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Abstract

Viewed through the lens of information-theoretic cryptography, almost all nontrivial two-
party secure computation requires a-priori correlated randomness to be given to parties. Fur-
thermore, the high level of efficiency of information-theoretic protocols has motivated a paradigm
of starting with correlated randomness, specifically random oblivious transfer (OT) correlations,
that is set up through an offline phase. But what if some information about the correlated ran-
domness is leaked to an adversary? Can we still recover “fresh” correlated randomness after such
leakage has happened?

This question is a direct analog of the question of privacy amplification in the context of
a shared random secret key, to the setting of correlated random secrets. Remarkably, despite
decades of study of OT-based secure computation, very little is known about this question. In
particular, the critical question of how much leakage is tolerable for preserving OT correlations
has remained open. In our work, we resolve this question.

Prior to our work, the work of Ishai, Kushilevitz, Ostrovsky, and Sahai (FOCS 2009) obtained
an initial feasibility result, tolerating only a tiny constant leakage rate. Since then, no progress
has been made on this question. In our work, we show that starting with n random bit OT
correlations, where each party holds 2n bits, up to (1 − ε)n

2 bits of leakage are tolerable. This
result is optimal, by known negative results on OT combiners.

We then ask the same question for other correlations: is there a correlation that is more
leakage-resilient than OT correlations, and also supports secure computation? We answer in the
affirmative, by showing that there exists a correlation (that we call the inner product correlation)
where each party receives 2n bits, and up to (1− ε)n bits of leakage are tolerable.
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1 Introduction

Secure two-party computation allows two mutually distrusting parties to perform secure computa-
tion using their private inputs without revealing any extra information to adversarial parties. It is
known that even against semi-honest adversaries, i.e. adversaries who follow the prescribed proto-
col but are curious to find additional information, achieving information theoretic security in the
plain model is impossible for most tasks [Kil88, Kus89, Bea89, MPR09]. For example, even for the
seemingly trivial task of privately computing the AND of two boolean inputs is not possible. On
the other hand, if suitable correlated randomness is provided as setup to parties, then two-party
and multi-party computation can be performed securely [Kil00, CLOS02, IPS08]. One especially
notable example of correlated randomness is the random oblivious transfer (OT) correlation, where
the sender receives two random bits (s0, s1) and the receiver receives (c, sc), where c is a random
bit.

Due to the high efficiency of information-theoretic techniques for secure computation using OT
correlations, protocols such as TinyOT [NNOB12] have popularized the approach in practice of
starting with random bit OT correlations. Random OT correlations can be pre-computed in an
offline phase and later used online to perform a desired secure computation. But what if some
information about the correlated randomness is leaked to an adversary? Can we still recover “fresh”
correlated randomness after such leakage has happened?

This question is a direct analog of the question of privacy amplification [BBR88, BBCM95] that
arose in the context of secure communication. Privacy amplification asks the following question:
given shared randomness which has been partially leaked to an eavesdropper, can parties agree
upon a common key which remains hidden from the eavesdropper? In our setting, we ask the same
question for correlated randomness, which is critical to secure computation. Note, however, that
participants in a privacy amplification protocol protect their secret only from an outsider. Instead,
in our setting, parties must protect their secrets against the other party. For example, a fresh
oblivious transfer correlation ensures that the bit c is hidden from the sender and the bit s1−c is
hidden from the receiver.

In contrast to the setting of privacy amplification, remarkably, despite decades of study of OT-based
secure computation, very little is known about our question. In particular, the critical question of
how much leakage is tolerable for preserving OT correlations has remained open. In our work, we
resolve this question.

Prior to our work, Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS09] studied this question, intro-
ducing the notion of correlations extractors. They consider the setting where n copies of random
OT correlations are shared among two parties. However, in their work, parties can leak only an
extremely small constant fraction of the bits to the other party. Indeed, the fractional leakage
resilience their protocol is approximately 10−7. So, at best, this serves as a proof of concept result.

Since their work in 2009, there has not been any progress on this problem. In our work, we show
that given n OT correlations as setup, we can tolerate (1 − ε)n/2 bits of leakage, for arbitrary
constant ε ∈ (0, 1). Further, the maximal leakage tolerance exhibited by our protocol is near-
optimal [IMSW14]. Finally, our protocol is conceptually simpler. It completely avoids the use of
Algebraic-Geometric codes [Gop81, GS96] needed in [IKOS09]. Instead, it uses a simple structured
binary linear code.

Having resolved the question of leakage-resilience for OT correlations, we then step back, and
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consider the question more broadly. While OT correlations are extremely useful and have a long
history of applicability, perhaps there are other correlations that are better with respect to leakage-
resilience, and still allow for secure computation. More precisely, we ask if there are correlations
(X,Y ) such that both parties receive 2n bits but where even after greater than n/2 bits of leakage, it
is still possible to produce fresh secure OT correlations. It turns out that the answer is affirmative.
The inner product correlation, where parties receive a random vector each and an additive share
of their inner product, can tolerate significantly higher fractional leakage. We show that, in fact,
they can tolerate (1 − ε)n bits of leakage, where ε ∈ (0, 1) is a constant. This opens up a new set
of questions to explore in future work. In particular, we conjecture that this is optimal and that
greater than n bits of leakage tolerance is impossible.

1.1 Our Contribution

In this section we highlight the main results of our paper.

1.2 Oblivious Transfer Correlation Extractor

We present our results in the terminology of “random oblivious transfer extractors.” A random
oblivious transfer (ROT) is a two party privative where client S receiver random bits (s0, s1); and
the client R receives random bit c and sc. Random oblivious transfer correlations suffice to perform
general multiparty computation.

We work in the ROTn-hybrid, that is, there are n copies of ROT correlation provided to the two
parties. A semi-honest client S can leak tS bits from the correlation and a semi-honest client R
can leak tR bits from the correlation. Oblivious transfer is a two party primitive where client S
has inputs (s0, s1) and client R has input c; and client R obtains output sc. An (n, tS , tR, ε) OT
extractor is a two-party protocol between client S and client R such that it produces a secure copy
of oblivious transfer despite prior leakage obtained by the clients.

Our first result shows the following feasibility result:

Theorem 1 (OT Extractor). For any n, tS , tR ∈ N, there exists an (n, tS , tR, ε) OT Extractor which
produces a secure OT, such that ε 6 2−(g/4+1) and g := n− (tS + tR).

Note that our result shows that if there is sufficient gap between n and the total leakage (tS+tR), then
we can securely extract one oblivious transfer. Further, the simulation error decreases exponentially
in the gap. For example, tS = tR = 0.49n leakage tolerant extractors exist by our result. Contrast
this to the result of [IKOS09] who can tolerate leakage up cn bits of leakage where c is a minuscule
small constant. Thus, ours is the first feasibility result in the regime of high leakage tolerance; and
our leakage resilience is (near) optimal due to the negative result of [IMSW14]. Our protocol also
improves upon the round complexity of [IKOS09].

We show that if the gap g = n− (tS + tR) is at least cn, for some constant c ∈ (0, 1), then we can
trade off simulation error and increase the production rate of our extractor. That is, in the leaky
ROTn hybrid, we can produce large number of secure independent copies of oblivious transfer. Our
result is summarized in the following theorem:

Theorem 2 (High Production). For every m, tS , tR ∈ N, such that g = n− (tS + tR) = Θ(n), and
ρ = ω(log n), there exists an (n, tS , tR) OT Extractor with production rate p = n/ρ and ε 6 negl(n).
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Intuitively, this theorem states that if the gap is linear in n then we can obtain slightly sub-
linear number of secure oblivious transfers while incurring negligible security error. Although our
production rate is not linear, we show that it is possible to extract large number of secure oblivious
transfers even if parties are permitted to perform tS = tR = 0.49n bits of leakage. Contrasting this
with the result of [IKOS09], for practical and typical n the number of oblivious transfers produced
in our scheme surpasses the number of oblivious transfers produced in their protocol. Because their
production rate, although linear, is a very small constant; even a generous estimate of the rate
of production puts it below 1.2 · 10−7. The constants in our production rate is small, say upper
bounded by 10−1. So, our rate of production is ∼ (g/n)/10 log2 n, which is higher than the rate
of [IKOS09] in all practical settings (we use ρ = log2 n to derive this bound). An obvious open
problem is to explore whether our approach can be extended to achieve the ideal goal of producing
a linear number of secure oblivious transfers even if the gap is arbitrarily small linear function of n.

Overall, our construction significantly simplifies the prior construction of [IKOS09] at a conceptual
level by forgoing usage of Algebraic Geometric [Gop81, GS96] codes and instead relying on binary
linear codes generated by generator matrices whose parity check matrices are random Toeplitz
matrices.

Unlike [IKOS09], we do not achieve constant (multiplicative) communication overhead per instance
of oblivious transfer produced. Our communication complexity overhead per oblivious transfer
produced is linear in n. We also do not consider the problem of error tolerance, another important
area of exploration in future work.

Restriction to Combiners. Combiners are special types of extractors where parties’s leakage
functions are restricted. Parties are allowed to only indicate T ⊆ [n] as their leakage function. The
client S can send |T | 6 tS and client R can send |T | 6 tR. The leakage provided in (s0, s1, c, sc) of
all ROT correlations indexed by T . Note that the actual information learned by the clients is one-bit
per index (because each client already knows 3 of those entries). We show that our construction
yields slightly better simulation error than the general analysis of Theorem 1.

Theorem 3 (OT Combiner). For any n, tS , tR ∈ N, there exists an (n, tS , tR, ε) OT-Extractor which
produces one secure OT, such that ε 6 2−g/2 and g := n− (tS + tR).

Note that the construction presented in [IMSW14] achieves similar bounds but the communication
complexity in their construction is quadratic in n; while ours in linear in n. We emphasize that the
higher production result of Theorem 2 also can be proven for the setting of combiner with quadratic
improvement in simulation error. But Theorem 2 is a qualitative result and not a quantitative one,
so we forgo this version of the result for combiners.

1.3 Larger Correlations

We show that there are correlations (X,Y ) over {0, 1}4n such that even though parties leak tS and
tR bits from the correlation, such that the gap g = n− (tS + tR) is a linear function, we can obtain
asymptotically higher number of secure oblivious transfer copies. Note that the correlations (X,Y )
have the same size as n copies of ROT correlation, i.e. a total of 4n bits of correlation provided in
the hybrid.
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Theorem 4 (High Production from Bigger Correlations). For every n, tS , tR such that n−(tS+tR) =
Θ(n), there exists correlations (X,Y ) over {0, 1}4n such that, even after tS bits of leakage to client
S and tR bits of leakage to client R, one can extract Θ(n/

√
log n) independent copies of random

oblivious transfer correlations with negl(n) simulation error.

Finally, we explore what is the maximum tolerable leakage parameter min{tS/s, tR/s}, where the
correlation (X, y) is over {0, 1}s. That is maximize the minimal fractional leakage tolerance of
correlations when each party receives s bits of correlations. For example, our result Theorem 1
shows that we can achieve tS/s = tR/s = 1/4− ε, for any constant ε ∈ (0, 1/4).

We show that, in fact, there are correlations which can tolerate higher fractional leakage.

Theorem 5 (High Tolerance). For any s, t ∈ N, there exists a correlation (X,Y ) over sample
space {0, 1}2s+2 and non-trivial correlation Z, such that, even after any party leaks t bits on the
correlation (X,Y ), they can securely compute one copy of Z with simulation error ε 6 2−(g/2+1),
where g := s/2− t.

A non-trivial correlation is one which suffices to securely realize oblivious transfer (by using it multi-
ple times). The set of all non-trivial correlations against semi-honest adversaries were characterized
by [Kil00]. In fact, the Z securely realized in Theorem 5 by our construction is ROT correlation
itself.

It is interesting that the correlation (X,Y ) demonstrated by us cannot produce multiple OT corre-
lations, i.e. it can only produce one. Intuitively, it sacrifices maximal achievable production rate for
higher resilience. We conjecture that the threshold tS/s > 1/2 and tR/s > 1/2 is impossible in the
information theoretic world; thus, the maximum fractional tolerance demonstrated in Theorem 5 is
optimal.

1.4 Prior Related Works

A closely related concept is the notion of OT combiners, which are a restricted variant of OT extrac-
tors. In this setting, parties are restricted to leaking information about individual OT correlations;
and not any global leakage. The study of this field was initiated by Harnik et al. [HKN+05]. Since
then, there has been work on several variant and generalizations of combiners [HIKN08, IPS08,
MP06, MPW07, PW08]. Recently, [IMSW14] constructed combiners with optimal leakage parame-
ters.

The most relevant work to our paper is the paper of Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS09],
where the notion of correlation extractors was proposed. They showed that if the parties are allowed
to leak a small linear amount of leakage, then a small linear number of correlations can be extracted.
Both the leakage and production rates are a minuscule fraction of the initial number of correlations.

1.5 Technical Overview

We provide a short overview of our construction which proves Theorem 1. Our construction is
inspired by the Massey secret sharing scheme [Mas95]. Our construction is closely related to the
constructions of [IKOS09, IMSW14]. The central novelty in our construction approach is that we
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choose a different class of matrices (thus, reducing communication complexity of our algorithm),
but the primary technical contribution of our work is our new analysis in the context of leakage.
We consider general leakage (unlike the setting of [IMSW14]) and, hence, lose a small quadratic
factor in simulation error. But the same construction when used in the setting of combiners yields
identical simulation error as [IMSW14].

For i ∈ [n], suppose the client S receives random pair of bits (ai, bi) and client R receives (xi, zi),
such that xi is a random bit and zi = aixi ⊕ bi, from the setup. Client S picks a random codeword
(u0, u1, . . . , un) in a binary linear code C of length (n + 1). Client R picks a random codeword
(r0, r1, . . . , rn) in the binary linear code C⊥ of length (n + 1). Note that the set of all component-
wise product of such codewords has non-trivial distance. Hence, they can correct one erasure. For
example, u0r0 =

∑
i∈[n] uiri. Hence, the clients need not explicitly compute u0r0; but, instead, it

suffices to compute uiri for all i ∈ [n] and recovering one erasure thereafter.

For this section, we shall only consider privacy of client R against a semi-honest client S. Consider
the following protocol: For each i ∈ [n],

1. Client R sends mi = xi ⊕ ri.

2. Client S sends αi = ai ⊕ ui. Client S sends βi = aimi ⊕ bi.

Note that client R can compute βi ⊕ αiri ⊕ zi = uiri. To argue the privacy of client R, we need to
show that r0 remains hidden from the view of client S. Let H be the generator matrix of C⊥ and
H is interpreted as [H0|H ′], where H0 is the first column of H and H ′ is the remaining n columns.
Note that the ability of client S to predict x0 can be abstracted out as follows: For λ uniform
random vector, given (λH ′, H), client S needs to predict λH0.

Note that since client S is permitted to perform tS bits of leakage on x[n], we have the guarantee
that x[n] has high min-entropy on average. Now, the experiment is reminiscent of min-entropy
extraction from high min-entropy sources via masking with small bias distributions. But, the
uniform distribution over binary linear code C⊥ is not a small-bias source (projection on every dual
codewords has full bias). So, we consider a set of codes (CI , C⊥I ), where I is the index, such that on
average these codewords have small bias. Such a distribution suffices in our setting, because leakage
is performed in an offline phase and the index is chosen only in the online phase. The class of
matrices chosen are binary matrices in systematic form whose parity check matrices are uniformly
chosen Toeplitz matrices. This, intuitively, is the basic argument which all our proofs reduce to.

Theorem 2 is obtained by sampling {S1, . . . , Sm} such that they are all distinct and each Si indexes
a set of servers. One OT is extracted by applying Theorem 1 on each index set Si.

Theorem 4 is obtained by extracting one large correlation of the following form. Client S receives
random (a, b) ∈ F2 and client R receives (x, z) ∈ F2 such that x is random and z = ax + b. This
extraction uses ideas mentioned above. The field is suitably chose so that F is a product of Zpi , for
primes pi. Now, due to Chinese Remainder Theorem, we have component-wise (ai, bi) with client
S and (xi, ri) with client R. Finally, we extract

√
t distinct OT from each such component, where

pi is t-bit long.
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2 Preliminaries

Symbol Notations. We represent random variables by capital letters, for example X, and the
values they take by small letters, for example P[X = x]. The set {1, . . . , n} is represented by [n],
for n ∈ N. Given a vector v = (v1, . . . , vn) and T ⊆ [n], we represent

(
vi1 , . . . , vi|T |

)
by vT where

T = {i1, . . . , i|T |}. Similarly, given a k × n matrix G, we represent by GT the sub-matrix of G
formed by columns indexed by T . For brevity, we use Gi instead of G{i}, where i ∈ [n].

Probability Basics. A probability distribution X over a universe U is a flat source if there exists
a constant c ∈ (0, 1] such that P[X = x] ∈ {0, c}, for all x ∈ U . Further, we say that X is a
flat-source of size 1/c. The support of X, represented as Supp(X) is the set of elements in the
sample space which are assigned non-zero probability by the distribution X. A uniform distribution
over a set S is represented by US .

For a probability distribution X over a sample space U , we define HX(x) := − lg P[X = x], for
every x ∈ U . The entropy of X, represented by H(X), is defined to be E[HX(x)]. The min-entropy
of X, represented by H∞(X), is defined to be minx∈SuppX HX(x). If H∞(X) > n, then X can be
written as convex linear combination of distributions, each of which are flat sources of size > 2n.

Given a joint distribution (X,Y ) over sample space U × V , the marginal distribution Y is a
distribution over sample space V such that, for any y ∈ V , the probability assigned to y is∑

x∈U P[X = x, Y = y]. The conditional distribution (X|y) represents the distribution over sample
space U such that the probability of x ∈ U is P[X = x|Y = y]. The average min-entropy [DORS08],
represented by H̃∞(X|Y ), is defined to be − lgEy∼Y

[
2−H∞(X|y)].

Following lemma will be useful:

Lemma 1 ([DORS08]). If H∞(X) > n and L be arbitrary `-bit leakage on X, then H̃∞(X|L) >
n− `.

The statistical distance between two distributions X and Y over a sample space U is defined to be:
1
2

∑
u∈U |P[X = u]− P[Y = u]|.

Lemma 2 (Left-over Hash Lemma for Average-min-entropy [DORS08]). Let (F,+, ·) be an arbitrary
field. Let (X,L) be a joint distribution such that the marginal distribution X is over Fn. Let
H : Fn → Fm be a family of universal hash functions. Then we have:

SD ((H(X), H, L), (UFm , H, L)) 6
1

2

√
2−H̃∞(X|L)+mf ,

where f = lg |F|.

2.1 Functionalities

We introduce some useful functionalities in this section.

Oblivious Transfer. A 2-choose-1 bit Oblivious Transfer (referred to as OT) is a two party
functionality which takes input (s0, s1) ∈ {0, 1}2 from the sender and input c ∈ {0, 1} from the
receiver and outputs sc to the receiver.
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Random Oblivious Transfer. A random 2-choose-1 bit Oblivious Transfer (referred to as ROT)
is an input-less two party functionality which samples uniformly random bits s0, s1, c and outputs
(s0, s1) to the sender and (c, sc) to the receiver. The joint distribution of sender-receiver outputs is
called an ROT-correlation.

Oblivious Linear-function Evaluation. Let (F,+, ·) be an arbitrary field. An Oblivious Linear-
function Evaluation over F is a two party functionality which takes inputs (u, v) ∈ F2 from the sender
and x ∈ F from the receiver and outputs u · x + v to the receiver. This functionality is referred to
as OLE(F).

The special case when F = GF(2), is simply referred to as OLE.

Random Inner Product Correlation Party A gets (x[n], a) and party B gets (y[n], b) such that
x[n], y[n]

$← {0, 1}n, a $← {0, 1} and a + b =
〈
x[n], y[n]

〉
. Note that for n = 1, this is equivalent to

random oblivious transfer correlation and oblivious linear function evaluation.

2.2 Combiners and Extractors

In this section, we define oblivious transfer combiners and extractors.

Definition 1 ((n, tS , tR, ε) (Single Use) OT-Combiner). An (n, tS , tR, ε) (single use) OT-Combiner
with production p is an interactive protocol in the clients-servers setting. There are two clients S
and R; and n servers. Each server implements one instance of oblivious transfer. Client S can
corrupt tS servers and client R can corrupt tR servers. The protocol implements p independent
copies of secure oblivious transfer instances with simulation error ε.

Definition 2 ((n, tS , tR, ε) OT-Extractor). Let (X,Y ) be the random oblivious transfer correlation.
An (n, tS , tR, ε) OT-Extractor with production rate p is an interactive protocol between two parties
S and R in the (X,Y )n hybrid. Client S can leak tS bits from the correlations and client R can
leak tR bits from the correlations. The protocol implements p independent copies of secure oblivious
transfer instances with simulation error ε.

Note that in our setting, in (X,Y )n hybrid, parties only get one sample from this correlation; unlike
the typical setting where parties can invoke the trusted functionality of the hybrid multiple times.
The maximum fractional leakage resilience is defined by the ordered tuple (tS/n, tR/n); and the
production rate is defined by p/n. Note that an (n, tS , tR, ε) OT extractor with production p is also
an (n, tS , tR, ε) OT combiner with production p.

2.3 Elementary Fourier Analysis

We define χS(x) = (−1)
∑

i∈S xi , where S ⊆ [n] and x ∈ {0, 1}n. The inner product of two functions
f : {0, 1}n → R and g : {0, 1}n → R is defined by E

x
$←{0,1}n

[f(x)g(x)]. Given a probability distribu-

tionM over the sample space {0, 1}n, the function f = M represents the function f(x) = P[M = x].
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Definition 3 (Bias of a Distribution). Let f : {0, 1}n → R be a probability function. The bias of f
with respect to subset S ⊆ [n] is defined to be:

BiasS(f) :=

∣∣∣∣ P
x∼f

[χS(x) = 0]− P
x∼f

[χS(x) = 1]

∣∣∣∣
Definition 4 (Small-bias Distribution Family [DS05]). Let F = {F1, . . . , Fk} be a family of distri-
butions over sample space {0, 1}n such that for every ∅ 6= S ⊆ [n], we have:

E
i

$←[k]

[
BiasS(Fi)

2
]
6 δ2

Then the distribution family F is called an δ2-biased family.

Lemma 3 (Min-entropy Extraction [NN90, AR94, GW97, DS05]). Let F = {F1, . . . , Fk} be δ2-
biased family of distributions over the sample space {0, 1}n. Let (M,L) be a joint distribution such
that the marginal distribution M is over {0, 1}n and H̃∞(M |L) > m. Then, the following holds:

SD
(
(FI ⊕M,L, I),

(
U{0,1}n , L, I

))
6
δ

2

(
2n

2m

)1/2

,

where I is a uniform distribution over [k].

2.4 Distribution over Matrices

An k × n matrix M with {0, 1} entries is in systematic form if M = [Ik×k‖P ], where Ik×k is the
identity matrix of dimension k and P is the parity check matrix of dimension k × (n − k). The
matrix P is a Toeplitz matrix if Pi,j = Pi−1,j−1, for all i ∈ (1, k] and j ∈ (1, n− k]. So, a Toeplitz
matrix is uniquely define by its first row and column. We shall consider uniform distributions over
k×n binary matrices in systematic form such that their parity check matrices are uniformly chosen
Toeplitz matrices. A salient feature of family of such matrices is mentioned in Lemma 6.

Let T(k,n) is a uniform distribution over matricesM of the following form. LetM ≡
[
Ik×k

∣∣Pk×(n−k)],
where P is a binary Toeplitz matrix of dimension k × (n− k).

Define T⊥,(k,n) is a uniform distribution over matricesM of the following form. LetM ≡
[
Pk×(n−k)

∣∣Ik×k],
where P is a binary Toeplitz matrix of dimension k × (n− k).

Note that there exists an bijection between the matrices in T(k,n) and T⊥,(n−k,n) established by the
function which maps dual matrices to each other.

3 Unpredictability Lemma

In this section we present the main unpredictability lemma.

Let us now see how Lemma 3 will be used in our results. Let G be the distribution T(k,n+1). The I
in Lemma 3 corresponds to G.

Given I, the distribution FI corresponds to a uniform distribution over the codewords generated
by G ∈ G. Note that, over choices of I, they form a δ2 = 2−k biased family of distributions
(by Lemma 6).

8



For these setting of parameters, the bound of Lemma 3 reduces to:

1

2

√
2n

2k+m

This result is also true when G ≡ T⊥,(k, n+ 1) because they also form small biased distribution
family (see Lemma 6).

Thus, as a direct consequence of Lemma 6, we obtain the following unpredictability lemma:

Lemma 4 (Unpredictability Lemma). Let G ∈
{
T(k,n+1),T⊥,(k,n+1)

}
. Consider the following game

between a honest challenger and an adversary:

1. H samples m[n] ∼ U{0,1}n.

2. A sends a leakage function L : {0, 1}n → {0, 1}t.

3. H sends L(m[n]) to A. H samples x[k] ∼ U{0,1}k , G ∼ G; and computes y{0}∪[n] = x · G ⊕

(0,m[n]). H sends (y[n], G) to A. H picks b $← {0, 1}. If b = 0, then she sends chal = y0 to
A; otherwise (if b = 1) then she sends chal = u ∼ U{0,1} to A.

4. A replies a bit b̃.

The adversary A wins the game if b = b̃. For any A, the advantage of the adversary is 6 1
2

√
1

2k−t .

All our security proofs will directly reduce to this unpredictability lemma, i.e. Lemma 4.

4 Oblivious Transfer Extractor

In this section, we shall prove Theorem 1.

4.1 Extracting One Oblivious Transfer

In this section, we present the proof of our (n, tS , tR, ε) OT extractor which extracts one copy of
secure OT. For ease of presentation, we provide our construction in the random oblivious linear
evaluation (ROLE) correlation hybrid; and also produce one secure copy of oblivious linear evalu-
ation. Recall that a ROLE correlation provides (a, b)

$← {0, 1}2 to the sender and (x, z = ax ⊕ b),
where x $← {0, 1}, to the receiver. The security requirement insists that the sender cannot predict
x and the receiver cannot predict a. Note that (s0 ⊕ s1)c ⊕ s0 is identical to oblivious transfer.
So, oblivious transfer and OLE are equivalent to each other; consequently, it suffices to construct a
OLE extractor in ROLEn hybrid.

The construction provided here is similar to the construction provided in [IMSW14]. But we achieve
lower communication complexity and deal with general leakage instead of restricted leakage of the
combiner setting. When analyzed appropriately for the combiner setting, our current protocol

9



Extract-One (n, tS , tR):
Define g := n− (tS + tR).
Private Inputs: The clients S and R have private inputs (s0, s1) ∈ {0, 1}2 and c ∈ {0, 1}, respec-
tively.
Hybrid (Random Correlations): For i ∈ [n], client S gets random (ai, bi) ∈ {0, 1}2 and client R
gets (xi, zi), such that xi ∈ {0, 1} is chosen uniformly at random and zi = aixi ⊕ bi.

1. Random Code Generation. Client R picks a binary matrix G = [Ik×k‖Pk×(n+1−k)] of dimen-
sion k×(n+1), where k = dtR + g/2e and Pk×(n+1−k) is a uniformly random Toeplitz matrix.
Let C be the code generate by the generator matrix G; and H be a generator matrix for the
dual code C⊥. If the first column of H is all-zero column then abort; otherwise continue.

2. Random OLE Extraction.

(a) Client S picks a random (u0, . . . , un) ∈ C. Let Cparity ⊆ {0, 1}n+1 be the (linear)
code consisting of every length (n + 1) string of even parity. Client S picks a random
(v0, . . . , vn) ∈ Cparity.

(b) Client R picks a random (r0, . . . , rn) ∈ C⊥.
(c) (In parallel) For each i ∈ [n], do the following:

i. Client R checks whether xi = ri or not. If identical, then mi = same; otherwise
mi = diff. Send mi to client S.

ii. If mi = same, define α0,i = vi⊕ bi and α1,i = (ui⊕vi)⊕ (ai⊕ bi). Otherwise define:
α0,i = vi ⊕ (ai ⊕ bi) and α1,i = (ui ⊕ vi)⊕ bi. Send (α0,i, α1,i) to client R.

(d) Client R computes ti = αri,i ⊕ zi and z = ⊕i∈[n] ti.
Note that z = ax+ b, for a = u0, b = v0 and x = r0.

3. OLE Extraction.

(a) Client R checks whether r0 = c or not. If identical, then m = same; otherwise m = diff.
Send m to the client S.

(b) If m = same, define α0 = s0 ⊕ v0 and α1 = (s0 ⊕ s1) ⊕ (u0 ⊕ v0). Otherwise define:
α0 = s0 ⊕ (u0 ⊕ v0) and α1 = (s0 ⊕ s1)⊕ v0. Send (α0, α1) to client R.

(c) Client R outputs y = αc ⊕ z.

Figure 1: Correlation Extractor Protocol which extracts one copy of Oblivious Linear Function
Evaluation from n copies of Random Oblivious Linear Functions Evaluations.
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achieves identical simulation error as in that paper (but reduces the communication complexity to
linear from quadratic).

Note that after the correlation generation step, the protocol is only two rounds, i.e. client R sends
one message (by combining steps 1 and 2.c.i) and client S replies with one message (step 2.c.ii),
which is followed by one round of messages in OLE extraction phase.

No Corruption Case. We will first prove the correctness of the protocol presented in Figure 1
for the case when all clients and servers are honest and there is no leakage.

The construction does not output abort with probability 1−2−(n+1−k), because the algorithm aborts
if and only if the first row of the parity check matrix of G is all 0s. Conditioned on not aborting,
we show that the protocol is perfectly correct.

First we claim that: ti = ui · ri ⊕ vi, for all i ∈ [n]. This is exhibited by the case analysis provided
in Figure 2.

mi = same mi = diff

xi = 0, zi = bi

ri = 0 ri = 1
αri,i = vi ⊕ bi αri,i = (ui ⊕ vi)⊕ bi
ti = vi ti = ui ⊕ vi

xi = 1, zi = ai ⊕ bi
ri = 1 ri = 0
αri,i = (ui ⊕ vi)⊕ (ai ⊕ bi) αri,i = vi ⊕ (ai ⊕ bi)
ti = ai ⊕ bi ti = bi

Figure 2: Case Analysis for Correctness.

Now, we have z = ⊕i∈[n]ti = ⊕i∈[n]ui · ri ⊕ vi = u0 · r0 ⊕ v0. This follows from ⊕ni=0 ui · ri = 0 and
⊕ni=0vi = 0.

Using a similar case analysis as above, it can be shown that y = s1 · c+ s0.

Receiver privacy. In order to prove receiver privacy, we need to show that the choice bit c is
hidden from the semi-honest sender who can obtain tS bits of leakage. Note that it suffices to show
that at the end of the random OLE extraction phase, choice bit r0 is hidden.

Let L denote the random variable for leakage obtained by the semi-honest sender. We will denote
the random variable for the choice bit vector x[n] for the receiver in the correlation generation phase
by X[n]. Note that X[n] is identical to uniform distribution over {0, 1}n. Note that L has at most
tS bits of leakage on X.

The view of client S at the end of the random correlation extraction phase is:

ϑ = (a[n], b[n], G, (u0, . . . , un), (v0, . . . , vn),m[n], L = `)

We will show that for any semi-honest client S, we have P(S(ϑ) = r0) close to 1/2. Note that this is
identical to P(S(H,m[n], L) = r0). In Figure 1, the client R picks a random codeword (r0, . . . , rn) ∈
C⊥. Alternatively, this can be done by picking w $←{0, 1}n+1−k and (r0, . . . , rn) = w ·H, where H
is the generator matrix for C⊥. Note that m[n] = (w ·H)[n] ⊕ x[n] and r0 = 〈H0, w〉.
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Since, the sender can leak tS bits on x[n], we have: H̃∞(X[n]|L) > m = (n− tS). By Lemma 4, we
have that the advantage of predicting 〈H0, w〉 is at most: 2−(g/4+1).

This shows that the probability distribution (R0|ϑ) is 2−(g/4+1) close to the uniform distribution.
Here R0 is the random variable for the choice bit of the receiver at the end of the random correlation
extraction phase.

Sender privacy. In order to prove sender privacy in OLE, we need to show that the bit s1 is
hidden from the receiver after the protocol. Note that it suffices to show that at the end of the
random OLE extraction phase, bit u0 is hidden.

Let L denote the random variable for leakage obtained by the semi-honest receiver after the random
correlation generation phase. Note that in the absence of any leakage, after this phase, the vector
a[n] is hidden from the receiver. We will denote the random variable for the bit vector a[n] for the
sender in the correlation generation phase by A[n]. Note that A[n] is identical to uniform distribution
over {0, 1}n and L has at most tR bits of leakage on A[n]. So, we get H̃∞(A[n]|L) > m = n− tR.

The view of client R at the end of the random correlation extraction phase is:

ϑ = (x[n], z[n], G, (r0, . . . , rn),m[n], α{0,1},[n], L = `)

(xi,mi) α0,i α1,i

(0, same) vi ⊕ zi γi ⊕ vi ⊕ zi
(0, diff) ṽi ⊕ zi γi ⊕ ṽi ⊕ zi
(1, diff) vi ⊕ zi γi ⊕ vi ⊕ zi

(1, same) ṽi ⊕ zi γi ⊕ ṽi ⊕ zi

Table 1: Reconstruction algorithm for α{0,1},i.

We are interested in the conditional distribution (U0|ϑ). We will show that for any semi-honest
client R, P(R(ϑ) = u0) is close to 1/2. We show this via a reduction to Lemma 4 in Figure 3.
Given any adversary A who can distinguish u0 from a uniform bit, we convert it into an adversary
A against the honest experiment H of Lemma 4 with identical advantage. It is easy to see that this
reduction is perfect. Note that the only difference in the simulator from the actual protocol is that
the generator matrix G is being generated by the honest party H instead of being obtained from A.
This does not cause any issues, because we are only dealing with semi-honest adversaries. At the
end of random correlation extraction phase, the advantage in predicting U0 is at most: 2−(g/4+1).

This shows that (U0|ϑ) distribution is 2−(g/4+1) close to the uniform distribution against a semi-
honest receiver who leaks at most tR bits.

Note that our simulation works even for arbitrary choice of x[n] and m[n]. In particular, it works
when these vectors are chosen uniformly at random.

4.2 Tighter Analysis for Combiners

The protocol provided in Figure 1 is also (by definition) an oblivious transfer combiner. We provide
an extremely simple but tighter analysis of that protocol to obtain better simulation error bounds
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H A′

A

Pick a[n]
$←{0, 1}n

Let x[n] ∈ {0, 1}n

Pick z[n]
$←{0, 1}n(
x[n], z[n]

)
L(·)

` = L(a[n])

Pick [G0|G′] ≡ G ∼ G

G

Let m[n] ∈ {same, diff}n

m[n]

Pick λ $←{0, 1}1×k

Compute γ[n] = λG′ ⊕ a[n]
γ[n]

Compute r[n] from x[n] and m[n]

Pick v[n], ṽ[n]
$←{0, 1}n

Compute α{0,1},[n] (use Table 1)
α{0,1},[n]

b ∼ U{0,1}, u ∼ U{0,1}p

chal = bu⊕ (λG0)

chal

b̃

Figure 3: Simulator for Sender Privacy. The distribution G is uniform distribution over k× (n+ 1)
binary matrices in systematic form whose parity check matrices are uniform Toeplitz matrices. To
reconstruct ri, define ri = 0 if (xi = 0 and mi = same) or (xi = 1 and mi = diff).
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(see Theorem 3).

Suppose the client S is semi-honest corrupt and it corrupts tS servers indexed by T ⊆ [n]. Note
that x0 is perfectly hidden from the client S if and only if H0 does not lie in the span of HT . This
happens with probability at least 1−2−(n+1−k)+tS = 1−2−(g/2+1) (by Lemma 6). Therefore, (X0|ϑ)
is 2−(g/2+1) to the uniform distribution over {0, 1}.

Similarly, when the receiver is semi-honest corrupt, we shall show that the sender bit U0 is perfectly
hidden if and only if G0 does not lie in the span of GT , where T ⊆ [n] is the set of servers corrupted
by the client R of size at most tR. This happens with probability at least 1− 2−g/2 (by Lemma 6).
Next, we provide the proof that U0 is perfectly hidden if G0 does not lie in the span of GT . We
prove the following technical claim:

Claim 1. The distribution (U0|G, x, z, uT ) is identical to the distribution (U0|G, uT ).

Proof. Let span 〈·〉 represent the span of its arguments. We prove this by considering the following
set of exhaustive cases:

Case 1. If G0 ∈ span 〈GT 〉 then it is trivial to see that: (U0|G, x, z, uT ) ≡ (U0|G, uT ).

Case 2. Otherwise, if G0 6∈ span 〈GT 〉, we know that U0 is a uniform bit conditioned on uT . If
x0 = 0, then it is trivial to see that (U0|G, x, z, uT ) ≡ (U0|G, uT ) ≡ U{0,1}.

Case 3. Now, we consider the case when G0 6∈ span 〈GT 〉 and x0 = 1. We shall prove this by
exhibiting a bijection σ between the sets S0 and S1 defined below. Let S be the set of all (u, v)
codeword-pairs which are consistent with client R’s view. Define:

S0 = {(u, v) : u0 = 0 and (u, v) ∈ S}
S1 = {(u, v) : u0 = 1 and (u, v) ∈ S}

Let T0 = {u : ∃(u, v) ∈ S0} and T1 = {u : ∃(u, v) ∈ S1}. Since, G0 6∈ span 〈GT 〉 there exists a
bijection µ between T0 and T1.

Consider fixed u ∈ T0 and u′ ∈ T1 such that u 7→µ u′. Define di = ui · xi and d′i = u′i ·
xi, where i ∈ [n]. Note that

⊕
i∈[n] di = 0 and

⊕
i∈[n] d

′
i = 1. This implies that the set I =

{i : di 6= d′i and i ∈ [n] \ T} has odd size (in particular, I is non-empty).

For every v such that (u, v) ∈ S0 we define v′ such that v′i =

{
vi, if i 6∈ I
vi, if i ∈ I

. We establish the map

σ : S0 → S1 as follows: (u, v) 7→σ (u′, v′). It is easy to see that σ is a bijection.

Note that (U0|G, uT ) is a uniform bit if and only if G0 6∈ span 〈GT 〉.

4.3 Trading off Simulation Error with Production Rate

In this section we use sub-sampling techniques to trade-off simulation-error to get improved pro-
duction rate. The main idea is to sample small subsets of distinct correlations and, subsequently,
run the protocol in Figure 1 on those subsets independently. This increases the simulation error,
but yields higher production rates.
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In our case, we use the trivial sub-sampling technique of picking indices at random with suitable
probability; in case of a sample repeating itself, we discard it and re-sample. This technique yields
distinct samples and has identical properties as the naïve subsampling technique (see [Vad04]).
The sophisticated techniques of [Vad04] are also relevant to our setting; but they do not yield
any reduction in “simulation error increase.” They are useful only to reduce the communication
complexity of the protocols.

We only work in the setting where g = n − (tS + tR) is at least cn, for some constant c 6 1. In
general c could have been a function of n, but we forgo those cases. The main technical lemma is
the following:

Lemma 5 (Sub-sampling [Vad04]). Let (A[n], L) be a joint distribution such that, there exists a
constant c ∈ (0, 1) such that, H̃∞(A[n]|L) > cn. For every constant ε ∈ (0, c) and ρ = ω(log n),
there exists an efficient algorithm which outputs (S1, . . . , Sm) ∈

(
2[n]
)m such that m = n/ρ and with

probability 1− negl(n), the following holds:

1. Large and Distinct: There exists a constant λ ∈ (0, 1) such that |Si| = λn. We have Si∩Sj = ∅,
for all i, j ∈ [m] and i 6= j.

2. High Entropy: H̃∞(Si+1|S[i], L) > (c− ε)n.

By directly applying this result, we obtain the tradeoff of Theorem 2. This result is obtained by
direct application of the subsampling algorithm in Lemma 5 and applying the protocol in Figure 1
to correlations indexed by each individual subsets Si. We observe that the approach of subsampling
to obtain “distinct subsets” while preserving min-entropy is unlikely to yield constant production
rate extractors.

4.4 Extraction from Larger Correlations

In this section, we shall use slightly more complex correlations and obtain a higher rate of production
than Theorem 2; albeit the production rate is still not linear.

First, we describe the correlation. Let {p1, . . . , pm} be the set of all t-bit prime numbers. Let
K = p1· · · pm. We shall use ROLE(F) correlations, where F = GF(K).

Let A be any number with a bit representation. Note that the number of bits in the product of
all a-bit primes which are 6 A is Θ(A). This follows from density of primes. So, number of bits
needed to represent elements in F is Θ(2t).

The intuition of our algorithm is the following: Initially, we have n bits of randomness and we lose
(tS + tR) = Θ(n) bits to leakage. So, we extract one secure F instance (by running the variant of
Figure 1 for OLE(F)) and n is chosen such that n−(tS+tR) > logK+ω(log n), where logK = Θ(2t).

Finally, we use the single copy of secure F to implement m
√
t = Θ(2t/

√
t) = Θ(n/

√
log n) secure

random oblivious transfer correlations. So, the production rate is Θ(1/
√

log n).

Extracting from a Secure ROLE(F). Let us assume that we have extracted one instance
of ROLE(F). By Chinese Remainder theorem, we get ROLE(Zpi), for all i ∈ [m]. From each
ROLE(Zpi) we shall extract Θ(

√
t) ROLE correlations. This step is explained below.
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Let a =
∑q−1

i=0 ai2
i(q−1) be a suitable number in binary representation. Let x =

∑q−1
i=0 xi2

i Note that
the ax has aixi at iq-th bit position. Now consider b such that all its bits are random except the
iq-th bits which are set to bi = 0, 0 6 i < q.

Note that if ax + b < pj , when j ∈ [m], then the iq-th bits performs a OLE of (ai, bi) and xi. We
set q = Θ(

√
t) and we are done.

Extracting one Secure ROLE(F). The idea is to use a modification of Figure 1 over F instead
of the field Z2. And use leftover hash lemma (see Lemma 2) to extract one random element of F.
The extractor protocol is provided below.

Extract-ROLE (n, tS , tR):
Define g := n− (tS + tR).
Private Inputs: The clients S and R have private inputs (s0, s1) ∈ F2 and c ∈ F, respectively.
Hybrid (Random Correlations): Let n′ = n/t, where t = logF. For i ∈ [n′], client S gets random
(ai, bi) ∈ F2 and client R gets (xi, zi), such that xi ∈ F is chosen uniformly at random and
zi = aixi + bi.

1. Random Code Generation. Client R picks a random matrix G of dimension k′ × n′ such
that each of its elements is chosen uniformly at random from F. Use k′ = (tR + g/2)/t,
where g = n− (tS + tR). Let C be the code generate by the generator matrix G; and H be
a generator matrix for the dual code C⊥. If rank(G) < k or the first column of G or H is
all-zero column then abort; otherwise continue.

2. Random OLE(F) Extraction.

(a) Client S picks a random (u0, . . . , un′) ∈ C. Let Cparity ⊆ {0, 1}n
′+1 be the (linear) code

consisting of every length (n + 1) string in Fn′+1 such that their sum is 0. Client S
picks a random (v0, . . . , vn) ∈ Cparity.

(b) Client R picks a random (r0, . . . , rn) ∈ C⊥.
(c) (In parallel) For each i ∈ [n′], do the following:

i. Client R sends mi = xi + ri. Send mi to client S.
ii. Client R sends αi = ui + ai and βi = aimi + bi + vi.

(d) Client R computes ti = βi + αiri + zi and z =
∑

i∈[n′] ti.
Note that z = ax+ b, for a = u0, b = v0 and x = r0.

Figure 4: Correlation Extractor Protocol which extracts one copy of random Oblivious Linear
Function Evaluation (over F) from n′ copies of Random Oblivious Linear Functions Evaluations
(over F).

It is easy to see that the protocol is correct. Note that ti = βi +αiri + zi = (aixi + airi + bi + vi) +
(uiri + airi) + (aixi + bi) = uiri + vi. Finally,

∑
i∈[n′] ti =

∑
i∈[n′] uiri + ti = u0r0 + t0.

For the case of privacy of client R against semi-honest client S, we need to show that r0 is hidden.
Interpret the dual matrix H as [H0|H ′], where H0 is the first column of H. We shall argue for every
fixing of H ′. Note that H0 is uniformly random for every fixed H ′ (because dual of random codes
are themselves (close to) random codes). Now, we interpret the code r0 and (r1, . . . , rn′) as λH0
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and λH ′, where λ is a random entry in Fn′+1−k′ . The sender gets (r1, . . . , r[n′]) + (x1, . . . , x[n′]),
where H̃∞(X[n′]|L) > g/2 (because she only leaks tS bits from X[n]). Now, by direct application of
left-over hash lemma (see Lemma 2), we get the privacy of x0.

For the case of privacy of client S against semi-honest client R, we construct a simulator similar to
Figure 3. We need the generalization of Lemma 4 where the matrices are over fields F. The result is
true, because it follows directly by application of Lemma 2 instead of Lemma 3. The upper bound
on the advantage is bounded by: 1

2

√
1

2−m+Θ(n) , where m is the amount of average min-entropy left
in X. Given an adversary A who distinguishes u0 from a uniform element in F, we shall construct
an adversary A′ who can obtain advantage in the game of Lemma 4 with comparable advantage.

1. H samples random a[n′] ∈ Fn′ .

2. A′ samples random x[n′] and z[n′] in Fn′ . A′ sends (x[n′], z[n′]) to A.

3. A sends leakage function L which is forwarded to H.

4. H replies back with the leakage L(a[n′]) and is forwarded to A.

5. A sends m[n′].

6. H sends G and α[n′] which is forwarded by A′ to A.

7. A′ sends random β[n′] in Fn′ to A.

The last step of the simulation is perfect because v[n′] is uniformly random in Fn′ . This completes
the proof of Theorem 4.

5 Inner Product Correlation

In this section we prove Theorem 5. Our protocol is provided in Figure 5.

When both parties are honest, we need to prove the correctness of the protocol. Which trivially
follows.

Sender Corrupt. Suppose a semi-honest client A can leak t bits on information from (y[n], b).
In this case, we have H̃∞(Y[n]|L) > m = n− t. For security, we need to prove the hiding of the bit
r0 given r[n] ⊕ y[n], where r[n] is a uniformly chosen codeword from the image of “H with its first
column punctures.” Now, we can directly invoke Lemma 4 and get that the distribution (R0|ϑ) is
= 2−(g/2+1) close to the uniform distribution over {0, 1}, where ϑis the view of client A at the end
of the protocol and g = n/2− t.

Receiver Corrupt. For this case, we construct a reduction similar to the reduction provided
in Figure 3. Again, in this case we assume that client A sends the matrix G instead of client B
(which is acceptable because the adversaries are semi-honest). Suppose there exists an adversary A
which can distinguish U0 from a uniformly random bit with certain advantage. We shall construct
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Extract-IP (n):
Hybrid (Random Correlations): Client A gets random (x[n], a) ∈ {0, 1}n+1 and client B gets
random (y[n], b) ∈ {0, 1}n+1, such that a+ b =

〈
x[n], y[n]

〉
.

1. Random Code Generation. Client R picks a binary matrix G = [Ik×k‖Pk×(n+1−k)] of di-
mension k × (n+ 1), where k = n/2 and Pk×(n+1−k) is a uniformly chosen random Toeplitz
matrix. Let C be the code generate by the generator matrix G; and H be a generator ma-
trix for the dual code C⊥. If the first column of H is all-zero column then abort; otherwise
continue.

2. Random ROLE Extraction.

(a) Client A picks a random (u0, . . . , un) ∈ C. Client A picks random v0 ∈ {0, 1}.
(b) Client B picks a random (r0, . . . , rn) ∈ C⊥.
(c) Client B sends m[n] = y[n] ⊕ r[n] to client A.

(d) Client A sends α[n] = x[n] ⊕ u[n] to client B. Client S sends β =
〈
x[n],m[n]

〉
⊕ a⊕ v0.

(e) Client B computes z = β ⊕ b⊕
〈
α[n], r[n]

〉
.

(f) Client A outputs (u0, v0) and client B outputs (r0, z).
Note that z = u0r0 ⊕ v0, because

〈
u[n], r[n]

〉
= u0r0.

Figure 5: Random Oblivious Function Evaluation extractor from one Inner Product Correlation
over n-bits.
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an adversary A′ which uses A to break the unpredictability experiment of Lemma 4 with identical
advantage.

1. H picks x[n] randomly from {0, 1}n.

2. A′ picks y[n] randomly from {0, 1}n and b ∈ {0, 1}. It provides (y[n], b) to the adversary A.

3. A provides the leakage function L; which A′ forwards to H.

4. H applies L on x[n] and obtains the leakage `. H provides ` to A′, who forwards it to A.

5. H sends G to A′, who forwards it to A.

6. H sends α[n] = λG′, where G′ is G with its first column punctured and λ is a uniformly
random vector in {0, 1}k. A′ forwards α[n] to A.

7. A′ simulates β by sampling a uniformly random bit and sends it to A.

Note that this is a perfect simulation of the view of A because the bit v0 is uniformly random in
the actual protocol. Thus, if A can distinguish u0 = λG0 from a uniformly random bit then the
adversary A′ can also distinguish λG0 from a uniformly random bit with identical advantage. By
Lemma 4, the advantage is at most 2−(g/2+1), where g = n/2− t. This shows that the distribution
(U0|ϑ) is at most 2−(g/2+1) far from the uniform distribution over {0, 1}.

6 Open Problems

As mentioned earlier in the introduction, the fractional leakage thresholds for which correlations
can still help perform secure computation is mostly unexplored. Feasibility results exist but are
extremely inefficient prior to this work. Impossibility results are even rarer. We summarize some
of the the open problems in the semi-honest information theoretic setting. The malicious setting is
mostly unexplored.

The biggest problem left open by this work is the construction of oblivious transfer extractors
which produce linear number of secure oblivious transfers, if the gap is arbitrary linear function of
n. Specific to the oblivious transfer extractor, it will be interesting to reduce the communication
complexity of the construction presented in this work. The communication per oblivious transfer
produced is linear in n, while it can possibly be reduced to a constant multiplicative overhead
(while preserving high fractional leakage resilience and production rate). Further, construction of
extractors with high fractional leakage resilience and production rate which is also error tolerant is
not known.

Typically, cryptographic constructions which morph one form of correlation into another are amor-
tized, i.e. they use large number of copies of the former to yield large number of copies of the the
latter. It is interesting that we do not even know whether one copy of ROLE(GF[2k]) can be used
to obtain Θ(k) copies of secure OLE. In this paper, we show that Θ(

√
k) copies can be securely

realized. An improvement in understanding of this problem will have direct consequence on the
production rate of Theorem 4.
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Finally, in the setting of secure computation in presence of leakage on general correlations, it is
unclear whether the fractional leakage resilience can be higher than 1/2. We conjecture that tS/s >
1/2 and tR/s > 1/2 is impossible.
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A Mathematical Tools

A.1 Toeplitz Matrices

Lemma 6 (Toeplitz Property). Let c be a fixed binary column of length k and T ⊆ [n] be a set of
indices. For a random binary Toeplitz matrix P of dimension k× (n+ 1− k) and G := [Ik×k ‖ P ],
the probability that:

1.
∑

i∈T Gi = c is at most 2−k, and

2. There exists T ′ ⊆ T such that
∑

i∈T ′ Gi = c is at most 2−k+|T |.

Proof. We prove this using a sequence of observations.

Note that: Gi = c, for i > k, happens with probability 2−k.

Next, we claim that: Gi +Gj = c, for i > j > k, happens with probability 2−k. This is so because
the probability that the Gi,k + Gj,k = ck happens with probability 1/2. Fixing the values of Gi,k
and Gj,k, the probability that we have Gi,k−1 +Gj,k−1 = ck−1 is 1/2; because the random variable
Gj,k−1 is not fixed (since P is a Toeplitz matrix). Extending this argument, we get the claim.

Similarly, we claim that:
∑

i∈T ′:i>kGi = c +
∑

i∈T ′:i6kGi with probability 2−k, for any T ′ ⊆ [n].
That is:

∑
i∈T ′ Gi = c with probability at most 2−k.

Using union bound over T ′ ⊆ T , we get: the probability that there exists T ′ ⊆ T such that∑
i∈T ′ Gi = c is at most 2−k+|T |.

24


	Introduction
	Our Contribution
	Oblivious Transfer Correlation Extractor
	Larger Correlations
	Prior Related Works
	Technical Overview

	Preliminaries
	Functionalities
	Combiners and Extractors
	Elementary Fourier Analysis
	Distribution over Matrices

	Unpredictability Lemma
	Oblivious Transfer Extractor
	Extracting One Oblivious Transfer
	Tighter Analysis for Combiners
	Trading off Simulation Error with Production Rate
	Extraction from Larger Correlations

	Inner Product Correlation
	Open Problems
	References
	Mathematical Tools
	Toeplitz Matrices


