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Abstract

Secure multi-party computation allows mutually distrusting parties to compute securely
over their private data. However, even in the semi-honest two-party setting, most interesting
functions cannot be computed securely in the information-theoretic plain model. Intuitively,
the objective of accurately evaluating the output of such functions is inherently inimical to the
privacy concerns of the parties. Securely evaluating OR of the input bits of two parties is the
simplest example, and this result captures the essence of the hardness in securely evaluating
most functions.

This work studies the interplay between accuracy and privacy of secure 2-party function
evaluation in the information-theoretic plain model. We provide an optimal accuracy versus
privacy tradeoff for computing OR(x, y), where x and y are, respectively, the private input bits
of Alice and Bob. In particular, we construct a round-optimal two-party protocol for OR that has
maximum semi-honest security in the information-theoretic plain model. Prior results exhibit
only weak tradeoffs that are far from the optimal. We generalize our techniques to obtain a
tight accuracy-versus-privacy tradeoff characterization for a stronger notion of security, namely
differentially-private semi-honest security.

The technical heart of our result is a new technique to derive inequalities for distributions
of transcripts generated by protocols. This approach reduces the domain of the optimization
problem from an unbounded number of transcripts to a constant size while preserving the opti-
mal solution to the original problem. We believe that these techniques for analyzing protocols
in the information-theoretic plain model will be of independent interest.
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1 Introduction

Secure multi-party computation [Yao82, GMW87] allows mutually distrusting parties to compute
securely over their private data. In the 2-party secure function evaluation setting, Alice has private
input x, and Bob has private input y, and they are interested in computing z = f(x, y), where f is
a deterministic function. A secure protocol to compute f ensures that, at the end of the protocol,
Alice does not find any information about Bob’s private input y that is not already revealed by her
input-output pair (x, z). The protocol provides an analogous security guarantee for Alice’s private
input x. Even against semi-honest parties, i.e., parties follow the protocol honestly but are curious
to find additional information about the other party’s input, most interesting functions cannot
be securely computed in the information-theoretic plain model [Dol82, Kil88, IL89, Kus89, Bea89,
MPR09, KMQR09].1

A key insight underlying these hardness results is that it is impossible to securely compute the
OR of Alice and Bob’s private input bits. In turn, any function that has an embedded OR-minor2

cannot be securely computed; hence, the pivotal nature of the hardness of securely computing OR.
Intuitively, a secure OR evaluation protocol needs to ensure the following guarantees.

◦ Accuracy: When Alice and Bob run the protocol with their respective private inputs x and y,
they agree on an output z′ at the end of the protocol. If for all pairs of input bits (x, y) the
probability that z′ 6= OR(x, y) is at most ε, then the protocol is (1− ε)-accurate.

◦ Privacy: When Alice has input x = 0, the output z = OR(x, y) = y reveals Bob’s private input
bit. So, for x = 0, no additional non-trivial constraint is imposed on the protocol. However, when
Alice has input x = 1, the output z = OR(x, y) = 1 irrespective of Bob’s private input bit. For
x = 1, therefore, the protocol has to ensure that Alice cannot predict Bob’s private input bit y.
If Alice has an advantage at most ε in predicting Bob’s private input bit, then the protocol is
(1− ε)-private. Analogously, the protocol ensures the privacy of Alice’s private input bit x when
Bob has input y = 1.

A secure protocol for OR is (1− ε)-accurate and (1− ε)-private, where ε is a negligible function in
the statistical security parameter.

Simultaneously ensuring accuracy and privacy in secure OR evaluation is impossible in the
information-theoretic plain model. However, the precise characterization of this tradeoff is not
known. Towards improving the understanding of this fundamental problem, our work explores the
following problem.

“What is the optimal accuracy versus privacy tradeoff for secure OR evaluation?”

Prior works provided rough estimates of this tradeoff. The emphasis of our work is to develop
technical tools that assist in tightly characterizing this tradeoff. We believe that these techniques
for analyzing protocols in the information-theoretic plain model will be of independent interest.

1.1 Model

In this work, we consider 2-party secure OR evaluation against semi-honest adversaries in the
information-theoretic plain model. We use the standard definition of simulation-based security,

1 In the information-theoretic plain model, parties have unbounded computational power and they communicate
over secure channels to each other.

2 A function f has an embedded OR-minor if there are Alice inputs x0, x1, Bob inputs y0, y1, and outputs z0, z1

such that f(xi, yj) = z(i ∨ j).
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Figure 1: A 3-round semi-honest secure protocol π∗ for OR that is (1− 1/6)-simulation secure. The
figure provides the probability distribution of the partial transcripts. For x, y ∈ {0, 1}, the (x, y)-
th entry of a matrix corresponding to a node in the tree represents the probability of generating
that node (the partial transcript) when Alice and Bob have respective private inputs x and y,
respectively.

à la [Can00], that unifies the notions of accuracy and privacy. For all environments, if the statistical
distance between the distributions of its view in the real and the ideal world is at most ε, then the
protocol is (1−ε)-simulation secure. If the environment does not corrupt any party, then simulation
security of a protocol is identical to its accuracy. Moreover, if the environment corrupts a party and
sets its private input to 1, the simulation security of the protocol is identical to the input privacy
of the other party. This work, we emphasize, uses a worst-case notion of security, i.e. we consider
security against all possible environments. In particular, (1 − ε)-simulation security is identical to
simultaneously satisfying (1− ε)-accuracy and (1− ε)-privacy.

Differential-privacy Restriction. For a parameter Θ > 1, a 2-party protocol is Θ-differentially
private [GMPS13] if the probability of generating any transcript can multiplicatively increase or de-
creases by a factor of at most Θ when one of the parties changes its private input.

1.2 Our Results

Our characterizations of accuracy and privacy tradeoff hold even against parties and simulators with
unbounded computational power. On the other hand, our constructions admit efficient protocols
and simulators.

Our first hardness result proves the following.

Theorem 1 (Upper-bound on Semi-honest Security). Let π be a 2-party secure OR evaluation
protocol. Then, the protocol π is at most (1−1/6)-simulation secure against semi-honest adversaries.
Further, there exists a 3-round protocol3 π∗ that is (1− 1/6)-simulation secure.

In fact, we show that ε-privacy error entails at least (1/2 − 2ε)-accuracy error in evaluating OR
(see Lemma 1). Theorem 1 implies that any protocol for secure evaluation of an f that has an
OR-minor incurs at least 1/6 simulation error. Figure 1 presents the protocol π∗, and the following
result implies its round optimality.

3 In a 3-round protocol, one party sends the first message, the other party sends the second message, and, finally,
the party who sent the first message sends the third message.
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Theorem 2 (Round Optimality). Let π be a 2-round secure OR evaluation protocol against semi-
honest adversaries. If π has at most two rounds, then it is at most (1− 1/4)-simulation secure.

This result implies a constant gap in the maximum attainable security vis-à-vis 2-round and 3-round
protocols, and there exists a 2-round protocol that achieves (1− 1/4)-simulation security.

To demonstrate the power of the techniques introduced in our work, we characterize the max-
imum security achievable by OR evaluation protocols that are simultaneously semi-honest secure
and Θ-differentially private.

Theorem 3 (Upper-Bound on Semi-honest DP Security). For Θ > 1, let ρ be a 2-party se-
cure OR evaluation protocol that is also Θ-differentially private. Then, the protocol ρ is at most
(1− (Θ+2)/6(Θ+1))-simulation secure. Further, there exists a 3-round protocol ρ∗ that is (1− (Θ+2)/6(Θ+1))-
simulation secure.

As expected, for Θ → ∞, the guarantees of Theorem 3 and Theorem 1 coincide. We also show
the round optimality of the construction ρ∗. If Θ > 4, then any 2-round protocol is at most
(1− 1/4)-simulation secure. Note that, for large enough Θ, this result in independent of Θ.

1.3 Prior Results

Studies on the interplay between accuracy and (various notions of) security for realizing functional-
ities go beyond the information-theoretic plain model. For instance, computational hardness results
for security notions like fairness [Cle86, GHKL08] and concurrent composition [CLOS02, Lin03]
have been studied. In the context of secure function evaluation, several works [Dol82, Kil88, IL89,
Kus89, Bea89, MPR09, KMQR09] have shown the impossibility of securely computing any function
with an embedded OR-minor in the information-theoretic plain model.

Kushilevitz [Kus89] and Beaver [Bea89] independently proved that any two-party function eval-
uation that is not decomposable cannot have a perfectly secure protocol against semi-honest ad-
versaries. Any function with an embedded OR-minor is not decomposable. Maji et al. [MPR09]
showed that the characterization of Kushilevitz and Beaver extends to statistically secure protocols
as well. They also proved that for every 2-party secure function evaluation f that is not decom-
posable there exists a constant cf > 0 such that any semi-honest secure protocol for f is at most
(1− cf )-simulation secure. In their work, for f = OR, the constant cOR ≈ 0.0011. As indicated by
our results, the prior bound on simulation security was significantly far from the optimal.

For differential privacy, Goyal et al. [GMPS13] characterized tight accuracy and security trade-
offs for OR and XOR functions. They constructed differentially private protocols that achieved the
optimal bounds for accuracy and security. We emphasize that protocols that are differentially pri-
vate can have abysmal semi-honest security. So, their results do not entail meaningful bounds for
semi-honest secure OR evaluation.

2 Preliminaries

In this section, we assume that the sample space is Ω = [n] := {1, . . . , n}. We express any probability
distribution over the sample space Ω by an equivalent vector in Rn. In particular, the vector
a = (a1, . . . , an) ∈ Rn, such that ai > 0, for all i ∈ Ω, and

∑
i∈Ω ai = 1, represents the probability

distribution that samples i ∈ Ω with probability ai, for all i ∈ Ω.

Definition 1 (Cross-Product Rule). A four-tuple of probability distribution a,b, c, and d satisfy
the cross-product rule if, for all i ∈ Ω, the distributions satisfy

ai · di = bi · ci
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Definition 2 (Cross-section). For a four-tuple of distributions a,b, c, and d, their cross-section at
i ∈ Ω, is represented by the tuple ai, bi, ci, and di.

Given a four-tuple of probabilities a,b, c, and d that satisfy the cross-product rule, we pictorially
represent them as

(
a b
c d

)
and their i-th cross-section as

(
ai bi
ci di

)
.

Definition 3 (Statistical Distance). For two probability distributions a and b over the sample space
Ω, their statistical distance is represented by

SD (a,b) :=
1

2

∑
i∈Ω

|ai − bi|

The contribution at i ∈ Ω refers to the quantity |ai − bi|.

If two distributions a and b have SD (a,b) = ε then the advantage of predicting whether a sample
was drawn from a or b is at most ε/2.

For
(
a b
c d

)
, we are interested in four statistical distances (1) ε1 = SD (a,b), (2) ε2 = SD (a, c),

(3) ε3 = SD (c,d), and (4) ε4 = SD (b,d). We say that (ε1, ε2, ε3, ε4) are the statistical distances
corresponding to

(
a b
c d

)
. Two four-tuple of distributions

(
a b
c d

)
and

(
a′ b′

c′ a

)
re SD-equivalent if

the statistical distances corresponding to them are identical. Figure 2 summarizes these concepts
pictorially.

a b

c d





ε1

ε2

ε3

ε4

Figure 2: A pictorial summary of the concepts.

3 Relation of Semi-honest Security and Statistical Distances

Let π be a 2-party secure OR evaluation protocol. Let T(x, y) represent the transcript distribution of
π when parties have private inputs bits x and y, respectively. Consider the four-tuple of probabilities(
a b
c d

)
, where a =T (0,0), b =T (0,1), c =T (1,0), and d =T (1,1). Let (ε1, ε2, ε3, ε4) be the statistical

distances corresponding to
(
a b
c d

)
.

Claim 1. If protocol π is (1 − ε)-simulation secure against semi-honest adversaries, then the fol-
lowing inequalities hold.

◦ ε > 1/2− ε1/2 and ε > 1/2− ε2/2

◦ ε > ε3/2 and ε > ε4/2.

Proof. Consider the case when the environment does not corrupt any party. We can, without loss of
generality, assume that the party who sends the last message also sends the output.4 This implies

4 This assumption only reduces the accuracy error of a protocol.
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that the output of the protocol is a deterministic function of the transcript. Note that a is the
distribution of transcripts when the actual output z = OR(x, y) = 0, and b is the distribution of
transcript when the actual output z = OR(x, y) = 1. Therefore, the output of the protocol can
agree with the actual output z with probability at most 1/2 + ε1/2. That is, the accuracy error is at
least 1/2− ε1/2. So, we have ε > 1/2− ε1/2. Similarly, we also have ε > 1/2− ε2/2.

Consider the case when the environment corrupts Alice and sets her private input bit x =
1. In this case, z = 1. Let SimA(x, z) be the distribution of transcripts generated by Alice’s
simulator. We know that SD (c,d) = ε3. So, by triangle inequality, SD (c, SimA(x, z)) > ε3/2 or
SD (SimA(x, z),d) > ε3/2. Therefore, the simulation error ε > ε3/2. Similarly, by considering an
environment that corrupts Bob and sets his private input bit y = 1, we get ε > ε4/2.

Claim 1, therefore, reduces the objective of minimizing the simulation error ε to minimizing the
max{1/2− ε1/2, 1/2− ε2/2, ε3/2, ε4/2}.

4 Limits on Semi-honest Security

Consider the four-tuple of probabilities
(
a b
c d

)
, where a =T (0,0), b =T (0,1), c =T (1,0), and d

=T (1,1).

Claim 2. The four-tuple of probabilities
(
a b
c d

)
satisfy the cross-product rule.

Claim 2 is a fairly standard result. We include a proof outline. In any protocol, the message m
sent by a party P in a round is solely determined by the view VP of the party. In the information-
theoretic plain model, this implies the Markov chain VP → VP → m, where VP is the view of the
other party. This property entails the cross-product rule.

Claim 1 indicates that to minimize the simulation error ε, one should minimize ε3 and ε4, while
simultaneously increasing ε1 and ε2. Since a,b, c, and d satisfy the cross-product rule (by Claim 2),
there are limits to this optimization. Lemma 1 tightly characterizes this tradeoff between accuracy
and privacy error.

Lemma 1 (Technical Result: Semi-honest). Let a,b, c, and d be a four-tuple of probabilities that
satisfy the cross-product rule. Let (ε1, ε2, ε3, ε4) be the statistical distances corresponding to

(
a b
c d

)
.

For all ε3, ε4, we have
ε1, ε2 6 min{ε3 + ε4, 1}

Furthermore, for all ε3, ε4, there exists a protocol whose transcript distribution achieves ε1 = ε2 =
min{ε3 + ε4, 1}, and it produces 6 distinct transcripts.

First, we remark that, for every fixing of ε3 and ε4, there is one distribution that simultaneously
achieves the maximum possible ε1 and ε2. Figure 3 provides these distributions for both ε3 +ε4 6 1
and ε3 + ε4 > 1.

Intuitively, Lemma 1 states that if ε3 and ε4 are small, i.e. the protocol has low privacy error,
then ε1 and ε2 are also small, i.e. the protocol has high accuracy error. Note that Claim 1 and
Lemma 1 directly yields Theorem 1, by substituting ε1 = ε2 = 2/3 and ε3 = ε4 = 1/3.

4.1 Proof Outline of Lemma 1

The full proof of Lemma 1 is provided in Appendix A. The main contribution of this paper is the
general technique that assists in obtaining such tight inequalities. We emphasize the salient features
below. At a high level, our proof proceeds in three steps. Fix the values of ε3 and ε4.
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Figure 3: Three-round two-party protocols that have transcript distribution identical to the distri-
bution that shows ε1 = ε2 = ε3 + ε4. The top protocol is the for the case ε3 + ε4 6 1 and the
bottom protocol is for the case ε3 + ε4 > 1.
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1. Reduction to Templates. This step shows that the distributions T(x, y), for x ∈ {0, 1} and
y ∈ {0, 1}, that maximizes ε1 or ε2 has a canonical form. Let τ be any transcript generated by a
protocol π that maximizes ε1 or ε2. Then the four-tuple of probabilities

(
Pr[T(0,0)=τ ] Pr[T(0,1)=τ ]
Pr[T(1,0)=τ ] Pr[T(1,1)=τ ]

)
can be partitioned into a few equivalence classes, namely the templates.

For instance, in this particular case, there are nine different templates.

(a) Type-0 Template. If there exists x such that the i-th cross-section is identical to ( x xx x )

(b) Type-2 Templates. If there exists x such that the i-th cross-section is identical to ( x x0 0 ),
( 0 x

0 x ), ( 0 0
x x ), or ( x 0

x 0 )

(c) Type-3 Templates. If there exists x such that the i-th cross-section is identical to ( x 0
0 0 ),

( 0 x
0 0 ), ( 0 0

x 0 ), or ( 0 0
0 x )

Note that suboptimal four-tuple of distributions need not necessarily have template cross-sections.

2. Reduction to a Constant Size Problem. This step shows that if for every transcript τ the
four-tuple

(
Pr[T(0,0)=τ ] Pr[T(0,1)=τ ]
Pr[T(1,0)=τ ] Pr[T(1,1)=τ ]

)
is a template then there exists a constant-size protocol that

achieves identical ε1, ε2, ε3, and ε4. Intuitively, all cross-sections that have identical template
can be merged into one cross-section. In particular, we show that there are optimal distributions
that have at most nine possible transcripts.

3. Obtaining the Maximum-achievable ε1 and ε2. Finally, solving an appropriate constant-
size linear program yields the optimal solution. In the linear program, we introduce one variable
for each template. Next, linear constraints are set up to encode the fact that a, b, c, and d are
probability distributions with fixed ε3 and ε4. Under these constraints, we maximize ε1 and ε2

to obtain their respective upper-bounds.

The proof of our technical result (Lemma 3) that considers differentially private semi-honest proto-
cols particularly highlights the potential of this approach.

4.2 Round Optimality

Lemma 2 (Technical Result: Semi-honest Round Optimality). Let π be a 2-party OR evaluation
protocol with at most 2-rounds, where Alice sends the first message. Let T(x, y), for x, y ∈ {0, 1},
represent the transcript distribution of the protocol π when Alice and Bob have private inputs x and
y, respectively. Let a = T(0, 0), b = T(0, 1), c = T(1, 0), and d = T(1, 1) and (ε1, ε2, ε3, ε4) be the
statistical distances corresponding to

(
a b
c d

)
. For all ε3, ε4, we have

ε2 = ε4 and ε1 6 ε3 + ε4

Intuitively, the message in the first round by Alice divulges information about her private input bit
x that is independent of Bob’s private input bit y. The second message by Bob cannot reveal any
additional information about x. Therefore, we have ε2 = ε4. Lemma 1 already yields ε1 6 ε3 + ε4.
The proof of this lemma is provided in Appendix B and the tight protocol is presented in Figure 5.

Lemma 2 directly yields Theorem 2, by substituting ε3 = ε4 = 1/2, and there exists a 2-round
protocol that achieves the maximum possible simulation security for this case.
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5 Differentially Private Semi-honest Security

Definition 4 (Θ-Close). For Θ > 1, we say that the cross-section
(
a b
c d

)
is Θ-close if the ratios

a/b, b/d, d/c, c/a ∈ [1/Θ,Θ].

Similar to Lemma 1 we prove the following result for differentially-private semi-honest secure
protocols.

Lemma 3 (Technical Result: Differentially Private Semi-honest). Let a, b, c, and d be a four-
tuple of probabilities that satisfy the cross-product rule. Let (ε1, ε2, ε3, ε4) be the statistical distances
corresponding to

(
a b
c d

)
. Suppose there exists some Θ > 1 such that every cross-section of

(
a b
c d

)
is

Θ-close. Suppose ε3/ε4 ∈ [1/(Θ+1),Θ + 1]. Then we have:

1. If (ε3 + ε4) + ε3/Θ 6 1− 1/Θ, then

ε1 6 (ε3 + ε4)− 2

Θ + 1
ε4,

2. If (ε3 + ε4) + ε4/Θ 6 1− 1/Θ, then

ε2 6 (ε3 + ε4)− 2

Θ + 1
ε3, and

3. If ε1 = ε2, ε3 = ε4 = ε and ε3 + ε4 6 Θ−1
Θ+1 , then

ε1 = ε2 6 2ε− 3

Θ + 2
ε

Furthermore, for every ε3, ε4 and each of the inequality above, there exists a protocol whose transcript
distribution achieves the equality, and it produces 6 distinct transcripts.

Recall that for Lemma 1 there is one protocol that simultaneously maximizes both ε1 and ε2.
However, in the differentially private semi-honest security setting, optimizing ε1 and ε2 individually,
and under the the restriction that ε1 = ε2 yields different upper bounds. The full proof of this lemma
is provided in Appendix C and the tight protocol is provided in Figure 9.

Note that Claim 1 and Lemma 3 (part 3) directly yields Theorem 3, by setting ε = (Θ+2)/3(Θ+1).
The proof outline is similar to that of Lemma 1. The nine templates used in this proof are

( x xx x ),
( x x
x/Θ x/Θ

)
, and

(
x x/Θ

x/Θ x/Θ2

)
(with the corresponding rotations). To prove this lemma, we

solve an appropriate 9-variable linear program, which is slightly more involved as compared to the
corresponding one in Lemma 1.

We illustrate the solution space of the linear program in Figure 4, where ε3 = ε4 = 1/3 and
Θ = 5. We emphasize a subtlety. For every fixing of ε3 and ε4 the points P1 is a 2-round protocol
where Alice sends the first message, P2 is a 2-round protocol where Bob sends the first message,
and P3 is a 3-round protocol that additionally constrains ε1 = ε2. But the choice of ε3 and ε4 that
yields the optimally secure 3-round protocol is different from the choice of ε3 and ε4 that yields the
optimally secure 2-round protocols.

Lemma 4 (Technical Result: Differentially Private Semi-honest Round Optimal). For Θ > 1, let
ρ be a Θ-differentially private 2-party OR evaluation protocol with at most 2-rounds, where Alice
sends the first message. Let T(x, y), for x, y ∈ {0, 1}, represent the transcript distribution of the
protocol ρ when Alice and Bob has private inputs x and y, respectively. Let a = T(0, 0), b = T(0, 1),

8
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Figure 4: The convex polytope of all feasible solutions for ε3 = ε4 = 1/3 and Θ = 5. The point
P1, P2, and P3 correspond to the solutions that achieve the equalities in part (1), (2), and (3) in
Lemma 3. The variables are explained in Appendix C.1.

c = T(1, 0), and d = T(1, 1) and (ε1, ε2, ε3, ε4) be the statistical distances corresponding to
(
a b
c d

)
.

Suppose ε3/ε4 ∈ [1/(Θ+1),Θ + 1]. For all ε3, ε4 such that (ε3 + ε4) + ε3/Θ 6 1− 1/Θ, we have

ε2 = ε4 and ε1 6 (ε3 + ε4)− 2

Θ + 1
ε4

Note that this is identical to the bound obtained in Lemma 3 part 1. The full proof of this result
is provided in Appendix D and the tight protocol is provided in Figure 8.

For Θ > 4, the choice of ε3 = (Θ−2)/2(Θ+1) and ε4 = 1/2 is a feasible solution, and this choice has
simulation error at least 1/4. Moreover, there exists a 2-round protocol that achieves 1/4 simulation
error. For 1 < Θ < 4, the simulation error of a two-round protocol is 3/2(Θ+2).

6 Conclusions and Open Problems

The main technical contribution of our work is to express the transcript distributions of the “optimal
solution” to a cryptographic problem as a convex linear combination of a few custom-designed
templates. This step reduces the complexity of the problem to a constant size that can potentially
be solved by brute force techniques. These techniques can serve as a stepping-stone to explore the
optimal semi-honest secure protocols for any un-decomposable function [Kus89, Bea89]. Further,
this technique is a potential approach for the long standing open problem of characterizing 2-
party randomized secure function evaluations that can be semi-honest securely evaluated in the
information-theoretic plain model.
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A Proof of Lemma 1

In this section we prove the result for ε3 + ε4 6 1. To prove Lemma 1 it will be useful to introduce
the following terminology. We identify nine special types of cross-sections that are formally defined
below.

Type-0 Template. If there exists x such that the i-th cross-section is identical to ( x xx x ) then we
say that the i-th cross-section is a type-0 template.

Type-2 Templates. If there exists x such that the i-th cross-section is identical to ( x x0 0 ), ( 0 x
0 x ),

( 0 0
x x ), or ( x 0

x 0 ) then we say that the i-th cross-section is a type-2n, type-2e, type-2s, or type-
2w template, respectively. The letters refer to the cardinal direction associated with the nonzero
elements.

Type-3 Templates. If there exists x such that the i-th cross-section is identical to ( x 0
0 0 ), ( 0 x

0 0 ),
( 0 0
x 0 ), or ( 0 0

0 x ) then we say that the i-th cross-section is a type-3a, type-3b, type-3c, or type-3d
template, respectively.

Remark: The nine templates are defined based on the number of 0s in the cross-section. That
is, all type-k∗ templates have exactly k 0s in the cross-section, where k ∈ {0, 2, 3}.

First, we shall show the following claim.

Claim 3 (Reduction to Templates). Let a, b, c, and d be a four-tuple of probabilities over the
sample space Ω that satisfy the cross-product rule. Let (ε1, ε2, ε3, ε4) be the statistical distances
corresponding to

(
a b
c d

)
. Then, there exists a four-tuple of probabilities a′, b′, c′, and d′ over the

sample space Ω′ such that:

1. (ε′1, ε
′
2, ε
′
3, ε
′
4) are the statistical distances corresponding to

(
a′ b′

c′ d′

)
,

2. ε′3 = ε3, ε′4 = ε4,

3. ε′1 > ε1, ε′2 > ε2, and

4. Each cross-section of
(
a′ b′

c′ d′

)
is a template.

The proof of Claim 3 is provided in Appendix A.1.
Given Claim 3, it suffices to prove the inequality for four-tuple of distributions such that each

of their cross-section is a template. Next, we shall show the following claim.

Claim 4 (Reduction of Templates to a Small Sample Space). Let a′,b′, c′, and d′ be a four-
tuple of probabilities over the sample space Ω′ such that, for each i ∈ Ω′, the i-th cross-section
of

(
a′ b′

c′ d′

)
is a template. Let (ε′1, ε

′
2, ε
′
3, ε
′
4) be the statistical distances corresponding to

(
a′ b′

c′ d′

)
.

Then, there exists a four-tuple of probabilities a′′,b′′, c′′, and d′′ over the sample space Ω′′ =
{0, 2n, 2e, 2s, 2w, 3a, 3b, 3c, 3d} such that:

1. (ε′′1, ε
′′
2, ε
′′
3, ε
′′
4) are the statistical distances corresponding to

(
a′′ b′′

c′′ d′′

)
,

2. ε′′1 = ε′1, ε
′′
2 = ε′2, ε

′′
3 = ε′3, ε

′′
4 = ε′4, and

3. For every i ∈ Ω′′, the i-th cross-section of
(
a′′ b′′

c′′ d′′

)
is a type-i template.
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The proof of Claim 4 is provided in Appendix A.2.
Because of Claim 4, it suffices to prove the inequality only for four-tuple of distributions over

Ω = {0, 2n, 2e, 2s, 2w, 3a, 3b, 3c, 3d} such that its i-th cross-section is type-i template, for i ∈ Ω.
Note that

∑
i ai =

∑
i bi = 1, so

∑
i ai − bi =

∑
ai>bi

(ai − bi) +
∑

ai<bi
(ai − bi) = 0. Therefore∑

ai>bi

(ai − bi) =
∑
ai<bi

(bi − ai)

Which allows us to conclude that

ε1 = SD (a,b) =
1

2

∑
i∈Ω

|ai − bi| =
1

2

∑
bi>ai

2(bi − ai) =
∑

i∈Ω: bi>ai

(bi − ai)

Of the nine templates, the only two that satisfy bi > ai are: ( 0 x
0 x ) and ( 0 x

0 0 ). In these two
templates ai = 0. So, we have the following equation:

ε1 =
∑

i∈Ω: bi>ai

(bi − ai) =
∑

i∈Ω: bi>ai

bi

Since bi > ai only allows for templates 2e and 1b, we can expand the summation above to a
sum of sums over those two templates. In the template 2e, we have di > ci and in the template 1b,
we have bi > di. Then, we can relax the requirement that bi > ai to transform the equation into an
upper bound.

ε1 =
∑

i∈Ω:
bi>ai
di>ci

(di − ci) +
∑

i∈Ω:
bi>ai
bi>di

(bi − di)

6
∑

i∈Ω: di>ci

(di − ci) +
∑

i∈Ω: bi>di

(bi − di)

= ε3 + ε4

Equality holds if and only if the templates ( 0 0
0 x ) and ( x x0 0 ) have 0 probability.

Analogously, we can prove that ε2 6 ε3 + ε4. Equality holds if and only if the templates ( 0 0
0 x )

and ( x 0
x 0 ) have 0 probability.

Therefore, equality holds in both the inequalities if and only if ( 0 0
0 x ), ( x x0 0 ), and ( x 0

x 0 ) have 0
probability. See the construction below Lemma 1 for a protocol transcript distribution that achieves
equality for both these equations (the protocol is provided in Figure 3).

A.1 Proof of Claim 3

We begin by creating a′ = a, b′ = b, c′ = c, and d′ = d. For every cross-section that is not a
template, we replace it by a set of four appropriately chosen templates such that the ε3 and ε4

remains same but both ε1 and ε2 do not decrease.
For each i ∈ Ω such that the i-th cross-section

(
ai bi
ci di

)
of
(
a b
c d

)
is not a template. We consider

the following exhaustive case analysis to modify a′, b′, c′, and d′.
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Case 1: ai is the minimum. If ai is minimum then di is the maximum, since ai · di = bi · ci.
We can assume that di > 0, otherwise ai = bi = ci = di = 0. Further, since ai · di = bi · ci, we can
re-write ai, bi, and ci as follows:

ai = di − (di − bi)− (di − ci) +
(di − bi)(di − ci)

di
bi = di − (di − bi)
ci = di − (di − ci)

Consider the following exhaustive case analysis on the value of di − (di − bi)− (di − ci).
Case 1.A: di − (di − bi) − (di − ci) > 0. We replace the cross-section

(
ai bi
ci di

)
with the following

four cross-sections.(
di−(di−bi)−(di−ci) di−(di−bi)−(di−ci)
di−(di−bi)−(di−ci) di−(di−bi)−(di−ci)

) (
0 di−ci
0 di−ci

) (
0 0

di−bi di−bi
) (

(di−bi)(di−ci)
di

0

0 0

)
Observe that each entry mentioned above in > 0 (because di − bi > 0 and di − ci > 0). Note that
this replacement keeps ε3 and ε4 identical. And, ε1 increases by

(di − ci) +
(di − bi)(di − ci)

di
− (bi − ai) = (di − ci) +

(di − bi)(di − ci)
di

− (di − ci) +
(di − bi)(di − ci)

di

= 2
(di − bi)(di − ci)

di
> 0

Similarly, ε2 increases by

(di − bi) +
(di − bi)(di − ci)

di
− (ci − ai) = (di − bi) +

(di − bi)(di − ci)
di

− (di − bi) +
(di − bi)(di − ci)

di

= 2
(di − bi)(di − ci)

di
> 0

Case 1.B: di−(di−bi)−(di−ci) < 0. This is equivalent to di > bi+ci. We replace the cross-section(
ai bi
ci di

)
with the following four cross-sections.(

0 bi
0 bi

) (
0 0
ci ci

) (
ai 0
0 0

) (
0 0
0 di−bi−ci

)
Observe that each entry mentioned above is> 0. Note that the replacement keeps ε3 and ε4 identical.
And, ε1 increases by ai+bi−(bi−ai) = 2ai > 0. Similarly, ε2 increases by ai+ci−(ci−ai) = 2ai > 0.

Case 2: bi is the minimum. We replace the cross-section
(
ai bi
ci di

)
with the following four

cross-sections.(
bi bi
bi bi

) (
0 0

di−bi di−bi
) (

ai−bi 0
0 0

) (
0 0

ci−di 0

)
Observe that each entry mentioned above is > 0 (because if bi is minimum then ci is the maximum).
Note that this replacement keeps ε1, ε3 and ε4 identical. And, ε2 increases by (di− bi) + (ai− bi) +
(ci − di)− (ci − ai) = 2(ai − bi) > 0.

Case 3: ci is the minimum. This case is analogous to the case when bi is the minimum.
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Case 4: di is the minimum. We replace the cross-section
(
ai bi
ci di

)
with the following four

cross-sections.(
di di
di di

) (
ai−di 0

0 0

) (
0 bi−di
0 0

) (
0 0

ci−di 0

)
Observe that each entry mentioned above is > 0 (because if di is the minimum then ai is the
maximum). Note that this replacement keep ε3 and ε4 identical. And, ε1 increases by (ai − di) +
(bi−di)−(ai−bi) = 2(bi−di) > 0. And, ε2 increases by (ai−di)+(ci−di)−(ai−ci) = 2(ci−di) > 0.

For all replacement, the resultant four-tuple of distributions a′, b′, c′, and d′ satisfy the require-
ments of Claim 3.

A.2 Proof of Claim 4

Intuitively, we argue the following. Suppose there exists distinct i and j such that the i-th and
the j-th cross-sections of

(
a′ b′

c′ d′

)
have type-k template, where k ∈ {0, 2n, 2e, 2s, 2w, 3a, 3b, 3c, 3d}.

We can replace these two cross-sections by one cross-section of type-k that is the sum of these two
cross-sections. This operation preserves their statistical distances. Repetitive application of this
step provides us with the construction of a′′, b′′, c′′, and d′′ that satisfy Claim 4.

More formally, let a′,b′, c′, and d′ be distributions over the sample space Ω′ = [n′] such that
for all i ∈ Ω′, the cross section of (a′,b′, c′,d′) at i both satisfies the cross-product rule and is a
template.

If there exists i and j in Ω′ such that the cross section of (a′,b′, c′,d′) at i and j are of the
same template type and rotation, then there exists Ω′′ = [n′ − 1] and (a′′,b′′, c′′,d′′) that satisfies
the cross product rule, only uses templates, and is also SD Equivalent to (a′,b′, c′,d′).

We construct a′′,b′′, c′′, and d′′ by using the exact same cross sections from a′,b′, c′, and d′,
but without indices i and j. We then insert one cross section, which is the sum of the cross sections
at i and j. To show correctness, there are three fundamental cases to consider here, depending on
the type of cross section (a′′,b′′, c′′,d′′) has at index i.

Since each cross section has a single nonzero value, we can let k and l represent the nonzero
values for the two cross sections at hand.

Case 1: Type One Template The following substitution visibly does not change any of the
epsilon values and maintains the integrity of the probability distribution.(

k k
k k

) (
l l
l l

)
7→
(
k+l k+l
k+l k+l

)
Case 2: Type Two Template Like the case above, we can easily preserve the required properties.(

k k
0 0

) (
l l
0 0

)
7→
(
k+l k+l

0 0

)
Case 3: Type Three Template Again, simply writing out the cross sections shows the correct-
ness of the substitution. (

k 0
0 0

) (
l 0
0 0

)
7→
(
k+l 0

0 0

)
The rotations of the type two and three templates follow the same principles. Hence, all three

possible templates and all rotations can be reduced from two cross sections to one without any
impact on the ε-Distances. Thus, we provide a size n′ − 1 probability distribution that upholds all
required properties, completing the proof.

Iteratively applying this procedure, we reduce the number of cross-sections to 9.
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( 1 1
1 1 )

Tight Protocol for ε3 + ε4 6 1 in two rounds

(
1−ε3−ε4 1−ε3−ε4
1−ε3−ε4 1−ε3−ε4

)
( ε3 ε3ε3 ε3 ) ( ε4 ε40 0 )

(
0 0
ε4 ε4

)
(
ε3 0
ε3 0

) (
0 ε3
0 ε3

) (
ε4 0
0 0

) (
0 ε4
0 0

)
Figure 5: Two-round two-party protocol where Alice sends the first message such that ε2 = ε4 and
ε1 = ε3 + ε4.

B Proof of Lemma 2

In this section, we use the notion introduced in Appendix E. Note that we only need to prove that
ε2 = ε4. We already know that ε1 6 ε3 + ε4 by Lemma 1.

Suppose Alice sends a message i in the first round. She sends i with probability pi if her input
is x = 0; otherwise, if her input is x = 1, she sends i with probability qi.

Note that the four-tuple of probability corresponding to the empty transcript is ( 1 1
1 1 ).

The four tuple of probability corresponding to the partial transcript i is ( pi piqi qi ).
Conditioned on the first message being i, suppose Bob sends the message j with probability pi,j

if his input is y = 1; otherwise, if his input is y = 1, he sends j with probability qi,j .
Note that the four-tuple of probability corresponding to the complete transcript (i, j) is

( pipi,j piqi,j
qipi,j qiqi,j

)
.

Using the fact that, for every i, we have
∑

j pi,j =
∑

j qi,j = 1, consider the following manipulation.

ε2 =
∑
i,j

|pipi,j − qipi,j | =
∑
i

|pi − qi|
∑
j

pi,j

=
∑
i

|pi − qi|

=
∑
i

|pi − qi|
∑
j

qi,j

=
∑
i,j

|piqi,j − qiqi,j | = ε4

C Proof of Lemma 3

We identify 9 special types of cross-sections.

Type-0 Template. If there exists x such that the i-th template is identical to ( x xx x ) then we say
that the i-th cross-section is a type-0 template.

Type-2 Templates. If there exists x such that the i-th cross-section is identical to
( x x
x/Θ x/Θ

)
,(

x/Θ x
x/Θ x

)
,
(
x/Θ x/Θ
x x

)
, or

(
x x/Θ
x x/Θ

)
then we say that the i-th cross-section is a type-2n, type-2e,
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type-2s, or type-2w template respectively. The letters refer to the cardinal direction associated with
the maximum elements.

Type-3 Templates. If there exists x such that the i-th cross-section is identical to
(

x x/Θ

x/Θ x/Θ2

)
,(

x/Θ x

x/Θ2 x/Θ

)
,
(
x/Θ x/Θ2

x x/Θ

)
, or

(
x/Θ2 x/Θ
x/Θ x

)
then we say that the i-th cross-section is a type-3a,

type-3b, type-3c, or type-3d template respectively.

Claim 5 (Reduction to Templates). Let a, b, c, and d be a four-tuple of probabilities over the
sample space Ω that satisy the cross-product rule. Let (ε1, ε2, ε3, ε4) be the statistical distances
corresponding to a,b, c, and d. Then, there exists a four-tuple of probabilities a’, b’, c’, and d’
over the sample space Ω′ such that:

1. (ε′1, ε
′
2, ε
′
3, ε
′
4) are the statistical distances corresponding to

(
a′ b′

c′ d′

)
,

2. ε′i = εi, for all i ∈ {1, 2, 3, 4}, and

3. Each cross-section of
(
a′ b′

c′ d′

)
is a template.

The proof of this claim is provided in Appendix C.2.
Given Claim 5, it suffices to prove the inequality for four-tuple of distributions such that each

of their cross-section is a template. Next, we shall show the following claim.

Claim 6 (Reduction of Templates to a Small Sample Space). Let a’, b’, c’, and d’ be a four-
tuple of probabilities over the sample space Ω′ such that, for each i ∈ Ω′, the i-th cross-section
of

(
a′ b′

c′ d′

)
is a template. Let (ε′1, ε

′
2, ε
′
3, ε
′
4) be the statistical distances corresponding to

(
a′ b′

c′ d′

)
.

Then, there exists a four-tuple of probabilities a”, b”, c”, and d” over the sample space Ω′′ =
{0, 2n, 2e, 2s, 2w, 3a, 3b, 3c, 3d} such that:

1. (ε′′1, ε
′′
2, ε
′′
3, ε
′′
4) are the statistical distances corresponding to

(
a′′ b′′

c′′ d′′

)
,

2. ε′′i = ε′i, for all i ∈ {1, 2, 3, 4, }, and

3. For all i ∈ Ω′′, the i-th cross-section of
(
a′ b′

c′ d′

)
is a type-i template.

The proof of this claim is provided in Appendix C.3.
Because of Claim 6, it suffices to prove the inequality only for four-tuple of distributions over

Ω = {0, 2n, 2e, 2s, 2w, 3a, 3b, 3c, 3d} such that its i-th cross-section is type-i template, for i ∈ Ω.
Unlike Lemma 1, obtaining a tight upper-bound on ε1 and ε2 is not trivial. So, we set up the linear
program explicitly and analyze the optimal solution.

C.1 Setting the Linear Program

Given ε3 and ε4, we are interested in finding the maximum achievable ε1 and ε2. Due to Claim 5
and Claim 6 it suffices to consider a four-tuple of distributions

(
a b
c d

)
such that for each type of

template there exists a unique cross-section corresponding to it. We plan to formulate this problem
as a linear program and maximize ε1.

For ease of presentation, without loss of generality, we assume that the sample space is Ω =
{0, . . . , 8}. The 0-th cross-section corresponds to type-0 template. The 1-st, . . . , 4-th cross-sections
correspond to type-2n, . . . ,type-2w templates. The 5-th through 8-th cross-sections correspond to
type-3a, . . . ,type-3d templates.
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Let α0 be the probability of type-0 template. Let α1, . . . , α4 be the maximum probability entry
in the type-2n, type-2e, type-2s, and types-2w template, respectively. For example, α2 = b2 = d2.
Let α5, . . . , α8 be the maximum probability entry in the type-3a, types-3b, types-3c, and types-3d
templates, respectively.

Note that type-0 template makes no contributions to ε1, ε2, ε3, and ε4. Now consider the type-2n
template. Note that the cross-section is

(
ai bi
ci di

)
=
( α1 α1

α1/Θ α1/Θ

)
. We consider four differences:

1. b1 − a1 = 0,

2. d1 − b1 = −α1(1− 1/Θ) =: −∆1,

3. c1 − d1 = 0, and

4. a1 − d1 = α1(1− 1/Θ) = ∆1.

We pictorially represent these differences in the following figure. The arrows represent the fact
that we subtract the variable at the “tail” of the arrow from the variable at the “head” of the arrow.

α1 α1

α1/Θ α1/Θ





0

−∆1

0

∆1

Figure 6: A pictorial summary of the variables.

Similarly, we define ∆2 = α2(1− 1/Θ), ∆3 = α3(1− 1/Θ), and ∆4 = α4(1− 1/Θ).
Now, we consider the cross-section that is type-3a template. The four differences are:

1. b5 − a5 = −α5(1− 1/Θ) =: −∆5,

2. d5 − b5 = −α5(1− 1/Θ)/Θ = −∆5/Θ,

3. c5 − d5 = α5(1− 1/Θ)/Θ = ∆5/Θ, and

4. a5 − c5 = α5(1− 1/Θ) = ∆5.

For intuition, we elaborate the variables in the figure below.
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α5 α5/Θ

α5/Θ α1/Θ
2





−∆5

−∆5/Θ

∆5/Θ

∆5

Figure 7: A pictorial summary of the variables.

Constraints of the Linear Program. For given ε3 and ε4, we have the following constraints:

1. The first constraint is ∑
i∈Ω: bi>ai

bi − ai =
∑

i∈Ω: bi<ai

ai − bi

We formalize this constraint as follows.

∆2 + ∆6 + ∆8/Θ = ∆4 + ∆5 + ∆7/Θ (1)

This constraint also ensures that a1 +· · ·+ a8 = b1 +· · ·+ b8.

2. The second constraint is ∑
i∈Ω: di>bi

di − bi =
∑

i∈Ω: di<bi

bi − di = ε4

We formalize this constraint as follows.

∆3 + ∆7/Θ + ∆8 = ∆1 + ∆5/Θ + ∆6 = ε4 (2)

This constraint also ensures that b1 +· · ·+ b8 = d1 +· · ·+ d8.

3. The third constraint is ∑
i∈Ω: ci>di

ci − di =
∑

i∈Ω: ci<di

di − ci = ε3

We formalize this constraint as follows.

∆4 + ∆5/Θ + ∆7 = ∆2 + ∆6/Θ + ∆8 = ε3 (3)

This constraint also ensures that d1 +· · ·+ d8 = c1 +· · ·+ c8.

4. The fourth constraint is: ∑
i∈Ω: ai>ci

ai − ci =
∑

i∈Ω: ai<ci

ci − ai

We formalize this constraint as follows.

∆1 + ∆5 + ∆6/Θ = ∆3 + ∆7 + ∆8/Θ (4)

This constraint also ensures that c1 +· · ·+ c8 = a1 +· · ·+ a8.
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5. We need to also ensure that
∆1, . . . ,∆8 > 0 (5)

6. Finally, we need to ensure that a0 > 0. So, we have the following constraint.

a1 +· · ·+ a8 =

(
∆1 +

∆2

Θ
+

∆3

Θ
+ ∆4 + ∆5 +

∆6

Θ
+

∆7

Θ
+

∆8

Θ2

)(
1− 1

Θ

)−1

6 1 (6)

Objective. To maximize ε1, we maximize ∆2 + ∆6 + ∆8/Θ. And, to maximize ε2, we maximize
∆1 + ∆5 + ∆6/Θ.

Remarks. Before we move ahead, we want to highlight a few quick observations about this linear
program.

1. The linear program has a solution

∆1 = ε4,∆2 = ε3,∆3 = ε4,∆4 = ε3,∆5 = 0,∆6 = 0,∆7 = 0,∆8 = 0

if (ε3 + ε4)(1 + Θ−1) 6 (1−Θ−1).

2. It is straightforward to conclude that ε1, ε2 6 ε3 + ε4 because ε1 = ∆2 + ∆6 + ∆8/Θ 6
∆2 + ∆6 + ∆8 6 (∆2 + ∆6/Θ + ∆8) + (∆1 + ∆5/Θ + ∆6) = ε3 + ε4. Analogously, we can
conclude that ε2 6 ε3 + ε4.

Parametrized (Potential) Solution Space. The set of all solutions (∆1, . . . ,∆8) under the
constraints Equation 1 to Equation 4 is represented by the following set of points (p1, . . . , p8) such
that:

p1 = ε4 − p5/Θ− p6

p2 = ε3 − p6/Θ− p8

p3 = ε4 − p5/Θ + p6/Θ− p8(1 + 1/Θ)

p4 = ε3 − p5(1 + 1/Θ) + p6 − p8

p7 = p5 − p6 + p8

Note that all coordinates have been expressed as a function of p5, p6, and p8. The first objective
function translates to ε1 = ε3 + (1 − 1/Θ)(p6 − p8). And, the second objective function translates
to ε2 = ε4 + (1− 1/Θ)(p5 − p6).

C.1.1 Maximizing ε1.

Under the constraint Equation 5, we want to maximize ε1, that is, maximize (p6−p8). We consider
three equations in particular:

0 6 ∆1 = ε4 − p5/Θ− p6

0 6 ∆7 = p5 − p6 + p8

0 6 ∆8 = p8

Claim 7. The quantity (p5 − p8) is maximized if and only if p5 = p6 = Θε4/(Θ + 1) and p8 = 0.
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( 1 1
1 1 )

Tight Protocol to maximize ε1 and happens to have ε2 = ε4

( α0 α0
α0 α0 )

(
α2(1+1/Θ) α2(1+1/Θ)
α2(1+1/Θ) α2(1+1/Θ)

)(
α5(1+1/Θ) α5(1+1/Θ)
α5(1+1/Θ)/Θ α5(1+1/Θ)/Θ

) (
α3/Θ α3/Θ
α3 α3

)
(
α2 α2/Θ
α2 α2/Θ

) (
α2/Θ α2

α2/Θ α2

) (
α5 α5/Θ

α5/Θ α5/Θ2

) (
α5/Θ α5

α5/Θ2 α5/Θ

)

Figure 8: For Θ > 1 and (ε3 + ε4) + ε3/Θ 6 1− 1/Θ, a two-round protocol where Alice speaks first
with ε2 = ε4 and ε1 = (ε3 + ε4)− 2

Θ+1ε4. In this solution we have α2 = α4 and α5 = α6.

Proof. Suppose p5 − p6 + p8 = δ > 0, that is: p5 = p6 − p8 + δ, for some non-negative δ. Next, we
have ε4 − p5/Θ− p6 = δ′ > 0. Substituting, we get: Θε4 −Θp6 −Θδ′ = p5 = p6 − p8 + δ. We solve
for p6 = (Θε4 + p8−Θδ′− δ)/(Θ + 1). Now, (p6− p8) = (Θε4−Θp8−Θδ′− δ)/(Θ + 1). Under the
constraint 0 6 ∆8 = p8, we note that (p6 − p8) is maximized if and only if δ = δ′ = p8 = 0.

For this assignment we have (∆1, . . . ,∆8) =(
0, ε3 −

ε4

Θ + 1
, ε4, ε3 −

ε4

Θ + 1
,

Θε4

Θ + 1
,

Θε4

Θ + 1
, 0, 0

)
This is a valid solution, because the following two reasons. First, all coordinates are non-negative
because ε3/ε4 > 1

Θ+1 . Finally, we have a0 > 0 because

(a1 +· · ·+ a8)

(
1− 1

Θ

)
= 0 +

(
ε3

Θ
− ε4

Θ(Θ + 1)

)
+
ε4

Θ
+

(
ε3 −

ε4

Θ + 1

)
+

Θε4

Θ + 1
+

ε4

Θ + 1
+ 0 + 0

= ε3

(
1 +

1

Θ

)
+ ε4 6

(
1− 1

Θ

)
And the maximized objective function is

ε∗1 = ε3 +
Θ− 1

Θ + 1
ε4 = (ε3 + ε4)− 2

Θ + 1
ε4

C.1.2 Maximizing ε2.

This is a symmetric problem and ε∗2 = (ε3 + ε4) − 2
Θ+1ε3. We can use the following parameters:

p5 = Θε3/(Θ + 1), p6 = 0, and p8 = 0. This yields (∆1, . . . ,∆8) =(
ε4 −

ε3

Θ + 1
, ε3, ε4 −

ε3

Θ + 1
, 0,

Θε3

Θ + 1
, 0,

Θε3

Θ + 1
, 0

)
This is a valid solution because ε4/ε3 > 1

Θ+1 . Further, a0 > 0 because

(a1 +· · ·+ a8)

(
1− 1

Θ

)
= ε4

(
1 +

1

Θ

)
+ ε3 6

(
1− 1

Θ

)
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( 1 1
1 1 )

Tight Protocol to maximize ε1 = ε2 for ε3 + ε4 = ε

(
k k
k k

) (
1−k−α2

Θ
1−k−α2

1−k−α2
Θ

1−k−α2

) ( α2
Θ

α2
α2
Θ

α2

)
(

α5+
α6
Θ

α5
Θ

+α6
α5
Θ

+
α6
Θ2

α5
Θ2 +

α6
Θ

) (
α3
Θ

+
α7
Θ

α3
Θ

+
α7
Θ2

α3+α7 α3+
α7
Θ

)
(

α5 α5/Θ

α5/Θ α5/Θ2

) (
α6/Θ α6

α6/Θ2 α6/Θ

) (
α3/Θ α3/Θ
α3 α3

)(
α7/Θ α7/Θ2

α7 α7/Θ

)

Figure 9: For ε3 + ε4 6 1− 2
Θ+1 and ε3 = ε4 = ε, a three-round protocol that maximizes ε1 under

the constraint that ε1 = ε2.

C.1.3 Maximizing Subject to ε1 = ε2 and ε3 = ε4 = ε.

Under this case, we can maximize ε∗1 = ε∗2 for p5 = 2Θ
Θ+2ε, p6 = Θ

Θ+2ε, and p8 = 0. The solution
(∆1, . . . ,∆8) is: (

0,
Θ + 1

Θ + 2
ε,

Θ + 1

Θ + 2
ε, 0,

2Θ

Θ + 2
ε,

Θ

Θ + 2
ε,

Θ

Θ + 2
ε, 0

)
This achieves ε∗1 = ε∗2 = 2ε− 3

Θ+2ε. We have:

(a1 +· · ·+ a8)

(
1− 1

Θ

)
= 2

(Θ + 1)2

Θ(Θ + 2)
ε = 2ε

(
1 +

1

Θ(Θ + 2)

)
6

(
1− 1

Θ

)

C.2 Proof of Claim 5

In this section, we use α, β as parameter that are in the range (1,Θ). We prove Claim 5 by
performing the following exhausting case analysis.

Case 1. Suppose we have a cross-section
( x x
x/α x/α

)
. We will write this cross-section as a linear

combination of type-0 and type-2n templates.( x x
x/α x/α

)
= ( y yy y ) +

( z z
z/Θ z/Θ

)
The constraints are:

y + z = x

y + z/Θ = x/α

This has positive solutions y = x(1/α−1/Θ)
1−1/Θ and z = x(1−1/α)

1−1/Θ , because α ∈ (1,Θ).
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Case 2. Suppose we have a cross-section
(

x x/Θ
x/α x/αΘ

)
. We will write this cross-section as a linear

combination of type-2w and type-3a templates.(
x x/Θ
x/α x/αΘ

)
=
(
y y/Θ
y y/Θ

)
+
(

z z/Θ

z/Θ z/Θ2

)
The constraints are:

y + z = x

y + z/Θ = x/α

And, similar to the previous case, positive solutions for y and z are guaranteed.

Case 3. Suppose we have a cross-section
(

x x/β
x/α x/αβ

)
. We will write this cross-section as a linear

combination of Case 1 cross-section and Case 2 cross-section.(
x x/β
x/α x/αβ

)
=
(
y y/β
y y/β

)
+
(

z z/β
z/Θ z/βΘ

)
Again, the constraints are:

y + z = x

y + z/Θ = x/α

And, similar to the previous cases, positive solutions for y and z are guaranteed. The two cross-
sections produced are already covered in Case 1 and 2.

Note of SD-contributions. Note that the convex linear combinations preserve the SD-contributions
in each case. Hence, we get the desired result.

C.3 Proof of Claim 6

Similar to Claim 4, we simply collapse all the cross-sections of type i ∈ Ω′′ of
(
a′ b′

c′ d′

)
into one

cross-section. It is easy to see that it preserves the total statistical distances contributions of all
cross-sections that are type-i template in

(
a′ b′

c′ d′

)
. Iterating this process for every i ∈ Ω′′, we get

our result.

D Proof of Lemma 4

We alredy know by Lemma 3 part 1 that the solution that maximizes ε1 without any restriction
on the round complexity of the protocol already has ε2 = ε4 (which is a property of two-round
protocols where Alice sends the first message) and admits a two-round protocol as demonstrated in
Figure 8. Therefore, restricted to two-round protocols and ε2 = ε4 the optimal solution coincides
with the solution of Lemma 3 part 1.

E Tree Representation of a Protocol

For completeness, in this section, we provide details of how a protocol can be equivalently represented
by a tree with probability matrices associated with each of the nodes in the tree. Note that partial
transcripts of a protocol π naturally define a tree Tπ. The internal nodes of the tree represent partial
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transcripts and the leaves represent the full transcripts of the protocol. In this presentation, we
restrict to the case where both parties participating in π has two possible private inputs each, say
{0, 1}. By π(x, y) we represent the protocol where parties have private input x and y, respectively.

For every node v ∈ Tπ, we associate a 2 × 2 matrix M(v). The (i, j)-th entry of M(v), i.e.,
M(v)i,j , represents the probability that the (partial) transcript v is generated by π(i, j). These
probabilities satisfy the following properties:

1. Let r be the root of Tπ. Then M(r) = ( 1 1
1 1 ). For any internal node v, let child(v) be the set

of all its children. Then, M(v) =
∑

w∈child(v)M(w).

2. Let v be an internal node where Alice sends the next message. Then, for any w ∈ child(v),
there exists p, q such that M(w) =

(
p 0
0 q

)
·M(v). Similarly, if v be an internal node where

Bob sends the next message. Then, for any w ∈ child(v), there exists p, q > 0 such that
M(w) = M(v) ·

(
p 0
0 q

)
.

Interestingly, if a tree T is provided with associate M(v), for v ∈ T, that satisfies the above
mentioned constraints then there exists a protocol π that generates it.
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