Bob know their respective input and thus
can compute the secret bit; however, eavesdroppers cannot distinguish rA from rB and have
no information about the agreed bit. Moreover, the failure probability (using the birthday
bound) depends on the size of the sample space of the integers.

This “indistinguishability property” can be abstracted as a multi-set. Conceptually,
we observe that the use of ABB converts a vector (or key-value store) of user inputs to a
multi-set. This brings us to the question: what if Alice and Bob send multiple (say m)
messages each? Can we agree on more than m bits using this 2m-sized multi-set? We answer
this question affirmatively to demonstrate that Alice and Bob can indeed agree on close to
2m secret bits, which improves the throughput of the key agreement to 200%, as compared
to Ishai et al. [24]. This work aims to determine the concrete communication and round
complexity of key cryptographic functionalities based on anonymity. This investigation leads
to both qualitative and quantitative research questions in this context.

To this end, we establish connections of implementing functionalities using ABB in our
context with various well-studied communication-limited MPC models (like non-interactive
correlation distillation [34,35], secure non-interactive simulation/reduction [2, 26], one-way
secure computation [20], and private simultaneous messages [18]). Our problems translate into
analytically tractable instances of these MPC models, which have generally been challenging
to analyze. These connections lead us to several (near-optimal) protocol constructions. Our
practically-motivated research objectives lead to fascinating research questions in these MPC
models, potentially of interest to the broader cryptographic community.

1.1 Our Contributions
From the modeling perspective, this work assumes the existence of an anonymous broadcast,
which we model as an Anonymous Bulletin Board (ABB) hybrid. There are four parties
A,B, C, and D. The bulletin board ideal functionality, represented as ABBmA,mB ,mC

, takes
as input three multi-sets: (1) A := {a1, . . . , amA

} from party A, (2) B := {b1, . . . , bmB
}

from B, and (3) C := {c1, . . . , cmC
} from C. Note that party D does not provide any input.

The functionality outputs the multi-set Γ = A ∪B ∪ C := {γ1, . . . , γmA+mB+mC
} to all four

parties.

▶ Example 1 (Clarification on our ABB model). For illustrative purposes, consider mA =
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mB = mC = 2. Party A sends the vector (x1, x2) to the ABB, party B sends the vector
(y1, y2) to the ABB, and party C sends the vector (z1, z2) to the ABB. Our ABB publishes
the multi-set of all the received elements {x1, x2, y1, y2, z1, z2}. More concretely, interpret
this multi-set represented as the sorted vector containing its elements (with multiplicities).
In particular, this multi-set is different from the following alternative interpretations.

1. The set {{x1, y1, z1} , {x2, y2, z2}}. In this alternative version, messages with identical
indices are linked to each other. If parties wish to link messages using our ABB, they need
to explicitly encode the indices into their message, which causes a logarithmic increase in
their length.

2. The set {{x1, x2} , {y1, y2} , {z1, z2}}. This alternative version links messages sent by the
same party while hiding the identity of the party. Such linking is achieved using our ABB
by encoding anonymized identities of the parties into their respective messages.

We refer to party C as the helper and party D as the eavesdropper. In the randomized
version of bulletin board (rABB), the three multi-sets A, B, C are sampled according to some
independent distributions P, Q, R, respectively. See Section 4 for a formal definition of ABB
and its randomized version (rABB).

In addition to the bulletin board, parties also have public authenticated channels between
them. In the ABB setting, we define each party’s communication complexity as the number
of bits that the party sends to the ABB plus the number of bits it sends to other parties
through the public authenticated channels. For example, the communication complexity of
party A is the sum of the following quantities.

The bit length of A (the message that party A sends to the ABB)
The bit length of the messages that party A sends to other parties (B, C, and D).

We define the communication complexity in the rABB setting in a similar manner. For
example, the communication complexity of A is the sum of the following quantities.

Bit length of A (the message that that party A receives from rABB)
Bit length of the messages that party A sends to other parties (B, C, and D).

The sequel summarizes our contributions.

▶ Result 1 (Key-agreement Protocol: Informal). We present a non-interactive two-party
key-agreement protocol using rABBm,m,0 with individual message length n that establishes
(near-optimal) 2m-bit keys with (m · n)-bit communication complexity.

Theorem 8 provides the formal statement for this result. Our construction is secure
against a computationally unbounded eavesdropper D. Our construction is straightforward
to implement, and the key length (i.e., throughput) is near-optimal. Here, throughput is the
ratio of the key length to the number of messages. The length n of the individual messages
affects our algorithm’s failure probability, the event where parties fail to agree on a key.
Small messages would result in close-to-1 failure probability. Surprisingly, when n is larger
than a particular threshold, it has essentially no impact on the key length. We also present a
duplicate-recovery variant of the protocol in Result 1, which is suitable for other parameter
regimes. Details on the duplicate-recovery variant can be found in Section 5.7.
▶ Remark 2 (Upper bound on our key length: additional comments). Our proof of the optimality
of our key length considers a wide family of protocols. In these protocols, parties can interact
over multiple rounds using the public authenticated channels after the rABB invocation. The
parties A, B, and C receive messages from arbitrary independent message distributions P, Q,
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and R, respectively (not necessarily the uniform distribution). In our protocol, rABB delivers
random independent messages to the parties. We prove this result using mutual information,
entropy-based arguments, and the recent results of [29,30].

In our protocol, parties have access to a single ABB or rABB that they call once. Many
other protocols (such as [9], [14], and some protocols in [24]) either require additional
assumptions, such as on the synchrony of the system model or require multiple independent
instances of ABB to be implemented. We emphasize that this is qualitatively different
from our protocol setting, and a direct comparison of the communication costs of these
protocols against ours results in an inaccurate representation of both their protocols and ours.
Therefore, we focus our concrete communication cost analysis on comparison with the state-
of-the-art protocol in this setting, which is [5]. The result of this concrete communication
cost comparison is presented in Figure 1. For typical values of k such as 128, [5] requires
roughly 2.9× our communication cost.

Figure 1 Plot of the ratio of communication required by [5] over our protocol’s communication
needed to achieve various expected values of key-length k. For example, to generate a 128-bit key
(on average), [5] requires roughly 2.9× our communication cost.

▶ Result 2 (Binary Erasure Channel: Informal). We present a one-round (round-optimal)
protocol for binary erasure channel from B to A utilizing the rABB (with a helper) and a
public authenticated channel from B (the sender) to A (the receiver).

Theorem 16 provides the formal statement for this result. In the honest majority setting, [24]
showed that BEC could be realized using general MPC construction techniques. In this
work, we present protocols for BEC that is straightforward to implement and determine
their concrete round and communication complexity. Our protocols achieve unconditional
security against a semi-honest adversary. It uses only one round of communication between
the parties (sender B sends one message to the receiver A in our protocol). When the
erasure probability is (close to) a rational number e/d, where gcd(e, d) = 1, our protocol’s
communication complexity is proportional to the denominator d.

To complement this result, we show that BEC is impossible in rABB-hybrid without
additional communication, proving the round optimality of our protocol. We employ the
techniques developed recently in the SNIS/SNIR literature [2, 26] to prove this impossibility.
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Determining the optimal communication complexity (or tightly estimating it) remains an
open problem.
▶ Remark 3 (A subtlety). We prove the round optimality of our result when the messages
are sampled from uniform distributions P, Q, R (see Theorem 18 for details). Proving
the optimality for arbitrary independent distributions P, Q, R remains open. Recall P, Q, R

represent the distribution of the messages sent by rABB to the parties A,B, and C, respectively.
Analyzing this distributional variant of rABB motivates new research directions in interaction-
limited MPC models, like SNIS and SNIR. This problem is challenging even when P, Q, R

are flat distributions over a sparse subset of the message space. Typically, these models
(like NICD [34,35], SNIS [26], SNIR [2], OWSC [20], and PSM [18]) have strong hardness-
of-computation results. However, for our application scenarios, there are non-trivial and
practically useful construction as well.

In the context of implementing oblivious transfers, Ishai et al. [24] proved the impossibility
of realizing oblivious transfer (OT) using ABB when honest parties are not in the majority.
This implies that it is impossible to realize oblivious transfers (as well as their randomized
versions) in the ABB-hybrid without the helper party C. We construct oblivious transfer
protocols that achieve a few different functionality variants – a step towards diversifying
setups for oblivious transfers.

▶ Result 3. We present a one-round (round-optimal) protocol for establishing (chosen
message) random string oblivious transfer (cmROTℓ) from sender B to receiver A with the
helper C.

The cmROTℓ functionality takes as input two ℓ-bit messages x0 and x1 from the sender
and delivers the tuple (b, xb) to the receiver, where the bit b is chosen uniformly at random.
Theorem 19 provides the formal statement of this result. This protocol achieves unconditional
security against semi-honest adversaries. In our protocol, the sender B sends a message to
A using a private authenticated channel. The protocol is similar to the BEC protocol and
interpreted as an implementation of two BEC with correlated inputs. The round optimality
of this construction is a consequence of the fact that one can use (chosen message) random
string OT to implement an erasure channel.2 We extend this protocol to 1-out-of-N OT
(where the sender chooses N inputs) in Section 7.4.

Finally, and surprisingly, we implement a (non-interactive) random oblivious transfer
protocol using rABB.

▶ Result 4. We present a non-interactive protocol for establishing random string oblivious
transfer (ROTℓ) from sender B to receiver A with the helper C.

The ROTℓ functionality provides two uniformly random messages x0 and x1 instead of
receiving them as input from the sender. Discussions on the non-interactive random string
oblivious transfer can be found in Section 7.4.
▶ Remark 4 (New research problems in interaction-limited MPC models). Our use of rABBP,Q,R

can be interpreted as sampling from the joint distribution (P, Q, R|Γ) in a preprocessing
step, where Γ is the union of the three. Under this interpretation, our research problems
translate into research questions in the NICD [34,35], SNIS [26], SNIR [2], OWSC [20], and
PSM [18] models.

2 The sender can choose to send x0 = 11 and x1 = 0m for a bit m ∈ {0, 1}. The receiver receives the bit
m with a probability of 1/2; otherwise, it is erased with a probability of 1/2. Therefore, the impossibility
of implementing an erasure channel extends to this case.
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1. For key agreement, we prove that the uniform distribution achieves the optimal result
even against arbitrary independent distributions.

2. For BEC, we prove that our protocol is round optimal for uniform distributions. However,
whether a non-interactive protocol exists for some other independent distributions remains
an open problem.

3. For random string oblivious transfer, we show that by using specialized distributions
P, Q, R, we are able to obtain non-interactive random string oblivious transfer.

1.2 Related Works

1.2.1 Key-Agreement
There are many works focused on key-agreement or developing secure point-to-point links
based on anonymous communication. [5] performs key agreements by having each party send
a set of position-labeled bits, and discard any identical bits to use the remaining bits as
the key. There are also several works that expand upon or improve [5]. For example, [42]
expands [5] to work over semi-honest channels. [9] proposes a protocol that only requires
k total messages for a k-bit key by utilizing the fact that parties can set the source of the
message to be honest or false, and also send messages in random order. [14] similarly proposes
a protocol that requires the parties to send messages in a random order by implementing
random wait times. [36] considers key-agreement when the receivers (instead of the senders)
are anonymous. [19] considers key-agreement in a similar setting, where a “deck of cards” is
dealt such that each party has several cards from the deck. The remaining cards are dealt
to the adversary. Using this setup, the parties would like to agree on a secret key. Finally,
Gilad and Herzberg [21] demonstrate the practical utility of [24] for the IP-level security
protocol IPSec.

There has been extensive study of establishing fixed length secret key in the source model
in which parties observe i.i.d samples from a joint distribution and the eavesdropper possibly
observes some side information from these samples [4,12,22,31–33]. The main objective is to
study the achievable key rate when the number of samples tend to infinity.

[25] study the question of bootstrapping anonymous communication. The objective is to
communicate a large amount of data using non-anonymous communication and only a small
amount of anonymous broadcasts.

1.2.2 Communication-limited MPC Models
Non-interactive Correlation Distillation. In information theory and theoretical computer
science, non-interactive correlation distillation (NICD) is a well-studied analytically-tractable
problem [8, 10, 34, 35, 41]. NICD also aims to establish secure key agreements. In NICD,
each party holds a noise version of some source bits, a particular form of correlated private
randomness. It is common in NICD that the failure probability for the key-agreement
instances is high. On the other hand, parties have access to ABB that generates a different
form of conditional distribution in the rABB-hybrid model. We are the first to choose this
distribution and achieve near-optimal key length.

Secure Non-interactive Simulation/Reduction. Secure non-interactive simulation/reduction
(SNIS/SNIR) is a cryptographic primitive introduced recently [2, 26]. In this model, parties
have i.i.d samples of a source correlated private randomness; the objective is to non-
interactively and securely transform these samples into i.i.d samples of another target
correlated private randomness. This line of work investigates both the feasibility and efficiency
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of SNIS/SNIR constructions. We shall employ the techniques to prove the impossibility results
in their settings to show the round-complexity of realizing BEC or OT using rABB-hybrid.

One-way Secure Computation. One-way secure computation [3,20] uses one round of
communication to securely transform the samples of the source distribution to the samples
of the target distribution.

2 Technical Overview

This section provides a technical overview of our results. For a complete list of notations
and backgrounds, refer to Section 3. The formal definition of the anonymous bulletin board
(ABB) and its variant are in Section 4.

2.1 Key Agreement
We first present an overview of our (near-optimal) key-agreement protocol in Figure 4. We
construct a key agreement protocol in which parties A and B receive a set of m messages of
n bits each (A and B respectively). Additionally, all parties (A, B, D) receive the set of 2m

messages (Γ = A ∪B) from the rABB. The parties first discard any duplicate messages in
Γ, resulting in 2m′ total messages where m′ messages belong to each set A and B. Since
no duplicate messages exist, only parties A and B can identify which of the 2m′ messages
belong to each set A and B. By using a canonical ordering of the 2m′ messages and assigning
messages belonging to A as 1 and messages belonging to B as 0, the two parties can agree
on a 2m′ bit string that is known only to them. Then, by using standard techniques in
combinatorics, the two parties can index the agreed upon bit string out of the

(2m′

m′

)
possible

bit strings and agree on a key of length log
((2m′

m′

))
.

We discuss how the parameter choices m and n affect the expected key length and the
failure probability using standard techniques in probability. Additionally, we perform brute
force searches to identify the optimal parameters for various key lengths and compare those
results with previous state-of-the-art results.

Finally, using techniques on mutual information, we prove that under the setting of
arbitrary/unlimited message length, our protocol achieves the optimal expected key length
given parameter m.

Additionally, we present a variant of our protocol called duplicate recovery, which is
suitable for small values of n. In duplicate recovery, instead of removing all duplicates, the
protocol considers the duplicates as part of the possible distributions. We note that in this
case, indexing the possible distributions becomes non-trivial. We present such a problem as
a new problem in combinatorics, as well as reformulate it as an Integer Programming (IP)
problem. We believe this problem may be of independent interest.

The complete description and analysis of the key agreement protocol can be found in
Section 5.

2.2 Binary Erasure Channel
Next, we present an overview of our protocol realizing BEC in Figure 7. In our protocol, we
have A as the receiver, B as the sender, and C as a helper. A receives A, B receives B, while
C receives C from the rABB. Additionally, all parties receive the set Γ = A ∪B ∪ C.

At a high level, A cannot distinguish between messages belonging to B and C, while B
cannot distinguish between messages belonging to A and C. Therefore, out of all anonymous
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messages, B will choose one message belonging to B and another message, then use the
information related to which message belonging to B to generate a one-bit key which is used
to encrypt a bit that is sent to A. If B selected a message from B and a message from A,
then A can also identify which message was from B and obtain the key, which allows A to
receive the message. On the other hand, if B selected a message from B and a message from
C, then A cannot distinguish which message belongs to B, and thus the bit is erased. The
erasure probability can be controlled by how many messages A and C each contain, as it
directly determines the probability that B will select a message belonging to A.

Using properties of joint distribution and their eigenvalues, we prove that our protocol is
round optimal.

The complete description and analysis of the binary erasure channel protocol can be
found in Section 6.

2.3 Chosen Message Random String Oblivious Transfer

Finally, we present an overview of our construction of cmROT in Figure 8. A single bit of
random oblivious transfer can be seen as two BEC instances that are correlated in a way
such that whenever one of the messages is erased, the other message is delivered.

We use a set of four elements, one belonging to A, one belonging to C, and two belonging
to B, that is divided into two subsets that each contain an element belonging to B. B is able
to identify both messages that belong to B in the two subsets, and can therefore obtain two
bits. On the other hand, A can only identify the element belonging to B in the subset that
contains A’s element. This creates a setting where B is able to identify two messages while
A is only able to identify one of them.

When we directly perform the above step multiple times, a natural issue arises in which
B is unable to identify what messages A can obtain, but will instead get a cartesian product
of all the possible bits.

The key observation is that security still holds if we set all elements belonging to A to be
even (or odd), all elements belonging to C to be odd (or even, respectively), and half the
elements belonging to B to be even and half to be odd. This will allow B to “link” the bits
that form the same message, thus identifying the two possible messages that A can obtain
without learning which message A obtains.

We can also compress the multiple calls to rABB into a single call using sequence identifiers
and parallel identifiers (full detail can be found in Section 4.4).

Finally, to ensure that C learns nothing about either message, B sends two “correction
messages” that get xored with the original message to create the final message to A through
a private authenticated channel (such a private channel can be established in parallel with
no additional round using our key-agreement protocol).

The complete description and analysis of the random string oblivious transfer protocol
can be found in Section 7.

3 Preliminaries

This section introduces some notations and basic background that will be useful in the later
sections.
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3.1 Sets
Throughout the paper, we may use the word “set” when we mean “multi-set”. We will often
use capital letters to denote multi-sets. Alternatively, we will define a multi-set by listing
its elements in curly braces. We denote elements of the multi-set using lowercase letters.
Whenever we talk about multi-sets, especially the union of sets, we assume that all elements
are randomized. For example, for multi-set A and B, by only looking at A ∪B, it should be
impossible to determine which elements came from A. Additionally, we assume that there
exists some canonical ordering of elements in a multi-set. For simplicity, it may help to
assume that sets are automatically sorted by their canonical ordering. We note that the
desired properties such as not being able to determine which elements came from A by only
looking at A ∪B hold for when sets are randomized or when they are sorted according to
the canonical ordering.

3.2 Binary Erasure Channel (BEC)
In a binary erasure channel (BEC) with erasure probability p, a sender S sends a binary
message m ∈ {0, 1} to a receiver R. With probability 1− p, R receives the message m. With
probability p, the message is “erased” and R receives nothing. In this case, we say that R

receives ⊥. The sender is unaware of whether the erasure happened or not.
Roughly, security of BEC requires that the sender does not learn whether the bit was

erased or not, and the receiver not learning anything about the bit if it is erased (and it
received ⊥).

3.3 String Oblivious Transfer
String Oblivious Transfer. ℓ-bit string (1-out-of-2) oblivious transfer, denoted as OTℓ, is
a two-party functionality that takes as input (x0, x1) ∈

(
{0, 1}ℓ

)2 from Bob, a bit b ∈ {0, 1}
from Alice, and outputs xb to Alice. Security of OT requires that Alice learns nothing about
the bit b, and Bob learns nothing about x1−b.

Note that when ℓ = 1, the functionality OT1 is the (standard) bit oblivious transfer.

Random String Oblivious Transfer. Random oblivious transfer, denoted as ROTℓ, is a
correlation that samples x0 ∈ {0, 1}ℓ, x1 ∈ {0, 1}ℓ, b ∈ {0, 1} uniformly and independently at
random. It provides Bob with the secret share rB = (x0, x1) and provides Alice the secret
share rA = (b, xb).

Chosen Message String Random Oblivious Transfer. Chosen Message Random
oblivious transfer, denoted as cmROTℓ, is a functionality that takes as input (x0, x1) ∈(
{0, 1}ℓ

)2 from Bob, samples a bit b uniformly at random, and outputs (b, xb) to Alice.

3.4 Entropy and Mutual Information
We shall use mutual information and entropy-based arguments to prove the optimality of
our key-agreement protocols.

▶ Definition 5 (Mutual Information). Let X and Y be a pair of discrete random variables over
the space X × Y. If their joint probability distribution is PXY (x, y), the mutual information
between them, denoted as I(X, Y ), is

I(X, Y ) :=
∑

x∈X ,y∈Y
PXY (x, y) log PXY (x, y)

PX(x)PY (y) .
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Moreover, the conditional mutual information of (X, Y |Z) is defined as follows.

I(X, Y |Z) :=
∑
z∈Z

PZ(z)
∑
y∈Y

∑
x∈X

PX,Y |Z(x, y|z) log
PX,Y |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z) .

▶ Definition 6 (Entropy). Let X be a discrete random variable distributed according to
P : X → (0, 1). The entropy of X, denoted as H(X), is defined as

H(X) := −
∑
x∈X

P (x) log P (x).

▶ Definition 7 (Conditional Entropy). The conditional entropy of X given Y is defined as

H(X|Y ) := −
∑

x∈X ,y∈Y
PXY (x, y) log PXY (x, y)

PY (y) .

▶ Fact 1. It holds that

I(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

Furthermore,

I(X, Y |Z) = H(X|Z)−H(X|Y, Z) = H(Y |Z)−H(Y |X, Z).

4 Anonymous Bulletin Board Formalism

In this section, we first formally define Anonymous Bulletin Board (ABB) and Random
Anonymous Bulletin Board (rABB). We then discuss the similarities and differences between
ABB and rABB, and crucially, show that our protocol is equivalent in the ABB-hybrid and
the rABB-hybrid. Additionally, we present a connection of rABB with the offline phase of
the offline-online model.

4.1 Anonymous Bulletin Board
We assume all messages are from the domain Z2n , where n ∈ N is called the message length.
In an anonymous bulletin board (ABB), parties can privately send multiple messages to the
ABB. Then, the ABB will broadcast the “set” of messages, with order and sender information
removed. Additionally, we note that the ABB waits until it receives all messages before
publishing. Therefore, a rushing adversary is impossible.

We define the ideal functionality in Figure 2. It is defined over a four-party setting,
A and B represent the main participants that are trying to achieve something through
interaction with the ABB. C represents the facilitators that are trying to assist A and B
through interaction with the ABB. D represents eavesdroppers that do not send messages to
the ABB, but receive the output of the ABB.

We define this ideal functionality as ABBmA,mB ,mC
. Formally, ABBmA,mB ,mC

takes
multi-set of inputs A := {a1, . . . , amA

} from A, multi-set of inputs B := {b1, . . . , bmB
}

from B, multi-set of inputs C := {c1, . . . , cmC
} from C, and outputs the multi-set Γ =

A ∪ B ∪ C := {γ1, . . . , γmA+mB+mC
}. In particular, note that there are no “links” or

associations between the different messages that A sends.
We note that this model is more powerful than the random public anonymous bulletin

board functionality presented next since ABB allows messages to be chosen adaptively, that
is, dependent on previous messages.
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Ideal Functionality of ABBmA,mB ,mC

A B C D

ABBmA,mB ,mC

1
: A

2
: Γ

:=
A
∪

B
∪

C
1

: B
2

: Γ
: =

A
∪

B
∪

C 2
: Γ

:=
A
∪

B
∪

C

1
:
C

2
: Γ

:=
A
∪

B
∪

C
Figure 2 Ideal Functionality of Anonymous Bulletin Board (ABB). Dotted lines represent private

authenticated channels, while solid lines represent public channels. The number in front of messages
shows the order/round in which the messages are sent. A is the multi-set {a1, . . . , amA }, B and C

are similarly defined.

Additionally, we emphasize that one call to ABBm,m,m is different from m calls to ABB1,1,1,
even when we do not consider adaptive message choosing. Specifically, for m calls to ABB1,1,1,
all parties will know that the first 3 messages did not come from the same parties. That is,
parties gain additional information on subsets of messages that definitely did not come from
the same party. Whereas in a single call to ABBm,m,m, parties do not gain such information.

4.2 Random Anonymous Bulletin Board
We also define a random anonymous bulletin board (rABB) in Figure 3, which takes additional
parameters P , Q, R, which are independent distributions, and samples set of messages A

according to distribution P , set of messages B according to distribution Q, set of messages
C according to distribution R, privately outputs A to A, B to B, C to C (using private
authenticated channels denoted with dashed lines), and outputs the multi-set Γ to all
parties (using public channels denoted with solid lines). We define the ideal functionality as
rABBP,Q,R

mA,mB ,mC
.

4.3 Comparison between ABB and rABB
We note that the rABB functionality is as powerful as the ABB functionality when messages
are not chosen adaptively. Essentially, since messages are not chosen adaptively, the parties
should be able to determine the distribution of the messages they want to send before
interacting with ABB. Therefore, parties can simply program a rABB with the appropriate
P, Q, R in order to mimic the messages they are going to send. We note that P, Q, R can be
distributions with sample space of size 1. Effectively making them deterministic.

In all of our protocols, parties sample their inputs uniformly at random (without
replacement) and send them to the ABB. We note that this is precisely equivalent to rABB
with P, Q, R set to output values uniformly at random without replacement. Intuitively, since
the messages are chosen at random by semi-honest parties, it does not matter if the parties
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Ideal Functionality of rABBP,Q,R
mA,mB ,mC

A B C D

rABBP,Q,R
mA,mB ,mC

1
: A
←

$
P

1
: Γ

:=
A
∪

B
∪

C
1

: B
←

$
Q

1
: Γ

: =
A
∪

B
∪

C 1
: Γ

:=
A
∪

B
∪

C

1
:
C
←

$
R

1
: Γ

:=
A
∪

B
∪

C
Figure 3 Ideal Functionality of Random Anonymous Bulletin Board (rABB). Dotted lines

represent private authenticated channels, while solid lines represent public channels. The number
in front of messages shows the order/round in which the messages are sent. A is the multi-set
{a1, . . . , amA } sampled according to P , B is sampled according to Q, and C is sampled according
to R.

chose them and sent them to ABB, or if rABB chose them and sent them to the parties. The
end result is both the ABB/rABB and parties will have the same random values.

4.4 Compression of Non-Adaptive Sequential and Parallel Calls

We also note that when messages are not chosen adaptively, we can compress multiple
sequential calls to the ABB or rABB into a single call to the ABB/rABB by including a
“sequence identifier” in each message. Furthermore, we can also compress multiple parallel
calls to the ABB or rABB into a single call to the ABB or rABB by including a “parallel
identifier” in each message.

Using the rABB as an example. Let rABBi,j represent rABBPi,j ,Qi,j ,Ri,j
mAi,j

,mBi,j
,mCi,j

.

Let us assume we want to call rABB1,1, rABB1,2, . . . , rABB1,π in the first round, rABB2,1,
rABB2,2, . . . , rABB2,π in the second round, up to rABBσ,1, rABBσ,2, . . . , rABBσ,π in the σth

round.
We can instead call rABB′

i,j , where rABB′
i,j is rABBP ′

i,j ,Q′
i,j ,R′

i,j
mAi,j

,mBi,j
,mCi,j

, where P ′
i,j is the

same distribution as Pi,j , except that every message is prefixed by i, j. Q′
i,j and R′

i,j are
similarly defined.

Given this modification, we can now call rABB′′ := rABBP ′′,Q′′,R′′∑
i,j

m′
A

,
∑

i,j
m′

B
,
∑

i,j
m′

C

where

P ′′ is the union of all P ′
i,j . Q′′ and R′′ are similarly defined. m′

A is defined as the sum of all
m′

Ai,j
, and m′

B and m′
C are similarly defined.

Given that all messages in rABB′′ are prefixed by their sequence identifier and parallel
identifier, the parties can locally divide them into the appropriate rABB′

i,js, and the result
remains the same as the original.
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4.5 An Equivalent Reformulation of rABB
In the semi-honest setting, the random anonymous bulletin board can be reformulated as
the preprocessing step (offline phase) of the offline-online paradigm. In this step, parties will
receive private correlated randomness from a conditional distribution.

Reformulation of rABBP,Q,R
mA,mB ,mC

. The bulletin board samples (A, B, C) from the distribution
(P, Q, R), where A = {a1, a2, . . . , amA

}, B = {b1, b2, . . . , bmB
}, and C = {c1, c2, . . . , cmC

}.
Alice receives the multi-set A, Bob receives B, and C receives C. The bulletin board sends
Γ = A ∪B ∪ C to all parties A,B, C,D. So, party D gets some side information about the
correlated randomness of A,B, C. We note that from the perspective of the parties, (A, B) is
sampled according to the conditional distributions (P, Q|Γ).

Discussion. Unlike the standard offline-online model in which correlated private randomness
is sampled from a joint distribution, our model samples them from a conditional distribution,
which is a family of joint distributions.

5 Key Agreement Protocols

This section presents our optimal length key agreement protocols in the rABB-hybrid in
which party C does not send any messages to the bulletin board. We start by defining the
problem setting.

5.1 Problem Setting
Suppose parties are in rABBP,Q

mA,mB
-hybrid (without the helper C). That is, the parties have

access to a single instance of rABBP,Q
mA,mB

, which they can call one time. We note that this
is different from having access to max (mA, mB) different rABBP ′,Q′

1,1 -hybrid. That is, party
A has A = {a1, a2, . . . , amA

} sampled according to P , party B has B = {b1, b2, . . . , bmB
}

sampled according to Q, and party D has A ∪B. Every message is n-bit. Parties A and B
are allowed to communicate with each other through a public noiseless channel. Party D (the
eavesdropper) can see the messages sent between A and B. At the end of the protocol, two
parties A and B agree on a sample space ΩL for the key, and A outputs a (variable-length)
key KA ∈ ΩL, and B outputs a key KB ∈ ΩL. So, the key length is log|ΩL|, where log
denotes the logarithmic with base two. We define the expected key length of the protocol as
the expectation of log|ΩL|, where the expectation is taken over the randomness of samples A

and B.
The protocol is correct if KA = KB = K with high probability and K is close to a uniform

distribution over ΩL. It is secure if the eavesdropper D learns almost nothing about the key
K. More formally, the statistical distance between two distributions (KA, KB , T, A∪B) and
(UΩ, UΩ, T, A ∪B) is small, where T is the transcript of the protocol (messages sent between
A and B).

Given a desired key length k, we define the failure probability as

min (Pr[length(KA) < k], Pr[length(KB < k)]) ,

where the probabilities are taken over the randomness of KA and KB , respectively. Typically,
the failure probability is negligible. We define the communication cost as m · n + length(T ),
where length(T ) denotes the length of the protocol’s transcript.

Objectives. In this work, we focus on the following objectives. Given a desired length
k ∈ N and a failure probability δ, we are interested in constructing key agreement protocols
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Key-Agreement Protocol

A B D

rABBP,Q
m,m

1
: A

1
: Γ

:=
A
∪

B

1
: B

1
: Γ

: =
A
∪

B 1
: Γ

:=
A
∪

B

A
1. Receive A ∈ ({0, 1}n)m := {a1, . . . , am}
and Γ = A ∪B := {γ1, . . . , γ2m} from rABB.
2. Disregard γi, γj for all i ̸= j s.t. γi = γj ,
obtaining set Γ′ := γ′

1, . . . , γ′
2m′ .

3. Compute A′ = A ∩ Γ′.
4. Compute k := Algorithm 1(A′, Γ′).

B
1. Receive B ∈ ({0, 1}n)m := {b1, . . . , bm}
and Γ = A ∪B := {γ1, . . . , γ2m} from rABB.
2. Disregard γi, γj for all i ̸= j s.t. γi = γj ,
obtaining set Γ′ := γ′

1, . . . , γ′
2m′ .

3. Compute A′ = Γ′ − (B ∩ Γ′).
4. Compute k := Algorithm 1(A′, Γ′).

Figure 4 Key-agreement protocol between parties A and B in presence of an eavesdropper D in
the rABBP,Q

m,m-hybrid, where P, Q are independent uniform distributions.

that output a (variable-length) key of length at least k with failure probability at most δ

and with least communication costs.
Remark. Our protocols always achieve perfect correctness and perfect secrecy even when

the key length is less than the desired threshold k. Our problem setting is similar to the key
agreement model considered in [30]. The main difference is that parties get components A

and B, respectively, of a conditional distribution of the form (P, Q|Z) in our setting; while
parties get A and B sampled according to a joint distribution of the form (P, Q) in their
setting. Similar to the setting considered in another line of work [4, 31, 32], the eavesdropper
has some side information about the samples of A and B. The difference is that parties have
access to multiple i.i.d samples in their setting, while parties have access to only one sample
of a (large) joint distribution.

Remark. In our problem setting, parties agree on a variable-length key. One can rely on
the asymptotic equipartition property and apply standard extraction procedures to obtain a
fixed-length key.

5.2 Our Protocol
Next, we present our protocol in Figure 4, as well as provide an overview of the protocol
below.

The protocol is similar to the example presented in [24]. At a high level, parties A
and B will each receive m random values from the rABB, which are sampled from P and
Q respectively. For security, P and Q are independent identical copies, and for optimal
performance, P is a uniform distribution over (Z2n)m under the constraint that elements do



A. Yu, H.H. Nguyen, A. Kate, H.K. Maji 15

not repeat. That is, P produces a set A := {a1, . . . , am} such that all elements are equally
likely to be in the set, and that for all i ̸= j, ai ̸= aj . Q produces a similar set B. Once they
see the set of values, A and B can easily distinguish between A’s values and B’s values, while
the eavesdropper cannot. Using this information, A and B can agree on a key K determined
by the positions of A’s values. Intuitively, there are

(2m
m

)
possible cases of which ones are

A’s values, and only A and B can identify one of the
(2m

m

)
possible cases.

We can also efficiently assign key values to the identified cases. We do so by assuming a
canonical ordering of the elements in the set, and the more A’s values are towards the “front”
of the set, the higher the value of K is.

To efficiently compute the value of K, we employ standard techniques for analyzing
fixed-weight bitstrings using combinatorial3. These techniques and algorithms have long
been known and described in various places such as [7].

For completeness, we present such an algorithm in Algorithm 1 and briefly explain the
logic behind the algorithm.

Algorithm 1 Key Determination

Parameters :
Input : A′, Γ′

Output : K

1 We assume there exists some canonical ordering of elements in a set.
2 Identifies which of γ′

1, . . . , γ′
2m′ are in the set A′, and create a bitstring x such that if

the ith element is in A′, then the ith bit is set to 1.
3 Compute m′ = size(A′)
4 K = 0
5 c = m′

6 for i in range(2 ·m′): do
7 if x [i] == 1 then
8 K = K + binomial(2 ·m′ − i− 1 , c)
9 c = c− 1

10 return K

5.2.0.1 Explanation of Algorithm 1

The idea behind Algorithm 1 is to first convert the set of elements into a binary string using
the canonical ordering and assigning 1s at A’s inputs and 0s to B’s input. The algorithm can
determine which bit string this is by examing all the 1 bits that appear and counting how
many bit strings are skipped. For example, let us look at a simple case of m = 3, and the
bit-string being 101010. Upon seeing the first 1, the algorithm knows all bit-strings of the
form 0 ∗ ∗ ∗ ∗∗ have been skipped over, where the ∗ ∗ ∗ ∗ ∗ consists of 3 1s, and 2 0s. There
are

(5
3
)

of them. Then, upon seeing the next 1, the algorithm knows all bit-strings of the
form 100 ∗ ∗∗ have been skipped over, where the ∗ ∗ ∗ represents 2 1s and 1 0s. There are

(3
2
)

of them. By continuing through the entire bit-string, the algorithm can determine the value
of this bit-string, thus determining the value of the key K.

3 We thank our anonymous reviewers for pointing us in the direction of these techniques.
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5.3 Performance Analysis and Parameter Choices
Now, we use concentration bounds to show that the expected key length in our protocol is
highly concentrated around the mean that is large. Therefore, our protocol outputs a long
key with high probability.

▶ Theorem 8. Fix m, n ∈ N, and 0 ⩽ ε ⩽ 1. Our non-interactive protocol in Figure 4
uses m messages (each being n-bit strings) to help parties agree on a key of length at least
k = log

(2m′

m′

)
= (2m′) · (1− o(1)) with failure probability at most exp

(
−ε2 ·m ·

(
1− m

2n

)
/2

)
,

where m′ = m ·
(
1− m

2n

)
· (1− ε).

Proof. Let us fix the elements of B. For each element of A, there is at least
(
1− m

2n

)
probability that such an element of A will not be a duplicate of an element of B. Therefore,
we can apply a simplified Chernoff Bound. For 2m′ unique elements, A and B can agree on
a log

(2m′

m′

)
≈ log

(
4m

√
mπ

)
-bit key.

▶ Theorem 9. Fix m, n ∈ N, satisfying m = o
(
2n/3)

. Using m messages of size n-bit each,
our protocol in Figure 4 allows parties to agree on a k = log

(2m
m

)
= 2m · (1− o(1)) bit key

with probability at least 1− exp
(
− m2

2·2n

)
.

Proof. By the birthday bound, with probability at least 1− exp
(
− m2

2·2n

)
, all 2m values will

be unique. For 2m unique elements, A and B can agree on a log
(2m

m

)
-bit key.

Parameter Choices. Our protocol has two main parameters, m and n. The expected
key length increases with m and n. At the same time, the communication cost increases
with m and n as well. However, we note that this is a simple optimization problem and
that automatic searches for optimal parameters can be done. Furthermore, for common
key-length such as 128 or 256 bits, the search only has to be performed once.

We perform this automated search and present our results in Figure 5. Concretely, using
702-bits of communication, A and B can agree on a 128-bit key in expectation, and using
1550-bits of communication, A and B can agree on a 256-bit key in expectation.

5.4 Comparison With previous State-of-the-Art
Recall that we are in the setting where parties have access to a single ABB or rABB that they
can call once. To the best of our knowledge, the best previous state-of-the-art key agreement
protocol that works in this setting is [5]. Other protocols such as [9] and [14] require that
parties send their message in a random order (which requires additional assumptions on the
synchrony of the system model), and are often presented as using sequential calls to the
ABB in order to perform key agreement on more than one bit. The key agreement protocols
presented in [24] either require more communication rounds and communication costs than
the one in [5], or are fundamentally similar to the one in [5].

Therefore, we focus our concrete communication cost analysis on comparison with [5].
Additionally, we present our analysis using the expected value of the key length. Similar
analyses can be done on achieving the desired key length with high probability instead of in
expectation by using standard techniques on concentration bounds, etc.

To achieve a k-bit key in expectation, [5] requires each party to send 2k messages, each
of length log(2k) + 1, where log(2k) bits are used to represent the sequence identifier and
1-bit is used to represent the random bit chosen. This results in a total communication cost
of 2k · (log(2k) + 1). Even when we assume that parties do not send the leading 0s in the
sequence identifiers, the total communication cost is still 2k+

∑log(2k)
i=1 i ·2i−1 = 2k log(2k)+1.
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Figure 5 For various key lengths k, we plot the communication required (in bits) such that the
expected key length is at least k. We also label two points, one for 128-bit keys and one for 256-bit
keys. We label the key length and communication required, as well as the parameter choices of m

and n used.

We then compare this communication cost for various key lengths against the result from
our automated search results presented in Figure 5 by taking a ratio of their communication
cost divided by our communication cost, which produced Figure 1 shown in our contribution
at the beginning of the paper.

For example, for 128-keys, their protocol required 2 · 128 log(2 · 128) + 1 = 2049 bits of
communication while our protocol required 702 bits of communication, resulting in a ratio of
2049
702 = 2.9188.

For completeness, we also analyze the sequential version of the key-agreement protocol
in [5]. In the sequential protocol, parties use number of rounds linear in the length of the
key to achieve a lower communication cost. To obtain a k bit key, each party sends 1 bit in
each of the 2k rounds, resulting in 2k total bits of communication per party.

5.5 On the Optimality of Key Length
In this section, we analyze protocols under the setting of having arbitrary/unlimited message
length and show that our protocol in Figure 4 is near optimal in terms of the expected key
length based on the number of messages. In fact, we will prove a much stronger result. That
is, the expected key length of any interactive protocol for key agreement in the rABBP,Q

m,m is at
most 2m− poly(log m), where P, Q are arbitrary independent distributions over ({0, 1}n)m,
and n is the message length. By Theorem 8, for any ε > 0, our protocol achieves 2(1−ε)m-bit
key length with an exponentially small failure probability (depending on ε). This means
that our non-interactive protocol asymptotically achieves the optimal key length of the best
interactive protocol. We provide detailed proof below.

First, we upper bound the expected key length by the mutual information. Then, we
show that the mutual information of any rABBP,Q

m,m is at most log
(2m

m

)
.

▶ Theorem 10. Let m, n ∈ N and P, Q be independent distributions over ({0, 1}n)m.
Suppose parties are in the random public anonymous bulletin board hybrid rABBP,Q

m,m. Then,
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the expected key length in any key agreement protocol (allowing interaction) is at most
I(rABBP,Q

m,m) + 1 + log 3.

We shall employ the techniques developed recently in [29, 30] to prove the theorem above.
We say that Alice and Bob are in (X, Y )-correlation hybrid if Alice has x and Bob has y,
where (x, y) is sampled according to the joint distribution (X, Y ). The following result shall
be useful for the proof.

▶ Theorem 11. [29, 30] Let (X, Y ) be a joint distribution. Then, the maximal expected key
length in the (X, Y )-correlation hybrid (allowing an arbitrary amount of communication) is
at most I(X, Y ) + 1 + log 3.

Proof of Theorem 10. Recall the reformulation of rABB as correlated private randomness in
Section 4.5. The correlation rABBP,Q

m,m is a conditional distribution of the form (X, Y |Z), where
Z the random variable denoting the eavesdropper’s view (the set A ∪B ∪ C). Conditioned
on fixing the eavesdropper’s view (Z = z), applying Theorem 11 to the joint distribution
(X, Y |Z = z) yields that the key length is at most I(X, Y |Z = z) + 1 + log 3. Thus, the
expected key length is at most

Ez[I(X, Y |Z = z) + 1 + log 3] = I(X, Y |Z) + 1 + log 3.

Next, we bound the mutual information of the rABB.

▶ Lemma 12. Let (X, Y |Z) be the correlation corresponding to the random public bulletin
board rABBP,Q

m,m. For each z in the sample space of the random variable Z, let ℓz be the length
of z after removing all duplicate elements. Then

I(X, Y |Z) =
∑

z

pZ(z) · log
(

2ℓz

ℓz

)
= Ez

[
log

(
2ℓz

ℓz

)]
.

Proof. First, note that Z = X ∪ Y . Thus, H(X|Y, Z) = 0 since X is completely determined
conditioned on knowing Y and Z. We have

I(X, Y |Z) =
∑

z

pZ(z) · I(X, Y |Z = z)

=
∑

z

pZ(z) · (H(X|Z = z)−H(X|Y, Z = z)) (Fact 1)

=
∑

z

pZ(z) ·H(X|Z = z)

For each x = {a1, a2, . . . , am} in the sample space of X, there is no duplicates in x; that
is ai ≠ aj for every i ≠ j. Conditioned on Z = z = {a1, . . . , am, b1, . . . , bm}, which might
contain duplicates, the number of x that are consistent with z is

(2ℓz

ℓz

)
. Thus, the support’s

size of the random variable (X|Z = z) is
(2ℓz

ℓz

)
. Observe that the random variable (X|Z = z)

is uniform over its support. This implies that H(X|Z = z) = log
(2ℓz

ℓz

)
, for every z such that

pZ(z) > 0. Therefore, we have

H(X, Y |Z) =
∑

z

pZ(z) · log
(

2ℓz

ℓz

)
,

which completes the proof. ◀

By our construction in Figure 4, it is clear that the expected key length of our protocol is
the quantity Ez log

(2ℓz

ℓz

)
defined above. The following results are consequences of Lemma 12.
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▶ Corollary 13. The expected key length of the protocol in Figure 4 is exactly I(rABBP,Q
m,m),

where P and Q are the distribution that samples m messages randomly without replacement.

▶ Corollary 14. Let m, n ∈ N and let P, Q be arbitrary distributions over ({0, 1}n)m. Then,
the expected key length of any protocol in the rABBP,Q

m,m is at most log
(2m

m

)
.

5.6 Security Analysis
▶ Theorem 15. The key-agreement protocol in Figure 4 securely establishes a shared key K

between A and B, with D learning no information regarding the key.

Proof. We give an outline of the security proof. The correctness comes from the fact that
A can determine which elements were received by A and thus belong to A, while B can
determine which elements were received by B and thus belong to B. Since Γ := A ∪B, B is
also able to determine which elements were received by A and thus belong to A. Therefore,
the information that A and B have are the same, and will allow them to agree on the same key
K. Regarding privacy, note that due to the property of rABB, only A and B can determine
which elements were received by A and thus belong to A. To D, elements belonging to A

and B look indistinguishable. Therefore, only A and B will know the value of the key K.
We also note that since A and B are chosen according to the same distribution (uniform
distribution in this case), all key values are equally likely to occur and the adversary gains
no information. ◀

5.7 Duplicate Recovery
We discuss a variant of our protocol named duplicate-recovery variant that is especially useful
in settings where m is relatively close to 2n, which means that many duplicates are likely to
occur. This protocol allows parties to consider duplicates as opposed to disregarding them
and is optimal in these settings. (We note that under the same m, having duplicates will
decrease the key length k. This variant is designed to “recover” slightly from cases when
duplicates exist. However, increasing n such that no duplicates occur will result in a larger
key length.)

We also highlight a combinatorial problem that naturally arises in this variant that may
be of independent interest.

Protocol Overview. This variant of the protocol is very similar to the original key-
agreement protocol, with the key difference being P and Q allows sample with replacement,
i.e. duplicate messages from the same party are possible and parties do not discard the
duplicates. Then, when parties want to determine the key k, they have to consider all
possible cases. (Note that for security, P cannot sample values independently and uniformly
at random, instead, P samples in a way such that every “set” occurs with equal probability.
For example, {0, 0} and {0, 1} have the same probability of occurring. With this, the security
of this variant closely follows the security of the original protocol.)

In general, given a multi-set of values Γ, one can list all possible values of A and B that
can produce such a multi-set. However, a direct listing requires exponential computation
as there are exponentially many possible cases. Given a generic algorithm for counting the
number of possible cases, one can apply the same idea as Algorithm 1 to recursively determine
the k value of a given set of inputs. We note that this generic algorithm for counting the
number of possible cases given Γ may be of independent interest in the field of combinatorics.

Counting Solutions. We elaborate more on the problem of counting the number of possible
sets that exist for a given Γ. One can easily do so by enumerating all possible solutions. For
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{{0, 0},
{0, 0, 0, 0}}

{{0, 0},
{0, 0, 0, 1}}

{{0, 0},
{0, 0, 1, 1}}

{{0, 1},
{0, 0, 0, 1}}

{{0, 1},
{0, 0, 1, 1}}

{{0, 1},
{0, 1, 1, 1}}

{{1, 1},
{0, 0, 1, 1}}

{{1, 1},
{0, 1, 1, 1}}

{{1, 1},
{1, 1, 1, 1}}

{{0, 0},
{0, 0, 0, 0}}

{{0, 0},
{0, 0, 0, 1}}

{{0, 0},
{0, 0, 1, 1}}

{{0, 1},
{0, 0, 0, 1}}

{{0, 1},
{0, 0, 1, 1}}

{{0, 1},
{0, 1, 1, 1}}

{{1, 1},
{0, 0, 1, 1}}

{{1, 1},
{0, 1, 1, 1}}

{{1, 1},
{1, 1, 1, 1}}

{0, 0, 0, 0}

{0, 0, 0, 1}

{0, 0, 1, 1}

{0, 0, 0, 1}

{0, 0, 1, 1}

{0, 1, 1, 1}

{0, 0, 1, 1}

{0, 1, 1, 1}

{1, 1, 1, 1}

Figure 6 Bipartite-graph for parties view and transcript for m = 2, n = 1. The nodes at the left
represent the view of A, which includes its private input (A) and the transcript it sees (Γ). Similarly,
the nodes at the right represent the view of B. Edges represent consistent views (transcript matches
the private inputs produce correct transcript), with the transcript (Γ) labeled above the edges.

example, let us look at the simple case of when m = 2 and n = 1. Figure 6 shows all possible Γ
and the corresponding possible A and B. We can clearly see that when Γ = {0, 0, 1, 1}, there
are 3 possible solutions for A, B, and when Γ = {0, 1, 1, 1}, there are 2 possible solutions for
A, B.

Alternatively, we can model it as an Integer Programming (IP) problem. Let us define
z1, . . . , zN−1 as zi being the amount of the element i showing up in Γ. Similarly, define
x1, . . . , xN−1 as xi being the amount of i showing up in A, and y1, . . . , yN−1 being the
amount of i in B. Note that ∀i, xi ∈ Z, yi ∈ Z, zi ∈ Z.

We need to find the number of possible solutions to the xis and yjs satisfying the equations
and constraints

N−1∑
i=0

xi = m
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N−1∑
i=0

yi = m

∀i, xi + yi = zi

∀i, xi ⩾ 0

∀i, yi ⩾ 0

To the best of our knowledge, there are no works specifically answering this question. We
believe this question may be of independent interest. We also note that when there are no
duplicates, that is ∀i, zi ⩽ 1, this reduces to a simple binomial problem with the solution
being

(2m
m

)
.

6 Binary Erasure Channel

Rabin and Crépeau [11, 37, 38] showed that binary erasure channels suffice for general secure
computation using interaction. These elegant noise sources provide uncluttered access to
abstract the primary hurdles in achieving security. This section focuses on constructing
binary erasure channels in the rABB-hybrid. We present our round-optimal secure protocols.

6.1 Problem Setting.
Suppose parties are in the rABBP,Q,R

mA,mB ,mC
hybrid (with the helper C). That is, party A has

A = {a1, a2, . . . , amA
} sampled according to P , party B has B = {b1, b2, . . . , bmB

} sampled
according to Q, and C has C = {c1, c2, . . . , cmC

} sampled according to R. Furthermore, all
parties have the set A ∪B ∪ C. Parties A and B want to establish a binary erasure channel
BEC(p) between them, with A being the receiver and B being the sender. Parties A and
B can communicate via an authenticated channel. We are in the semi-honest adversary
model; that is, parties follow the protocol description but are curious to learn more from the
protocol’s transcript. Unlike in the key agreement protocols, the adversary here can corrupt
a party.

For the binary erasure channel, without loss of generality, we assume that B is the sender
and A is the receiver. So B will send a bit β to A. The protocol is correct if A receives β

with probability (1− p), and A receives ⊥ (nothing) with erasure probability p. We define
security following the standard simulation-based definition. Intuitively, it is secure against
the corrupted sender B if B does not know whether the sender bit gets erased or not; it is
secure against the corrupted receiver if the sender bit is uniformly random in the receiver’s
view whenever she outputs ⊥. We say that the protocol is ε-statistical secure if the simulation
error is at most ε, and perfectly secure if ε = 0.

We assume that no duplicates exist throughout the rest of the section. In the event that
duplicates occur, parties can abort and rerun the protocol. Practically, by setting n to be
large enough, we can ensure that with a high probability, no duplicates exist.
Remark. We note that with the key-agreement protocols in the previous section, A and B
can establish a private authenticated channel from an authenticated channel. Furthermore,
using the technique in Section 4.4, we can establish the private authenticated channel in
parallel with the BEC protocol without using any additional rounds of communication.

▶ Theorem 16. Let p ∈ (0, 1) be a rational number. There is a perfectly secure one-round
protocol for BEC(p) in the rABB-hybrid.
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Remark. The communication cost in our protocol is proportional to the denominator of
the erasure probability. We left determining the minimum communication cost as an open
problem.

Note that any irrational number can be approximated by a rational number with arbitrary
precision. For example, this can be done by using Drichilet’s approximation algorithm.
Therefore, we have the following result as a corollary.

▶ Corollary 17. For any erasure probability p ∈ (0, 1) and ε ∈ (0, 1), there is a ε-statistical
secure one-round protocol for BEC(p) in the rABB-hybrid.

6.2 Construction
We present our protocol in Figure 7, as well as provide an overview of the protocol below.

The main idea behind the protocol is that given a set of two values, one from A and one
from B, both B and A can distinguish and identify the owner of the value, and agree on a
one-bit key used to send a one-bit message. On the other hand, if the set of two inputs is
from B and C, then A learns nothing about the key and thus nothing about the message.

Therefore, in the protocol, A and C will each receive several values from the rABB, while
B receives one value. B will then select two values from the multi-set published by the rABB,
ensuring that one of them is his value, and encrypt the bit message using the key derived
from those two values. If he selected his value and one of C’s values, then the message is
erased. If he selected his value and one of A’s values, then A receives the message. Note
that B cannot distinguish between A’s and C’s value, so B will not know if the message was
erased, and A cannot distinguish between B and C’s value, so the message can indeed be
erased.

6.3 Correctness and Security Proofs

Correctness. Observe that γi ≠ γj since there are no collisions at all. Thus, γi > γj with
probability 1/2 and γi < γj with probability 1/2. Thus, the bit k is a uniformly random bit.
Observe that γi ∈ A with probability (d− e)/d. So, A’s output is β with probability 1− e/d

and ⊥ with probability e/d. Therefore, the protocol is perfectly correct.

Security. For security against a corrupted B, whether the bit gets erased or not depends
entirely on the event γj ∈ A that B knows nothing about. Therefore, B does not know
whether A’s output is ⊥ (erased) or β. For security against a corrupted A, we need to show
that when A outputs ⊥, the bit β is uniformly random in the view of A. A outputs ⊥ when
γj /∈ A. In A’s view, the event γi > γj is uniformly random. It means that A has β masking
with a uniformly random bit. Hence, it follows from the property of the one-time pad that
the bit β is uniformly random in A’s view.

6.4 On the Round Optimality of Our Protocols
Our protocols use only one round of communication from B to A. This section will show
that it is impossible to securely implement BEC in the rABB-hybrid without communication.
In fact, we will show that it is impossible to implement the BEC with randomized inputs, a
weaker functionality. We shall employ the techniques from secure non-interactive simulation
(SNIS/SNIR), recently introduced in [2, 26,27], to prove the following theorem.

▶ Theorem 18. Let p ∈ (0, 1) be the erasure probability. Any zero round protocol implementing
BEC(p) in rABBUA,UB ,UC

mA,mB ,mC
-hybrid has constant insecurity, where UA, UB , UC are uniform
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Binary Erasure Channel for p = e
d

A B C D

rABBP,Q,R
d−e,1,e

1
: A

1
: Γ

:=
A
∪

B
∪

C
1

: B
1

: Γ
: =

A
∪

B
∪

C 1
: Γ

:=
A
∪

B
∪

C

1
:
C

1
: Γ

:=
A
∪

B
∪

C

2 :
{γi, γj},
β ⊕ k

A
1. Receive A ∈ ({0, 1}n)d−e := {a1, . . . , ad−e}
and Γ = A ∪B ∪ C := {γ1, . . . , γd+1} from rABB.
2. Receive {γi, γj}, β ⊕ k from B.
3. (Assume γi ∈ B) If γj ∈ A:

3.1 If γi > γj set k = 0.
3.2 Else (γi ⩽ γj) set k = 1.
3.3 Compute β = (β ⊕ k)⊕ k.

4. Else (γj /∈ A), β =⊥.

B
1. Receive B ∈ {0, 1}n := {b}
and Γ = A ∪B ∪ C := {γ1, . . . , γd+1} from rABB.
2. Choose γi, γj randomly s.t.
i ̸= j and b ∈ {γi, γj}.
3. (Assume b = γi). If γi > γj , set k = 0.
4. Else (γi ⩽ γj), set k = 1.
5. Send {γi, γj}, β ⊕ k to A.

C
1. Receive C := {c1, . . . , ce}
and Γ = A ∪B ∪ C := {γ1, . . . , γd+1} from rABB.

Figure 7 Binary Erasure Channel from B to A using a helper C and in presence of an eavesdropper
D

distribution over ({0, 1}n)mA , ({0, 1}n)mB , ({0, 1}n)mC respectively, and n is the message
length.

Proof Sketch. We prove this by contradiction. Suppose that it is possible to get BEC(p) from
the rABBUA,UB ,UC

mA,mB ,mC
. It follows from [2,26] that if it is possible to implement the randomized

inputs BEC(p) from some other distribution (X, Y ), then the eigenvalues of BEC(p) must
be a subset of eigenvalues of the distribution (X, Y ). Note that the eigenvalues of BEC(p)
are 1 and

√
1− p. The correlation rABBmA,mB ,mC

is a family of joint distributions of the
form (X, Y |Z). Therefore, it must be the case that

√
1− p is an eigenvalue of the correlation

(X, Y |Z = z), for every z in support of the random variable Z. This implies that
√

1− p is
an eigenvalue of all the conditional distributions (X, Y |Z = z), which is impossible.

We provide elaborated arguments on Appendix A.

7 Random String Oblivious Transfer

In this section, we consider the construction of chosen message random oblivious transfer
(cmROT) (see Section 3 for definitions) in the rABB-bybrid.

In the rABB-hybrid with the helper C, we construct an efficient one-round protocol. We
start by describing the problem setting as follows.
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Problem Setting. A and B will like to establish a chosen message random string oblivious
transfer (cmROTℓ) for ℓ-bit strings between them with A being the receiver and B being the
sender. They have access to a rABB and a helper party C, as well as a public authenticated
channel from B to A. We note that with the key-agreement protocol, A and B can turn the
public authenticated channel into a private authenticated channel. Furthermore, by using
the technique in Section 4.4, this key-agreement can be done in parallel with the first step of
the cmROTℓ protocol and does not require any additional round.

We also note that in our setting, we assume that no duplicates exist. Practically, by
setting n to be large enough, we can ensure that with a high probability, no duplicates
exist. In the event that duplicates occur, parties can simply abort and rerun the protocol.
Therefore, we assume that no duplicates exist throughout the rest of the section.

We shall prove the following theorem.

▶ Theorem 19. For any ℓ ∈ {1, 2, . . . }, there is a perfectly secure one-round protocol for
cmROTℓ in the rABB-hybrid (with the helper).

7.1 Construction
Intuition. We begin with some intuition. The main idea behind the protocol is that given a
set of two values, one from A and one from B, both B and A can distinguish and identify the
owner of the values, and agree on a random one-bit message. On the other hand, if the set of
two values is from B and C, then A learns nothing about the message. Additionally, observe
that this still holds if we randomly set all messages from A to be even (or odd) and C to be
odd (or even respectively), while messages from B contain both even and odd values.

Additionally, by using the technique discussed in Section 4.4, we can effectively perform
several parallel calls to the rABB in the same round.

Formally, the parties utilize rABBP,Q,R, where P = P1∪P2∪· · ·∪Pσ, Q = Q1∪Q2∪· · ·∪Qσ,
and R = R1 ∪R2 ∪· · · ∪Rσ for some parameter σ ∈ {1, 2, . . . } (chosen appropriately later).

Independently, each Pi is in “even mode” with probability 1
2 , which means Pi = P

(EV EN)
i,1 ∪

P
(EV EN)
i,2 ∪· · · ∪ P

(EV EN)
i,ℓ , where each P

(EV EN)
i,j samples a n bit even value (with least

significant bit being 0) uniformly at random, denoted as α
(EV EN)
i,j , and outputs the tuple(

i, j, α
(EV EN)
i,j

)
. Similarly, each Pi is in “odd mode” with probability 1

2 , which means

Pi = P
(ODD)
i,1 ∪ P

(ODD)
i,2 ∪· · · ∪ P

(ODD)
i,ℓ , where each P

(ODD)
i,j samples a n bit odd value (with

least significant bit being 1) uniformly at random, denoted as α
(ODD)
i,j , and outputs the tuple(

i, j, α
(ODD)
i,j

)
.

Ri is defined as an independent copy of Pi. Similarly, we denote the output of Q
(EV EN)
i,j

as
(

i, j, ω
(EV EN)
i,j

)
.

Qi = Qi,1 ∪Qi,2 ∪· · · ∪Qi,ℓ, where each Qi,j independently samples one even n-bit value
uniformly at random and samples one odd n-bit value uniformly at random, and outputs the
set of the two tuples

{(
i, j, β

(EV EN)
i,j

)
,
(

i, j, β
(ODD)
i,j

)}
.

Parties first invoke rABBP,Q,R, which samples A according to distribution P , samples B

according to distribution Q, and samples C according to distribution R. rABBP,Q,R then
sends A to A, B to B, and C to C, as well as send Γ = A ∪B ∪ C to A, B, C.
A now has σℓ values in the form of

(
i, j, α

()
i,j

)
. C now has σℓ values in the form of(

i, j, ω
()
i,j

)
. B now has 2σℓ values in the form of

(
i, j, β

()
i,j

)
. All parties also see the set

containing all values.
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Using the index information, parties can locally separate the values according to i, j.
Each i, j should now contain

(
i, j, α

()
i,j

)
,
(

i, j, β
(EV EN)
i,j

)
,
(

i, j, β
(ODD)
i,j

)
, and

(
i, j, ω

()
i,j

)
.

The parties will first look at i, j = 1, and find the lexicographically smallest i such that the
four values they see contain exactly two even and two odd values. We denote this as i∗. The
parties will now disregard all i ̸= i∗, and focus only on i∗, j. Note that this means that Pi∗

and Ri∗ were in different modes, that is, if Pi∗ was in even mode, then Ri∗ was in odd mode,
or vice versa. Furthermore, A, having access to α

()
i∗,j , can identify whether Pi∗ was in even

mode or odd mode. Without loss of generality, let us assume Pi∗ was in even mode, and Ri∗

is in odd mode. Each i∗, j now contains
(

i∗, j, α
(EV EN)
i∗,j

)
,
(

i∗, j, β
(EV EN)
i∗,j

)
,
(

i∗, j, β
(ODD)
i∗,j

)
,

and
(

i∗, j, ω
(ODD)
i∗,j

)
.

B now computes the two “intermediate message” yEV EN and yODD (we can equivalently
think of them as y0 and y1). To compute the jth bit of yEV EN , denoted as yEV EN,j , B looks
at (i∗, j, βi∗,j,EV EN ) and (i∗, j, αi∗,j,EV EN ). If βi∗,j,EV EN ⩾ αi∗,j,EV EN , then yEV EN,j = 0,
else yEV EN,j = 1. Note that B simply compares the other even value against βi∗,j,EV EN .
In particular, B does not know whether he is comparing against αi∗,j,EV EN or ωi∗,j,EV EN .
Similarly, if βi∗,j,ODD is the greater of the two odd values (βi∗,j,ODD ⩾ ωi∗,j,ODD in this
case), then yODD,j = 0, else yODD,j = 1.
B can do this for all i∗, 1 to i∗, ℓ, and obtain two ℓ-bit messages yEV EN and yODD. B

then computes ℓ-bit “key” rEV EN such that yEV EN ⊕ rEV EN = xEV EN = x0 and rODD

such that yODD ⊕ rODD = xODD = x1.
Since A has αi∗,j,EV EN , A similarly computes yEV EN by comparing the two even values

against each other and setting yEV EN,j = 0 if α
(EV EN)
i∗,j is smaller than β

(EV EN)
i∗,j , and 1

otherwise. Note that as A cannot distinguish between β
(ODD)
i∗,j and ω

(ODD)
i∗,j , and thus cannot

compute yODD.
Then, using a private authenticated channel, B sends (rEV EN , rODD) to A, in that order.

A can now compute x0 = xEV EN = yEV EN ⊕ rEV EN . Additionally, A computes b = 0 if
αi∗,j is even, and b = 1 otherwise.

Role of C. We briefly discuss the role of C, and why C is necessary for BEC and ROT, but
not for key agreement. Essentially, C serves to create confusion and cause some information
to be lost/erased. In BEC, with a certain probability, the message needs to be erased, and
that happens precisely when C influences the protocol (C’s value was selected by B). In ROT,
one of the two messages needs to be erased, and it’s the message that is affected by C that
ends up being lost. On the other hand, for key agreement, we want to preserve as much
information as possible in order to obtain a larger key. Thus removing the participation of C
from the key agreement allows the best protocol performance.

Our Construction. Figure 8 presents our protocol constructing cmROTℓ in the rrABB-
hybrid. For every message of the form (i, j, u), we call that (i, j) the identifier of the
message and u the message’s payload. The distributions P, Q, R are defined as follows. Let
σ, ℓ ∈ {1, 2, . . . }. Define S

(EV EN)
n := {x : x ∈ {0, 1}n, xn = 0} – the set containing all n-bit

even value and S
(ODD)
n = {x : x ∈ {0, 1}n, xn = 1} – the set containing all n-bit odd value.

For every 1 ⩽ i ⩽ σ and 1 ⩽ j ⩽ ℓ, define P
(EV EN)
i,j is the uniform distribution over the

sample space
S

(EV EN)
i,j,n = {(i, j, α) : α ∈ S(EV EN)

n }.

Similarly, define P
(ODD)
i,j as the uniform distribution over the sample space

S
(ODD)
i,j,n = {(i, j, α) : α ∈ S(ODD)

n },
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Input. B has input (x0, x1) ∈ ({0, 1}ℓ)2 and A has no inputs.
Hybrid. Parties are in rABBP,Q,R-hybrid with appropriate P, Q, R such that

1. A has a set A containing σℓ messages of the form (i, j, u) with distinct identifiers (i, j)
and payloads (u’s) are all even or all odd, where 1 ⩽ i ⩽ σ and 1 ⩽ j ⩽ ℓ.

2. B has a set B containing 2σℓ messages such that, for any 1 ⩽ i ⩽ σ and 1 ⩽ j ⩽ ℓ, there
are two messages with identifier (i, j) such that their payloads have different parity.

3. C has a set C containing σℓ messages of the form (i, j, u) with distinct identifiers (i, j)
and payloads (u’s) are all even or all odd.

Every party also receives Γ = A ∪B ∪ C.

One-Round Protocol.

Both A and B identify the smallest i∗ ∈ {1, 2, . . . , σ} such that the payloads of any
message in A and any message in C have different parity.
For 1 ⩽ j ⩽ ℓ, from the two sets B and Γ, party B identifies the four messages with
identifier (i∗, j). There are exactly two of them in B and exactly two of them whose
payloads are even. Then, he sets y0,j = 0 if his even payload is bigger than the other
even one and y0,j = 1 otherwise. Similarly, he sets y1,j = 0 if his odd payload is bigger
than the other odd and y1,j = 1 otherwise.
B sends (r0, r1) to A using the private authenticated channel, where r0 = y0 ⊕ x0, r1 =
y1 ⊕ x1.

Output Computation. A receives (r0, r1) from B. For 1 ⩽ j ⩽ ℓ, party A identifies the
two messages with identifier (i∗, j) such that (1) one of them is in A and (2) their payloads
have the same parity.

1. Case 1: If the two payloads are even, A sets ỹ0,j = 0 if his payload is smaller than the
other and sets ỹ0,j = 1 otherwise.

2. Case 2: If the two payloads are odd, A sets ỹ1,j = 0 if his payload is smaller than the
other and sets ỹ1,j = 1 otherwise.

Then A outputs (b = 0, ỹ0 ⊕ r0) in case 1, and A outputs (b = 1, ỹ1 ⊕ r1) in case 2. In any
case, B outputs nothing.

Figure 8 Realizing cmROTℓ in rABBP,Q,R-hybrid with appropriately chosen independent
distributions P, Q, R. The parameter σ is chosen large enough so that the probability for the
existence of such i∗ is negligible.
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and define Qi,j as the uniform distributrion over the sample sapce

Ti,j,n := S
(EV EN)
i,j,n × S

(ODD)
i,j,n .

Now, for every 1 ⩽ i ⩽ σ, define Pi is the uniform distribution over the sample space

Si,n := S
(EV EN)
i,1,n × S

(EV EN)
i,2,n × . . .× S

(EV EN)
i,ℓ,n ∪ S

(ODD)
i,1,n × S

(ODD)
i,2,n × . . .× S

(ODD)
i,ℓ,n .

Define Ri as an i.i.d of Pi. For every 1 ⩽ i ⩽ σ, define Qi as the joint distribution of
independent random variables X1, X2, . . . , Xℓ distributed according to Qi,1, Qi,2, . . . , Qi,ℓ,
respectively.

Next, define P as the joint distribution (P1, P2, . . . , Pℓ). Similarly, Q := (Q1, Q2, . . . , Qℓ)
and R := (R1, R2, . . . , Rℓ).

7.2 Correctness and Security Proofs
We provide a high-level proof overview of the security and correctness of our protocol.
A and B can both distinguish between βi∗,j,EV EN and αi∗,j,EV EN (or βi∗,j,ODD and

αi∗,j,ODD) and can thus agree on the same message xb.
A corrupt A cannot distinguish between βi∗,j,EV EN and ωi∗,j,EV EN (or βi∗,j,ODD and

ωi∗,j,ODD), therefore A does not learn anything about the x1−b

A corrupt B cannot distinguish between the case where the two values are αi∗,j,EV EN

and ωi∗,j,ODD, or the case where the two values are αi∗,j,ODD and ωi∗,j,EV EN . Therefore, B
learns nothing about which message A received (the bit b).

A corrupt C does not see rEV EN and rODD. Therefore, although C can learn one of
yEV EN , yODD, C learns nothing about xEV EN or xODD.

While our protocol does have a small failure probability, all such failures are publicly
detectable. Conditioned on the fact that failure does not occur, our protocol is unconditionally
secure. Furthermore, given the protocol output, a reverse sampling of the view of the parties
is efficient. Therefore, we can trivially construct a simulator that simulates the view of the
corrupt party.

7.3 Performance Analysis
We provide a brief discussion on how our protocol compares to the protocol presented in [24].
As stated in [24], once we can obtain key agreement using rABB, we can then implement
general honest majority MPC to obtain primitives such as random OT.

Concretely, to get random OT assuming shared keys between all pairs of A, B, and C, at
least two rounds of communication are required. In contrast, our protocol achieves chosen
random OT in a single round of communication.

Regarding our communication cost, each party receives at most 2·σ ·ℓ·n·log(σ)·log(ℓ) bits
from the rABB (excluding Γ) and sends at most 2 · ℓ bits through the private authenticated
channel. Therefore, our communication cost is O(σℓ log(σ) log(ℓ)n).

The failure probability of our protocol is upper bounded by 2−σ (where all Pi and Qi

are in the same mode) plus 1−
(
1− 2n−1)2ℓ (probability of having at least 1 collision in the

messages).
▶ Remark 20 (Optimality of Round Complexity). We note that as we can trivially get BEC(0.5)
from a chosen message random oblivious transfer, the existence of a non-interactive chosen
message random oblivious transfer will imply the existence of a non-interactive BEC protocol,
which contradicts Theorem 18. This proves that our chosen message random oblivious
transfer is round optimal.
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7.4 Generalizations and Extensions
We generalize and extend our protocol in the following two ways.

Non-interactive Random String Oblivious Transfer We extend our protocol to
a non-interactive random string oblivious transfer where both the message and the choice
are random. In our protocol, B and A used our non-interactive key-agreement protocol to
agree on a random shared key that is used to establish a private authenticated channel in
which B is able to send rEV EN and rODD to A in order to determine the message. Instead
of sending rEV EN and rODD using the shared key, B and A can directly derive rEV EN and
rODD from the key in a non-interactive way. Since the shared key is random, the resulting
rEV EN and rODD will also be random. This results in a non-interactive random oblivious
transfer protocol.

1-out-of-N Chosen Message Random Oblivious Transfer In our protocol, we
partitioned values into even and odd, which results in a 1-out-of-2 cmROTℓ. Our protocol can
be generalized to any partitioning scheme ΠN where values are partitioned into N subsets.
Our protocol will be modified to give A one value belonging to one of the subsets, B N value
where each value belonging to a different subset (one value each from each subset), and C
N − 1 values that belong to all subsets except the one A received. The rest of the protocol
is modified accordingly. This allows us to achieve one round 1-out-of-N cmROTℓ. However,
note that the failure probability will now be N−σ. In order to keep the failure probability
low, σ needs to be increased accordingly, which increases the communication complexity of
our protocol.
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A On the Optimality of Our Constructions

▶ Theorem 21. Suppose p = e/d for e, d ∈ {1, 2, . . . } and e < d. Any zero round protocol
implementing BEC(p) in rABBUA,UB ,UC

d−e,1,e -hybrid has constant insecurity, where UA, UB , UC are
uniform distribution over ({0, 1}n)d−e, {0, 1}n, ({0, 1}n)e respectively, and n is the message
length.

Proof. We prove this by contradiction. Suppose there is a non-interactive secure protocol
for BEC(p) in rABB-hybrid. We introduce some terminologies and notations. Let m =
mA + mB + mC . Let A, B, C be random variables sampled according to the distributions
UA, UB , UC , respectively. Recall that A ∪B ∪ C contains no duplicate with high probability
over the random choices of A, B, C. Let Γ be a set containing m distinct elements in {0, 1}n.
Consider the conditional distribution (A, B|A∪B∪C = Γ). After removing all zero rows and
columns, the probability mass function of (A, B|A∪B∪C = Γ) is a matrix of size

(
m

mA

)
×

(
m

mB

)
.

From now, we refer to (A, B|A∪B ∪C = Γ) as the distribution after removing all these zero
rows and columns. Observe that any protocol realizing BEC(p) from (A, B|A ∪B ∪ C = Γ)
has constant insecurity if there is no perfectly secure protocol realizing BEC(p) from that
distribution. Now, observe that for any two Γ and Γ′ each containing m distinct elements,
the probability mass functions (A, B|A ∪ B ∪ C = Γ) and (A, B|A ∪ B ∪ C = Γ′) are the
same (up to permutations of rows and columns). Therefore, there must exist a perfect secure
protocol for BEC(p) from (A, B|A ∪B ∪ C = Γ).

Now, we employ the technique developed recently in secure non-interactive simulation/reduction [26].
Let T and T̄ be the Markov and the adjoint Markov operator associated with the conditional
distribution (A, B|A ∪B ∪ C = Γ) (refer to [26] for definitions).

There is a perfectly secure protocol if and only if there are functions f, g such that

Tg = f, and T̄ f = (1− p)g.

Combining two equations together yields T T̄f = (1 − p)f. This implies that (1− p) is an
eigenvalue of the operator T T̄ with associated eigenvector f . We shall show that these two
conditions yield a contradiction. Observe that any column of T T̄ is a permutation of any
other column of T T̄ . Following the approach in [26,27], the function f must have only two
output values 1 or −1. These two facts together give the contradiction. ◀
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