
Stateless Cryptographic Protocols

Vipul Goyal
Microsoft Research, India.
Email: vipul@microsoft.com

Hemanta K. Maji ∗

Department of Computer Science,
University of Illinois at Urbana-Champaign.

Email: hmaji2@uiuc.edu

Abstract— Secure computation protocols inherently involve
multiple rounds of interaction among the parties where, typically a
party has to keep a state about what has happened in the protocol
so far and then wait for the other party to respond. We study if
this is inherent. In particular, we study the possibility of design-
ing cryptographic protocols where the parties can be completely
stateless and compute the outgoing message by applying a single
fixed function to the incoming message (independent of any state).
The problem of designing stateless secure computation protocols
can be reduced to the problem of designing protocols satisfying the
notion of resettable computation introduced by Canetti, Goldreich,
Goldwasser and Micali (FOCS’01) and widely studied thereafter.

The current start of art in resettable computation allows for
construction of protocols which provide security only when a single
predetermined party is resettable [13]. An exception is for the
case of the zero-knowledge functionality for which a protocol in
which both parties are resettable was recently obtained by Deng,
Goyal and Sahai (FOCS’09). The fundamental question left open
in this sequence of works is, whether fully-resettable computation
is possible, when:

1) An adversary can corrupt any number of parties, and
2) The adversary can reset any party to its original state during

the execution of the protocol and can restart the protocol.
In this paper, we resolve the above problem by constructing

secure protocols for most efficiently computable multi-party func-
tionalities in the plain model under standard cryptographic assump-
tions. More precisely, we are able to realize any functionality except
the ones which behave like a worst-case pseudorandom function.
First, we construct a Fully-Resettable Simulation Sound Zero-
Knowledge (ss-rs-rZK) protocol. Next, based on these ss-rs-rZK
protocols, we show how to compile a semi-honest secure protocol
for such functionalities into a protocol secure against fully resetting
adversaries.

Next, we study a seemingly unrelated open question: “Does there
exist a functionality which, in the concurrent setting, is impossible
to securely realize using BB simulation but can be realized using
NBB simulation?”. We resolve the above question in the affirmative
by giving an example of such a (reactive) functionality. Somewhat
surprisingly, this is done by making a connection to the existence
of a fully resettable simulation sound zero-knowledge protocol.

1. INTRODUCTION

General feasibility results for secure computation were
obtained more than two decades ago [24], [11]. Secure
computation protocols inherently involve multiple rounds of
interaction among the parties where, typically a party has
to keep a state about what has happened in the protocol so
far and then wait for the other party to respond. We study

∗Work done in part while interning at Microsoft Research, India.

if this is inherent. In particular, we study the possibility of
designing cryptographic protocols where the parties can be
completely stateless and compute the outgoing message by
applying a single fixed function to the incoming message.
Being stateless is a highly desirable property in the design
of network protocols since it allows for the construction of
more robust and easy to maintain systems. SYN flooding
and related attacks are well known as a tool to launch a
denial of service attack against a system running a stateful
protocol. It has been argued that internet has been going in
the direction of using stateless protocol (from using stateful
ones) [14]. In this work, we study of question of obtaining
stateless cryptographic secure computation protocols.

Question of designing stateless secure computation proto-
cols is intimately connected to the notion of resettably secure
protocols. The study of resettable protocols was initiated in
the seminal work of Canetti, Goldreich, Goldwasser, and
Micali [5] who introduced the notion of resettable zero-
knowledge (ZK). In resettable zero knowledge, the zero
knowledge property is required to hold even if a malicious
verifier can reset the prover to the initial state and start
a new interaction where the prover uses the same random
tape. Canetti et al. [5] proposed constructions of resettable
zero knowledge protocols based on standard cryptographic
assumptions. Barak, Goldreich, Goldwasser, and Lindell [3]
showed how to construct zero knowledge protocols for
opposite setting (where soundness is required to hold even
if the verifier can be reset and restarted with the same
random tape), which following Micali and Reyzin [15]1

they call resettably sound (rS) zero-knowledge. Goyal and
Sahai [13] extended the study of resettable protocol from
zero-knowledge to general functionalities and presented a
construction where only a single predetermined party can
be reset.

In a cryptographic protocol, if a set of parties is resettable,
there is a simple compiler to construct another protocol in
which those set of parties can be made completely stateless
[13]. Thus, the task of obtaining stateless secure computation
protocols can be reduced to the task of obtaining resettably
secure protocols. The existence of resettably secure proto-
cols also has interesting implications for the fundamental

1Micali and Reyzin defined resettable soundness (and other soundness
notions) in a public-key model, but did not consider the plain model, which
is the focus of the present work.

question of reusing randomness in cryptographic protocols.
Subsequent to the works of Canetti et al. [5] and Barak

et al. [3], there have been a number of works studying
protocols in the setting where only a single predetermined
party is resettable (see the related work subsection for
more details). Barak et al. [3] conjectured the existence
of zero-knowledge protocols where both the parties may
be resettable. This conjecture remained open despite partial
progress over several years and was resolved only recently
by Deng, Goyal and Sahai [8]. Deng et al. constructed
a protocol for the zero-knowledge functionality where the
security holds if either of the party maybe resettable.2 In
contrast, the construction of Goyal and Sahai [13] is for
all functionalities but the security holds when only a single
predetermined party may be reset. In the work of Goyal and
Sahai, if any party other than the predetermined one is reset
by the adversary, the protocol completely breaks and there
is an explicit attack that the adversary can launch. This state
of affairs leads to the following natural question:

“Do there exist protocols for functionalities other than
zero-knowledge where more than one party may be reset?”

The above can be considered as the last step in the
understanding of the feasibility (as opposed to efficiency)
of resettable protocols.

1.1. Our Contributions

We resolve the above question in the affirmative. We
provide a construction for most (PPT computable) function-
alities in the multi-party setting where, in fact, all the parties
may be fully resettable. To be more precisely, we are able
to realize all functionalities except the ones where the pseu-
doentropy of the output could be much large than that of the
input (for at least one input). We call such functionalities as
worst-case pseudoentropy generators (w-PEG) (and they can
also be used to construct worst-case pseudorandom functions
by using a strong extractor). The above results subsume most
known feasibility results in the area of resettable protocols.
The key ingredient in our construction is a non-malleable
fully resettable zero-knowledge protocol which we believe
to be of independent interest.3

Fully Stateless Protocols: A key implication of our
result is the first construction of truly stateless protocols
for a large class of (PPT computable) functionalities. In
other words, for any functionality (which is not a w-
PEG) in question, we now have a cryptographic protocol
where all the parties can be fully stateless and compute the
next outgoing message by applying a fixed (next message)
function to the incoming message (independent of any state).

2This is called a fully resettable zero-knowledge protocol. Note that this
implies the existence of stateless zero-knowledge protocols.

3The proceedings version of this paper incorrectly claimed to realize all
PPT computable functionalities in the fully resettable settting. This is the
corrected version.

Concurrently Secure Computation: Separating the
Power of Non-black-box and Black-box Simulation: There
have been a number of tasks which are shown to be
impossible using black-box (BB) simulation but become
possible once we resort to non-black-box (NBB) simulation.
Examples are constant round bounded concurrent zero-
knowledge [1], public coin concurrent zero-knowledge [22],
constant round covert computation [12], etc. However so far,
we don’t know of any example of a functionalities which
in the concurrent setting: (a) is possible to realize using
a NBB simulator, but, (b) is impossible to realize using
a BB simulator. Indeed, all such separations between the
power of BB and NBB simulation are known only if we
place additional constraints on the design of the real world
protocol (e.g., it should be public coin, or constant rounds,
or should have the covertness property, etc). Thus, we have
the following natural question:

“Does there exist a functionality which, in the concurrent
setting, is impossible to realize using BB simulation (in any
polynomial number of rounds) but can be realized using NBB
simulation?”

We answer the above question in the affirmative by giving
an example of such a (reactive) functionality. Somewhat
surprisingly, this is done by making a connection of the
above question to the existence of non-malleable (nm)
fully resettable (rs-rZK) zero-knowledge (which is the key
ingredient behind our stateless computation protocols as
mentioned above). We consider the ideal world functionality
where the verifier runs the NM-SR-ZK protocol with the
trusted party (who gets the witness from the prover). To
rule out the existence of a real world protocol realizing this
functionality with a BB simulator, we rely on the resettable
soundness and non-malleability of the protocol being run
in the ideal world. To show the existence of a real world
protocol realizing this functionality with a NBB simulator,
we rely on the ideal world protocol being a concurrent zero-
knowledge protocol.

1.2. Related Works.

The only other work to consider the issue of non-
malleability in the setting of resettable protocols is the
recent work by Ostrovsky, Pandey, Sahai and Visconti [17].
However [17] is only able to construct protocols where
only a single predetermined party is resettable. Hence the
protocols in [17] don’t have any direct application towards
obtaining new results for resettable / stateless secure compu-
tation protocols. The techniques used in our work are quite
different from the ones used in [17].

Subsequent to the works of Canetti et al. [5] and Barak et
al. [3] described above, a number of works have investigated
the problem of security against resetting attacks for zero-
knowledge protocols in the plain model. Barak, Lindell, and
Vadhan [4] constructed the first constant-round public-coin
argument that is bounded resettable zero-knowledge. Deng

and Lin [9] showed a zero-knowledge argument system that
is bounded resettable zero-knowledge and satisfies a weak
form of resettable soundness.

A larger body of work has investigated the same problems
in a relaxed setting, called the “bare public key” (BPK)
model, introduced by [5], which assumes that parties must
register (arbitrarily chosen) public keys prior to any attack
taking place. See [7], [25] and the references therein.

Note that the problem of constructing resettable protocols
(for functionalities other than zero-knowledge) where more
than one party can be reset was open even in the BPK model.

There have been other works using the notion of resettable
protocols towards solving unrelated questions (c.f., [19],
[6]).

2. PRELIMINARIES

In this section, we introduce some basic definitions per-
taining to our simulation based definition of Resettable
computation and zero-knowledge protocols.

2.1. ZK Background

In this section, we introduce some definitions related to
Zero-Knowledge and Simulation Soundness. We first recall
the definition of a relaxed concurrent adversary from [8].
Informally speaking, a relaxed concurrent adversary A, in
the beginning of a particular session, chooses a random
r (using any adversarial strategy) and then behaves as an
honest verifier using that tape r in that session. Hence,
messages of A are independent of the prover messages sent
in other sessions during the execution of this session.

Definition 1 (Relaxed Concurrent Adversaries [8]): An
adversary A interacting with the prover P concurrently
in several sessions is a relaxed concurrent adversary, if at
the beginning of every session, it writes a string s to a
special tape such that, there exists a fixed function f (not
necessarily efficiently computable) such that r = f(s) and
A interacts in the session as the honest verifier V with
random tape r.

Note that any concurrent ZK protocol secure against
relaxed concurrent adversaries can be made secure against
general concurrent adversaries by asking the verifier to
commit to its randomness in the beginning and then with
every outgoing message, requiring it to prove in (standalone)
ZK that it has behaved honestly using that randomness.

Definition 2 (Resettable Soundness (rs) [3]): A resetting
attack of a cheating prover P ∗ on a resettable verifier V is
defined by the following two-step random process, indexed
by a security parameter n.

1) Uniformly select and fix t = poly(n) random-tapes,
denoted r1, . . . , rt, for V , resulting in deterministic
strategies V (j)(x) = V x,rj defined by V x,rj (α) =
V (x, rj , α), where x ∈ {0, 1}n and j ∈ [t]. Each
V (j)(x) is called an incarnation of V .

2) On input 1n, machine P ∗ is allowed to initiate
poly(n)-many interactions with the V (j)(x)’s. The
activity of P ∗ proceeds in rounds. In each round
P ∗ chooses x ∈ {0, 1}n and j ∈ [t], thus defining
V (j)(x), and conducts a complete session with it.

Let P and V be some pair of interactive machines,
and suppose that V is implementable in probabilistic
polynomial-time. We say that (P ,V) is a resettably-sound
proof system for L (resp., resettably-sound argument system
for L) if the following two conditions hold:

• Resettable-completeness: Consider an arbitrary reset-
ting attack (resp., polynomial-size resetting attack),
and suppose that in some session after selecting an
incarnation V j(x), the attacker follows the strategy P .
The, if x ∈ L then V (j)(x) accepts with negligible
probability.

• Resettable-soundness: For every resetting attack (resp.,
polynomial size resetting attack), the probability that in
some session the corresponding V (j)(x) has accepted
and x /∈ L is negligible.

Verifier Admissible Proof Systems and Hybrid-
Soundness: Instead of achieving full resettable-soundness,
it is sometimes easier to achieve a weaker form of guarantee
called “hybrid-soundness.” In this section we will introduce
the definitions of Hybrid-Soundness and Verifier Admissible
Proof Systems. Informally speaking, in such a system, the
first message of the prover determines all its subsequent
“important” messages (for the given verifier).

Definition 3 (Verifier-admissible proof-system): A proof-
system (P ,V) is called “verifier-admissible” if the follow-
ing requirements hold:

1) The verifier V consists of two parts V 1,V 2. Simi-
larly, the verifier’s random input ω is partitioned into
two disjoint parts, ω(1), ω(2), where ω(i) is given to
V i

2) A message sent by the prover may either be labeled
as “main” message or an “authenticator” message.
The first main message sent by the prover in the
protocol is called the “determining” message. Each
prover message is first received by V 1. In each round
of interaction, the prover and V 1 exchange a number
of messages in which exactly one of the messages
is a main message while the rest are authenticator
messages. At the end of an interaction round, V 1

decides whether to accept the (only) main message
received based on the transcript of interaction round
itself and the transcript of the prover main messages
and the corresponding replies of V 2 so far. If V 1

accepts, it forwards the main message to V 2 who
generates the reply.

3) Let P ∗ be an arbitrary (deterministic) polynomial-
size circuit, where P ∗ may execute a resetting-attack
on V (see Definition 2). Let P ∗ interact with some

incarnation of V = (V 1,V 2). Then, except with
negligible probability, P ∗ is unable to generate two
different main messages, both accepted by V 1, for
some round ` in two different interactions with V with
the same determining message.

Hybrid Model: In our hybrid model, the prover is given
the ability to “partially reset” the verifier (while otherwise
interacting in the concurrent setting). More precisely, in the
verifier admissible proof system, each incarnation of the
verifier is identified by three indices: V i,j,k = V xi,yi,ωj,k

,
where ωj,k = (ω

(1)
j , ω

(2)
k). The string ω

(1)
j represents the

random input to V 1 while ω
(2)
k represents the random

input to V 2. The prover is allowed to interact concurrently
with these incarnations with at most one session of every
incarnation active at any time. However, the prover is
not allowed to interact with two incarnations (i, j, k) and
(i′, j′, k′) such that k = k′. Moreover, the prover can
restart V 1 in an incarnation from the beginning although
it leaves V 2 in its current state. After being restarted, V 1

operates as usual using the same random tape ω(1) expect
the following. V 1 aborts if the prover sends a different
determining message in the first round of the interaction after
V 1 restarts. Furthermore, in a round of interaction with the
prover, V 1 does not forward the received main message to
V 2 (even if it is accepted) in case a main message in that
round had been forwarded earlier. Instead V 1 simply sends
accept or reject to the verifier. V 1 then waits for the
verifier messages for the next round as if V 2 had sent the
same reply it sent earlier in that round before V 1 restarted
the interaction. Intuitively, such a setting ensures that V 1

and V 2 do not go out of sync even though only V 1 restarts
the interaction (with the same randomness).

Definition 4 (Hybrid Soundness (hs)): A “hybrid cheat-
ing prover” P ∗ works against verifier-admissible proof sys-
tems in the hybrid model as described above. A proof system
is hs if it is verifier admissible and satisfies Definition 2 with
respect to hybrid cheating provers.

Simulation Soundness: Simulation Soundness, intu-
itively, refers to the robustness of proof systems where a
man-in-middle adversary is not able to violate the sound-
ness of the verifier in the right interaction, even though it
participates as a verifier in other simulated proofs in the left
interaction.

Definition 5 ((1− ε) Simulation Sound): Consider any
arbitrary man-in-middle adversary A which is acting
as a verifier of Π ZK-protocols in the left interaction
and is trying to prove a statement “x̃ ∈ L” in its right
interaction by acting as the prover for a Σ protocol. We
will use n to represent the security parameter. The length
of the adversarial code is at most a polynomial in n, i.e.
|A| ≤ nΘ(1), and we will assume that A terminates within
nΘ(1) time.

In the left interaction, A could possible interact with sev-
eral concurrent sessions of Π proving statements “xi ∈ L.”

If A violates the soundness of Σ with probability ε, when
A is provided with simulated Π proofs, then we say: Σ is
(1−ε) Simulation Sound with respect to the protocol Π and
man-in-middle adversary A.

When we consider man-in-middle adversaries A, then the
permissible actions of A in the left and the right interactions
will be clear from the context. For example, consider the
case when Π is a relaxed-concurrent-ZK protocol and Σ
is a resettably-sound protocol. In this case, A can interact
with several concurrent sessions of Π in the left interaction,
scheduled according to its strategy, but in each session A
has to act like a relaxed adversary. Moreover, in the right
interaction A can reset the protocol Σ.

For any adversary A, if there exists a negligible function
ν such that Σ is (1−ε) Simulation Sound with respect to the
protocol Π and man-in-middle adversary A, and ε ≤ ν(n),
then Σ is Simulation Sound with respect to Π. If Π and
Σ are identical, then we say: Σ is Simulation Sound. This
definition of Simulation Soundness is consistent with the
one introduced by Sahai in [23] for Simulation Sound Non-
Interactive Zero-Knowledge.

2.2. Fully Resettable Computation

We consider n parties indexed by [n] trying to compute a
function of their local inputs using an interactive protocol.
Party i has input x(i) and random tape ω(i). Let X(i) be the
pair of input x(i) and random tape ω(i); and X represent
the vector (X(1), . . . , X(n)). All parties have their random
tape independently chosen but when an adversary resets a
party, it reuses the same random tape (and the same input).
The adversary S controls the parties indexed by [m] and at
any point during the execution of the protocol it can reset
any of the honest parties. We shall consider computational
security against parties which have been statically corrupted
by the adversary S.

Ideal Model: In the ideal world there is a mutually
trusted party which can aggregate the inputs provided to
it by the various parties, perform the computation f(·) on
their behalf and provide them their respective outputs. The
execution in the Ideal world proceeds as follows:

Inputs. Each party i has input x(i). Honest parties send
their inputs to the trusted party; but corrupted parties may
decide to send modified inputs to the trusted party.

Computation. The trusted party computes the function f
on all the inputs provided to it by various parties and, say,
z represents the outcome of the function.

Output to Malicious parties. The trusted party sends z to
every malicious party [m].

Output to Honest parties. The adversary prepares a list of
honest parties which should receive the outcome. The trusted
party forwards z to all parties whom the adversary intends
to receive their output. Remaining honest parties receive ⊥.

Reset. The adversary can reset the ideal world at any point
of time. When the adversary decides to reset the ideal world,

it requests the trusted party to reset all honest parties and
the trusted party sends a reset signal to all honest parties.
At this point, the ideal world returns to the first stage where
honest parties feed their inputs to the ideal functionality.

Output. Any honest party i always reports the outcome z it
receives from the trusted party. By convention, all malicious
parties report ⊥. The adversary outputs an arbitrary function
of its entire view and the view of all malicious parties [m].

The output of the Ideal world interaction with adversary
S is represented by IDEALf,S(X).

Real Model: For a n-party protocol Σ, honest parties
indexed by [n] \ [m] follow the protocol honestly while
all the malicious parties, indexed by [m], launch an attack
coordinated by an adversary A. The adversary can reset any
honest party at any point of time during the execution of the
protocol (and potentially even bring them out of sync). At
the end of the protocol, honest parties report their outputs as
instructed by the protocol Σ and all malicious parties report
⊥. The adversary outputs its whole view. The output of the
real world execution of Σ on X according to the procedure
mentioned above is represented by REALΣ,A(X).

Definition 6 (Fully Resettable Secure Computation): Let
f be a multi-party function and Σ be a protocol in the real
world. The protocol Σ is a secure protocol for computing f
if for every PPT adversary A in the real world, there exists
an EPPT adversary S in the ideal world such that:

{IDEALf,S(X)}X∈({0,1}∗)n ≈c {REALΣ,A(X)}X∈({0,1}∗)n

The simulator may need to reset the functionality in the
Ideal World several times and the number of times the Ideal
functionality is reset by the simulator could possibly be more
than the resets performed by the adversary in the Real World,
though this number will be bounded by a polynomial in the
security parameter.

2.3. Resettable to Stateless

Any protocol which is resettably secure can be trans-
formed to a stateless protocol using relatively standard
techniques. In other words, the parties which were allowed to
be resettable in the original protocol need not maintain any
state at all in the transformed protocol. By a stateless device
we mean that the device only supports a “request-reply”
interaction (i.e., the device just outputs f(x) when fed with
x for some fixed f). We describe the case of two party first
assuming both the parties are resettable. Let parties P 1 and
P 2 participating in the original resettably secure protocol
Σ. Now we define a protocol Σ′ having parties P ′1 and P ′2.
Each of these parties will have a secret key of a CCA-2
secure encryption scheme and a secret MAC key. The party
P ′1 computes the first message to be sent in the protocol Σ′

by running P 1 internally. However it then sends to P ′2 not
only the computed message but also an encryption of the
current state of P 1 and a MAC on it. Party P ′2 similarly
computes the reply by feeding the received message to P 2

and sends to P ′1 not only the computed reply but also (a)
the received encrypted state of P 1 and the MAC, and, (b) an
encryption of the current state of P 2 and a MAC on it using
its own keys. Thus for the next round, P ′1 can decrypt, verify
and load the received state into P 1, feed it the incoming
reply and then compute the next outgoing message. P 2 can
similarly continue with the protocol. The case of multi-party
protocols can also be handled by first transforming the given
protocol into one where only one party sends a message in
any given round and then applying ideas similar to the one
for the two party case to this resulting protocol.

3. SIMULATION SOUND FULLY RESETTABLE ZK

3.1. Technical Overview

Our starting point in this section is the fully resettable
ZK protocol provided in [8]. The major step in constructing
such a protocol is the construction of a relaxed concurrent
hybrid sound ZK protocol (called the DGS protocol from
this point onwards). Once a relaxed concurrent hybrid sound
ZK protocol is obtained, it can then be compiled into a
fully resettable ZK protocol using known techniques [8].
Following the modular approach of [8], we first construct a
simulation sound relaxed concurrent hybrid sound ZK. Once
we obtain such a protocol, we present a compiler to convert
it into a simulation sound fully resettable ZK protocol.

In [8], the key ingredient in obtaining a relaxed concurrent
hybrid sound ZK was a novel NBB simulation technique. In
the DGS protocol, in any given session, the prover makes use
of several NBB ZK executions proving different statements.
In each NBB ZK execution, as in Barak’s protocol [1], the
idea is to have the prover commit in advance to a program
that claims to predict (using an input of small length) a
string that is later randomly chosen by the verifier. The
prover then must prove that either its committed program
really can predict the verifiers string, or that the statement
is true. However since the setting in [8] is more demanding
compared to [1], to make the simulation go though, the
committed program is additionally allowed access to an
oracle. The prover then must prove that there exists an oracle
such that its committed program (on given the small input
and queries to that oracle) can really predict the verifier’s
string, or, that the statement is true.

Our key modification in order to make the DGS protocol
[8] simulation sound is to introduce non-malleability features
in the NBB ZK protocol described above. Towards that end,
we rely on “two-slot” simulation technique of Pass [18] (see
also [21]). We introduce two slots for simulation in our NBB
ZK protocol (as in [18]) while still keeping oracle access to
the committed program (as in [8]) in both the slots. The full
protocol nm-ZKTAG and the description of the language is
given in Figure 1. Our NBB ZK protocol nm-ZKTAG can still
be used in the DGS construction (since essentially the same
proof of security goes through). Furthermore, following

[18], the protocol nm-ZKTAG is also simulation sound in the
standalone (as well as in the bounded concurrent) setting.

With this modification, however, it is still far from clear
that the final resulting construction rel-conc-hs-ZKTAG (ob-
tained by using the nm-ZKTAG in the DGS construction) is
simulation sound. This is because our setting is significantly
more demanding than that of [18], [21]. Firstly, there is
no apriori fixed bound on the number of left executions.
Hence, a man-in-the-middle gets to see any unbounded
(polynomial) number of concurrent executions of nm-ZKTAG

(and of rel-conc-hs-ZKTAG in general of which nm-ZKTAG is a
component). Secondly, the man-in-the-middle is additionally
allowed to reset the verifier on the right. Thus, it seems like
we need the protocol nm-ZKTAG to be simulation sound in
the fully concurrent setting in the presence of reset attacks
against the verifier. However, this is precisely the goal that
we started with!

The key observation which allows us to still move forward
is a specific property of the DGS rewinding strategy. Note
that the DGS rewinding strategy can be seen as giving rise
to a main thread and several “look ahead threads”. In the
DGS protocol, in any given thread, only a constant number
of NBB ZK arguments are replaced (even though over the
course of the entire simulation, every NBB ZK argument
will be simulated). Thus, in the left interaction in any given
thread, the man-in-the-middle gets to see an unbounded
(polynomial) number of executions of nm-ZKTAG out of
which only a constant number are being simulated. This, for
a standalone verifier, allows us to argue that the soundness
of the right execution of nm-ZKTAG is still maintained.
However, in our setting, the verifier on the right is resettable.
To deal with such a scenario and complete the argument,
we first observe that fortunately, the protocol nm-ZKTAG

is a constant round public coin protocol (since NBB ZK
arguments in both [18] as well as [8] are public coin). We
then rely on the ideas behind the BGGL transformation [3]
to obtain resettable soundness from constant round public
coin protocols.

Once we show that in the right interaction, the pro-
tocol nm-ZKTAG remains sound even if there are several
concurrent executions of the protocol rel-conc-hs-ZKTAG on
the left, we finally move forward to show that protocol
rel-conc-hs-ZKTAG is simulation sound. To do this, we con-
vert any attack on protocol rel-conc-hs-ZKTAG into an attack
on either nm-ZKTAG or the soundness the ZAP system. More
details are given in the next sections.

3.2. Our NBB Technique: Constructing Non-malleable ZK

In this section we define a tag based zero-knowledge
argument system ZKTAG, where the parameter TAG ∈ [M],
where M is polynomial in the security parameter. We
assume Com(·; ·) is a perfectly binding commitment scheme.
The description of the protocol nm-ZKTAG is summarized in
Figure 1.

In this protocol, there are two slots 1 and 2. In each slot,
the prover commits to a challenge and the verifier reveals
a random string of appropriate length. The length of the
response string of the verifier in slot 1 and 2 are respectively,
TAG ·n4 and (M − TAG + 1) ·n4. It has been shown in [20]
that the the proposed scheme is standalone sound.

Lemma 1 ([20]): For any TAG ∈ [M], the ZKTAG zero-
knowledge argument Protocol nm-ZKTAG (refer Figure 1) is
standalone sound.

We re-iterate that Protocol nm-ZKTAG is a constant round
public coin zero-knowledge argument system. By compiling
Protocol nm-ZKTAG using the BGGL compiler proposed
in [3] we can obtain a zero-knowledge argument system
which is resettably-sound. We call the compiled protocol as
Protocol nm-rs-ZKTAG and will use Protocol nm-rs-ZKTAG in
our later constructions.

3.3. Relaxed-concurrent Hybrid-sound ZK

In this section we will use nm-rs-ZKTAG, which is a
BGGL compilation of nm-ZKTAG, to construct a Relaxed-
Concurrent Hybrid-Sound ZK (and will further prove its
simulation soundness in the next subsection). This construc-
tion is inspired by the construction provided in [8] and is
described in Figure 2.

This protocol is identical to the protocol provided in
[8] except that the non-black box ZK it uses is slightly
modified. Instead of the non-black box scheme inspired
by Barak’s construction [1] we use Protocol nm-rs-ZKTAG.
We state without proof the following result which follows
immediately from the results in [20], [8]:

Lemma 2 ([20], [8]): Protocol rel-conc-hs-ZKTAG is a
Relaxed-concurrent Hybrid-sound (tag based) ZK protocol.
We emphasize that the “relaxed-concurrent” property of the
adversary is utilized by the Simulator to provide simulated
proofs for Protocol nm-rs-ZKTAG to the adversary using the
simulator of Protocol nm-rs-ZKTAG which is not guaranteed
to work in the general concurrent setting.

3.4. Simulation Soundness

In this section, we intend to show that rel-conc-hs-ZKTAG

is in fact simulation sound as well. We start by proving two
fundamental results:

Lemma 3 ([8]): The rZAP protocol is Simulation-Sound
with respect to protocol rel-conc-hs-ZKTAG.

Any man-in-middle adversary A in the above experiment
can perform the following actions:

1) A acts as relaxed-adversary for concurrent sessions of
protocol rel-conc-hs-ZKTAG in the left interaction, and

2) A can reset the rZAP protocol in the right interaction.
In fact, we can claim that the rZAP protocol is simula-

tion sound with respect to any concurrent zero-knowledge
protocol π.

Proof Sketch. Interested readers may refer to the full
version for the complete proof. We consider a new

Common Input to P and V . x′ supposedly in the language L′ ∈ NP.
Auxiliary input to P . A NP-witness w for x′ ∈ L′.
Protocol. The zero-knowledge argument ZKTAG proceeds as follows:

1) The verifier V chooses a hash function h uniformly at random from a family of collision resistant hash functions H and sends
it to P .

2) The prover P sends the commitment z1 = Com(h(0)) to the verifier V .
3) The verifier selects a string r1

$←−− {0, 1}TAG·n4

and sends it to the prover P .
4) The prover P sends the commitment z2 = Com(h(0)) to the verifier V .
5) The verifier selects a string r2

$←−− {0, 1}(M−TAG+1)·n4

and sends it to the prover P .
6) The prover P and the verifier V execute a witness indistinguishable constant round public coin universal argument a [2], where

P proves to V :
• x′ ∈ L′, or
• The transcript τ = (h, z1, r1, z2, r2) generated above belongs to the language ΛTAG described below.

We require the communication complexity of this universal argument to be at most O(n2).
Language ΛTAG. A string (h, z1, r1, z2, r2) ∈ ΛTAG if there exists 〈M, y1, y2, r

′〉 such that (〈h, z1, r1〉, 〈M, y1, y2, r
′〉) ∈ R(TAG · n4)

or (〈h, z2, r2〉, 〈M, y1, y2, r
′〉) ∈ R((M − TAG + 1) · n4).

A string (〈h, z, r〉, 〈M, y1, y2, r
′〉) satisfies the relation R(i) if the following conditions hold:

1) |y2| ≤ nlog logn, |r| = i, |y1| ≤ i− n,
2) z = Com(h(M); r′)
3) The oracle machine M makes calls to y2 with a query q expecting a reply (s, r̃) such that q = Com(s; r̃). It expects the entry

(q, s, r̃) corresponding to this query to lie in y2; otherwise, if such an entry does not exist in y2 then M aborts. The machine
M, with oracle access to y2 on input y1, outputs r in at most nlog logn steps.

aThis protocol has a weak proof of knowledge guarantee. There exists an extractor such that, if the prover succeeds to prove a statement with probability
ρ then, it extracts a witness for the statement with probability ρk , for some constant k ≥ 1.

Figure 1. Protocol nm-ZKTAG for Non Black-box zero-knowledge argument system ZKTAG .

Common input to P and V . x supposedly in L ∈ NP.
Auxiliary input to P . A NP-witness w for x ∈ L.
Protocol. The Relaxed Concurrent Hybrid Sound ZKTAG proceeds as follows:

1) The prover P chooses 2n2 challenge strings chi
$←−− {0, 1}n and sends the verifier V the commitments to each of them, i.e. it

sends zi = Com(chi), for all i ∈ [2n2].
2) The verifier V prepares a trapdoor trap= Com(1) and sends it to the prover P . For the last step of this protocol, the verifier V

sends the first message σ of a rZAP to the prover P . Now, the verifier proceeds to prepare the first message of 2n3 instances of
the Blum’s 3-round protocol for the statement “trap is a commitment to 1”. And sends all these messages to the prover P .

3) For each i ∈ [2n2] the following is performed:
a) The prover P sends the string chi to the verifier V . Using the rs-ZKTAG protocol nm-rs-ZKTAG, P proves to V that: “chi

is the correct opening of zi, or x ∈ L.” If the verifier accepts the proof then the bits of the string chi are interpreted as n
challenges corresponding to the second message of the 3-round Blum protocol.

b) For each j ∈ [n], the verifier V interprets the j-th bit of chi, represented by chi[j], as the challenge bit for the ((i−1)n+j)-
th execution of 3-round Blum-protocol. The verifier responds suitably as required by the challenge bit chi[j].

4) The prover P provides a rZAP to the verifier for the statement: “trap is a commitment to 1, or x ∈ L.”

Figure 2. Protocol rel-conc-hs-ZKTAG realizing Relaxed Concurrent Hybrid-Sound ZKTAG .

man-in-middle adversary which learns the first message sent
by the rZAP protocol in the right interaction and then resets
it. Then it simulates all the rZAP interaction in the right hand
interaction on its own; except for one, the reply is forwarded
to the external rZAP verifier. The left side interactions can
be easily simulated by Sπ .

The next lemma, shows that a man-in-middle adver-
sary cannot violate the resettable-soundness of Protocol
nm-rs-ZKTAG be interacting with several rel-conc-hs-ZKTAG

provers in the left:

Lemma 4 ([3], [20], [8]): The nm-rs-ZKTAG protocol

is Simulation-Sound with respect to protocol
rel-conc-hs-ZKTAG.

Any man-in-middle adversary which tries to violate the
soundness of nm-rs-ZKTAG after seeing rel-conc-hs-ZKTAG

proofs can perform the following actions:

1) A acts as relaxed-concurrent adversary of
rel-conc-hs-ZKTAG in the left interaction, and

2) A can reset the verifier of nm-rs-ZKTAG in the right
interaction.

Proof Sketch. Here we explain the two key ideas used
to show this result and defer the complete proof to the

full version. If there exists a man-in-middle adversary A
which violates the soundness of nm-rs-ZKTAG in the right
interaction with non-negligibly probability, then we can
construct another non-resetting man-in-middle A′ which can
violate the soundness of nm-ZKTAG in the right interaction
with non-negligble probability. This new adversary simulates
all incarnations of the verifier V nm-rs-ZKTAG

using a random
tape R; except one randomly chosen incarnation, for which
it uses an external V nm-ZKTAG

verifier. The second part of
the reduction shows that if such a man-in-middle adversary
A′ exists then it can be used to construct a standalone
adversary A′′ which violates the soundness of nm-ZKTAG

with non-negligible. The main hurdle is to simulate the left
interactions of A′ when the adversary gets additional input
from the external V nm-ZKTAG

. To show that we can efficiently
simulate the left interactions of A′ we need to combine the
techniques introduced in [8] and [20].

Simulation Soundness of rel-conc-hs-ZKTAG: The
main component of our proof is to show that Proto-
col rel-conc-hs-ZKTAG is Simulation-Sound. Consider a
man-in-middle adversary which participates as relaxed con-
current verifier in rel-conc-hs-ZKTAG incarnations in the left
and as a prover of rel-conc-hs-ZKTAG in the right interaction.
We prove the result by showing that any soundness violation
of rel-conc-hs-ZKTAG in the right interaction can be attributed
to soundness violation of nm-rs-ZKTAG or rZAP protocol.
Suppose, there exists a man-in-middle adversary A which
violates the soundness of Protocol rel-conc-hs-ZKTAG in the
right interaction. We consider the event that the adversary A
violates the soundness of Protocol nm-rs-ZKTAG associated
with one of the challenges in the right interaction with
significant probability or not. If this event occurs then we
can construct a man-in-middle adversary which violates the
simulation soundness of Protocol nm-rs-ZKTAG with respect
to Protocol rel-conc-hs-ZKTAG. Otherwise, i.e. the adversary
never, except with negligible probability, violates the sound-
ness of any nm-rs-ZKTAG associated with any challenge, then
we can construct a man-in-middle adversary which violates
the simulation soundness of rZAP protocol with respect to
Protocol rel-conc-hs-ZKTAG.

Lemma 5: The rel-conc-hs-ZKTAG protocol is Simulation
Sound. The man-in-middle adversary A can perform the
following operations:

1) A is a relaxed-concurrent verifier for polynomially
many sessions of Protocol rel-conc-hs-ZKTAG in the
left interaction, and

2) A acts as a hybrid-prover for Protocol
rel-conc-hs-ZKTAG running in the right interaction,
i.e. it can partially reset the verifier. It can run
several concurrent sessions with various hybrid-
verifier incarnations for the protocol and restart the
authenticator part of the hybrid-verifier, although
leaving the main part of the hybrid-verifier in the
same state.

Proof Sketch. Here we provide the key ideas necessary
to prove the statement and the complete proof is deferred
to the full version. There are two main cases to consider.
First, suppose a man-in-middle adversary A is able to
prove a false statement “x̃ ∈ L” in some slot of the right
interaction by launching a hybrid attack on the verifier
V rel-conc-hs-ZKTAG

of rel-conc-hs-ZKTAG after seeing simulated
proofs in the left interaction with non-negligible probability.
Then we can convert it into a man-in-middle adversary
who can violate the resettable soundness of a nm-rs-ZKTAG

protocol after seeing simulated rel-conc-hs-ZKTAG proofs in
the left interaction. The second case considers the event that
the adversary does not, except with negligible probability,
break the resettable soundness of nm-rs-ZKTAG in any slot
in the right interaction. For this case, we can show that
violation of the soundness on rel-conc-hs-ZKTAG in the right
interaction implies that the soundness of the rZAP protocol
was violated. Furthermore, we can construct a standalone
simulator violating the soundness guarantee of the rZAP
protocol which, due to Lemma 3, is impossible.

Theorem 1 (Main Theorem): Protocol rs-rZKTAG is Sim-
ulation Sound Resettably-sound Resettable-ZK.

4. FULLY RESETTABLE COMPUTATION

Suppose F is a general n-party functionality where parties
have N bit inputs. For every partition of the party indices
into malicious (S) and honest (S̄ = [n] \ S) sets, we can
consider a two-party version of FS which takes two inputs:
the first input is the input of all honest parties and the second
input is the input of all the malicious parties; and outputs the
concatenation of honest party outputs to the first party and
the concatenation of malicious party outputs to the second
party. In this section, we will present a secure protocol to
perform fully resettable computation of functionalities which
satisfy the technical property given below. The multi-party
functionality F satisfies the GM-technical property if for
every partition of input indices into honest and malicious
parties, the resulting two-party version of the F satisfies
Definition 7.

Definition 7 (GM-Technical Property): A two-party
functionality F (defined for inputs of a certain length)
is said to satisfy the GM-Technical Property if there
exists an efficient compression algorithm C, an efficient
decompression algorithm D and a polynomial bound B
such that, for all honest inputs x, polynomial µ and
adversarial inputs x∗1, . . . , x

∗
µ the following holds: Define

the suggestion string s := C(x∗1, . . . , x∗µ, θ∗1 , . . . , θ∗µ), then

1) Either, s is the abort symbol with negligible probabil-
ity,

2) Or,

|s| ≤ B, and
For all i ∈ [µ], D(s;x∗1, . . . , x

∗
i , θ
∗
1 , . . . , θ

∗
i−1) = θ∗i

Here θ∗i is the output received by the adversaries when the
functionality F in invoked with honest parties’ input set to
x and adversarial parties’ input set to x∗i .
Intuitively, the definition says that there exists a good
compression and a good decompression algorithm such
that, except with negligible probability, the compression
algorithm generates a small suggestion string s which helps
the decompression algorithm correctly predict the i-th output
received by the adversary given its prior input-output pairs
and the current input.

We emphasize that B depends on the size of the honest
party input x. Note that if we allow the compression
algorithm C to run in super-polynomial time, the above
condition is trivially satisfied for all functionalities. This is
because otherwise C can exhaustively find an honest input
x consistent with all the input-output behavior and send it
as the suggestion string s.

We will show that any functionality which does not satisfy
the GM-Technical Property is, intuitively, a (worst case)
pseudo-entropy source according to the following definition:

Definition 8 (Worst-Case Pseudo-entropy Generation Source):
A keyed-function f is called a Worst-Case Pseudo-entropy
Generation Source, if for all prediction algorithms P ,
there exists a key k, polynomial µ, inputs x∗1, . . . , x

∗
µ and

u ≥ 1 such that the size of the following set is greater than
100uÑ :{
i

∣∣∣∣i ∈ [m] and Pr
(
P(x∗1, . . . , x

∗
i , θ
∗
1 , . . . , θ

∗
i−1) 6= θ∗i

)
≥ 1

u

}
Here θ∗i = f(k;x∗i) and Ñ is the size of key, i.e. |x|.

In other words, “unpredictability” of the outputs is much
higher than warranted by the length of the unknown key.

Lemma 6: Let S be the set of malicious parties and
FS(x, x∗) represent the output of the adversaries when
concatenation of honest party inputs is x and concatenation
of adversary inputs is x∗. Define its corresponding keyed
function fS(k;x) = FS(k, x). If the functionality F does
not satisfy the GM-Technical Property then there exists S
such that fS is a w-PEG.

4.1. Simulation-soundness in presence of Output Oracle
To use simulation soundness guarantees while construct-

ing protocols for secure fully resettable computations, we
need to extend the simulation soundness result of Theo-
rem 1 to stronger man-in-middle adversaries. We consider
adversaries which have access to an output oracle, i.e. the
adversary can query the oracle on input x∗ and receive
its output F(x, x∗), where the honest party’s input to the
functionality is x. Since, such an adversary can query the
output oracle any polynomial number of times, it is evident
that the simulation strategy used to prove Lemma 4 is not
applicable in straight-forward fashion. If the functionality F
satisfies the GM-Technical Property, then we extend the sim-
ulation soundness guarantee of Theorem 1 to man-in-middle
adversaries with access to output oracles.

4.1.1. Modifying Language ΛTAG: To motivate the change
in description of language ΛTAG, consider the following
example. Suppose a man-in-middle adversary A interacts
as a relaxed concurrent verifier in several instances of
rel-conc-hs-ZKTAG in the left; while it interacts as a prover
for nm-ZKTAG in the right interaction. Recall, that A also
has access to an output oracle. Now, assuming that A can
violate the soundness of the instance of nm-ZKTAG running
in the right interaction, we cannot construct a standalone
adversary which violates the soundness of nm-ZKTAG using
the simulation strategy of [8], [21]. The simulation of the
left interactions will fail because, in a look ahead thread
between the point where the simulator commits the code
and the point where it receives the challenge string from the
adversary, the adversary could query the output oracle on
polynomially many inputs. To predict the random challenge,
the code committed by the simulator might need to simulate
the answers to all the queries made to the output oracle by
A.

Here we plan to leverage the fact that F satisfies the GM-
Technical Property (Definition 7). We will use the fact that
the compression algorithm C can produce a bounded length
string s after receiving x∗1, . . . , x

∗
µ, θ
∗
1 , . . . , θ

∗
µ, where θ∗i =

F(x, x∗i). This suggestion string s can help the decompres-
sion algorithm D predict θ∗i given x∗1, . . . , x

∗
i , θ
∗
1 , . . . , θ

∗
i−1.

So, the code committed by the simulator could use the
suggestion string s as input and internally use the decom-
pression algorithm D to predict the answers to the queries
made by A.

Language Definition Modification.: Suppose F is a
functionality which satisfies the GM-Technical Property
(Definition 7). A string (h, z1, r1, z2, r2) ∈ ΛTAG if there ex-
ists 〈M, y1, y2, r

′〉 such that (〈h, z1, r1〉, 〈M, y1, y2, r
′〉) ∈

R(TAG · n4 + B) or (〈h, z2, r2〉, 〈M, y1, y2, r
′〉) ∈

R((M − TAG + 1) · n4 + B). Recall that a string
(〈h, z, r〉, 〈M, y1, y2, r

′〉) satisfies the relation R(i) if the
following conditions hold:

1) |y2| ≤ nlog logn, |r| = i, |y1| ≤ i− n,
2) z = Com(h(M); r′)
3) The oracle machineM makes calls to y2 with a query

q expecting a reply (s, r̃) such that q = Com(s; r̃). It
expects the entry (q, s, r̃) corresponding to this query
to lie in y2; otherwise, if such an entry does not exist
in y2 then M aborts. The machine M, with oracle
access to y2 on input y1, outputs r in at most nlog logn

steps.
4.1.2. Non-Black Box Simulation Modification: Consider

a man-in-middle adversary A which interacts as relaxed
concurrent verifier of rel-conc-hs-ZKTAG in its left interac-
tions and also interacts as a prover of nm-ZKTAG in its right
interaction. We will show that if A violates the soundness
of nm-ZKTAG in the right interaction, then we can construct
a standalone simulator which violates the soundness of
nm-ZKTAG.

As indicated above, we will need to modify the non-black
box simulator strategy of [8] suitably so that the standalone
simulator can simulate the left interactions even when the
adversary has access to an output oracle and interacts with an
external V nm-ZKTAG

. Consider a look ahead thread generated
by the simulator and let j be a simulated slot in session
i in the left interaction. Consider the transcript generated
between the point where the simulator commits the machine
and receives the challenge string from A. Let x∗1, . . . , x

∗
µ be

the inputs for which A queries the output oracle during this
transcript generation; and let θ∗1 , . . . , θ

∗
µ be the respective

answers received by A from the output oracle. We run C
with input x∗1, . . . , x

∗
µ, θ
∗
1 , . . . , θ

∗
µ and, except with negligible

probability of abort, we receive a suggestion string s of
length at most B.

We will provide the string s as an input to the code to
provide a non-black box proof in the simulated slot. Using
the proof technique of [8], [21], we can generate the first
query x∗1 to the output oracle. Next, we generate the answer
θ∗1 for this query using D(s;x∗1). Thereafter, given (x∗1, θ

∗
1),

we can generate the next query x∗2 using the technique of
[8], [21] and its answer θ∗2 = D(s;x∗1, x

∗
2, θ
∗
1). Inductively,

the simulator will be able to regenerate all the query-answer
pairs for all µ using an additional length B input to the
committed code.

Using the modified language ΛTAG and modifying the non-
black box proof technique of [8], we can extend Lemma 4
to man-in-middle adversaries which have access to output
oracles. Thus, we can conclude the following generalization
of Theorem 1:

Theorem 2 (Main Theorem in Output Oracle World):
Let F be a functionality which satisfies the GM-
Technical Property. Protocol rs-rZKTAG is Simulation Sound
Resettably-sound Resettable-ZK even when adversaries are
permitted to invoke the F output oracle.

4.2. Protocol Description

Suppose the parties participating in the protocol are in-
dexed by [n] and they wish to securely compute a function
f of their local inputs x(1), . . . , x(n). Given a semi-honest
secure protocol Π realizing this function, we will provide a
general compiler to transform it into a protocol Σ which is
fully resettable secure. The compiler is described in Figure 3
Without loss of generality, we will assume that parties [m]
are corrupt and {m+ 1, . . . , n} are honest. As a convention
for our notation, we will always use the superscript (i) to
represent a variable of party i, for example the input of party
i is denoted by x(i). To prove a statement, party i will always
use Protocol rs-rZKTAG with tag i and M ≥ n. Simulation
soundness of rs-rZKTAG will imply that any adversarial party
i ∈ [m] cannot violate the simulation soundness of Protocol
rs-rZKTAG with tag i even if it gets to see several Protocol
rs-rZKTAG proofs, possibly simulated ones, with tag j 6= i.
We restrict our attention to deterministic functionalities (for

a treatment of randomized functionalities, please see the full
version).

Figure 3 summaries our fully resettable secure compu-
tation protocol for any deterministic functionality. It runs
in four phases. At the end of every phase, every party
proves to other parties that it has followed the protocol
honestly using rs-rZKTAG. In the first phase, parties generate
a determining phase where each party commits to its input
x(i), local random tape R(i), a pseudorandom function G(i)

and seed s(i). Each party also generates a lossy function
index u(i) and, finally, broadcasts the determining message
D(i) is defined as the concatenation of these commitments
and the lossy function index. In the next phase, every
party leaks x(i) ‖ R(i) ‖ G(i) ‖ s(i) using a semantically-
secure encryption scheme with key u(j) to party j, such
that it satisfies the following property: If u(j) is an injective
function index then the message can be recovered from the
cipher text; otherwise, if it is a lossy function index, then
it cannot be recovered. In the third phase, a random pad
is generated which is uniform if any one of the parties
is honest. Each party applies the pseudorandom function
G(i) to the concatenation of all determining messages D =
D(1) ‖ D(2) ‖ · · · ‖ D(n). The XOR of these respective
random tapes forms a global random mask and every party
uses an exclusive portion of this pad in further computations.
Finally, parties simulate the semi-honest protocol using a
random tape generated from their local random tape and
their portion of the global mask generated in the previous
phase.

The simulator, on the other hand, sends an injective
function key u(i) in the first phase and simulates a proof
for the correctness of that phase. In every session, once the
deterministic message generation phase has been completed,
the simulator uses the witness “u(i) is an injective function
index” to complete the proofs in subsequent phases. Observe
that this can be done in a straightforward fashion after
the first phase’s proof has been successfully simulated in
a session. Interested readers can refer to the full version for
details of the simulator and the proof of security. Finally,
we state our main theorem statement for Fully Resettable
Computation:

Theorem 3: Protocol in Figure 3 is a Fully Resettable
Computation protocol for F when F satisfies the GM-
Technical Property (Definition 7) or F is a randomized
functionality without any input.

5. CONCURRENT SECURE COMPUTATION: SEPARATING
THE POWER OF NBB SIMULATION FROM BB

SIMULATION

Let Σ be a non-malleable tag-based rs-ZK protocol.
Consider a functionality F running between a prover P and
a verifier V . Let F be the following functionality:

1) The prover P sends a witness w and the statement
“x ∈ L” to the trusted party.

Algorithm for Party i: Local input x(i) for Π, local random tape R(i), a pseudorandom function G(i) chosen uniformly at random
from the family G and a random seed s(i) for lossy function generation. A (2n′, n′)-lossy trapdoor function is defined by the four tuple
of PPT algorithms (Sinj, Sloss, Fltdf, F

−1
ltdf). Let H2−univ be a 2-universal hash function family from 2n′ bits to n′ bits. Given a function

index u, the encryption of x using u is defined as Enc(x;u) = (x⊕h(r)) ‖ h ‖ Fltdf(u, r) for a randomly chosen r and h $←−− H2−univ.
1) Determining Message Generation:

a) Compute the commitments α(i)
1 = Com(x(i)), α(i)

2 = Com(R(i)), α(i)
3 = Com(G(i)), α(i)

4 = Com(s(i)).
b) Let u(i) be the index of the lossy function obtained by running (u(i),⊥) = Sloss(s

(i)).
c) Interpret R(i) = r

(i)
1 ‖ r

(i)
2 . Use the random tape r(i)2 to obtain randomness for all prover/verifier algorithms to run Protocol

rs-rZKTAG.
d) Broadcast the determining message D(i) = α

(i)
1 ‖ α

(i)
2 ‖ α

(i)
3 ‖ α

(i)
4 ‖ u(i). Using protocol rs-rZKTAG with tag i, prove to

party j ∈ [n] \ {i} that: “∃ x, r, g, s such that, (i) α(i)
1 , α(i)

2 , α(i)
3 and α(i)

4 are commitments to x, r, g and s respectively,
and (ii) (u(i),⊥) = Sloss(s).

2) Simulation Extraction Phase:
a) After receiving the determining message D(k) for every k ∈ [n] \ {i} and verifying their associated proof, calculate

β
(i)
k = Enc(x(i) ‖ R(i) ‖ G(i);u(k)).

b) Broadcast β(i) = β
(i)
1 ‖ β

(i)
2 ‖ . . . ‖ β

(i)
n , where β(i)

i is an all 0 string. Using Protocol rs-rZKTAG with tag i, prove to party
j ∈ [n]\{i} that: “u(i) is an injective function index”, or “∃ x, r, g, s such that, (i) α(i)

1 , α(i)
2 , α(i)

3 and α(i)
4 are commitments

to x, r, g and s respectively, (ii) (u(i),⊥) = Sloss(s), and (iii) For all k ∈ [n] \ {i}, β(i)
k = Enc(x ‖ r ‖ g;u(k)).”

3) Coin Tossing Phase:
a) Let D = D(1) ‖ D(2) ‖ · · · ‖ D(n)) and evaluate r(i)3 = G(i)(D).
b) Broadcast r(i)3 and use Protocol rs-rZKTAG with tag i to prove to every other party j ∈ [n] \ {i} that: “u(i) is an injective

function index”, or “∃ g such that α(i)
3 = Com(g) and r(i)3 = g(D).”

c) After receiving r(j)3 for all j ∈ [n] \ {i}, compute a(1) ‖ a(2) ‖ · · · ‖ a(n) = a = ⊕k∈[n] r
(k)
3 . Define r(i) = a(i) ⊕ r(i)1 .

4) Computation Phase: Before broadcasting the message for round t of the protocol Π, let the party’s current view be V (i)
t =

(τt−1, x
(i), r(i)).

a) Let msg(i)t be the next message obtained by applying the next message function of Π on the view V
(i)
t .

b) Broadcast msg(i)t and prove to every party j ∈ [n] \ {i} the statement: “u(i) is an injective function index”, or “∃ v such
that msg(i)t is the next message for view v in protocol Π,” using Protocol rs-rZKTAG with tag i.

Figure 3. Fully Resettable Secure Computation.

2) The trusted party verifies whether w is a witness for
“x ∈ L” or not. If it is not a witness of “x ∈ L” then
it sends ⊥ to the verifier V . Otherwise, the trusted
party picks a secret key sk, sends pk = Gen(sk)
to the verifier V . Next, the trusted party acts as a
prover of the protocol Σ with tag pk and engages
in an interactive protocol with the verifier V (who
acts as a verifier of Σ). The protocol Σ with tag
pk = pk1pk2 . . . pkl is a parallel repetition of protocol
Σ′ with tags (i, pki) for all i ∈ [l]. Finally, the trusted
party signs the transcript τ generated by the protocol
Σ with the secret key sk and sends the signature
σ = Signsk(τ) to the verifier. The proof is accepted if
and only if the verifier of Σ accepts all the Σ′ proofs
and σ verifies as a valid signature of τ using the public
key pk, i.e. V erpk(τ, σ) = 1.

We crucially rely on the non-malleability of the zero-
knowledge protocol and the security of the digital signature
scheme in our argument, details of which can be found in
the full version.

ACKNOWLEDGEMENT

We would like to thank Abhishek Jain, Rafail Ostrovsky,
and Ivan Visconti for pointing out an error in the proceedings
version of this work. The current version is the corrected
one.

REFERENCES

[1] Boaz Barak. How to go beyond the black-box simulation
barrier. In Proc. 42nd FOCS, pages 106–115. IEEE, 2001.
Preliminary full version available on http://www.math.ias.edu/
∼boaz.

[2] Boaz Barak and Oded Goldreich. Universal arguments
and their applications. Cryptology ePrint Archive, Report
2001/105, 2001. Extended abstract appeared in CCC’ 2002.

[3] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda
Lindell. Resettably-sound zero-knowledge and its applica-
tions. Record 2001/063, Cryptology ePrint Archive, August
2001. Preliminary version appeared in FOCS’ 01.

[4] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower
bounds for non-black-box zero knowledge. In FOCS, pages
384–393, 2003.

[5] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio
Micali. Resettable zero-knowledge. In Proc. 32th STOC,
pages 235–244. ACM, 2000.

[6] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New
constructions for uc secure computation using tamper-proof
hardware. In Nigel P. Smart, editor, EUROCRYPT, volume
4965 of Lecture Notes in Computer Science, pages 545–562.
Springer, 2008.

[7] Yi Deng, Dengguo Feng, Vipul Goyal, Dongdai Lin, Amit
Sahai, and Moti Yung. Constant-round simultaneously reset-
table zero-knowledge in the bpk model. In Manuscript, 2011.

[8] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the
simultaneous resettability conjecture and a new non-black-
box simulation strategy. In FOCS, pages 251–260, 2009.

[9] Yi Deng and Dongdai Lin. Instance-dependent verifiable
random functions and their application to simultaneous re-
settability. In Naor [16], pages 148–168.

[10] Oded Goldreich. Foundations of Cryptography: Basic Appli-
cations. Cambridge University Press, 2004.

[11] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play ANY mental game. In ACM, editor, Proc. 19th STOC,
pages 218–229. ACM, 1987. See [10, Chap. 7] for more
details.

[12] Vipul Goyal and Abhishek Jain 0002. On the round complex-
ity of covert computation. In Leonard J. Schulman, editor,
STOC, pages 191–200. ACM, 2010.

[13] Vipul Goyal and Amit Sahai. Resettably secure computation.
In EUROCRYPT, pages 54–71, 2009.

[14] S. Huang, D. MacCallum, and D.Z. Du. Network Security.
Springer, 2010.

[15] Silvio Micali and Leonid Reyzin. Soundness in the public-key
model. In CRYPTO, pages 542–565, 2001.

[16] Moni Naor, editor. Advances in Cryptology - EUROCRYPT
2007, 26th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Barcelona,
Spain, May 20-24, 2007, Proceedings, volume 4515 of Lec-
ture Notes in Computer Science. Springer, 2007.

[17] Rafail Ostrovsky, Omkant Pandey, Amit Sahai, and Ivan
Visconti. Non-malleability under reset attacks. In Manuscript,
2011.

[18] Rafael Pass. Bounded-concurrent secure multi-party compu-
tation with a dishonest majority. In Proc. 36th STOC, pages
232–241. ACM, 2004.

[19] Rafael Pass. Limits of security reductions from standard
assumptions. In STOC, 2011.

[20] Rafael Pass and Alon Rosen. Concurrent non-malleable
commitments. In FOCS, pages 563–572, 2005.

[21] Rafael Pass and Alon Rosen. New and improved construc-
tions of non-malleable cryptographic protocols. In Proc. 37th
STOC. ACM, 2005.

[22] Rafael Pass, Wei-Lung Dustin Tseng, and Douglas Wikström.
On the composition of public-coin zero-knowledge protocols.
In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 160–176. Springer, 2009.

[23] Amit Sahai. Non-malleable non-interactive zero knowledge
and adaptive chosen-ciphertext security. In FOCS, pages 543–
553, 1999.

[24] Andrew Chi-Chih Yao. Protocols for secure computation. In
Proc. 23rd FOCS, pages 160–164. IEEE, 1982.

[25] Moti Yung and Yunlei Zhao. Generic and practical resettable
zero-knowledge in the bare public-key model. In Naor [16],
pages 129–147.

