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Abstract
Consider a distributed coin-tossing protocol among n processors, where each processor takes
turns to broadcast a single message. After each processor broadcasts her message, the outcome
∈ {0, 1} is a deterministic function of all the messages. Let X ∈ (0, 1) be the probability of the
outcome being head. An eavesdropping adversary who monitors this protocol can intervene once
by restarting the processor who has just sent her message. Increasing the number of processors
n enables reducing the change in the outcome probability distribution that this adversary can
effect. Given a target tolerance ε, our objective is to use the minimum number of processors
ensuring that the adversary mentioned above can only change the outcome distribution by at
most ε.

A historically prominent protocol in this scenario, when X = 1/2, is the “majority protocol”
(for example, Blum–1983, Awerbuch, Blum, Chor, Goldwasser, and Micali–1985, Cleve–1986),
where each party broadcasts an independent and uniformly random coin, and the outcome is
the majority of the broadcast coins. More generally, threshold protocols output heads if the
number of processors that broadcast heads exceeds a particular threshold. Recently, Khorasgani,
Maji, and Mukherjee (2019) prove the existence of coin-tossing protocols that achieve the same
tolerance as the threshold protocols using a smaller number of processors. However, their protocol
is not computationally efficient.

Towards this objective, for any X ∈ (0, 1) and n ∈ N, this paper presents computation-
ally efficient coin-tossing protocols approximating the new protocols of Khorasgani, Maji, and
Mukherjee (2019). The running time of this protocol is linear in the accuracy parameter of this
approximation, which can be set arbitrarily small.

Keywords and phrases Distributed Coin-tossing Protocols, Information-theoretic Security, Com-
putationally Efficient
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1 Introduction

Coin-tossing problem is one of the most fundamental problem in theoretical computer science.
There is a vast literature of influential works [KKL88, LLS89, BL89, CI93, Fei99, GKP15]
that studies this problem through diverse notions of securities. In this paper, we study
its security against strong adaptive adversaries as introduced by Goldwasser, Kalai, and
Park [GKP15].1 Specifically, we consider the following motivating problem, which is first
proposed by Cleve and Impagliazzo [CI93].
Representative Motivating Problem. Consider a distributed coin-tossing protocol
among n processors. The protocol consists of n rounds, where at round i, the ith processor
broadcasts her message. After each processor broadcasts her message, the outcome of the
protocol ∈ {0, 1} is a deterministic function of n broadcast messages. An honest execution
of this protocol shall have expected outcome X ∈ (0, 1), namely, a bias-X distributed coin-
tossing protocol. An eavesdropping adversary, who monitors the execution of this protocol,
might intervene in the following manner. After round i, upon seeing the first i messages,
the adversary decides whether to corrupt the ith processor by restarting it. That is, the
adversary forces the ith processor to re-sample a new message. Throughtout the protocol,
the adversary can corrupt at most one processor. The insecurity of a distributed coin-tossing
protocol, in the presence of this adversary, is the maximum change in the distribution of
the outcome that the adversary can cause. The objective, given the bias X and number of
processors n, is to design a bias-X distributed coin-tossing protocol among n processors that
attains the least amount of insecurity.
Threshold Protocols. Despite many negative results [CI93, BHMO18, KMM19], the only
known protocol is (essentially) the threshold protocol [Blu83, ABC+85, Cle86]. Suppose
X ∈ (0, 1) such that there exists a threshold t ∈ {0, 1, . . . , n+1} satisfying

∑n
i=t
(
n
i

)
·2−n = X.

In a threshold coin-tossing protocol, the processor i broadcasts an independent and uniformly
random bit Ci ∈ {0, 1}, where 1 6 i 6 n. The outcome of the protocol is 1 if (and only
if)
∑n
i=1 Ci > t. One can argue that the adversary mentioned above can increase the

expected outcome by
(
n
t−1
)
· 2−(n+1).2 Likewise, the adversary can also decrease the expected

outcome by
(
n
t

)
· 2−(n+1). Consequently, the adversary can alter the expected outcome by

1
2n+1 ·max

{(
n
t−1
)
,
(
n
t

)}
; that is, the threshold protocol is 1

2n+1 ·max
{(

n
t−1
)
,
(
n
t

)}
-insecure.

Khorasgani-Maji-Mukherjee Protocols. Recently, Khorasgani, Maji, and Mukher-
jee [KMM19] define new coin-tossing protocols. The protocol description, as well as their
insecurity, is inductively defined using an appropriate geometric transformation (see Sec-
tion 3). These protocols have shown the potential to achieve lower insecurity than the
threshold protocols using an identical number of processors. Table 1 illustrates this reduction
in insecurity for the representative example of n = 5 and all X ∈ (0, 1/2] realizable by
threshold protocols.3 Before this work, it is unknown how to efficiently implement these

1 That is, the adversary gets to see a processor’s message before it decides whether to corrupt this
processor or not.

2 Intuitively, if an adversary aims to increase the expected outcome, she shall restart a processor whose
message is 0. The timing of this attack, e.g., whether she restarts the first or the second processor she
sees with 0 message, is inconsequential. Effectively, the increase in the expected outcome is attributed
to the scenarios, where an honest execution ends up having exactly t− 1 number of 1 messages (just
below the threshold). In these scenarios, by re-sampling one 0 message, there is a 50% chance that
the outcome is flipped from 0 to 1. For the rest scenarios, the re-sampling attack on one processor is
ineffective. Hence, an adversary can increase the expected outcome by

(
n

t−1

)
· 2−(n+1).

3 Bias-X coin-tossing protocols are equivalent to bias-(1−X) coin-tossing protocols. Therefore, it suffices
to study X ∈ (0, 1/2].
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X εThresh εKMM

1/32 5/64 ≈ 0.078125 0.0217 . . .
6/32 10/64 ≈ 0.15625 0.0923 . . .
16/32 10/64 ≈ 0.15625 0.1415 . . .

Table 1 The insecurity of bias-X coin-tossing protocols, where X ∈ (0, 1/2] and n = 5. Column
εThresh presents the insecurity of the threshold protocol [Blu83, ABC+85, Cle86], and column εKMM

presents the insecurity of the Khorasgani-Maji-Mukherjee protocol [KMM19].

protocols.
This paper, for any X ∈ (0, 1) and n ∈ N, presents a computationally efficient protocol

approximating the n-processor bias-X Khorasgani-Maji-Mukherjee coin-tossing protocol.

1.1 Our Contributions
For a bias-X distributed coin-tossing protocol Π, let ε (Π) denote the insecurity of protocol
Π. Recall that the insecurity of a protocol is the maximum change an adversary can cause by
restarting (at most) one processor after seeing her message. Let ΠKMM (n,X) represent the
Khorasgani-Maji-Mukherjee protocol with n processors and bias-X [KMM19] (See Section 3).
Our contributions are both theoretical and experimental.
Theoretical Results. Theoretically, for any integer n > 0 and X ∈ (0, 1), we give a
computationally efficient bias-X distributed coin-tossing protocol among n processors. Our
protocol, denoted by ΠOur (n,X, δ), is parametrized by an accuracy parameter δ. Intuitively,
the smaller δ is, the more accurately our protocol ΠOur (n,X, δ) approximates the KMM-
protocol ΠKMM (n,X). The running time of our protocol is linearly dependent on the accuracy
parameter δ. The theoretical results are summarized in the following main theorem.

I Theorem 1. For any number of processors n ∈ N, bias X ∈ [0, 1], and accuracy parameter
δ ∈ [0, 1], there exists a computationally efficient n-processor bias-X coin-tossing protocol
ΠOur(n,X, δ) such that the following bound holds for its insecurity.

ε (ΠOur(n,X, δ)) < ε (ΠKMM(n,X)) + nδ.

Furthermore, the time complexity of the next-message generation of processor i, where
1 6 i 6 n, in the protocol ΠOur(n,X, δ) is linear in (n− i)/δ.

Note that, Khorasgani et al. [KMM19] show that the insecurity of their protocol sat-
isfies ε (ΠKMM(n,X)) >

√
1

2(n+1) ·X(1−X). Therefore, when the accuracy parameter is
sufficiently small, then the insecurity of our protocol is (1 + o(1)) multiplicative factor close
to the insecurity of the corresponding KMM-protocol. For instance, if we set the accuracy
parameter δ = o

(
X(1−X)
n3/2

)
, this implies that

ε (ΠOur(n,X, δ)) 6 (1 + o(1)) · ε (ΠKMM(n,X)) .

I Remark. We emphasize that, one can employ an additional optimization that shifts (nearly)
the entire computational cost to an offline precomputation phase, which is independent of the
bias of the coin-tossing protocol. More concretely, any processor participating in n-processor
coin-tossing protocols performs a precomputation step, which has linear time-complexity in
n/δ, irrespective of the bias of the coin-tossing protocol execution in the future. During any
particular instance of n′-processor coin-tossing protocol execution (irrespective of its bias),



H.K. Maji, H. Mehta, M. Wang 5

0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

·10−2

Figure 1 For n = 101, the blue marks denote the insecurity of bias-X coin-tossing protocols that
are implementable using a threshold protocol. Versus the plot of the insecurity of our protocol,
i.e., ε (ΠOur(n,X, δ)), when X ∈ [0, 1/2] and δ = 10−6. The data of this plot can be found at https:
//www.cs.purdue.edu/homes/hmaji/papers/data/A-101.csv and https://www.cs.purdue.edu/homes/
hmaji/papers/data/thresh.csv, respectively.

where n′ < n, this processor can generate her next-message of the coin-tossing protocol in
constant time. Therefore, one precomputation step enables the participation in an arbitrary
number of coin-tossing protocol instances involving n′ < n processors; thus, enabling the
amortization of the computational cost of the precomputation step over multiple coin-tossing
instances.
Experimental Results. Experimentally, we implement our protocol and show that the
insecurity of our protocol is observably smaller than the insecurity of threshold protocols.

As a representative example, Figure 1 plots the insecurity of our protocol, for n = 101
processors and X ∈ [0, 1/2] with accuracy parameter δ = 10−6.4 Figure 1 also plots the
insecurity of all bias-X coin-tossing protocols that can be implemented using a threshold
protocol. Note that the insecurity of our protocol is less than the insecurity of threshold
protocol. This reduction in insecurity is prominent specially when X is far from 0 and 1/2.

Finally, our experiments uncover an exciting phenomenon. As Figure 2 indicates, our
experimental results show that the insecurity of our protocols for X = 1/2 tends towards the
insecurity of the majority protocol, as n tends to infinity. This experiment lends support
to the conjecture that the majority protocol is the optimal secure coin-tossing protocol as
n→∞.

1.2 Relevant Prior Works
Secure coin-tossing (or, randomized selection [GGL91, SV05, GVZ06], in general) is one of
the most fundamental cryptographic primitives. Historically, designing coin-tossing protocols
in the information-theoretic setting for diverse notions of security has been closely associated
with some of the most highly influential research in theoretical computer science and extremal

4 The insecurity of bias-X coin-tossing protocols, where X ∈ (1/2, 1], is identical to the insecurity of
bias-(1−X) coin-tossing protocols. So, it suffices to consider bias-X protocols, where X ∈ [0, 1/2].

https://www.cs.purdue.edu/homes/hmaji/papers/data/A-101.csv
https://www.cs.purdue.edu/homes/hmaji/papers/data/A-101.csv
https://www.cs.purdue.edu/homes/hmaji/papers/data/thresh.csv
https://www.cs.purdue.edu/homes/hmaji/papers/data/thresh.csv
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Figure 2 For n ∈ {1, 3, . . . , 1001}, the blue squares show the plot of
√
n · εMaj(n), the insecurity

of the majority coin-tossing protocol. The red dashed line shows the limit of the insecurity of
majority protocol using Stirling’s approximation, when n→∞. The black dots show the plot of√
n · ε (ΠOur(n,X, δ)), where X = 1/2 and δ = 10−6. The graph uses log scale on the X-axis. The

data for this plot can be found at https://www.cs.purdue.edu/homes/hmaji/papers/data/maj.csv

combinatorics. In this section, we highlight a few representative coin-tossing protocols for
various security notions. This list is not intended to be exhaustive, which is beyond the scope
of this paper.

Firstly, one can consider a static adversary. Such an adversary corrupts a processor before
the protocol begins. During the execution of the protocol, when this particular processor is
supposed to speak, she may restart it. In this case, the following protocol guarantees that
the adversary can increase/decrease the expected outcome only by Θ(1/n).5 In this protocol,
each processor broadcasts an independent bit that is 0 with probability c/n and 1 with
probability (1− c/n), and the outcome of the protocol is the AND of all the broadcast bits.
We choose c such that (1− c/n)n = 1/2. For this protocol, one can verify that whichever
processor the adversary corrupts, the insecurity is always c/(2n).

Next, one can consider an adaptive adversary. That is, the adversary decides on whether
to corrupt a processor after she see this processor’s message. This is the model we consider
in this paper. Historically, majority protocols (or threshold protocol, in general) are the only
known protocol [Blu83, ABC+85, Cle86], which is Θ(1/

√
n) insecure. It is also shown to be

asymptotically optimal [CI93, KMM19] up to a constant factor. However, whether majority
is the optimal protocol remains unknown. Recently, Khorasgani et al. [KMM19] shows the
existence of protocols whose insecurity has the potential to be lower than majority. The
exact insecurity of their protocols is not very well understood. Moreover, their protocol is
also not efficiently implementable.

Another interesting security model for coin-tossing protocols is where the adversary is
rushing. For a rushing adversary, she gets to see every processor’s message before deciding

5 This insecurity is known to be optimal up to a constant factor. To see this, note that the expected
outcome before the protocol begins is 1/2 and after the protocol ends is ∈ {0, 1}. Therefore, the expected
outcome “jumps” by 1/2 during the execution of the protocol. Intuitively, by an averaging argument,
there must exists a processor whose message results in a jump of Ω(1/n) in the expected outcome.
Therefore, one verify that a static adversay who corrupts this processor can change the distribution of
the outcome by Ω(1/n).

https://www.cs.purdue.edu/homes/hmaji/papers/data/maj.csv
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to intervene. This notion of security is motivated particularly from the consideration of
designing election schemes where changing one voter’s vote has minimal effect on the overall
outcome of the result. The first setting that has been well studied is one where the adversary
statically corrupts a processor and can arbitrarily set her broadcast message after observing
the messages of all other processors. This problem is the well-known problem of influence
of variables on boolean functions. When each processor broadcasts a uniformly random
bit, the tribes function is asymptotically optimal protocol [KKL88]. That is, processors
are divided into a number of partitions called tribes, each of size Θ(logn− log logn). The
outcome is 1 if (and only if) there exists a tribe such that the messages of all the processors
in this tribe are 1. One can verify that tribes function is Θ

(
logn
n

)
insecure against static

rushing adversaries. However, characterizing the exact optimal protocol in this setting is an
open problem. Furthermore, the case when parties do not broadcast uniformly random bits
remains relatively not well-understood [BKK+92, FHH+19].

For static rushing adversaries, there is also a large body of works that considers how
many processors an adversary needs to corrupt to complete bias the outcome.6 The work
of [KKL88] shows that, for any function, an adversary needs to corrupt at most Θ

(
n

logn

)
processors to completely bias the outcome. As one can verify, in this setting, tribe functions
is no longer optimally secure. In fact, it is highly insecure, since an adversary only needs to
corrupt an entire tribe (Θ(logn) number of processors) to force the outcome to be 1. Majority
function is also not asymptotically optimal insecure as an adversary only needs to corrupt
Θ(
√
n) processors. Ajtai and Linial [AL93] shows that there exists boolean functions that

are resilient to Θ
(

n
log2 n

)
, which almost matches the upper bound. Their construction are

randomized and recently made explicit by Chattopadhyay and Zuckerman [CZ16]. Finally, if
one relaxes the setting such that processors can interact and send multiple messages, the
upper bound of [KKL88] no longer holds. The elegant “baton passing” protocol [Sak89]
and “lightest bin” protocol [Fei99] are known to be resilient to up to αn corruptions, where
α ∈ (0, 1/2).

In the model of adaptive rushing adversaries, Lichtenstein, Linial, and Saks [LLS89] first
showed that if every party sends a uniform bit, majority protocol (more generally, threshold
protocols) achieves the optimal security. Kalai, Komargodski, and Raz [TKKR18] showed
that when parties may send arbitrarily long messages, an adaptive rushing adversary can
corrupt (at most)

√
n polylogn parties to fix the output completely. Very recently, Haitner

and Karidi-Heller [HK20] extended this result to the setting where every party takes multiple
turns to speak.

Lastly, Goldwasser, Kalai, and Park [GKP15] proposed a strong adaptive adversary. That
is, the adversary first sees every processor’s message and, then, adaptively chooses which
processor to corrupt to set its broadcast message arbitrarily. This security notion is closely
related to the vertex isoperimetric inequalities [Har66] for the boolean hypercube.

2 Preliminaries

We use H.M.(a, b) to represent the harmonic mean of a and b, i.e., H.M.(a, b) := 2ab/(a+ b).

I Definition 1 (Asymptotic Equivalence). Two functions f(x) and g(x) are asymptotically

6 That is, to ensure the expected outcome to be either o(1) or 1− o(1).
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equivalent, denoted by f(x) ∼ g(x), if the following holds.

lim
x→∞

f(x)
g(x) = 1.

2.1 Definitions for Curves

Throughout this paper, we refer to functions of the form f : [0, 1]→ [0, 1] as curves.

I Definition 2 (L∞ norm for curves). Let C and D be two curves. We define the distance
between C and D as

‖C −D‖∞ := sup
x∈[0,1]

|C(x)−D(x)|.

One could verify that the L∞ norm satisfies the triangle inequality, i.e., ‖C + D‖∞ 6
‖C‖∞ + ‖D‖∞.

I Definition 3 (Convex upwards). A curve C is said to be convex upwards if for all x0, x1 ∈
[0, 1] and α ∈ [0, 1], we have

C (αx0 + (1− α)x1) > α · C (x0) + (1− α) · C (x1) .

I Definition 4 (Partial Ordering). Let C and D be two curves on domains D1 and D2
respectively. Then we say C � D, if for all x ∈ D1 ∩D2, we have C(x) 6 D(x).

I Definition 5 (Lipschitz Condition). A curve C is said to satisfy Lipschitz condition with
constant c if for any x0, x1 ∈ [0, 1], we have

|C(x0)− C(x1)| 6 c · |x0 − x1|.

3 KMM Protocol

For all n ∈ N and X ∈ (0, 1), let ΠKMM(n,X) represent the n-processor bias-X coin-tossing
protocol introduced in [KMM19]. Let An(X) be a function with domain [0, 1] that upper
bounds the insecurity of ΠKMM(n,X). One can define ΠKMM(n,X) and An(X) inductively
as follows. (We refer the readers to [KMM19] for more intuitions and details regarding this
definition.)

Base Case. For n = 1, (essentially) the only 1-processor protocol is that the processor
broadcasts messages corresponding to outcome being 1 with probability X and 0 with
probability 1−X. Let this protocol be ΠKMM(1, X). One can verify that the insecurity of
this protocol is upper bounded by A1(X) := X(1−X).

Inductive Definition for n > 1. Assume that we already know the function An−1(X)
and the protocols ΠKMM(n− 1, X), for all X ∈ [0, 1]. We inductively define the value An(x)
and the protocol ΠKMM(n, x), for any particular x ∈ [0, 1], as follows.
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Figure 3 A pictorial summary of the definition of curve An. Given curve An−1, this figure
shows how An is defined at x. Probabilities p0 and p1 (in the definition of protocol ΠKMM(n, x)) are
obtained by solving p0 + p1 = 1 and p0x0 + p1x1 = x.

1. Let x0 ∈ [0, x] be the (unique) solution of the equation Z +An−1(Z) = x.
2. Let x1 ∈ [x, 1] be the (unique) solution of the equation Z −An−1(Z) = x.
3. Define An(x) := H.M. (An−1(x0), An−1(x1)).
4. The protocol ΠKMM(n, x) is defined as follows.

a. Define

p0 := An−1(x1)
An−1(x0) +An−1(x1) , and

p1 := An−1(x0)
An−1(x0) +An−1(x1) .

b. Processor 1 either broadcasts 0 with probability p0, or broadcasts 1 with probability
p1.

c. If the first message is 0, then the remaining processors {2, 3, . . . , n} implement the
protocol ΠKMM(n− 1, x0). Otherwise, if the first message is 1, then the processors
{2, 3, . . . , n} implement the protocol ΠKMM(n− 1, x1).

Figure 3 represents a pictorial summary of this definition. The geometric transformation,
referred to as T , used to define An(X) from An−1(X) underlying steps 1, 2, and 3 in the
protocol above is defined as follows.

I Definition 6 (Geometric Transformation [KMM19]). The geometric transformation T takes
as an input a curve C and outputs another curve T (C). For any x0 ∈ [0, 1], T (C)(x0) is
defined as follows. Let xL be the point of intersection of the line y = x0 − x with the curve
C and XR be the point of intersection of the line y = x− x0 with the curve C. Then,

T (C) (x0) := H.M.(xL, xR).

In general, geometric transformation T is applicable to any convex upwards curve C, where
C(0) = C(1) = 0. Khorasgani et al. [KMM19] show that this transformation preserves
symmetry and convexity. That is, if the original curve C is symmetric around x = 1/2 (resp.,
convex upwards), so is T (C).

Given Definition 6, curve An is exactly curve T (An−1).
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4 Our Computationally Efficient Protocol

In this section, we give a computationally efficient implementation of the KMM protocol.
Note that, given the inductive definition of An, it remains elusive whether one can find a
closed form representation of An.7 Therefore, it is still open if there are computationally
efficient implementations of the KMM protocol.

Our protocol ΠOur (n,X). In our protocol, rather than computing the curve An exactly,
we use an appropriate approximation of it. In particular, we show how to compute an
approximation curve Ãn,δ, which guarantees that ‖An − Ãn,δ‖∞ 6 nδ. Note that the
accuracy parameter δ > 0 can be choosen arbitrarily small. And the running time of our
protocol shall have a linearly dependence on 1/δ. Given approximate curve Ãn,δ, we shall
define our protocol ΠOur (n,X) in a similar manner as the definition of ΠKMM. The base case,
i.e., n = 1, is defined identically to the KMM protocol. When n > 1, our protocol is defined
by the following figure.

1. Let x0 ∈ [0, x] be the (unique) solution of the equation Z + Ãn−1,δ(Z) = x.
2. Let x1 ∈ [x, 1] be the (unique) solution of the equation Z − Ãn−1,δ(Z) = x.
3. Define

p0 := Ãn−1,δ(x1)
Ãn−1,δ(x0) + Ãn−1,δ(x1)

, and

p1 := 1− p0.

4. The protocol ΠOur(n, x, δ) is defined as follows:
a. Processor 1 either broadcasts 0 with probability p0, or broadcasts 1 with probability

p1.
b. If the first message is 0, then the remaining processors {2, 3, . . . , n} implement the

protocol ΠOur(n− 1, x0, δ).
c. Otherwise, if the first message is 1, then the processors {2, 3, . . . , n} implement the

protocol ΠOur(n− 1, x1, δ).

Approximate curve Ãn,δ. For simplicity, assume 1/δ ∈ N. In our protocol, we
approximate the curve An(X) using a piece-wise linear curve Ãn,δ(X). The end points of
the piece-wise linear curve Ãn,δ(X) is always defined on x = 0, δ, . . . , i · δ, . . . , 1. Therefore,
curve Ãn,δ(X) is uniquely determined by points

(
iδ, Ãn,δ(i · δ)

)
, for i = 0, 1, . . . , 1/δ. This

allows us to define the curves by samples stored as the following array

S̃n,δ :=
[
Ãn,δ(0), Ãn,δ(δ), Ãn,δ(2δ), . . . , Ãn,δ(1)

]
.

For the base case of n = 1, the curve A1 is explicitly defined by the function A1(X) := X(1−
X). Therefore, we directly sample from A1 and linearly interpolate them. We prove that the
piece-wise linear curve Ã1,δ is a close approximation of A1 (refer to Lemma 3). This step is

7 Khorasgani et al. [KMM19] proved closed form upper-bound and lower-bound of An. However, these
bounds are not tight.



H.K. Maji, H. Mehta, M. Wang 11

implemented by invoking the subroutine Sample&Linearize (A1).

Input: Curve C
Output: C̃δ
for x ∈ {0, δ, . . . , iδ, . . . , 1− δ} do

Out.append(linearly interpolate C(x), C(x+ δ))
end
return Out

Algorithm 1: Sample&Linearize (C)
Inductively, we obtain Ãn,δ from the geometric transformation of Ãn−1,δ. Note that,

given Ãn−1,δ, it is hard to compute T
(
Ãn−1,δ

)
precisely everywhere. Therefore, we only

compute T
(
Ãn−1,δ

)
precisely at x = 0, δ, . . . , i · δ, . . . , 1. And we let the linear interpolation

of these samples be Ãn,δ. We prove that if Ãn−1,δ is close to An−1, Ãn,δ will also be
close to An (refer to Lemma 2 and Lemma 3). This step is summarized in the subroutine
Transform&Linearize

(
Ãn−1,δ

)
.

Input: Ãn−1,δ
Output: Ãn,δ
for x ∈ {0, δ, . . . , iδ, . . . , 1− δ} do

Solve x0 as the solution of Z + Ãn−1,δ(Z) = x

Solve x1 as the solution of Z − Ãn−1,δ(Z) = x

Ãn,δ(x)← H.M.
(
Ãn−1,δ(x0), Ãn−1,δ(x1)

)
end
return Sample&Linearize

(
Ãn,δ

)
Algorithm 2: Transform&Linearize

(
Ãn−1,δ

)
Overall, the following algorithm summarize how we compute Ãn,δ using subroutines

Sample&Linearize (·) and Transform&Linearize (·).

Input: n ∈ N, δ ∈ (0, 1)
Output: Ãn,δ
Ã1,δ ← Sample&Linearize (A1, δ)
for i ∈ {2, . . . , n} do

Ãi,δ ← Transform&Linearize
(
Ãi−1,δ

)
end
return Ãn,δ

Algorithm 3: Algorithm to compute Ãn,δ
Main results. We prove that the insecurity of our computationally efficient protocol

ΠOur(n, x) that uses the approximate curve Ãn,δ is close to the insecurity of ΠKMM. Our
results are summarized in the following theorem, which states that the insecurity of our
protocol is at most nδ more than that of KMM protocol.

I Theorem 1 Restated (Efficient Secure Coin-tossing). For any number of processors n ∈ N,
bias X ∈ [0, 1], and accuracy parameter δ ∈ [0, 1], there exists a computationally efficient
n-processor bias-X coin-tossing protocol ΠOur(n,X, δ) such that the following bound holds.

ε (ΠOur(n,X, δ)) < ε (ΠKMM(n,X)) + nδ.
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Furthermore, the time complexity of the next-message generation of processor i, where
1 6 i 6 n, in the protocol ΠOur(n,X, δ) is linear in (n− i)/δ.

We defer the proof this theorem to Section 6. This theorem gives us the following
corollary, which states that the insecurity of our protocol is equivalent to the insecurity of
KMM protocol, if we set the accuracy parameter δ to be sufficiently small.

I Corollary 1. The insecurity of our (computationally efficient) protocol is asymptotically
equivalent to KMM protocol when the accuracy parameter δ is set to o

(
X(1−X)
n·
√
n

)
. Quantita-

tively, the following holds.

ε (ΠOur(n,X, δ)) ∼ ε (ΠKMM(n,X)) .

The above follows by the lower bounds proved in Khorasgani et al. [KMM19]: ε (ΠKMM(n,X)) =
Ω
(
X(1−X)√

n

)
. Therefore, if we set the accuracy parameter δ to be o

(
X(1−X)
n·
√
n

)
, the insecurity

of our (computationally efficient) protocol is bounded by ε (ΠKMM(n,X)) + o
(
X(1−X)√

n

)
=

ε (ΠKMM(n,X)) + o(ε (ΠKMM(n,X))). That is, ε (ΠOur(n,X, δ)) ∼ ε (ΠKMM(n,X)).

5 Useful Lemmas

In this section, we summarize some useful properties on the geometric transformation and
the curves An and Ãn,δ. This shall be helpful for the proof of the main theorem.

Firstly, [KMM19] proves that if a curve is “nice”, then the transformation of this curve is
also “nice”. In particular, we have the following definition and imported lemma.

I Definition 7 (Nice Curves). A curve C on [0, 1] is said to be nice if it satisfies (1) C is
convex upwards on [0, 1]; (2) C is symmetric along x = 1/2 axis; (3) Points (0, 0) and (1, 0) lie
on C; and (4) C satisfies the Lipschitz condition with constant 1, i.e., for any x0, x1 ∈ [0, 1],

|C(x0)− C(x1)| 6 |x0 − x1|.

I Imported Lemma 1. [KMM19] If C is a nice curve, T (C) is also nice.

Follows easily from this imported lemma, all the curves that we are interested in are nice
curves.

I Lemma 1 (The curves we consider are nice). For any n ∈ N and δ ∈ (0, 1) such that
1/δ ∈ N, An and Ãn,δ are nice.

Proof of Lemma 1. Trivially, A1 := X(1−X) is a nice curve. Hence, by Imported Lemma 1,
An = Tn−1(A1) is also nice. Furthermore, if any curve C is nice, one can easily verify that
Sample&Linearize (C, δ) is also nice. Therefore, one can inductively prove that Ãn,δ is nice
since

Ãn,δ = Sample&Linearize
(
T
(
Ãn−1,δ

)
, δ
)
. J

Our next lemma states that the transformation preserves the partial ordering and also
the closeness of curves.

I Lemma 2 (Transformations preserves partial ordering and closeness). For any two nice curves
C and D such that C � D, we have

T (C) � T (D),

and
‖T (C)− T (D)‖∞ 6 ‖C −D‖∞.



H.K. Maji, H. Mehta, M. Wang 13

X-axis

Y -axis

D

(x, 0)
C

Q0

Q1

P0
P1

π
4

π
4

P ′0

P ′1

(x0, 0) (x1, 0)

Figure 4 A pictorial summary of the proof of Lemma 2.

Proof of Lemma 2. As shown in Figure 4, consider a point x ∈ [0, 1]. Let P0 and P1 be the
points of intersection of the curve C with lines Y = x −X and Y = X − x. Let Q0 and
Q1 be the corresponding points for curve D. Let P ′0 be the point of intersection of the line
X = x0 and curve D. Similarly, let P ′1 be the point of intersection of the line X = x1 and
curve D. We will complete the proof by proving that segment Q0Q1 passes through the
trapezium P0P1P

′
1P
′
0. By concavity and transitivity, we have Q0Q1 � Q0P

′
1 � Q0P

′
0. This

implies, Q0Q1 � P ′0P ′1, i.e., Q0Q1 lies below P ′0P
′
1.

Consider the convex figure formed by the two rays at (x, 0). By convexity, secant Q0Q1
lies above P0P1 i.e. Q0Q1 � P0P1. Thus line Q0Q1 goes through the trapezium P0P1P

′
1P
′
0.

Therefore,
T (C)(x0) 6 T (D)(x0).

Since T (D)(x0), T (C)(x0) lie on Q0Q1 and P0P1 respectively, we get the following

|T (D)(x0)− T (C)(x0)| 6 max{P0P
′
0, P1P

′
1} 6 ‖C −D‖∞.

The above expression holds for all x ∈ [0, 1], thus

T (C) � T (D),

and
‖T (D)− T (C)‖∞ 6 ‖C −D‖∞. J

Lastly, we have the following lemma, which claims that the linear interpolation of a nice
curve is very close to itself.

I Lemma 3 (Linearizing of a nice curve is δ-close to itself). For any nice curve C, we have

Sample&Linearize (C, δ) � C,

and
‖C − Sample&Linearize (C, δ)‖∞ 6 δ.

Proof of Lemma 3. Since C is convex upwards, it is obvious that Sample&Linearize (C, δ) is
below C.

To prove ‖C − Sample&Linearize (C, δ)‖∞ 6 δ, we use Figure 5 for intuition. Let C̃ be
Sample&Linearize (C, δ). Note that C̃(x) = C(x), when x = k · δ for k ∈ {0, 1, . . . , 1/δ}.
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Figure 5 A pictorial summary of the proof of Lemma 3.

Consider the interval [iδ, (i + 1)δ] where (i + 1)δ ∈ (0, 1
2 ). Since C is a nice curve, which

implies that C is convex upwards, symmetric along x = 1/2 axis, and satisfies the Lipschitz
condition with constant 1, C must be non-decreasing on interval [iδ, (i + 1)δ]. Moreover,
both curve C̃ and curve C restricted to interval [iδ, (i+ 1)δ] will lie within the triangle PQR
(isosceles right triangle with two sides of length δ). Thus, the maximum vertical separation
between them is bounded by QR = δ. This holds for any index i. Thus, we get

‖C − C̃‖∞ 6 δ. J

6 Proof of Theorem 1

We are now fully equipped to prove our main theorem. The proof follows mainly from the
following claims.

Firstly, we have the following claim, which states that Ãn,δ is an underestimate of An.

I Claim 1. Ãn,δ � An.

The next claim states that the insecurity of our protocol is close to Ãn,δ(X).

I Claim 2. The insecurity of our protocol, i.e., ε (ΠOur(n,X, δ)), is upper-bounded by
Ãn,δ(X) + nδ.

Proof of Theorem 1 assuming Claim 1 and Claim 2. We have

ε (ΠOur(n,X, δ)) 6 Ãn,δ(X) + nδ (Claim 2)
6 An(X) + nδ (Claim 1)
= ΠKMM(n,X) + nδ,

which proves the statement on the insecurity of our protocol. Next, we discuss the running
time aspect of our protocol.
Time Complexity of Our Protocol. We now show how the desired runtime is achieved.
We first discuss some implementation details of the algorithms which would be crucial for
optimizing the time complexity. As mentioned, curves in our algorithms are implicitly
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piece-wise line segments such that their X-projection is of length δ. And recall that we store
Ãi,δ as

S̃i,δ :=
[
Ãi,δ(0), Ãi,δ(δ), Ãi,δ(2δ), . . . , Ãi,δ(1)

]
.

In the algorithm Transform&Linearize
(
Ãi−1,δ

)
, fix any x = uδ, we compute x0 and x1 in the

following manner. To compute x0 one needs to identify the unique index u0 ∈ {0, 1, . . . , u}
such that

u0δ + S̃i−1,δ[u0] 6 uδ

(u0 + 1)δ + S̃i−1,δ[u0 + 1] > uδ

Once the index u0 is identified, we obtain the value of x0 and Ãi−1,δ(x0) by solving a linear
equation. Similarly, we can compute x1.

For i > 1, the computation of u0 corresponding to every u ∈ {0, 1, . . . , 1/δ} can be
optimized. Suppose we have an array ptri−1[u] = u0 establishing this mapping. Note that
this mapping is non-decreasing. Therefore, one can compute this mapping in Θ(1/δ) time.
Processors can pre-compute the arrays S̃1,δ, . . . , S̃n,δ and the pointer arrays ptr1, . . . , ptrn−1
in an offline precomputation step. Thereafter, the next-message generation takes only a
constant time. J

Finally, we complete the proof by proving Claim 1 and Claim 2.

Proof of Claim 1. We can prove this claim by induction. For the base case, by Lemma 3,

Ã1,δ := Sample&Linearize (A1, δ) � A1.

For the inductive step, note that

Ãn,δ � An
=⇒ T (Ãn,δ) � T (An) (Lemma 2)

=⇒ Sample&Linearize
(
T (Ãn,δ), δ

)
� T (An) (Lemma 3)

=⇒ Ãn+1,δ � An+1 (By definition)

This completes the proof. J

Proof of Claim 2. We prove this claim by induction on n.
For the base case, i.e., n = 1, one can verify that the insecurity of our protocol is

ε (ΠOur(n,X, δ)) = X(1−X) = A1(X). By Lemma 3, we have

‖A1 − Ã1,δ‖∞ = ‖A1 − Sample&Linearize (A1, δ)‖∞ 6 δ.

Hence, ε (ΠOur(n,X, δ)) 6 Ã1,δ(X) + δ.
Next, we prove the inductive step. Consider our protocol with n + 1 processors and

expected output X. Let x0 ∈ [0, 1] satisfy

X − x0 = Ãn,δ(x0)

and x1 ∈ [0, 1] satisfy
x1 −X = Ãn,δ(x1).
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If the first message is 0, then the remaining protocol becomes our protocol with n processors
and expected output x0. Similarly, if the first message is 1, then the remaining protocol
becomes our protocol with n processors and expected output x1. Conditioned on first message
being 0, if the adversary restarts the first processor upon seeing the first message 0, this
causes a deviation of X − x0, or identically, Ãn,δ(x0). Or the adversary will continue on
the first message. In this case, by our inductive hypothesis, in the remaining protocol the
adversary can cause a deviation of at most Ãn,δ(x0) + nδ. To summarize, when the first
message is 0, the adversary can deviate the protocol by at most Ãn,δ(x0) + nδ. Analogously,
when the first message is 1, the adversary can deviate the protocol by at most Ãn,δ(x1) + nδ.
Therefore, the insecurity of our protocol is upper-bounded by the convex combination of
Ãn,δ(x0) + nδ and Ãn,δ(x1) + nδ, which is

x1 −X
x1 − x0

·
(
Ãn,δ(x0) + nδ

)
+ X − x0

x1 − x0
·
(
Ãn,δ(x1) + nδ

)
= T

(
Ãn,δ

)
(X) + nδ.

By Lemma 3, we have
T
(
Ãn,δ

)
(X) 6 Ãn+1,δ(X) + δ.

Therefore,

ε (ΠOur(n+ 1, X, δ)) 6
(
Ãn+1,δ(X) + δ

)
+ nδ = Ãn+1,δ(X) + (n+ 1) · δ.

This completes the proof of the inductive step and hence the entire proof. J
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