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The Erdös-Rényi model is a simple and widely studied model for
generating random graphs. Given a positive integer n and a real p
between 0 and 1, G(n, p) is the distribution over n-vertex graphs
obtained by including, for every unordered pair {u, v} of vertices,
the edge uv in the edge set of G independently with probability p.
The square of a graph G, denoted by G2, is the graph obtained from
G by also adding an edge between every pair of vertices that share
at least one common neighbor. A proper k-coloring of a graph G is
a function f that assigns to every vertex of G a color f(v) from the
set {1, . . . , k} such that no two neighbouring vertices get the same
color, and the chromatic number of a graph G is the minimum k
so that G has a k-coloring.

In a recent article, Cheng, Maji and Pothen [3] consider squares
of sparse Erdős-Rényi graphs G(n, p) with p = Θ(1/n) as interest-
ing benchmark instances to evaluate parallel algorithms that color
the input graph. These authors prove that if G is sampled from
G(n, p) with p = Θ(1/n) then, with high probability, the chro-
matic number of G2 lies between Ω

(
log n

log log n

)
and O(log n). In this

work we obtain a tight Θ
(

log n
log log n

)
bound on the chromatic number

of G2. Along the way we also obtain asymptotically tight bounds
for the maximum degree of the k-th power of graphs sampled from
G(n, p).

∗Squares of Random Graphs
†The work of Lokshtanov and Garapaty is supported by BSF award 2018302 and

NSF award CCF-2008838.
‡The work of Maji is supported in part by NSF awards CNS–1618822 and CNS–

2055605.
§The work of Pothen is supported by NSF award CCF-1637534 and DOE award

SC-0022260.

1

https://www.intlpress.com/site/pub/pages/journals/items/joc/_home/_main/index.php


2 Kalyan Garapaty et al.

1. Introduction

We consider the problem of characterizing the chromatic number of squares
and higher powers of random graphs. For a random bipartite graph on n ver-
tices, choosing each edge with probability Θ(1/n), Cheng, Maji, and Pothen [3]
had established a lower bound of Ω(log n/ log log n) for the chromatic num-
ber of the square of the graph induced by one vertex set. (Such a graph is
called a random binomial intersection graph, and more details will be pro-
vided in the next section.) In this paper, we show a matching upper bound
on the chromatic number. Indeed, we obtain for the k-th power of an Erdös-
Rényi (non-bipartite) graph, an upper bound on the chromatic number of
O
(
log n/ log(k) n

)
, where the denominator involves the k times nested loga-

rithmic function. We believe our techniques for obtaining the upper bound
are of independent interest, since we show that the maximum degree of vertex
in the k-th power graph is O

(
log n/ log(k+1) n

)
.

This problem is motivated by earlier work on generating graphs of ar-
bitrary size whose chromatic numbers are tunable and precisely known [3].
Achlioptas and Naor [1] and later Coja-Oghlan and Vilenchik [4] showed that
the chromatic number of sparse Erdös-Rényi graphs could be precisely spec-
ified when the probability of an edge is Θ(1/n), and that it was independent
of the number of vertices n. The coloring problems occurring in the efficient
computation of Jacobian matrices for continuous optimization or solution of
differential equations are related to the (partial) distance-2 coloring problem
in bipartite graphs [6], and these correspond to the usual distance-1 coloring
on the square of the bipartite graph induced by one vertex set. The several
coloring problems that occur in the computation of Jacobians and Hessians
are discussed by Gebremedhin, Manne and Pothen [6].

Note that unlike the distance-1 chromatic number, the distance-2 chro-
matic number of random Erdös-Rényi graphs increases with n when the prob-
ability of an edge is Θ(1/n). Knowing how it increases with n is practically
helpful to assess the performance of coloring algorithms when test graphs
with billions or more edges are generated and colored on massively parallel
distributed-memory multiprocessors.

In this paper we will consider the powers of graphs sampled from the
Erdös-Rényi model of random graphs for specific parameter regimes. We will
begin by showing bounds on the number of vertices at a given distance from
any vertex in a graph sampled according to the model. Using these bounds,
we will give a tight bound on the chromatic number. We will then show that
these results apply to the class of binomial random intersection graphs.
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2. Preliminaries

Let X be a random variable over the sample space Ω. Consider any subset
E ⊆ Ω, referred to as an event. The random variable 1 (E) over the sample
space {0, 1} is the random variable “X ∈ E .” In particular, we have E[1 (E)] =
Pr[X ∈ E ].

The Erdös-Rényi model is denoted as G(n, p), where n and p are param-
eters to the model. A graph of this model is sampled as follows - a set of n
vertices is taken as the vertex set V ; an edge is added between any pair of
vertices in V independently with a probability p; and the resulting graph is
output as the sample. In this paper, we will be looking at the graphs sampled
with p = γ

n , where γ is a positive constant.
The k-th power of a graph G is another graph Gk, defined on the same

set of vertices as G but it has an edge between any two vertices that are at a
distance of at most k in G. The chromatic number of a graph is the minimum
number of colors needed to be able to give each vertex of the graph a color
such that no two vertices connected by a single edge have the same color.

The distribution of Binomial Random Intersection Graphs is represented
by G(n, m, p). A graph of this model is sampled as follows. Two sets of vertices
V and W of sizes n and m respectively, are taken. The set V is interpreted as a
set of vertices, and W as a set of features, in a bipartite graph H. Each of the
n · m edges between the sets V and W is added to the graph independently
with a probability p. The graph thus formed is called a Bipartite Vertex-
feature Inclusion Graph, labelled as H. Now, the vertex set V of H is squared
by adding an edge between each pair of vertices V if they have at least one
common neighbor in W . The resulting graph over the set V , ignoring the
vertices in W , is called a binomial Random Intersection Graph. In this paper
we will be looking at the parameter regimes of n = m and p = γ

n , where γ is
a positive constant.

A proper k-coloring of a graph G is a function f that assigns to every
vertex of G a color f(v) from the set {1, . . . , k} such that no two neighboring
vertices get the same color. The graph G is said to be d-degenerate if there
exists an ordering of the vertices of G such that every vertex in the ordering
has at most d forward edges, i.e., edges that join the vertex to higher num-
bered vertices. The minimum d such that G is d-degenerate is known as the
degeneracy of G.

Let G be any graph with vertex set V and set of edges E(G). A subset
of vertices S of a graph G is called sufficiently dense if the induced subgraph
of S in G has at least as many edges as there are vertices in S. For any
vertex v ∈ V , we call the set of vertices at a distance exactly k from v the



4 Kalyan Garapaty et al.

distance-k neighborhood of v. The distance between any two vertices is the
number of edges in a shortest path that joins them. Since we are dealing with
random graphs in this paper, note that for such a graph any of its properties,
including these neighborhoods would be randomized. We will thus represent
them by random variables defined as follows.

The set Nv,k will denote a random variable denoting the set of distance-k
neighbors of v. The size of Nv,k will be represented by the random variable
Nv,k. If X1, X2, · · · Xt are some fixed, mutually disjoint subsets of the vertex
set V , we will represent them as a vector such as - X⃗t = (X1, X2, · · · Xt) and
define ∪X⃗k = ∪1⩽t⩽kXt. Similarly, we will have a random variable N⃗v,t, which
is a vector of size t with the entries denoting the values of the random variables
Nv,1, Nv,2 · · · Nv,t. Now, the event Nv,1 = X1, Nv,2 = X2, · · · Nv,t = Xt will
be represented as N⃗v,t = X⃗t.

For any of the variables defined here, if the graph that they are describing
is clear from the context, we write them as above. If we are talking about
different graphs, such as G1 and G2, we add a superscript to the random
variables defined above as - N G1

v,t or N G2
v,t .

For any graph G, we have the following parameters:

• ∆(G) - maximum degree among its vertices
• χ(G) - its chromatic number
• D(G) - its degeneracy

If the graph being considered is clear from the context, we drop G from this
notation.

Relation with Degeneracy (D) Let vo1 , vo2 · · · von be an ordering of
the vertices of G such that every vertex voi is a neighbor to at most D of the
vertices voi+1 , voi+2 · · · von . Such an ordering does exist due to the definition
of degeneracy. Now we take D + 1 colors to color the vertices von , von−1 · · · vo1

in that order. When voi is to be colored, due to the order of coloring, only
voi+1 , voi+2 · · · von are coloured. Thus, at most D neighbors of voi are colored.
As we have D +1 colors, there will be at least one color that was not assigned
to any of the neighbors of voi . This color will be given to voi . In this way all
the vertices of G can be colored in D + 1 colors.

χ ⩽ D + 1.

For any real x and natural number k, we denote log(k)(x) = log log · · · log︸ ︷︷ ︸
k-times

(x)

and xk = log x
log(k)(x) . We use the well-known Big Oh, Big Omega, Big Theta, and
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small Oh asymptotic notations throughout; Θt. will denote that the constants
involved in the relation depend on a constant parameter t.

As we are working with random graphs, the meaning of a bound on the
value of any variable is different from the deterministic case. Here a bound
means that the probability of the random variable being over (for upper
bound) or below (for lower bound) the bound is negligible in terms of the
input parameters.
Related Work. Now we summarize related work to put our contributions
in context.
Chromatic number. The chromatic number of the random graph G(n, d/n)
can be specified for “almost all” values of d. Let dk,1 = 2k log k − log k −
1 + ok (1), where the last term goes to zero with increasing values of k,
and let dk,2 = 2k log k. Achlioptas and Naor [1] proved that in the inter-
val d ∈

(
d(k−1),1, d(k−1),2

)
, the chromatic number of G(n, d/n) is k for large

enough values of n with high probability. In the subsequent interval d ∈(
d(k−1),2, dk,1

)
, it is either k or k + 1. This result has been strengthened by

Coja-Oghlan and Vilenchik [4] in the following theorem.

Theorem 2.1. There exists a constant k0 such that the following statement
is true. Let Sk = (2(k−1) log(k−1)− log(k−1)−0.99, 2k log k− log k−1.38),
S =

⋃
k⩾k0 Sk, and F (d) = k for all d ∈ Sk. Then S has asymptotic density

1 and for any d ∈ S, we have

lim
n→∞

Pr[χ(G(n, d/n)) = F (d)] = 1.

Intersection graphs. A study of various properties of random intersection
graphs is included in the book [5].

Lagerås and Lindholm [7] have studied the component structure of the
binomial random intersection graph G(n, m, p) with m = ⌊β/n⌋ and p = γ/n,
where β and γ are constants. The expected degree of a vertex is then µ = βγ2.
If µ < 1, then with high probability there is no connected component in G
with more than O(log n) vertices; if µ > 1, then with high probability there
exists a giant component with (1 − ρ + o(1))n vertices, where 0 < ρ < 1, and
the size of the second largest component is O(log n).

The chromatic number of binomial random intersection graphs has been
studied by Behrisch, Taraz and Ueckerdt [2]. One of their theorems of interest
in this context is the following:

Theorem 2.2. Let m = nα, with α > 0, and let p = o(
√

1/mn). Then with
high probability the graph G(n, m, p) can be colored optimally in linear time
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and χ(G(n, m, p)) = ω(G(n, m, p)), i.e., the chromatic number is equal to the
size of the maximum clique.

For these values of p, the graph G is a perfect graph with high probability,
and the authors show that Greedy algorithm colors the graph optimally. We
consider the graph for larger values of p, i.e., when p = Θ(1/n), due to the
optimization problem that motivates this work.

3. Asymptotically Tight Degree Bounds for Powers Of
Sparse Random Graphs

Let t be a natural number and γ > 0 be a positive real number. If we sample
a random graph G on n vertices, including each edge independently with
probability γ/n, what can we say about the maximum degree of Gt? We show
that for sufficiently large n (depending on γ and t), with high probability it
holds that

∆(Gt) = Θt

(
log n

log(t+1) n

)
.(1)

We will prove a stronger statement that also gives a bound of 1
n0.7 on the

failure probability (i.e., the probability that a graph G drawn from G(n, γ/n)
fails to satisfy Equation 1) and gives bounds for the dependence of the con-
stants hidden in the Θt-notation in Equation 1.

Theorem 3.1. Define constants
{
εi := 0.05 · 2−i

}
i⩾0 and δ := 6. Fix any

natural number t and a positive constant γ. For sufficiently large n ∈ N, the
graph G ∼ G(n, γ/n) satisfies

Pr
[

∆ (Gt)
nt+1

∈ [εt, δ]
]
⩾ 1 − 1

n0.7 .

We emphasize that the condition “n should be sufficiently large” depends
on both the parameters t and γ. For example, the quantity log(t+1) n requires
n to be at least a height-t tower of exponentiations to be well-behaved. Fur-
thermore, we clarify that here the subscript i is an index in the notation εi,
unlike the definition of nt+1.

The proof of Theorem 3.1 spans the remainder of this section. The state-
ment (and proof) of Theorem 3.1 naturally splits in two parts: an upper bound
and a lower bound for the maximum degree of the t’th power of a random
graph. Lemma 3.2 shows the upper bound, while Lemma 3.3 and Lemma 3.4
imply the lower bound.
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High-level proof overview.

1. For the upper bound, Lemma 3.2 proves that the number of vertices
at distance k ∈ {0, 1, . . . , t} is 3nk+1 with 1 − 1/poly(n) probability
using the first moment technique. In particular, this result implies that
the probability of any vertex having ⩾ 6nt+1 degree in Gt is at most
1/poly(n).

2. For the lower bound, we proceed using the second moment technique.
Lemma 3.3 proves that the expected number of vertices with at least
Θ
(
2−knk+1

)
vertices at distance k, where k ∈ {0, 1, . . . , t}, is n1−Θ(1).

Next, Lemma 3.4 shows that family of events “a vertex v has at least
Θ
(
2−knk+1

)
vertices at distance k” is (essentially) pairwise independent,

for v ∈ V (G); entailing a small covariance. Using the second moment
technique, these two observations imply that there must be a vertex
with Θ(2−tnt+1) vertices at distance t, except with 1/poly(n) probabil-
ity.

Section 4 proves that the chromatic number of Gt is O(nt) (refer to The-
orem 4.1). This result relies only on Lemma 3.2. Readers interested in Theo-
rem 4.1 can skip the details of Lemma 3.3 and Lemma 3.4, which pertain to
the lower bound on ∆(Gt).

3.1. Degree Upper Bound

Suppose G ∼ G(n, p), where p = γ/n. Recall that Nv,k represents the number
of vertices in G at distance k from v.

Lemma 3.2. Fix a constant γ > 0. There exists an infinite sequence of
natural numbers B(0, γ) ⩽ B(1, γ) ⩽ B(2, γ) ⩽ · · · such that the following
statement holds. For all integers k ⩾ 0 and n ⩾ B(k, γ), the probability
estimate below holds for any vertex v in the graph G ∼ G(n, γ/n).

Pr[Nv,k > 3 · nk+1] ⩽ k

n2 .

Proving the upper bound of Theorem 3.1 using Lemma 3.2. Fix
t ∈ N and constant γ > 0. Consider a natural number n ⩾ B(t, γ). For any
vertex v in G ∼ G(n, γ/n) and k ∈ {0, 1, . . . , t}, since n ⩾ B(t, γ) ⩾ B(k, γ),
Lemma 3.2 implies

Pr[Nv,k > 3 · nk+1] ⩽ k

n2 .
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By union bound over k ∈ {1, 2, . . . , t}, we have

Pr
[

t∨
k=1

Nv,k > 3 · nk+1

]
⩽

1 + 2 +· · · + t

n2 ⩽
t2

n2 .

Finally, using a union bound over v ∈ V (G), we get

Pr
[
∃v ∈ V (G) s.t.

t∨
k=1

Nv,k > 3 · nk+1

]
⩽

t2

n
.

So, with probability at least
(
1 − t2/n

)
, every vertex v ∈ V (G) satisfies Nv,k ⩽

3 · nk+1, for every k ∈ {1, 2, . . . , t}. Therefore, any vertex v ∈ V (G) in such a
graph has degree at most 3 · (n2 + n3 +· · · + nt+1) ⩽ 6 · nt+1 in the graph Gt

(by Lemma A.1). So,

(2) Pr
[
∆
(
Gt) ⩽ 6 · nt+1

]
⩾ 1 − t2

n
= 1 − o

( 1
n0.7

)
.

Proof of Lemma 3.2 . We proceed by induction on k ∈ {0, 1, . . . } and also
show the existence of an infinite sequence of natural numbers B(0, γ) ⩽
B(1, γ) ⩽ · · ·.

For the base case of k = 0, define B(0, γ) := 1. For all n ⩾ B(0, γ),
G ∼ G(n, γ/n), and a vertex v ∈ V (G), we have Nv,0 = 1 < 3 = 3 · n1.

We now proceed with the inductive step for k ∈ {1, 2, . . . }. Consider
n ⩾ B(k − 1, γ). The value of B(k, γ) shall be determined later. Consider
G ∼ G(n, γ/n) and any vertex v ∈ V (G). By law of total probability we
obtain the following.

Pr[Nv,k > 3 · nk+1] = Pr[Nv,k > 3 · nk+1, Nv,k−1 ⩽ 3 · nk]
+ Pr[Nv,k > 3 · nk+1, Nv,k−1 > 3 · nk]

⩽ Pr[Nv,k > 3 · nk+1|Nv,k−1 ⩽ 3nk] + Pr[Nv,k−1 > 3nk]

⩽ Pr[Nv,k > 3 · nk+1|Nv,k−1 ⩽ 3nk] + k − 1
n2 .(3)

Here we applied the inductive hypothesis in the last transition. In light of
Equation 3, to complete the proof, it suffices to show the upper bound

Pr[Nv,k > 3 · nk+1|Nv,k−1 ⩽ 3nk] ⩽ 1
n2 .
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Intuitively, this result is equivalent to proving that a small vertex-set is un-
likely to expand significantly. We proceed with estimating this probability
expression below.

Pr[Nv,k > 3 · nk+1|Nv,k−1 ⩽ 3 · nk]

⩽ max
X⃗k−1 s.t.

|Xk−1|⩽3·nk

Pr
[
Nv,k > 3 · nk+1|N⃗v,k−1 = X⃗k−1

]

⩽ max
X⃗k−1 s.t.

|Xk−1|⩽3·nk

Pr
[
X⃗k−1 has > 3 · nk+1 neighbors in V (G) \ X⃗k−1

]

⩽
(enkγ

nk+1

)3nk+1

.(4)

The last bound follows from the following claim.

Claim 1. Consider a subset A ⊆ V (G). The probability of A having at least
b neighbors in V (G) \ A is at most(

n − a

b

)
· (1 − qa)b ⩽

(
n

b

)
·
(

aγ

n

)b

⩽
(eaγ

b

)b

,

where a = |A| and q = (1 − γ/n).

The proof of this claim proceeds as follows. Consider a set B ⊆ V (G) \ A
of size b. A vertex in A is not adjacent to a vertex in B with probability q,
and hence no vertex in A is adjacent to a vertex in B with probability qa.
Thus some vertex in A is adjacent to a vertex in B with probability (1 − qa),
and it follows that the probability that the neighborhood of A contains B is
at least

(1 − qa)b ⩽ (aγ/n)b .

The simplification follows from

1 − qa = 1 − (1 − γ/n)a) ⩽ 1 − (1 − aγ/n) = aγ/n,

since (1−x)a ⩾ 1−ax for all a ⩾ 1 and x ∈ [0, 1]. The claim follows by taking
a union bound over all possible subsets B and upper bounding the binomial
coefficient

(n
b

)
⩽ (en/b)b (see Lemma A.2).

We continue the simplification of our probability expression as follows.

Pr[Nv,k > 3 · nk+1|Nv,k−1 ⩽ 3 · nk] ⩽
(enkγ

nk+1

)3nk+1
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=
(

eγ log(k+1) n

log(k) n

)3 log n/ log(k+1) n

= n−3+o(1) ⩽ o
( 1

n2

)
.

The last step in the simplification uses the facts that

(
log(i) n

)log n/ log(i+1) n
= n, and

(
Θ(1) · log(i+1) n

)log n/ log(i+1) n
= no(1).

The natural number B(k, γ) is chosen such that the o(1) function in
the probability expression above becomes < 1. This completes the proof of
Lemma 3.2.

3.2. Degree Lower Bound

Lemma 3.3. For a fixed constant γ > 0, there exists an infinite sequence
of natural numbers C(0, γ) ⩽ C(1, γ) ⩽ C(2, γ) ⩽ · · · such that the following
statement holds. For all integers k ⩾ 0, for n ⩾ C(k, γ), and for any vertex
v in the graph G ∼ G(n, γ/n), the number of vertices at distance k from v

satisfies the following probability estimate:

Pr[Nv,k ⩾ εk · nk+1] ⩾ n−
∑k

i=0 εi >
1

n0.1 ,

where ε0 = 0.05 and εi = 2−iε0, for i ⩾ 1.

Proof. Observe that the sequence {εi}i⩾0 =
{
0.05 · 2−i

}
i⩾0 is a geometric

progression. Therefore,
∑k

i=0 εi < 2ε0 = 0.1, which implies the final estimate
in the lemma.

Now, we proceed by induction on k ∈ {0, 1, . . . } to prove that

Pr[Nv,k ⩾ εk · nk+1] ⩾ n−
∑k

i=0 εi ,

and, simultaneously, show the existence of the appropriate (non-decreasing)
integer sequence {C(i, γ)}i⩾0.

For the base case of k = 0, define C(0, γ) = 1. For n ⩾ C(k, γ), it trivially
holds that

Pr[Nv,0 = 1 ⩾ 0.05 = ε0 · n1] = 1 ⩾
1

nε0
.
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For the inductive step, consider k ∈ {1, 2, . . . }. Consider any n ⩾ C(k −
1, γ) and G ∼ G(n, γ/n). The exact constant C(k, γ) shall be determined
later.

Before we proceed, we present a high-level outline of our proof strat-
egy. Our objective is to prove that Nv,k is large with substantial probability.
However, there are two events that can preclude this phenomenon. The first
bad event is when

∑k−1
i=1 Nv,i is “too large” and, thus, the pool of remaining

vertices becomes too small. The second bad event is that the Nv,k−1 is “too
small” and it is unlikely for the set of vertices at distance (k−1) to sufficiently
expand to have a large size-Nv,k set of vertices at distance k. To avoid both
these bad events, we define the following predicate.

{true, false} ∋ Good(v, G) :=
(

k−1∧
i=0

Nv,i ⩽ 3ni+1

)
∧ (Nv,k−1 ⩾ εk−1 · nk) .

We shall show that conditioned on Good(v, G) happening, the probability of
Nv,k ⩾ εk · nk+1 is substantial. Furthermore, the probability of Good(v, G) is
substantial as well (using the inductive hypothesis and Lemma 3.2).

We present two claims formalizing these intuitive statements.

Claim 2.
Pr[Good(v, G)] ⩾ 1

2 · n−
∑k−1

i=0 εi .

Claim 3.
Pr[Nn,k ⩾ εk · nk+1|Good(v, G)] ⩾ 2 · n−εk .

Using Claim 2 and Claim 3, the proof of the lemma is straightforward.

Pr[Nn,k ⩾ εk · nk+1] ⩾ Pr[Nn,k ⩾ εk · nk+1, Good(v, G)]
= Pr[Nn,k ⩾ εk · nk+1|Good(v, G)] · Pr[Good(v, G)]

⩾
(
2 · n−εk

)
·
(1

2 · n−
∑k−1

i=0 εi

)
= n−

∑k

i=0 εi .

This derivation completes the inductive proof of our lemma.

Thus, all that remains is to prove Claim 2 and Claim 3.

Proof of Claim 2 . Observe that

Pr[Nv,k−1 ⩾ εk−1 · nk]
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= Pr
[(

k−1∧
i=0

Nv,i ⩽ 3ni+1

)
∧ (Nv,k−1 ⩾ εk−1 · nk)

]

+ Pr
[(

k−1∨
i=0

Nv,i > 3ni+1

)
∧ (Nv,k−1 ⩾ εk−1 · nk)

]
= Pr[Good(v, G)]

+ Pr
[(

k−1∨
i=0

Nv,i > 3ni+1

)
∧ (Nv,k−1 ⩾ εk−1 · nk)

]

⩽ Pr[Good(v, G)] + Pr
[

k−1∨
i=0

Nv,i > 3ni+1

]

⩽ Pr[Good(v, G)] + 0 + 1 +· · · + (k − 1)
n2

(By Lemma 3.2)

< Pr[Good(v, G)] + k2

n2

Rearranging this inequality, we get

Pr[Good(v, G)] ⩾ Pr[Nv,k−1 ⩾ εk−1 · nk] − k2

n2

⩾ n−
∑k−1

i=0 εi − k2

n2(By inductive hypothesis)

⩾
1
2 · n−

∑k−1
i=0 εi .

We shall choose a sufficiently large C(k, γ) such that for all n ⩾ C(k, γ) the
last inequality is satisfied.

Proof of Claim 3 . The proof relies on a technical claim.

Claim 4. Consider a subset A ⊆ S ⊆ V (G). The probability of A having at
least b neighbors in V (G) \ S is at least(

n − s

b

)
· (1 − qa)b · (qa)n−s−b ,

where s = |S|, a = |A|, and q = (1 − γ/n).

The probability above is lower-bounded by the probability of the event
that A has exactly b neighbors in V (G) \ S. There are

(n−s
b

)
such sets. Fix a
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size-b subset B ⊆ V (G) \ S. The probability that A is neighbor to a vertex
in B is (1 − qa), and the probability that A is a neighbor to every vertex
in B is (1 − qa)b. The probability that A is not a neighbor to any vertex
in V (G) \ (S ∪ B) is qa·(n−s−b). Observe that there is no double-counting of
configurations in the argument above because if A has exactly b neighbors in
V (G)\S in a graph configuration then this configuration gets counted exactly
once. Therefore, the expression in the claim is a lower bound to the desired
probability.

In our case, A denotes the vertices at distance (k − 1) from v in G, S
denotes the vertices at distance ⩽ (k − 1) from v in G, and b = εk · nk+1 (the
lower bound on the number of vertices at distance k from v in G). Since we
condition on Good(v, G), we have s ⩽ 3(n1 +· · ·+nk) ⩽ 6nk (by Lemma A.1).
Furthermore, we have εk−1 · nk ⩽ a ⩽ 3 · nk.

We shall rely on the following individual estimates of the terms in the
probability expression.(

n − s

b

)
⩾
(

n − s

b

)b

= (1 − o(1)) ·
(

n

b

)b

In this bound, we use the fact that sb = o(n) in our context.

(1 − qa)b =
(

1 −
(

1 − γ

n

)a)b

⩾ (1 − exp(−γa/n))b

⩾
(

γa

2n

)b

.

This bound relies on the fact that (i) (1 − x) ⩽ exp(−x), for all x ∈ R, and
(ii) exp(−x) ⩽ 1 − x/2, for x ∈ [0, 1/2]. We also use the fact that a = o(n) in
our context.

qa·(n−s−b) ⩾
(

1 − γ

n

)a(n−s−b)
>

(
1 − γ

n

)an

= (1 − o(1)) · exp(−γa).

This inequality uses the fact that a = o(n) in our context. Consequently, the
probability is lower-bounded as follows.(

n − s

b

)
· (1 − qa)b · qa(n−s−b)
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⩾ (1 − o(1)) ·
(

γa

2b

)b

· exp(−γa)

⩾ (1 − o(1)) ·
(

γεk−1nk

2εknk+1

)εknk+1

· exp (−3γnk)

⩾ (1 − o(1)) ·
(

γnk

nk+1

)εknk+1

· exp (−3γnk)

(Because εi = εi−1/2)

= (1 − o(1)) ·
(

γ exp (−3γnk/εknk+1) log(k+1) n

log(k) n

)εknk+1

⩾ (1 − o(1)) ·
(

(γ/2) log(k+1) n

log(k) n

)εknk+1

(Because nk = o(nk+1))

= (1 − o(1)) ·
(
(γ/2) log(k+1) n

)εknk+1
· n−εk

⩾ 2 · n−εk .

Since
(
(γ/2) log(k+1) n

)εknk+1 = ω(1), one can set n sufficiently large to ensure
that the final inequality is satisfied. The choice of C(k, γ) should ensure this
bound.

Lemma 3.3 proves that every given vertex has degree at least εk ·nk+1 with
probability at least n−0.1. By linearity of expectation, the expected number of
vertices with degree at least εk ·nk+1 is at least n0.9. This observation strongly
suggests that, with high probability, there will be at least one such vertex in
the graph. We now proceed to formally prove this intuition using Chebyshev’s
inequality. For this analysis, we prove an upper bound of o

(
n log2 n

)
on the

variance of the number of vertices with degree at least εk · nk+1.

Lemma 3.4. Fix a constant γ > 0. There exists an infinite sequence of
natural numbers D(0, γ) ⩽ D(1, γ) ⩽ D(2, γ) ⩽ · · · such that the following
statement holds. For all integers k ⩾ 0, n ⩾ D(k, γ), and for any two distinct
vertices v, v′ in the graph G ∼ G(n, γ/n), we have the estimate

CoVar [1 (Nv,k ⩾ εk · nk+1) , 1 (Nv′,k ⩾ εk · nk+1)] = o
(
log2 n/n

)
,

where εk = ε0 · 2−k is defined as in Lemma 3.3.

Proof. It is instructive to present a high-level proof overview before proceed-
ing with the formal details. For brevity, let E represent the event Nv,k ⩾ εk · nk+1
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and E′ represent the event that Nv′,k ⩾ εk · nk+1. Our objective is to prove
that the two events E and E′ are “essentially independent” of each other.
Towards this objective, we shall identify an event Good such that

1. Pr[¬Good] = o(log n/n), and
2. Conditioned on the Good event, the joint probability of the events E

and E′ is roughly the product of their marginal probabilities, i.e.,

Pr[E, E′|Good] ⩽ Pr[E] · Pr[E′] + o
(
log2 n/n

)
.

The Good event occurs when the vertices v and v′ are at a distance > 2k
from each other in the graph G (and few additional properties are satisfied
by the vertices v and v′). This Good event, in particular, entails that the ball
of vertices that are at distance ⩽ k from v is disjoint from the ball of vertices
at are at distance ⩽ k from v′. This separation of the radius-k balls centered
at v and v′ suffices to make E and E′ (essentially) independent.

Using the properties above, we can estimate the covariance as follows.

CoVar [1 (E) , 1 (E′)] = Pr[E, E′] − Pr[E] · Pr[E′]
= Pr[E, E′, Good] + Pr[E, E′, ¬Good] − Pr[E] · Pr[E′]
⩽ Pr[E, E′|Good] · Pr[Good] + Pr[¬Good] − Pr[E] · Pr[E′]

<
(
Pr[E] · Pr[E′] + o

(
log2 n/n

))
· 1 + o(log n/n) − Pr[E] · Pr[E′]

= o
(
log2 n/n

)
.

Formally, we define the Good(v, v′, G) event as follows.

{true, false} ∋ Good(v, v′, G) =
(

k∧
i=0

Nv,i ⩽ 3ni+1

)
∧
(

k∧
i=0

Nv′,i ⩽ 3ni+1

)
∧ distG(v, v′) > 2k.

The following claims formalizes the two intuitive statements made earlier.

Claim 5.

Pr[¬Good(v, v′, G)] = o
( log n

n

)
.

Claim 6.

Pr[E, E′|Good(v, v′, G)] ⩽ Pr[E] · Pr[E′] + o
(

log2 n

n

)
.
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The natural numbers D(k, γ) are chosen sufficiently large such that for
all n ⩾ D(k, γ) the claims above hold. As demonstrated above, the proof of
our lemma follows from these two claims.

Proof of Claim 5 . We already know by Lemma 3.2 that for any i ∈ {0, 1, . . . , k},
we have

Pr[Nv,i > 3 · ni+1] ⩽ i

n2 .

Therefore, by union bound, we have

(5) Pr
[

k∨
i=0

Nv,i > 3 · ni+1

]
⩽

0 + 1 +· · · + k

n2 ⩽
k2

n2 = o
( 1

n

)
.

Similarly, we also have

(6) Pr
[

k∨
i=0

Nv′,i > 3 · ni+1

]
⩽

k2

n2 = o
( 1

n

)
.

Finally, our objective is to estimate the probability that distG(v, v′) ⩽ 2k. By
symmetry of the vertices, we have

Pr
[
distG(v, v′) ⩽ 2k

∣∣∣∣∣
2k∧

i=0
Nv,i ⩽ 3 · ni+1

]
⩽

3(n1 + n2 +· · · + n2k+1)
n

⩽
6kn2k+1

n
.(By Lemma A.1)

Pr
[
distG(v, v′) ⩽ 2k ∧

( 2k∨
i=0

Nv,i > 3 · ni+1

)]
⩽ Pr

[ 2k∨
i=0

Nv,i > 3 · ni+1

]

⩽
1 + 2 +· · · + 2k

n2 ⩽
4k2

n2 .(By Lemma 3.2)

We combine these two results to obtain the following conclusion.

Pr[distG(v, v′) ⩽ 2k] = Pr
[
distG(v, v′) ⩽ 2k ∧

( 2k∧
i=0

Nv,i ⩽ 3 · ni+1

)]

+ Pr
[
distG(v, v′) ⩽ 2k ∧

( 2k∨
i=0

Nv,i > 3 · ni+1

)]

⩽ Pr
[
distG(v, v′) ⩽ 2k

∣∣∣∣∣
2k∧

i=0
Nv,i ⩽ 3 · ni+1

]
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+ Pr
[
distG(v, v′) ⩽ 2k ∧

( 2k∨
i=0

Nv,i > 3 · ni+1

)]

⩽
6kn2k+1

n
+ 4k2

n2 = o
( log n

n

)
(7)

By Equation 5, Equation 6, and Equation 7, we conclude that

Pr[¬Good(v, v′, G)] ⩽ Pr
[

k∨
i=0

Nv′,i > 8 · ni+1

]
+ Pr

[
k∨

i=0
Nv′,i > 8 · ni+1

]
+ Pr[distG(v, v′) ⩽ 2k]

= o
( log n

n

)
.

This derivation concludes the proof of our claim.

Proof of Claim 6 . A pattern in a graph specifies that some edges are included
and some other edges are excluded. All remaining edges may or may not
be included in the graph. Consequently, the probability of G ∼ G(n, γ/n)
containing a (feasible) pattern ω is Pr[ω ∈ G] = pαqβ, where ω specifies α

edge inclusions, β edge exclusions, p = γ/n and q = (1 − p). Therefore, the
probability of G ∼ G(n, p) containing two patterns ω and ω′ simultaneously
is

Pr[ω ∈ G, ω′ ∈ G] = Pr[ω ∈ G] · Pr[ω′ ∈ G] · p−α∗
q−β∗

,

where α∗ edges are included both in ω and ω′, and β∗ edges are excluded in
both ω and ω′ (by the inclusion exclusion principle).

To analyze our problem, fix a vertex v ∈ V (G) and its neighborhood
Nv,⩽k. Fix the graph H induced by Nv,⩽k arbitrarily. Since Nv,⩽k contains
all vertices at distance ⩽ k, it is implicit that there are no edges between
the vertex set Nv,⩽k−1 and the vertex set V (G) \ Nv,⩽k. Insisting that the
neighborhood of v in G satisfies these constraints defines a pattern ω with
E(H) edge inclusions and E(H) + (n − Nv,⩽k) · Nv,⩽k−1 edge exclusions (see
Figure 1 for intuition).

Similarly, fix a vertex v′ ∈ V (G) and its neighborhood Nv′,⩽k. Fix the
graph H ′ induced by Nv′,⩽k arbitrarily. This defines a template ω′ with E(H ′)
edge inclusions and E(H ′) + (n − Nv′,⩽k) · Nv′,⩽k−1 edge exclusions.

If distG(v, v′) > 2k, then the vertex sets Nv,⩽k and Nv′,⩽k are disjoint.
Therefore, the patterns ω and ω′ have α∗ = 0 common edge inclusions and
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Nv,⩽k
Nv,⩽k−1

Nv′,⩽k

Nv′,⩽k−1

Nv,⩽k−1

Figure 1: Visualization of the adjacency matrix of G ∼ G(n, γ/n) containing
the pattern ω, and the compensation term in the probability expression when
G contains two patterns ω and ω′.

β∗ = Nv,⩽k−1 · Nv′,⩽k−1 common edge exclusions (refer to Figure 1 for clari-
fication of this argument). Therefore, we have

Pr[ω ∈ G, ω′ ∈ G] = Pr[ω ∈ G] · Pr[ω′ ∈ G] · q−Nv,⩽k−1·Nv′,⩽k−1 ,

In particular, conditioned on Good(v, v′, G), we have distG(v, v′) > 2k,
Nv,⩽k−1 ⩽ 3(k − 1)2nk, and Nv,⩽k−1 ⩽ 3(k − 1)2nk. Hence

Pr[ω ∈ G, ω′ ∈ G]
Pr[ω ∈ G] Pr[ω′ ∈ G] ⩽

(
1 − γ

n

)−9k2n2
k

⩽ exp
(

18γk2n2
k

n

)
⩽ 1 + 36γk2n2

k

n
.

This derivation relies on the fact that (i) (1 − x) ⩾ exp(−2x), when x ∈
[0, 1/2], (ii) exp(x) ⩽ 1 + 2x, for any x ∈ [0, 1]. The final inequality above
relies on the fact that nk = o(log n) and n2

k/n = o(1).
Let us summarize the discussion so far. We condition on the event Good(v, v′, G).

We arbitrarily choose Nv,⩽k, Nv′,⩽k, H, and H ′. We have proven then that the
events “Nv,⩽k inducing H” and “Nv′,⩽k inducing H ′” are nearly independent.
Furthermore, the joint probability is multiplicatively-close to the product of
the marginal probabilities.

Therefore, due to this multiplicative closeness, overall we conclude that

Pr[E, E′|Good(v, v′, G)] ⩽ Pr[E] · Pr[E′] ·
(

1 + 36γk2n2
k

n

)
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⩽ Pr[E] · Pr[E′] + o
(

log2 n

n

)
.

This derivation completes the proof.

Proving the lower bound of Theorem 3.1 using Lemma 3.3 and
Lemma 3.4. Fix t ∈ N and constant γ > 0. Consider any n ⩾ max {C(t, γ), D(t, γ)}
and G ∼ G(n, γ/n). Let Xv represent the indicator variable that Nv,t ⩾
εt · nt+1 in the graph G. Then, the random variable X =

∑
v∈V (G) Xv counts

the number of vertices with at least εt · nt+1 vertices at distance t in the
graph G. Our objective is to prove that X ⩾ 1 with 1 − o(1) probability; or,
equivalently, prove that the probability of X = 0 is o(1). We proceed by the
second moment technique (Chebyshev’s inequality).

Pr[X = 0] ⩽ Pr[ |X − E[X]| ⩾ E[X] ] ⩽ Var [X]
E[X]2

⩽
Var

[∑
v∈V (G) Xv

]
(∑

v∈V (G) E[Xv]
)2

⩽

∑
v∈V (G) Var [Xv] +

∑
v,v′∈V (G) : v ̸=v′ CoVar [Xv, Xv′ ]

(n · n−0.1)2(By Lemma 3.3)

<
n · 1 + n2 CoVar [Xv, Xv′ ]

n1.8

=
n + o

(
n log2 n

)
n1.8(By Lemma 3.4)

= o
(
n−0.7

)
.

A Generalization. This derivation indicates that a more general result
holds: there are several high-degree vertices in a random graph. For example,
the following large deviation bound is immediate.

Pr[X ⩽ E[X]/2] ⩽ Pr[ |X − E[X]| ⩾ E[X]/2 ] ⩽ 4 · Var [X]
E[X]2

= o
(
n−0.7

)
.

This bound shall be useful in Section 5, so we formalize it as the following
lemma.

Lemma 3.5. Fix a positive constant γ and t ∈ N. For G ∼ G(n, γ/n) and
sufficiently large n ∈ N, there are (at least) n0.9/2 vertices v ∈ V (G) such
that Nv,t ⩾ εt · nt+1 with probability 1 − o

(
n−0.7).
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4. Upper bound on the Chromatic Number of Gt

We shall prove the following theorem.

Theorem 4.1. Fix any natural number t and a positive constant γ. For
sufficiently large n ∈ N, the graph G ∼ G(n, γ/n) satisfies

Pr
[
χ
(
Gt) ⩽ 6 · nt +

t · log(t) n

log(2t+1) n

]
⩾ 1 − o

( 1√
log n

)
.

We remind the reader that the maximum degree of Gt is Θ(nt+1) asymp-
totically almost surely. So, our proof proceeds by showing that the discrepancy
of Gt is O(nt), which is ≪ nt+1. This upper bound on the discrepancy of Gt

translates into an upper bound on its chromatic number.
Furthermore, for t = 2, this bound is tight. Consider G ∼ G(n, γ/n).

Arbitrarily partition V (G) = L ∪ R such that |L| = |R| = n/2. [3] proves
that the induced subgraph G[L, R] has a vertex with degree at least cγ · n2
(a.a.s.), where G ∼ G(n, γ/n) and cγ is a positive constant. Therefore, G2

has a clique of size (at least) cγ · n2.

Proof. Given a threshold τ , we say that the event Goodτ (G) holds if, for all
vertices v ∈ V (G), the following conditions are true.

1. Nv,⩽t−1 ⩽ 6 · nt,
2. Nv,⩽2t ⩽ 6 · n2t+1, and
3. The induced subgraph G [Nv,⩽2t] is a tree or Nv,⩽2t ⩽ τ .

Our proof follows as a consequence of Claim 7 and Claim 8. Claim 7
proves that the probability of the good event not occurring is o(1). Finally,
Claim 8 proves that the chromatic number of Gt is at most τ , for any good
graph G.

Claim 7. Fix τ = 6 · nt + t·log(t) n

log(2t+1) n . For G ∼ G(n, γ/n), we have

Pr[¬Goodτ (G)] ⩽ 5t2

n
+ (6t + 1) ·

(
1 + (e2γ/2)6t

)
τ

.

Claim 8. Fix τ = 6 ·nt + t·log(t) n

log(2t+1) n . For any graph G, if Goodτ (G) holds, then
every vertex v ∈ V (Gt) has at most τ neighbors with degree ⩾ τ in the graph
Gt. Consequently, we have χ (Gt) ⩽ τ.

All that remains is proving Claim 7 and Claim 8.
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v

2kw

wp

k

(k − 1)

Figure 2: The gray region denotes vertices at distance ⩽ 2t from v in G. The
vertex w is at distance at most t from v. Vertices at distance ⩽ t from w
occur either in the blue or the red region. The blue region denotes vertices at
distance ⩽ (t − 1) from wp. The red region denotes vertices at distance ⩽ t
from w whose shortest path to w does not pass through its parent wp. The
blue and the red regions are entirely inside the gray region. We show that the
blue region typically has at most 6 · nt vertices. Furthermore, typically, the
number of vertices w having ⩾

t·log(t) n

log(2t+1) n vertices in the red region is at most
6 · nt.
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Proof of Claim 7 . We shall show that the probability of ¬Goodτ (G) is very
small. Similar to the proof of Theorem 3.1 using Lemma 3.2, we conclude
from Equation 2 that

(8) Pr[∃v ∈ V (G) s.t. Nv,⩽t−1 > 6 · nt] ⩽
(t − 1)2

n
.

Furthermore,

(9) Pr[∃v ∈ V (G) s.t. Nv,⩽2t > 6 · n2t+1] ⩽ (2t)2

n
.

These two bounds upper bound the first two ways of failing.
Finally, to bound the third failure event, we proceed at follows. We shall

identity an alternative graph property that shall automatically imply that
“for all v ∈ V (G), we have G[Nv,⩽t] is a tree or Nv,⩽2t ⩽ τ .” Fix distinct
vertices v1, v2, . . . , vs ∈ V (G). When G ∼ G(n, γ/n), the probability that the
induced graph G[{v1, . . . , vs}] has at least s edges is

⩽

((s
2
)

s

)
· ps · 1(s

2)−s ⩽
(esp

2

)s

,

where p = γ/n.
Let Xℓ represent the number of subsets {v1, . . . , vs} ⊆ V (G), where s ∈

{1, 2, . . . , ℓ}, such that the the induced subgraph G[{v1, . . . , vs}] has at least
s edges. We refer to such subgraphs as “dense.” Then, we have

E[Xℓ] ⩽
ℓ∑

s=1

(
n

s

)(esp

2

)s

⩽
ℓ∑

s=1

(
e2γ

2

)s

⩽ ℓ · max
{

1, (eγ/2)ℓ
}

< ℓ ·
(
1 + (eγ/2)ℓ

)
.

Therefore, by Markov inequality, we have

(10) Pr[Xℓ ⩾ B] <
ℓ ·
(
1 + (eγ/2)ℓ

)
B

.

In Equation 10, substitute ℓ = 6t + 1 and B = τ to get

Pr[X6t+1 ⩾ τ ] <
(6t + 1) ·

(
1 + (eγ/2)6t+1)

τ
= Θ

(1
τ

)
.
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The above probability bound implies that it is unlikely for a random G ∼
G(n, γ/n) to have more than τ “dense subgraphs” of size ⩽ 6t + 1.

Now, we can proceed to bound the third failure event. Consider a graph
G that has at most τ “dense subgraphs” of size ⩽ 6t + 1. Consider a vertex
v ∈ V (G) such that the induced subgraph G[Nv,⩽2t] is not a tree. If G[Nv,⩽2t]
is not a tree, then there exists a cycle C in G[Nv,⩽2t]. Let e = (u1, u2) be an
edge in the cycle C such that v ̸∈ {u1, u2}. Let V1 be the set of vertices on
the shortest path from v to u1, and V2 be the set of vertices on the shortest
path from v to u2. We know that |V1 ∪ V2| ⩽ (2t + 1) + (2t + 1) − 1 = 4t + 1.
Observe that the induced subgraph G[V1 ∪ V2] contains a cycle.

Fix an arbitrary vertex w ∈ Nv,⩽2t. Let Vw be the set of vertices on
the shortest path from v to w. We know that |Vw| ⩽ 2t + 1. Therefore,
Gw := G[V1 ∪ V2 ∪ Vw] defines a dense subgraph of size s ⩽ 6t + 1 (because
it is a connected graph containing at least the cycle induced by the vertices
V1 ∪ V2).

Observe that, for each w ∈ Nv,⩽2t, the corresponding induced subgraph
Gw is distinct. Therefore, the total number of such possible vertices w, i.e.,,
Nv,⩽2t, is at most τ (otherwise, the total number of small dense subgraphs
will surpass τ). To conclude, for G ∼ G(n, γ/n), we have shown that

Pr[∃v ∈ V (G) s.t. G[Nv,⩽2t] is not a tree ∧ Nv,2t > τ ](11)

⩽
(6t + 1) ·

(
1 + (eγ/2)6t+1)

τ
.

By Equation 8, Equation 9, and Equation 11, our claim follows using the
union bound.

Proof of Claim 8 . Consider any G such that Goodτ (G) holds. Then, for every
v ∈ V (G), we have the following guarantees.

1. Nv,t−1 ⩽ 6 · nt,
2. Nv,2t ⩽ 6 · n2t+1, and
3. The subgraph Hv is a tree or Nv,⩽2t ⩽ τ , where Hv := G[Nv,2t].

Fix any v ∈ V (G). Our first objective is to prove that the following set of
“high degree vertices close to the vertex v” has size at most τ .

Sv := {w ∈ Nv,⩽t : Nw,⩽t ⩾ τ} .

We consider the following two exhaustive cases.
Case 1: Hv is not a tree. In this case, we know that the number of

vertices in Hv is ⩽ τ (from the third property ensured by the Goodτ event).
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Therefore, v has ⩽ τ neighbors in Gt. Consequently, the vertex v can have at
most τ neighbors in Gt with degree ⩾ τ in Gt.

Case 2: Hv is a tree. Consider Hv rooted at v. Consider any w ∈ Nv,⩽t

such that w has ⩾ τ neighbors in Gt. The neighbors of w in Gt are vertices
that are connected to w via paths of length ⩽ t in G. Let wp be the parent
of w in Hv. These paths of length ⩽ k emanating from w are of two types
(refer Figure 2) (a) the path goes through wp (and their final vertex is in the
blue region), or (b) the path does not go through wp (and their final vertex
is in the red region). Observe that Nwp,⩽t−1 ⩽ 6nt (guaranteed by the good
event). Therefore, there are at least (τ −6nt) paths of length (at most) t from
w that do not go through wp.

Intuitively, every w ∈ Nv,⩽t with ⩾ τ degree in Gt has ⩾ (τ − 6nt) paths
going “downward” in the tree (path leading to vertices in the red region of
Figure 2). The final vertices of these downward paths are neighbors of w in
Gt.

Let M := |Sv|. Note that any vertex x ∈ Nv,⩽2t can occur as the final
vertex of at most t distinct “downward paths” (because the vertex x can be
the end point of paths starting from its t ancestors). Therefore, we have the
following upper bound

M · (τ − 6nt) ⩽ t · Nv,⩽2t ⩽ 6t · n2t+1.

If M > 6 · nt, then M · (τ − 6nt) > 6t · n2t+1, which violates the bound above.
Therefore, M ⩽ 6 · nt < τ must hold, which proves that there are at most τ
neighbors of v in Gt that have degree ⩾ τ , proving the first part of our claim.

For the final part of our claim, we shall prove a general result for an
arbitrary graph J . Assume that, for every vertex v ∈ V (J), the number of
neighbors of v with degree ⩾ h is at most h (for some h ∈ N). Then, we shall
prove that χ(J) ⩽ h. For the proof, order the vertices in a (weakly) increasing
order of their degree. If possible let there exist a vertex v that has (h + 1)
neighbors to its right. These neighbors, in turn, would have degree at least
(h + 1) because the degree of the vertices are (weakly) increasing. Therefore,
v has (h + 1) vertices with degree ⩾ (h + 1), a contradiction. Therefore,
any vertex has at most h neighbors to its right, which upper bounds the
degeneracy of J and, in turn, the chromatic number of J . This result proves
that χ(Gt) ⩽ τ .

5. Results for Bipartite Vertex-feature inclusion graph

Let Erdős-Rényi graph G(n, n, p) represent the distribution over (undirected)
bipartite graphs with size-n partite sets and each edge included in the graph
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independently with probability p. For a bipartite graph G = (L, R, E), in this
section, we interpret the left partite set L as the set of vertices and the right
partite set R as the set of features. The square of this graph H := G2 = (L, E′)
is an undirected graph defined by

E′ = {(u, v) : u, v ∈ L, ∃w ∈ R s.t. (u, w), (v, w) ∈ E} .

We shall prove a tight estimate of the chromatic number of H = G2 when
G ∼ G(n, n, γ/n), for any positive constant γ.

Theorem 5.1. Fix any positive constant γ. There exists a positive constant
cγ such that, for sufficiently large n ∈ N, the bipartite graph G ∼ G(n, n, γ/n)
satisfies

Pr
[

χ(G2)
n2

∈ [cγ , 7]
]
⩾ 1 − o(1).

Proof. Cheng. Maji and Pothen [3] prove that

Pr
[

χ(G2)
n2

⩾ cγ

]
⩾ Pr

[
ω(G2)

n2
⩾ cγ

]
⩾ 1 − o(1),

where ω(G2) is the size of a maximum clique in the square of the graph.
For the upper bound, consider the undirected graph G′ ∼ G(2n, γ/n),

where the vertex set V (G′) = L ∪ R. Theorem 4.1 proves that, for sufficiently
large n ∈ N, we have

Pr

χ
(

(G′)2
)

n2
⩽ 7

 ⩾ 1 − o(1).

Observe that the induced subgraph G := G′[L, R] is distributed identically to
G(n, n, γ/n), when G′ ∼ G(2n, γ/n).

Fix the graphs G and G′, such that G = G′[L, R]. Consider H := G2 as
defined for vertex-feature inclusion graphs. Note that E(H) ⊆ E

(
(G′)2

)
,

because (unlike H) the length-(⩽ 2) paths in G′ that start and end in L
need not necessarily go through only the vertices in R. Therefore, χ(H) ⩽

χ
(

(G′)2
)
.

Putting things together, we have

Pr
[

χ(G2)
n2

⩽ 7: G ∼ G(n, n, γ/n)
]
⩽ Pr

χ
(

(G′)2
)

n2
⩽ 7: G′ ∼ G(2n, γ/n)
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⩽ 1 − o(1).

This derivation completes the proof of our upper bound.

This result is particularly interesting because ∆(G2) ⩾ 1
8 · ε2 · n3 ≫ n2,

when G ∼ G(n, n, γ/n) (similar to Theorem 3.1 for undirected graphs).

Lemma 5.2. Fix a positive constant γ. For sufficiently large n ∈ N and bi-
partite graph G ∼ G(n, n, γ/n), the maximum degree of the undirected loopless
graph H := G2 is ⩾ 1

8ε2n3, with probability 1 − o(1).

Proof. Consider G′ ∼ G(2n, γ/n). Randomly partition the vertex set V (G′)
into L and R subsets such that |L| = |R| = n. Consider the induced subgraph
G := G′[L, R]. Observe that G is distributed identically to G(n, n, γ/n), when
G′ ∼ G(2n, γ/n). Our objective is to prove that one of the vertices in V (G′)
that has high degree in (G′)2 also has high-degree in the graph H = G2.
Recall that xk = log x

log(k) x .
We shall condition on a good event Good(G′) that ensures

1. Every vertex v ∈ V (G′) has Nv,1(G′) ⩽ 6 · (2n)2 and N(v, 2)(G′) ⩽
6 · (2n)3,

2. For every vertex v ∈ V (G′), the induced subgraph G′[Nv,⩽2(G′)] is a
tree, or Nv,⩽2(G′) ⩽ ε2(2n)3, and

3. G′ has (at least) (2n)0.9/2 vertices v ∈ V (G′) such that Nv,2(G′) ⩾
ε2 · (2n)3.

The probability of a graph G′ ∼ G(2n, γ/n) satisfying the first two conditions
is 1 − o(1) (by Claim 7), and the probability of a graph G′ ∼ G(2n, γ/n)
satisfying the last condition is 1 − o(1) (by Lemma 3.5). By union bound, the
probability of G′ ∼ G(2n, γ/n) simultaneously satisfying all three conditions
is 1 − o(1).

Fix an arbitrary graph G′ that is good. Define

Vhigh-deg(G′) := { v ∈ V (G′) : Nv,2(G′) ⩾ ε2 · (2n)3 } .

We have |Vhigh-deg(G′)| ⩾ (2n)0.9/2. Over the random partition L and R of
the vertex set V (G′) such that |L| = |R| = n, consider the random variable

S(G′) := |L ∩ Vhigh-deg(G′)|.



The Chromatic Number of Squares Of Random Graphs 27

Note that S(G′) = 0 if and only if Vhigh-deg(G′) ⊆ R. The probability of
S(G′) = 0, therefore, is( |R|

|Vhigh-deg(G′)|
)

( |L|+|R|
|Vhigh-deg(G′)|

) =
( n

|Vhigh-deg(G′)|
)

( 2n
|Vhigh-deg(G′)|

) = n(n − 1)· · · (n − |Vhigh-deg(G′)| + 1)
2n(2n − 1)· · · (2n − |Vhigh-deg(G′)| + 1) ⩽

1
2|Vhigh-deg(G′)| .

So, S(G′) ⩾ 1 with probability 1 − o(1).
Fix a vertex v ∈ L ∩ Vhigh-deg(G′). The following analysis is over the

random partition of V (G′) into equal sets L and R conditioned on the vertex
v being in the partite set L. For brevity, define N1 := Nv,1(G′) (i.e., the set of
vertices in V (G′) at distance 1 from v in the graph G′), and N2 := Nv,2(G′)
(i.e., the set of vertices in V (G′) at distance 2 from v in the graph G′).

Since v ∈ Vhigh-deg(G′), we have |N2| ⩾ ε2 · (2n)3. Therefore, Nv,⩽2(G′) ⩾
ε2 ·(2n)3+2. By the second condition of the good event, the induced subgraph
G′[N1 ∪ N2] is a tree. Let Tv represent this tree rooted at v.

For w ∈ N2, let Xw be the indicator variable for the event that w is at
distance 2 in the bipartite graph G := G′[L, R]. Let wp ∈ N1 represent the
parent of w in Tv. Note that Xw = 1 if and only if “w ∈ L and wp ∈ R”
(recall that we have already conditioned on v ∈ L). Therefore, we have

E[Xw] = Pr[w ∈ L|v ∈ L] · Pr[wp ∈ R|v ∈ L, w ∈ L]

= n − 1
2n − 1 · n

2n − 2

= 1
4 · n

n − 1/2 .

Let X =
∑

w∈N2 Xw represent the number of vertices in the bipartite graph
G that are at distance 2 from the vertex v in this bipartite graph. That is, X
represents the degree of the vertex v in the graph H := G2. By the linearity
of expectation, the expected value of X is

(12) E[X] = |N2| · 1
4 · n

n − 1/2 >
1
4 · ε2(2n)3.

Our objective is to show that X is typically close to this expected value using
the second moment technique.

For two vertices w, w′ ∈ N2, let wp and w′
p represent their respective

parents in the tree Tv.
Claim 9.

CoVar [Xw, Xw′ ] ⩽
{

1, if wp = w′
p

O
( 1

n2

)
, if wp ̸= w′

p

.
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We emphasize that, in the claim above, the case w = w′ is covered in the
case wp = w′

p. We can use this claim to prove the following bound on the
variance of X.

Claim 10.
Var [X]
E[X]2

⩽ O
(

log(3) n

log(2) n

)
= o(1).

Now, from Chebyshev’s inequality, it follows that

Pr[X ⩽ E[X]/2] ⩽ 4 · Var [X]
E[X]2

= o(1).

Therefore, we conclude that the degree of v in the graph H is ⩾ 1
8 · ε2(2n)3 ⩾

1
8ε2n3 with 1 − o(1) probability. All that remains is proving Claim 9 and
Claim 10, which are included below.

Proof of Claim 9 . The only non-trivial case is when wp ̸= w′
p (the other one

is immediate because Xw and Xw′ are indicator variables).

E[Xw · Xw′ ] = Pr[w ∈ L|v ∈ L] × Pr[w′ ∈ L|v ∈ L, w ∈ L]
× Pr[wp ∈ R|v ∈ L, w ∈ L, w′ ∈ L]

× Pr
[
w′

p ∈ R
∣∣∣v ∈ L, w ∈ L, w′ ∈ L, wp ∈ R

]
= n − 1

2n − 1 · n − 2
2n − 2 · n

2n − 3 · n − 1
2n − 4

= 1
16 · n(n − 1)

(n − 1/2)(n − 3/2)

We already know that

E[Xw] · E[Xw′ ] = 1
16 · n2

(n − 1/2)2 .

Therefore, we have

CoVar [Xw, Xw′ ] = E[Xw · Xw′ ] − E[Xw] · E[Xw′ ]

= 1
16 · n(n − 1)

(n − 1/2)(n − 3/2) − 1
16 · n2

(n − 1/2)2

= 1
16 · n

n − 1/2

(
n − 1

n − 3/2 − n

n − 1/2

)
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= 1
32 · n

(n − 1/2)2(n − 3/2) = O
( 1

n2

)
.

This derivation completes the proof of this claim.

Proof of Claim 10 . Observe that

Var [X] =
∑

w,w′∈N2

CoVar [Xw, Xw′ ]

=
∑

w,w′∈N2 : wp=w′
p

CoVar [Xw, Xw′ ] +
∑

w,w′∈N2 : wp ̸=w′
p

CoVar [Xw, Xw′ ] .

Bounding the first term. For every vertex w̃ ∈ N1, let aw̃ represent the
number of children of w̃ in the tree Tv. By the first constraint of the good
event, we have the following constraint∑

w̃∈N1

aw̃ ⩽ |N2| ⩽ 6(2n)3 =: A

Furthermore, the first constraint of the good event also implies that, for all
w̃ ∈ N1, we have

aw̃ ⩽ 6(2n)2 =: M.

The second term of the variance is upper bounded by (due to Claim 10) ∑
w̃∈N1

a2
w̃

 · 1 ⩽
∑

w̃∈N1

aw̃ · M = M

 ∑
w̃∈N1

aw̃

 ⩽ MA = O(n2n3).

Bounding the second term. The second term is upper-bounded by

|N2|2 · O
( 1

n2

)
= o

(
log2 n

n2

)
,

because |N2| ⩽ 6(2n)3 and Claim 9.
Putting things together. We conclude that

Var [X] ⩽ O(n2n3) + o
(
log2 n/n2

)
= O(n2n3).

We know that E[X] ⩾ 1
16 (ε2(2n)3)2 = Θ

(
n2

3
)
, which completes the proof of

the claim.
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Appendix A. Technical Results

Lemma A.1 (Sum of Inverse of Nested Logarithms). Fix t ∈ {0, 1, . . . }. For
n ⩾ tower(t, e), the following bound holds.

t∑
i=0

1
log(i) n

⩽
2

log(t) n
.

Proof. For n ⩾ tower(t, e), observe that log(i) n ⩾ log(t) n > 0. Next, we shall
use the fact that log x ⩽ x/e, for all x ∈ R, in the following derivation.

t∑
i=0

1
log(i) n

⩽
t∑

i=0

1
exp(t − i) log(t) n

<
1

1 − 1/e · 1
log(t) n

<
2

log(t) n
.
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The following estimates of the binomial coefficients are well-established
(refer, for example, [5]).

Lemma A.2 (Estimation of Binomial Coefficients). For a, b ∈ N, the follow-
ing bounds hold. (

a

b

)b

⩽

(
a

b

)
⩽
(ea

b

)b

Lemma A.3 (Estimation of Logarithm). The following inequalities hold.

1. For x ∈ [0, 1], log(1 − x) ⩽ −x − x2/2
2. For x ∈ [0, 1/2], log(1 − x) ⩾ −x − x2.

Lemma A.4 (Application of Jensen’s Inequality). For any a ⩾ 1 and x > 0,
we have (1 − x)a ⩾ (1 − ax).
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