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Abstract. We describe a parallel approximation algorithm for maximizing monotone submod-4
ular functions subject to hereditary constraints on distributed memory multiprocessors. Our work is5
motivated by the need to solve submodular optimization problems on massive data sets, for practical6
applications in areas such as data summarization, machine learning, and graph sparsification.7

Our work builds on the randomized distributed RandGreedi algorithm, proposed by Barbosa,8
Ene, Nguyen, and Ward (2015). This algorithm computes a distributed solution by randomly parti-9
tioning the data among all the processors and then employing a single accumulation step in which10
all processors send their partial solutions to one processor. However, for large problems, the accu-11
mulation step could exceed the memory available on a processor, and the processor which performs12
the accumulation could become a computational bottleneck.13

Here, we propose a generalization of the RandGreedi algorithm that employs multiple accu-14
mulation steps to reduce the memory required. We analyze the approximation ratio and the time15
complexity of the algorithm (in the BSP model). We evaluate the new GreedyML algorithm on three16
classes of problems, and report results from massive data sets with millions of elements. The results17
show that the GreedyML algorithm can solve problems where the sequential Greedy and distrib-18
uted RandGreedi algorithms fail due to memory constraints. For certain computationally intensive19
problems, the GreedyML algorithm can be faster than the RandGreedi algorithm. The observed20
approximation quality of the solutions computed by the GreedyML algorithm closely matches those21
obtained by the RandGreedi algorithm on these problems.22
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1. Introduction. We describe a scalable parallel approximation algorithm for26

maximizing monotone submodular functions subject to hereditary constraints on dis-27

tributed memory multiprocessors. We build on an earlier distributed approximation28

algorithm which has limited parallelism and higher memory requirements. Although29

this problem is NP-hard (the objective function is nonlinear), a Greedy algorithm30

that maximizes the marginal gain (defined later) at each step is (1 − 1/e) ≈ 0.63-31

approximate for cardinality constraints and 1/2-approximate for matroid constraints;32

here e is Euler’s number.33

Combinatorial optimization with a submodular objective function (rather than a34

linear objective function) leads to diversity in the computed solution, since at each35

step the algorithm chooses an element with the least properties in common with the36

current solution set. A broad collection of optimization problems could be mod-37

eled using submodular functions, including data and document summarization [24],38

load balancing parallel computations in quantum chemistry [9], sensor selection [6],39

resource allocation [27], active learning [11], interpretability of neural networks [7],40

influence maximization in social networks [13], diverse recommendation [5] etc. Sub-41

modular optimization problems often have efficient approximation algorithms to solve42

them, since submodular functions have properties that make them discrete analogs of43

both convex and concave continuous functions. Surveys discussing submodular opti-44

mization formulations, algorithms, and computational experiments include Tohidi et45

al. [28] and Krause and Golovin [14].46

Our algorithm builds on the RandGreedi framework [2], a state-of-the-art ran-47

domized distributed algorithm for monotone submodular function maximization un-48
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der hereditary constraints, which has an approximation ratio half that of the Greedy49

algorithm. The RandGreedi algorithm randomly partitions the data among all the50

processors, runs the standard Greedy algorithm on each partition independently in51

parallel, and then executes a single accumulation step in which all processors send52

their partial solutions to one processor. However, this step could exceed the mem-53

ory available on a processor when the memory is small relative to the size of the54

data, or when solutions are large. Additionally, this merging step serializes both the55

computation and communication and is a bottleneck when scaled to more machines.56

The new GreedyML algorithm brings additional parallelism to this step and can57

lower the memory and time required to solve the problem. We randomly partition58

the data among all the processors, which constitute the leaves of an accumulation59

tree, and then merge partial solutions at multiple levels in the tree. We prove that60

the GreedyML algorithm has a worst-case approximation guarantee of 1/(L + 1)61

of the serial Greedy algorithm, where L is the total number of accumulation levels62

in the accumulation tree. Using the BSP model, we analyze the time complexity of63

both computation and communication steps in the GreedyML and RandGreedi64

algorithms, and show that the former has lower computation and communication costs65

than the latter.66

We evaluate the parallel algorithms on the maximum k-set cover problem, the67

maximum k-vertex dominating set in graphs, and exemplar-based clustering (modeled68

by the k-medoid problem); all of these problems arise in data reduction or summa-69

rization. We experiment on massive data sets with millions of elements that exceed70

the memory constraints (a few GBs) on a single processor.71

We demonstrate how solutions may be computed using the parallel algorithm72

by organizing the accumulation tree to have more levels to adapt to the memory73

available on a processor. This strategy also enables us to solve for larger values of74

the parameter k in the problems discussed above, which corresponds to the size of75

the solution sought. We show that the number of function evaluations on the critical76

path of the accumulation tree, and hence the run time, could be reduced when the77

parallel algorithm is employed. Also, we do not observe the deterioration in objective78

function values expected from the worst-case approximation ratio of the GreedyML79

algorithm, and the observed approximation quality of the computed solutions closely80

matches those obtained by the RandGreedi algorithm on these problems.81

2. Background and Related Work.82

2.1. Submodular functions. A set function f : 2W → R+ defined on the power
set of a ground set W is submodular if it satisfies the diminishing marginal gain
property. That is,

f(X ∪ {w})− f(X) > f(Y ∪ {w})− f(Y ), for all X ⊆ Y ⊆W and w ∈W \ Y.

A submodular function f is monotone if for every X ⊆ Y ⊆W , we have f(X) 6 f(Y ).
The constrained submodular maximization problem maximizes a submodular function
subject to certain constraints:

max f(S) subject to S ∈ C,where C ⊆ 2W is the family of feasible solutions.

We consider hereditary constraints: i.e., for every set S ∈ C, every subset of S is83

also in C. The hereditary family of constraints includes various common ones such84

as cardinality constraints (C = {A ⊆ W : |A| 6 k}) and matroid constraints (C85

corresponds to the collection of independent sets of a matroid).86
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2.2. Lovász extension. For the analysis of our algorithm, we use the Lovász
extension [20], a relaxation of submodular functions. A submodular function f can be
viewed as a function defined over the vertices of the unit hypercube, f : {0, 1}n → R+,
by identifying sets V ⊆ W with binary vectors of length n = |W | in which the ith

component is 1 if i ∈ V , and 0 otherwise. The Lovász extension [20] f̂ : [0, 1]n → R+

is a convex extension that extends f over the entire hypercube, which is given by

f̂(x) = E
θ∈U [0,1]

[ f ({i : xi > θ}) ] .

Here, θ is uniformly random in [0, 1]. For any submodular function f , the Lovász87

extension f̂ satisfies the following properties [20]:88

1. f̂(1S) = f(S), for all S ⊆ V where 1S ∈ [0, 1]n is a vector containing 1 for89

the elements in S and 0 otherwise,90

2. f̂(x) is convex, and91

3. f̂(c · x) > c · f̂(x), for any c ∈ [0, 1].92

An α-approximation algorithm (where α ∈ [0, 1)) for maximizing a submodular93

function f : 2W → R+ subject to a hereditary constraint C produces a solution S ⊆W94

with S ∈ C, satisfying f(S) > α · f(S∗), where S∗ is an optimal solution.95

2.3. The Greedi and RandGreedi Algorithms. The Greedy algorithm96

(shown in Algorithm 2.1) for maximizing submodular functions subject to constraints97

is an iterative algorithm that starts with an empty solution. Given the current so-98

lution, an element is feasible if it can be added to the solution without violating the99

constraints. In each iteration, the Greedy algorithm chooses a feasible element e ∈ V100

that maximizes the marginal gain, f(S ∪ {e}) − f(S), w.r.t. the current solution S.101

The algorithm terminates when the maximum marginal gain is zero or all elements102

in the ground set have been considered.103

Algorithm 2.1 Greedy Algorithm

1: procedure Greedy (V : Dataset)
2: S ← ∅
3: while True do
4: E ← {e ∈ V \ S : S ∪ {e} ∈ C}
5: e′ ← arg maxe∈E f(S ∪ {e})
6: if f(S ∪ {e′}) = f(S) or E = ∅ then
7: break
8: end if
9: S ← S ∪ {e′}

10: end while
11: return S

12: end procedure

We now discuss the Greedi and RandGreedi, which are the state-of-the-art104

distributed algorithms for constrained submodular maximization. The Greedi algo-105

rithm [24] partitions the data arbitrarily on available machines, and on each partition,106

it runs the Greedy algorithm in parallel to compute a local solution. These solutions107

are then sent to a single global machine, where they are accumulated. The Greedy108

algorithm is then again executed on the accumulated data to get a global solution.109

The final solution is the best solution among all the local and global solutions. For110

a cardinality constraint, where k is the solution size, the Greedi algorithm has a111
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Algorithm 2.2 RandGreedi framework for maximizing constrained submodular
function

1: procedure RandGreedi(V : Dataset, m: number of machines)
2: S ← ∅
3: Let {P0, P1, . . . , Pm−1} be an uniform random partition of V .
4: Run Greedy(Pi) on each machine i ∈ [0,m− 1] to compute the solution Si

5: Place S =
⋃

i Si on machine 0
6: Run Greedy(S) to compute the solution T on machine 0
7: return arg max {f(T ), f(S1), f(S2), . . . , f(Sm−1)}
8: end procedure

worst-case approximation guarantee of 1/Θ(min(
√
k,m)), where m is the number of112

machines.113

Although the Greedi algorithm performs well in practice [24], its approximation114

ratio is not a constant but depends on k. To improve the approximation guarantee115

of Greedi algorithm, Barbosa et al. proposed the RandGreedi algorithm [2]. By116

partitioning the data uniformly at random on machines, RandGreedi achieves an117

expected approximation guarantee of 1
2 (1 − 1/e) for cardinality and 1/4 for matroid118

constraints. In general, it has an approximation ratio of α/2 where α is the approx-119

imation ratio of the Greedy algorithm used at the local and global machines. We120

present the pseudocode of RandGreedi framework in Algorithm 2.2. Note that for121

a cardinality constraint, both Greedi and RandGreedi perform O(nk(k+m)) calls122

to the objective function and has O(mk) elements communicated to the single central123

machine where n is the number of elements in the ground set, m is the number of124

machines, and k is solution size.125

Both Greedi and RandGreedi require a single global accumulation from the126

solutions generated in local machines. This single accumulation step can quickly127

become dominating since the runtime, memory, and complexity of this global aggre-128

gation grows linearly with the number of machines. We propose to alleviate this by129

introducing a hierarchical aggregation strategy that maintains an accumulation tree.130

Our GreedyML framework generalizes the RandGreedi from a single accumula-131

tion to a multi-level accumulation. The number of partial solutions to be aggregated132

depends on the branching factor of the tree, which can be a constant. Thus, the num-133

ber of accumulation levels grows logarithmically with the number of machines, and134

the total aggregation is not likely to become a memory, runtime, and communication135

bottleneck with the increase in the number of machines.136

2.4. Other Related Work. Kumar et al. [17] have developed the sample and137

prune algorithm which achieves an expected approximation ratio of 1/(2 + ε) for138

k-cardinality constraints, using O(1/δ) rounds, when the memory per machine is139

O(knδ log n), where δ > 0 is a parameter, and n is the number of elements in the140

ground set. Barbosa et al. [2] have compared their RandGreedi algorithm with this141

one and show that the former performs better than the latter for the practical quality142

of the computed approximate solution. They observed this even though the sample143

and prune algorithm has a better worst-case approximation ratio in expectation.144

More recent work on distributed submodular maximization uses the multi-linear145

extension to map the submodular optimization problem into a continuous domain.146

This line of work [4, 25, 26] typically performs a gradient ascent on each local ma-147

chine and builds a consensus solution in each round, which improves the approxima-148
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2, 0

1, 0

0, 0 0, 1 0, b− 1

1, b

0, b 0, b+ 1 0, 2b− 1

1, (b− 1)b

0, b(b− 1) 0, b2 − 1

Level 2

Level 1

Level 0

Fig. 1: An accumulation tree with L = 2 levels, m = b2 machines, and a branching factor b.
Each node has a label of the form (`, id). Here there are b nodes as children at each level,
but when there are fewer than bL leaf nodes, then the number of children at levels closer to
the root may be fewer than b.

tion factor to (1 − 1/e). However, we believe these latter papers represent primarily149

a theoretical contribution rather than one that leads to practical algorithms. The150

reason is the high (exponential) cost of computing a single gradient by sampling151

many points; even randomized approximations of gradient computations are expen-152

sive. Most of these algorithms are not implemented and the ones with implementation153

solve problems with only a hundred elements in the data set [26].154

3. Description of Our Algorithm. We describe and analyze our algorithm155

that generalizes the RandGreedi algorithm from a single accumulation step to mul-156

tiple accumulation steps. Each accumulation step corresponds to a level in an accu-157

mulation tree which we describe next. We assume that there are m machines identified158

by the set of ids: {0, 1, . . . ,m− 1}.159

Accumulation Tree. An accumulation tree (T ) is defined by the number of machines160

(m), and branching factor (b). It has the same structure as a complete b-ary tree with161

m leaves which means all the leaves are at the same depth. The tree nodes correspond162

to processors along with the corresponding subset of data accessible to them. The163

edges of the tree determine the accumulation pattern of the intermediate solutions.164

The final solution is generated on the root node of T . Thus, the branching factor b165

of the tree indicates the maximum number of nodes that send data to its parent. For166

each internal node of the tree, we attempt to have exactly b children. Note that since167

we plan to construct a complete b-ary tree, in the case where m is not multiple of b, in168

each level of the tree, there could be at most one node whose arity is less than b. The169

number of accumulation levels, L (i.e., the height of the tree minus 1) is dlogbme.170

To uniquely identify a node in the tree, we will assign an identifier (`, id) to each171

node of T , where ` represents the accumulation level of the node and id represents172

the machine id corresponding to the node. The id for each leaf node is the id of173

the machine that the leaf node corresponds to. All the leaf nodes are at level 0.174

Each internal node receives the lowest id of its children, i.e., any node (l, i) has node175

(l+ 1, bi/bl+1c ∗ bl+1) as the parent. Therefore the root node will always have level L176

with id value 0. Also, we characterize an accumulation tree T by the triple T (m,L, b),177

where m is the number of leaves (machines), L is the number of levels, and b is the178

branching factor.179

Figure 1 shows an example of a generic accumulation tree with b2 leaves and180

branching factor b. The number of accumulation levels is the level of the root. Here181
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3, 0

2, 0

1, 0

0, 0 0, 1

1, 2

0, 2 0, 3

2, 4

1, 4

0, 4 0, 5

1, 6

0, 6 0, 7

2, 0

1, 0

0, 0 0, 1 0, 2

1, 3

0, 3 0, 4 0, 5

1, 6

0, 6 0, 7

2, 0

1, 0

0, 0 0, 1 0, 2 0, 3

1, 4

0, 4 0, 5 0, 6 0, 7

1, 0

0, 0 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 0, 7

Fig. 2: Accumulation tree with 8 machines and branching factors 2 (top-left), 3 (top-right),
4 (bottom-left), and 8 (bottom-right). The level inside a node represents the identification
of the node.

we have L = dlogb b
2e = 2. Figure 2 shows accumulation trees with 8 leaves and182

with branching factors 2, 3, 4, and 8. The trees with branching factors 2 and 8 have183

the same branching factor for every internal node as these trees have bL nodes. But184

the tree with branching factor 3 has the last node in level 1 with only 2 children.185

Similarly, the tree with branching factor 4 has the last node in level 2 i.e. the root186

with 2 children. Observe that the id parameter remains the same in multiple nodes187

that are involved in computations at multiple levels. For this paper, we show analysis188

by keeping the branching factor constant across all levels.189

Data Accessibility. We use Pid to denote the elements assigned to machine id. To190

indicate the data accessible to a particular node in the tree, we describe a set for the191

input data set as V`,id. It corresponds to all the data used to compute the solution at192

the node (`, id) and consists of all the elements assigned to its descendants:193

V`,id =

min(b`−1,m−id)⋃
i=0

Pid+i.194

195

Randomness. The randomness in the algorithm is only in the initial placement of the196

data on the machines, and we use a random tape to encapsulate this. The random197

tape rW has a randomized entry for each element in W to indicate the machine198

containing that element. Any expectation results proved henceforth are over the199

choice of this random tape. Moreover, if the data accessible to a node is V , we200

consider the randomness over just rV . Whenever the expectation is over rV , we201

denote the expectation as EV .202

Recurrence Relation. Figure 3 shows a recurrence relation defined for every node203

in the accumulation tree and will be the basis for our multilevel distributed algorithm.204

At level 0 (leaves), the recurrence function returns the Greedy solution of the random205

subset of data Pid assigned to it. At other levels (internal nodes), it returns the better206

among the Greedy solution computed from the union of the received solution sets207

of its children and its solution from its previous level. It is undefined for (`, id) tuples208
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GreedyML(`, id) =



Greedy(Pid) ` = 0

arg max

Greedy

( ⋃
i∈{0,1,...,b−1}

GreedyML
(
`− 1, id+ i · b`−1

))
GreedyML(`− 1, id)

id mod b` = 0

undefined otherwise

Fig. 3: The recurrence relation for the multilevel GreedyML which is defined for each node
in the accumulation tree. We denote the random subset assigned to machine id by Pid.

that do not correspond to nodes in the tree (at higher levels). We call our algorithm209

associated with the recurrence relation as the GreedyML algorithm.210

We can compare it with the RandGreedi algorithm by looking at the recurrence211

relation at level one. Our recurrence relation takes the arg max for the accumulated212

solution and one solution from the previous level. However, the RandGreedi algo-213

rithm takes the arg max of the accumulated solution and the best solution from the214

children. Our choice reduces the computation at the internal node. We show that this215

modification produces the same approximation ratio as the RandGreedi algorithm.216

Pseudocode. Algorithm 3.1 describes our multilevel distributed algorithm in two217

functions. The first function GreedyML is a wrapper function that sets up the218

environment to run the distributed algorithm. The second function GreedyML′ is219

the iterative implementation of the recurrence relation that runs on each machine.220

The wrapper function partitions the data into m subsets and assigns them to the221

machines (Line 2). Then each machine runs the GreedyML′ function on the subset222

assigned to it (Line 5, Line 7). The wrapper function uses and returns the solution223

from machine 0 (Line 8) as it is the root of the accumulation tree.224

The GreedyML′ procedure is an iterative implementation of the recurrence re-225

lation 3 that runs on every machine. Each machine checks whether it needs to be226

active at a particular level (Line 5) and decides whether it needs to receive from (Line227

11) or send to other machines (Line 6). The function returns the solution from the228

last level of the machine.229

4. Analysis of Our Algorithm. In this section, we will derive the expected230

approximation ratio of the GreedyML algorithm. We will then describe the three231

submodular functions we experiment with and derive their computation and commu-232

nication complexities.233

4.1. Expected Approximation Ratio. This subsection proves the expected234

approximation ratio of our GreedyML algorithm in Theorem 4.4. To do so, we need235

three Lemmas. The first Lemma characterizes elements that do not change the solu-236

tion computed by the GreedyML algorithm. We need some preliminary notation.237

When we wish to indicate the data set that a node in the tree and its descendants work238

with, we add an argument to GreedyML(`, id), and write GreedyML(V`,id, `, id).239

When we perform a union operation on this data set with some set B, and execute the240

GreedyML algorithm on the union, i.e., GreedyML(V`,id ∪B, `, id), then elements241

in B are assigned randomly to the leaves of the subtree rooted at node (`, id) and the242

algorithm is run with the updated data sets. Lemma 4.1 compares executions of the243

algorithm when this union operation is performed for a special set B. It states that244

if adding an individual element of a set, B, to the input of the GreedyML does not245

change the solution set then adding the whole set, B to the input will also have no246

effect on the solution. Here we consider executions that use the same random tape,247

number of machines, and branching factor. We use the same random tape to couple248
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Algorithm 3.1 Our Randomized Multi-level GreedyML Algorithm

1: procedure GreedyML(V : Dataset, b: branching factor, m: number of machines, r:
random tape)

2: Let {P0, P1, . . . Pm−1} be uniform random partition of V using r.
3: for i = 1 . . .m− 1 in parallel do . Run GreedyML’ on all machines except 0
4: ` = level(i, b) . level(i, b) = max

l
{l : id mod bl is 0}

5: Run GreedyML′(Vi, `, b, i) to obtain Si on machine i
6: end for
7: Run GreedyML′(V0, dlogbme, b, 0) to obtain S0 on machine 0
8: return S0

9: end procedure

1: procedure GreedyML′(P : Partial Data-set, `: levels; b: branching factor, id: machine
ID)

2: S = Greedy(P )
3: Sprev = S
4: for i = 1 . . . ` do
5: if id 6= parent(id, i) then
6: Send Sprev to parent(id, i) . parent(id, i) = bi · bid/bic
7: break
8: end if
9: D = Sprev . Prepare D for current iteration

10: for j = 1 . . . b− 1 do
11: Receive Dj from child(id, i, j) . child(id, i, j) = id+ j · bi−1

12: D = D ∪Dj

13: end for
14: Run Greedy(D) to obtain S
15: Sprev = arg max{f(S), f(Sprev)}
16: end for
17: return Sprev

18: end procedure

the executions. Therefore, the result of the Lemma is not over the expectation of the249

random tape.250

Lemma 4.1. Let T (m,L, b) be an accumulation tree. Consider a universal set251

W , and a random tape rW that maps elements of W to the leaves of T . Let V ⊆ W252

denote the set of elements accessible to a node (`, id), and consider adding elements of253

B ⊆W to this node. If we have GreedyML (V ∪ {e}, `, id) = GreedyML(V, `, id),254

for each element e ∈ B, then GreedyML(V ∪B, `, id) = GreedyML(V, `, id).255

Note: Function calls in this analysis use the same random tape for assigning256

elements; hence elements are assigned uniformly at random to the machines, but they257

use the same random assignment in all runs involving V ; V ∪{e},∀e ∈ B; and V ∪B.258

Proof. If possible, let GreedyML(V ∪ B, `, id) 6= GreedyML(V, `, id). Let e259

be the first element of B to be selected by the Greedy algorithm at the final level.260

Let i be the level in which e was in the input in some machine but not selected in a261

solution for the next level in GreedyML(V ∪ {e}, `, id). Since e is the first element262

of B that was selected by the Greedy algorithm, the elements chosen before it at263

level i in GreedyML(V ∪ B, `, id) are the same ones chosen before it at level i in264

GreedyML(V ∪{e}, `, id). Since it was not selected in GreedyML(V ∪{e}, `, id) it265

will not be selected in GreedyML(V ∪B, `, id). This is a contradiction since e must266
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be selected at every level to be present in the final solution.267

Now we turn to the two Lemmas that provide bounds on the quality of the268

computed solutions in terms of the optimal solution at an internal node in the accu-269

mulation tree.270

Lemma 4.2 provides a lower bound on the expected function value of the solution271

of the GreedyML algorithm from a child of the internal node. Lemma 4.3 provides272

a lower bound on the expected function value of the solution set from the Greedy273

algorithm executed at each internal node on the union of the partial solutions from274

its children. These Lemmas depend on the probability distribution defined below.275

Let p`,id : V`,id → [0, 1] be a probability distribution over the elements in V`,id,276

which we shall define below. Here A ∼ V`,id(1/b) denotes a random subset of V`,id such277

that each element is independently present in A with probability 1/b. This probability278

corresponds to the distribution from the random tape because each element is present279

with the same likelihood from any child of the node. Let OPT`,id be an optimal280

solution of the constrained submodular maximization problem when the input data281

is V`,id.282

The probability p`,id is defined as follows:283

p`,id(e) =

 Pr
A∼V`,id(1/b)

[e ∈ GreedyML(A ∪ {e}, `− 1, id)] , if e ∈ OPT`,id;

0, otherwise.
284

For any internal node (`, id), the distribution p`,id defines the probability that each285

element of OPT`,id286

is in the solution of the GreedyML algorithm of a child when it is accessible to287

the child node.288

Next, we state and prove Lemma 4.2 that relates the expected solution of the289

GreedyML algorithm at a child node with the optimal solution at the node when290

the approximation ratio of the GreedyML algorithm at the child is β.291

Lemma 4.2. Let c = (` − 1, idc) be a child of an internal node n = (`, id) of the
accumulation tree. Let Sc be the solution computed from child c, and Vc ⊂ Vn denote
the elements considered in forming Sc. If EVc [f(Sc)] > β · f(OPT`−1,idc), then

E
Vn

[f(Sc)] > β · f̂(1OPT`,id
− p`,id).

Proof. We first construct a subset of OPT`,id that contains all the elements that
do not appear in Sc when added to some leaf node in the subtree rooted at child c.
Let Oc be the rejected set that can be added to Vc without changing Sc; i.e.,

Oc = {e ∈ OPT`,id : e /∈ GreedyML(Vc ∪ {e}, `′, id)}.

To clarify further, Oc is a randomized set dependent on the tape rV`,id
. Since the292

distribution of Vc is the same as V`,id(1/b) for each element e in OPT`,id,293

(4.1) Pr[e ∈ Oc] = 1− Pr[e /∈ Oc] = 1− p`,id(e).294

From Lemma 4.1, we know that GreedyML(Vc∪Oc, `−1, idc) = GreedyML(Vc, `−295

1, idc) . Since the rejected set Oc ⊆ OPT`,id and the constraints are hereditary, Oc ∈ C296

(i.e Oc is a feasible solution of child node c).297

(4.2) f(OPT`−1,idc) > f(Oc).298
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Then from the condition of Lemma 4.2, we have299

EVn [EVcf(Sc)] > β · EVn [f(OPT`−1,idc)]300

EVn [f(Sc)] > β · EVn [f(OPT`−1,idc)] [Vc ⊂ Vn]301

> β · f̂(EVn [1Oc ]) [Eqn.(4.2)]302

> β · EVn [f(Oc)] [Lovász (2), 2.2]303

> β · f−(EVn [1Oc ]) = β · f̂(1OPT`,id
− p`,id) [Eqn.(4.1)].304305

Now we show how the solution of the Greedy algorithm that runs at each internal306

node compares with the optimal solution at the internal node.307

Lemma 4.3. For an internal node n = (`, id), let D be the union of all the308

solutions computed by the children of node n in the accumulation tree. Let S =309

Greedy(D) be the solution from the Greedy algorithm on the set D. If Greedy is310

an α-approximate algorithm, then311

EVn
[f(S)] > α · f−(p`,id).312

Proof. We first show a preliminary result on the union set D. Consider an element
e ∈ D ∩OPT`,id present in some solution Sc from a child c. Then,

Pr[e ∈ Sc|e ∈ Vc] = Pr[e ∈ GreedyML(Vc, `− 1, id)|e ∈ Vc].

Since the distribution of Vc ∼ V`,id(1/b) conditioned on e ∈ Vc is identical to the
distribution of B ∪ {e}, where B ∼ V`,id(1/b), we have,

Pr[e ∈ Sc|e ∈ Vc] = Pr
B∼V`,id(1/b)

[e ∈ GreedyML(B ∪ {e}, `− 1, id)] = p`,id(e).

Since this result holds for every child c, and each subset Vc is disjoint from the313

corresponding subsets mapped to the other children, we have314

(4.3) Pr(D ∩OPT`,id) = p`,id.315

Now, we are ready to prove the Lemma. The subset D ∩ OPT`,id ∈ C, since it is316

a subset of OPT`,id and the constraints are hereditary. Further, since the Greedy317

algorithm is α-approximate, we have318

f(S) > α · f(D ∩OPT`,id)319

EVn
[f(S)] > EVn

[α · f(D ∩OPT`,id)]320

> α · EVn
[f(D ∩OPT`,id)]321

> α · f̂(EVn
[1D∩OPT`,id

]) [Lovász Ext. (2), 2.2]322

= α · f̂(p`,id). [Eqn.4.3].(4.4)323324

Theorem 4.4. Let T (m,L, b) be an accumulation tree. For a universal set W and
random tape rW that maps elements of W to the leaves of the tree T , let V`,id ⊆ W
denote the subset of W accessible to a node (`, id). Let OPT`,id be an optimal solution
computed from the subset V`,id for the submodular function f with constraints C. If
Greedy is an α-approximate algorithm, then

EV`,id
[f(GreedyML(V`,id, `, id))] >

α

(`+ 1)
f(OPT`,id).
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Proof. We prove this theorem by induction on the level `.325

Base case, ` = 0: Here, there is no accumulation step, and we obtain the solution326

from a single node. Thus we run the Greedy algorithm on V`,id. The result follows327

since the Greedy algorithm has the approximation ratio α.328

Inductive case, ` = `′ + 1: We first obtain a relation for the quality of the329

solutions at level `′ compared to the quality of an optimal solution.330

For each child c, let Sc be a solution computed by the GreedyML algorithm331

from the data Vc ⊂ V`,id;332

From the induction hypothesis applied to child c = (`′, id), the approximation333

ratio obtained as a result of the computation GreedyML(Vc, `
′, id) is α/(`′+1) = α/`.334

This implies that EVl′,id [f(Sc)] > α
` ·f
−(1OPT`′,id). Therefore we can apply Lemma 4.2335

to get336

(4.5) EV`,id
[f(Sc)] >

α

`
· f̂(1OPT`,id

− p`,id).337

After obtaining the solutions from the children, we get the solution S computed338

by the Greedy algorithm on the union of these solution sets. From Lemma 4.3, we339

have340

(4.6) EV`,id
[f(S)] > α · f̂(p`,id).341

Now we obtain the relation between the solution at level `′ + 1 and the optimal342

solution. Let the solution set at level `′+1 be T . We have T = arg max{f(S), f(Sc)}.343

Then, we can use the lower bounds calculated earlier in Eqn. 4.5 and Eqn. 4.6 to find344

lower bounds for T .345

EV`,id
[f(T )] > α · f̂(p`,id) and EV`,id

[f(T )] >
α

`
· f̂(1OPT`,id

− p`,id).346

By multiplying the second inequality by ` and then adding it to the first, we get347

(`+ 1)EV`,id
[f(T )] > α · (f̂(1OPT`,id

− p`,id) + f̂(p`,id))348

= α · f̂(1OPT`,id
). [Lovász Ext. (2), 2.2]349350

Dividing by by `+ 1, and substituting from Lovász Ext. (1), 2.2 we conclude that the351

algorithm is α/(`+ 1)-approximate.352

4.2. Submodular Functions and Complexity. Here, we describe three sub-353

modular functions that we consider in our experiments and then discuss their com-354

putational and communication complexities.355

Our algorithm can handle any hereditary constraint, but in our experiments, we356

consider only cardinality constraints to keep the computations simple. (More general357

constraints involve additional computations to check if an element can be added to the358

current solution set and satisfy the constraints.) Cardinality constraints are widely359

used in various applications such as sensor placement [16], text, image, and document360

summarization [18, 19], and information gathering [15]. The problem of maximizing361

a submodular function under cardinality constraints can be expressed as follows.362

max
S ⊆ V

f(S)363

s.t. |S| 6 k.364365

Here V is the ground set, f is a non-negative monotone submodular function, and k366

is the size of the solution set S.367

In our experiments, We have considered the following three submodular functions.368
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12 S. GOPAL, S M FERDOUS, H. MAJI AND A. POTHEN

k-cover. The first problem we consider is the k-cover. Given a ground set B,369

a collection of subsets V ⊆ 2B , and an integer k, the goal is to select a set S ⊆ V370

containing k of these subsets to maximize f(S) = |
⋃
Si∈S Si|.371

k-dominating set. The k-dominating set problem is a special case of the k-cover372

problem defined on graphs with the ground set V as the set of vertices. We say a vertex373

u ∈ V dominates all its adjacent vertices (denoted by δ(u)). Our goal is to select a374

set S of k vertices to dominate as many vertices as possible, i.e., f(S) = |
⋃
u∈S δ(u)|.375

The marginal gain of any vertex is the number of vertices in its neighborhood that376

are not yet dominated. Therefore the problem shows diminishing marginal gains and377

is submodular.378

k-medoid problem. The k-medoid problem [12] is used to compute exemplar-379

based clustering, where we want to select a set of exemplars (cluster centers) that are380

representatives of a large dataset. Given a collection of elements in a ground set V ,381

and a dissimilarity d(u, v), we define a loss function (denoted by L) as the average382

pairwise dissimilarity between the exemplars (S) and the elements of the data set,383

i.e., L(S) =
1

|V |
∑
u∈V minv∈S d(u, v). Following [24], we turn this loss minimization384

to a submodular maximization problem by setting f(S) = L({e0}−L(S∪{e0}, where385

e0 is an auxiliary element specific to the dataset. The goal is to select a subset S ⊆ V386

of size k representing the exemplars that maximize f(S).387

Next, we will analyze the computational and communication complexity of our388

GreedyML algorithm using the bulk synchronous parallel (BSP) model of parallel389

computation [29]. For the analysis, we will denote the number of elements in the390

ground set by n = |V |,the solution size by k, the number of machines by m, and the391

number of levels in the accumulation tree by L.392

Computational Complexity. The number of objective function calls by the se-393

quential Greedy algorithm (shown in Algorithm 2.1 is O(nk), since k elements are394

selected to be in the solution, and we may need to compute O(n) marginal gains for395

each of them. Each machine in RandGreedi algorithm makes O(k(n/m+mk)) func-396

tion calls, where the second term comes from the accumulation step. Each machine397

of the GreedyML algorithm with branching factor b makes O(k(n/m+ Lbk)) calls.398

Recall that L = dlogbme.399

We note that the time complexity of a function call depends on the specific func-400

tion being computed. For example, in the k-coverage and the k-dominating set prob-401

lems, computing a function costs O(δ), where δ is the size of the largest itemset for402

k-coverage, and the maximum degree of a vertex for the vertex dominating set. In403

both cases, the runtime complexity is O(δk(n/m + mk)) for the RandGreedi, and404

O(δk(n/m+ Lbk)) for the GreedyML algorithm. The k-medoid problem computes405

a local objective function value and has a complexity of O(n′δ) where δ is the number406

of features, and n′ is the number of elements present in the machine. For the leaves of407

the accumulation tree, n′ = n/m, and for interior nodes, n′ = bk. Therefore its com-408

plexity is O(kδ((n/m)2 +(mk)2)) for the RandGreedi, and O(kδ((n/m)2 +L(bk)2))409

for the GreedyML algorithm.410

Communication Complexity. Each edge in the accumulation tree represents com-411

munication from a machine at a lower level to one at a higher level and contains four412

messages. They are the indices of the selected elements of size k, the size of the data413

associated with each selection (proportional to the size of each adjacency list (6 δ), the414

total size of the data elements, and the data associated with each selection. Therefore415
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the total volume of communication is O(kδ) per child. Since at each level, a parent416

node receives messages from b children, the communication complexity is O(kδLb)417

for each parent. Therefore the communication complexity for the RandGreedi algo-418

rithm is O(kδm) and for the GreedyML algorithm is O(kδL
⌈
m1/L

⌉
). We summarize419

these results in Table 1.420

Algorithms Metric Greedy RandGreedi GreedyML

All

Elements per leaf node n n/m n/m
Calls per leaf node nk nk/m nk/m
Elements per interior node 0 km k

⌈
m1/L

⌉
Calls per interior node 0 k2m k2

⌈
m1/L

⌉
Total Function Calls kn k(n/m+ km) k(n/m+ Lk

⌈
m1/L

⌉
)

k-cover / k-
dominating
set

δ:subset size/number of neighbours
Cost Per call δ δ δ
Computational complexity δkn δk(n/m+ km) δk(n/m+ Lk

⌈
m1/L

⌉
)

Communication cost 0 δkm δkL
⌈
m1/L

⌉
k-medoid

δ: number of features
Cost Per call in Leaf node δn δn/m δn/m
Cost Per call in interior node 0 δkm δk

⌈
m1/L

⌉
Computational complexity δkn2 δk((n/m)2 + (km)2) δk((n/m)2 + L(k

⌈
m1/L

⌉
)2)

Communication cost 0 δkm δkL
⌈
m1/L

⌉
Table 1: Complexity Results of the submodular functions for different algorithms. The
number of elements in the ground set is n, the selection size is k, the number of machines is
m, and the number of levels in the accumulation tree is L.

5. Experimental setup. We conduct experiments to evaluate our algorithms421

using different accumulation tree structures and compare them with Greedy and422

RandGreedi to assess the quality, runtime, and memory footprints of these algo-423

rithms. All the algorithms are executed on the Bell community cluster [22] of Purdue424

University with 448 nodes, each of which is an AMD EPYC 7662 node with 256 GB of425

total memory shared by the 128 cores. Each core operates at 2.0 GHz frequency. The426

cores on a node are organized hierarchically: four cores form a core complex, two core427

complexes form a core complex die, eight core complex dies form a socket, and two428

sockets constitute a node. Unfortunately, there are only 16 memory controllers for the429

128 cores, and hence in this NUMA architecture, memory contention is an issue on430

cores within a node. To simulate a completely distributed environment on this cluster431

we needed to ensure that the memory is not shared between nodes. Therefore, in what432

follows, a machine will denote one node with just one core assigned for computation,433

but having access to all 256 GB of memory. We also found that this made the run434

time results more reproducible.435

For our experimental evaluation, we report the runtime and quality of the algo-436

rithms being compared. For runtime, we exclude the file reading time in each machine,437

and for the quality, we show the objective function value of the corresponding submod-438

ular function. Since the RandGreedi and GreedyML are distributed algorithms,439

we also report the number of function calls in the critical path of the computational440

tree, which represents the parallel runtime of the algorithm. Given an accumulation441

tree, the number of function calls in the critical path refers to the maximum number442

of function calls the algorithm makes along a path from the leaf to the root. In our443

implementation, this quantity can be captured by the number of function calls made444

by nodes of the accumulation tree with mid = 0 since this node participates in the445

function calls from all levels of the tree.446

This manuscript is for review purposes only.



14 S. GOPAL, S M FERDOUS, H. MAJI AND A. POTHEN

Function Dataset n = |V |
∑
u δ(u) avg. δ(u)

k-dominating
set

Friendster 65,608,366 1,806,067,135 27.52
road usa 23,947,347 57,708,624 2.41
road central 14,081,816 33,866,826 2.41
belgium osm 1,441,295 3,099,940 2.14

k-cover
webdocs 1,692,082 299,887,139 177.22
kosarak 990,002 8,018,988 8.09
retail 88,162 908,576 10.31

k-medoid Tiny ImageNet 100,000 1,228,800,000 12,288

Table 2: Properties of Datasets used in the experiments. δ(u) is the number of neighbors
of vertex u for the k-dominating set problem, the cardinality of the subset u for the k-cover
problem, and the size of the vector representation of the pixels of image u for the k-medoid
problem.

Datasets. In this paper, we limit our experiments to cardinality constraints using447

three different submodular functions described in detail in Section 4.2.448

Our benchmark dataset is shown in Table 2. They are grouped based on the449

objective function and are sorted by the size of the dataset in each group. For the450

k-dominating set, our testbed consists of the Friendster social network graph [30] and451

a collection of road networks from DIMACS10 dataset. We chose these graphs since452

they have relatively small average vertex degrees, leading to large vertex-dominating453

sets. For the k-cover objective, our datasets come from the Frequent Itemset454

Mining Dataset Repository [10] which contains popular benchmarks for set covers.455

We choose webdocs[21], retail [3], and kosarak. For the k-medoid problem, we use the456

Tiny ImageNet dataset [8], which contains 100, 000 images with 200 different classes457

and 500 images from each class. Each image is 64× 64 pixels in size.458

MPI Implementation. Our codes are implemented using C++11, and compiled with459

g++9.3.0, using the O3 optimization flag. Our implementation of the Greedy algo-460

rithm uses the Lazy Greedy [23] variant that has the same approximation guarantee as461

the Greedy but is faster in practice since it potentially reduces the number of func-462

tion evaluations needed to choose the next element (by using the monotone decreasing463

gain property of submodular functions). Our implementation of the GreedyML algo-464

rithm uses Open MPI implementation for the inter-node communication. We use the465

MPI Gather and MPI Gatherv primitives to receive all the solution sets from the chil-466

dren (Line 11 in Algorithm 3.1). We generated custom MPI Comm communicators to467

enable this communication using MPI Group primitives. Customized communicators468

are required since every machine has different children at each level. Additionally, we469

use the MPI Barrier primitive to synchronize all the computations at each level.470

6. Experimental Results. The experiments are executed with different accu-471

mulation trees that vary in the number of machines (m) and the number of levels (L)472

and branching factors (b) to assess their performance. We repeat each experiment473

six times and report the geometric mean of the results. Unless otherwise stated, a474

machine in our experiments represents a node in the cluster with only one core as-475

signed for computation as stated in Section 5. Whenever memory constraints allow,476

we compare our results with the sequential Greedy algorithm that achieves (1−1/e)477

approximation guarantee.478

Recall that our GreedyML algorithm generalizes the RandGreedi algorithm479
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by allowing multiple levels in the accumulation tree, thus removing the bottleneck of480

a single aggregation. In the following, we verify this through a series of experiments.481

In Section 6.1, we assess the performance of our algorithm using different ac-482

cumulation tree structures. We fix the number of machines and construct the best483

parameters of the accumulation tree for our dataset. Additionally, the experiment484

also demonstrates that the number of function calls in the critical path is a good485

estimate of the parallel runtime. In Section 6.2, we show the memory benefit of our486

GreedyML w.r.t RandGreedi with two experiments. In Section 6.2.1, we impose487

a limit of 100 MB for each node and vary k, the selection size. This also simulates488

how the new algorithm can find applications in the edge-computing context. In Sec-489

tion 6.2.2, we fix the k value and vary the memory limits, necessitating different490

numbers of nodes to fit the data in the leaves. We observe the quality and runtime491

of different accumulation tree structures in these two experiments. Both these ex-492

periments are designed to show that the RandGreedi algorithm quickly runs out of493

memory with increasing m and k, and by choosing an appropriate accumulation tree,494

our GreedyML algorithm can solve this problem with negligible drop in accuracy.495

For these experiments, we will choose the computational tree with the lowest depth496

that can be used with the memory limit and k values.497

In Section 6.3, we perform a scaling experiment by varying the number of machines498

and using the tallest tree by setting a branching factor of two for the accumulation499

tree. We specifically show that even though the RandGreedi algorithm has a low500

asymptotic communication cost, it can become a bottleneck when scaled to a large501

number of machines. We also show how our algorithm alleviates this bottleneck.502

Finally, in Section 6.4, we perform experiments for the k-medoid objective function503

and show that we can provide a significant speedup by using taller accumulation trees504

without loss in quality. The k-medoid function is extensively used in machine learning505

as a solution to exemplar-based clustering problems.506

Fig. 4: Geometric means of results from GreedyML for k-dominating set on different road
datasets and k-cover on different set cover benchmark datasets on 32 machines. The first
subfigure shows the execution times for different k values and accumulation trees. The second
subfigure shows the Geometric mean values of the number of function calls in the critical
path relative to the Greedy algorithm for k = 32, 000.

6.1. Accumulation tree parameter selection. Our first experiment explores507

the effect of choosing different branching factors and different accumulation levels in508

the accumulation tree for a fixed number of machines. In this experiment, we vary509

the selection set sizes k for each of these accumulation trees. We obtain results for the510

six datasets for k-dominating set and k-coverage detailed in Table 2. In Figure 4, we511

provide summary results on the relative number of function evaluations in the critical512
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path relative to the Greedy algorithm and the running times by taking a geometric513

mean over all the datasets.514

The first subfigure shows the execution time in seconds for the GreedyML and515

RandGreedi algorithms, as the number of levels and the parameter k are varied.516

When k is small, there is less variation in the execution time, since a significant517

amount of work is performed at the leaves. As k increases, we can observe that the518

GreedyML algorithm runs faster relative to the RandGreedi algorithm (L = 1, b =519

32). Note that, although we present in Figure 4 the geometric mean results over all520

the six datasets, the runtime and the function values for the individual datasets follow521

the same trend. The belgium osm dataset has the largest reduction in run time with522

a reduction of around 22% and the smallest reduction in runtime is in the kosarak523

dataset with a reduction of 1% across all k values.524

The second subfigure chooses k = 32, 000 and plots the number of function calls in525

the critical path of the accumulation tree relative to the Greedy algorithm for differ-526

ent (L, b) pairs. We observe that the relative number function calls for RandGreedi527

is around 70% of Greedy, whereas the GreedyML (with L = 2 and b = 8) cuts528

down the time by 15 percent. From Table 1, we can see that the function calls at a529

leaf node is O(nk/m) whereas the function calls at an accumulation node is O(mk2)530

for the RandGreedi algorithm. The accumulation node dominates the computation531

since it has a quadratic dependence on k, becoming a bottleneck for large k values.532

This plot shows that the number of calls is a good indicator of the run time of533

the algorithm and that the cost of function evaluations dominates the time taken by534

the algorithm. On the other hand, the communication costs are small but, for the535

GreedyML, they do grow with the number of levels when k is very large.536

We additionally note (not in figure), that the objective function values obtained537

by the GreedyML algorithm are not sensitive to the choice of the number of levels538

and the branching factors of the accumulation tree and differ by less than 1% from the539

values of the RandGreedi algorithm. For the webdocs k-coverage problem however,540

Greedy obtains objective function values that are about 20% higher than both the541

RandGreedi and GreedyML algorithms.542

Fig. 5: Results from GreedyML for the k-dominating set problem on the road usa dataset
on 16 nodes with varying k. The tuple(L,b) shows the number of levels and branching factors
chosen for specific k values. The function values are relative to the Greedy algorithm. Note
that the leftmost bars in both plots represent the RandGreedi results.

6.2. Experiments with memory limit.543
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6.2.1. Varying k. For this experiment, we use 16 machines with a limit on544

available memory of 100 MB per machine and vary k from 128, 000 to 1, 024, 000.545

We consider the k-dominating set problem on the road usa [1] dataset and large k546

values are chosen since the graph has an even larger maximum dominating set. Note547

that the k-values other than 128, 000 cause the RandGreedi algorithm to run out of548

memory in accumulating all the solutions in the root node. We note that the small549

memory limit in this experiment can also be motivated from edge computing context.550

The left plot in Figure 5 shows the number of function calls with varying values551

of k for the Greedy and GreedyML algorithms. For the GreedyML (and the552

RandGreedi), we are interested in the number of function calls in the critical path553

since it represents the parallel runtime of the algorithm. With our memory limits,554

only k = 128, 000 instance can be solved using the RandGreedi algorithm, which is555

shown in the leftmost blue bar of the plot.556

As we increase k, we were able to generate solutions using our GreedyML with557

different accumulation trees. The corresponding lowest-depth accumulation tree with558

the number of levels and branching factor is shown on top of the blue bars.559

For each k value, we also executed the Greedy algorithm shown in the orange560

bars. The result shows that the number of function evaluations on the critical path in561

the GreedyML algorithm is smaller than the number of function evaluations in the562

sequential Greedy algorithm. While the number of calls for accumulation trees with563

smaller b values is larger than RandGreedi, we can see that GreedyML can solve564

the problems with larger k values in the same machine setup, which was not possible565

with RandGreedi. But it comes with a trade-off on parallel runtime. We observe566

that as we make the branching factor smaller our number of function calls in the567

critical path increases. That suggests that it is sufficient to choose the accumulation568

trees with the largest branching factor (thus the lowest depth tree) whenever the569

memory allows it.570

The right plot of Figure 5 shows the relative objective function value, i.e., the571

relative number of vertices covered by the dominating set compared to the Greedy572

algorithm, with varying k. The figure shows that the RandGreedi and GreedyML573

algorithms attain quality at most 6% lesser than the serial Greedy algorithm. Similar574

trends can be observed for other datasets in the summary of results shown in Figure575

4.576

6.2.2. Varying Memory Limits. This experiment demonstrates the capabil-577

ity of the GreedyML algorithm to solve a problem with a fixed k value on parallel578

machines when the memory is insufficient for the RandGreedi and Greedy algo-579

rithms. Unlike the experiment in Section 6.2.1, where we selected the accumulation580

trees based on the k value for the problem, here, we fix k and choose accumulation581

trees based on the size of memory available on the machines. We consider the k-582

dominating set problem on graphs, and first report results on the Friendster dataset583

[30]. We set the cardinality constraint k so that the k-dominating set requires 512584

MB, roughly a factor of 64 smaller than the original graph. The RandGreedi algo-585

rithm can execute this problem only on 8 machines, each with 4 GB of memory, since586

in the accumulation step, one machine receives solutions of size 512 MB each from587

8 machines. The GreedyML algorithm having multiple levels of accumulation can588

run on 16 machines with only 2 GB memory, using L = 2 and b = 4. Furthermore, it589

can also run on 32 machines with only 1 GB memory, using L = 5 and b = 2.590

We show results from these three machine configurations in Table 3. We report the591

number of function calls on a critical path and the objective function values normalized592
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Dataset Alg. Mem.
Limit

m b L Rel. Func.
Val.(%)

Time
(sec.)

Friendster
RG 4GB 8 8 1 96.294 69.81
GML 2GB 16 4 2 96.232 82.92
GML 1GB 32 2 5 96.175 112.17

road usa
RG 8 8 1 99.034 1.25
GML 16 4 2 99.005 1.63
GML 32 2 5 99.027 3.56

webdocs
RG 8 8 1 79.948 4.50
GML 16 4 2 78.723 4.72
GML 32 2 5 79.743 8.59

Table 3: Results from GreedyML (GML) for k-dominating set on the Friendster, road usa
and webdocs datasets. The memory size per machine is varied for the Friendster dataset.
The number of machines m and the accumulation tree are selected based on the size of the
data and the size of the solutions to get three different machine organizations. We report the
function values relative to the Greedy algorithm and the execution time in seconds. Note
that the 4GB entries run with L = 1 and correspond to the RandGreedi (RG) algorithm.
We use the same three machine organizations for the road usa and webdocs datasets to show
they follow similar trends in solution quality and execution time.

by those obtained from the serial Greedy algorithm. Our results show that objective593

function values computed by the GreedyML algorithm (the 2 and 1 GB results) are594

insensitive to the number of levels in the tree. Similar trends are observed for the595

webdocs [21] and road usa [1] datasets when we used the same number of machines596

and accumulation trees. As we increase the number of machines and levels in the597

accumulation tree, the execution times (in seconds) increase for this problem due to598

the communication and synchronization costs involved. However, the larger numbers599

of machines enable us to solve large problems by overcoming memory constraints. So,600

in this scenario, it is sufficient to select the number of machines depending on the size601

of the dataset and then select the branching factor such that the accumulation step602

does not exceed the memory limits. We also notice that the RandGreedi algorithm603

has an inherently serial accumulation step, and the GreedyML algorithm provides604

a mechanism to parallelize it.605

6.3. Strong Scaling. Next, we show how the GreedyML algorithm serves as606

a solution to the scaling bottlenecks that arise in the RandGreedi algorithm. For607

the scaling experiment, we consider the k-dominating set problem on the Friendster608

dataset. We set the branching factor b = 2 for the GreedyML algorithm since609

this has the highest number of levels and, thus, the lowest approximation guarantee.610

We compare this with the RandGreedi algorithm starting from 8 machines to 128611

machines with k = 50. We compare the total execution time, communication time,612

and computation time for the GreedyML and the RandGreedi algorithms.613

In Figure 6, we plot the total execution time by stacking communication and614

computation time for the two algorithms. We observe that the communication cost615

does not scale for the RandGreedi algorithm. From Table 1, we can see that the time616

spent by the central node collecting the solutions is O(km) and, therefore, increases617

linearly with the number of machines. In contrast, for GreedyML algorithm (with618

This manuscript is for review purposes only.



A PARALLEL ALGORITHM FOR MAXIMIZING SUBMODULAR FUNCTIONS 19

Fig. 6: Strong scaling results of the RandGreedi and GreedyML algorithms for k = 50 on
Friendster dataset for k-dominating set problem. We set b = 2 for the GreedyML algorithm.

L b Local Obj. Added Images
Rel. Func.
Val. (%)

Speedup Rel. Func.
Val. (%)

Speedup

5 2 92.22 2.00 93.69 2.01
3 4 92.21 1.96 92.70 1.94
2 8 92.73 1.95 92.77 1.93
2 16 92.22 1.49 93.34 1.44

Table 4: Results from GreedyML for the k-medoid function on the Tiny ImageNet data
set using different accumulation trees. The table shows the relative function values and
speedup compared to the RandGreedi algorithm using two different local objective values
computation schemes executed on 32 nodes. For both, higher values are better. Here L and
b are the number of levels and branching factor, respectively.

a constant branching factor, b = 2, L = log2m), the communication cost O(k logm)619

which grows logarithmically in the number of machines. The total communication620

times of the GreedyML algorithm across different machines are consistently around621

0.25 seconds, whereas the RandGreedi increases from 0.05 second to 2 seconds622

linearly. We observe that computation times for both RandGreedi and GreedyML623

changes similarly with m, indicating that the majority of the computation work is624

performed at the leaf nodes. For computation time, we observe a slightly worse scaling625

of RandGreedi compared to GreedyML, again because the central node becomes626

a computational bottleneck as m increases. Similar to other experiments, we see an627

almost identical quality in the solutions where the GreedyML solution has a quality628

reducing by less than 1% from the solution of the RandGreedi algorithm.629

6.4. The k-Medoid Problem. In our final experiment, we consider the k-630

medoid function that solves the exemplar-based clustering problem. Our dataset631

consists of the Tiny ImageNet dataset [8], which contains 100,000 images with 200632

different classes and 500 images from each class. Each of the images is 64× 64 pixels.633

We flatten each image into a vector of 12,288 length. We then subtracted the mean634

value and normalized the vector. We compute the dissimilarity between two images635

as the Euclidean distance between the normalized vector representations. Here, the636
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Fig. 7: Results from GreedyML for the k-medoid problem on the Tiny ImageNet dataset
on 32 nodes with k = 200 with no images added at each accumulation step. The subfigure
on the left shows the first 16 image results for one of the runs for the GreedyML algorithm
with branching factor b = 2, and the subfigure on the right shows the top 16 image results
for one of the runs for the RandGreedi algorithm.

auxiliary image e0 is a pixel vector of all zeros. Note that, unlike the other two637

functions, the k-medoid function, requires access to the full dataset for computing638

the functional value. Since the dataset is distributed, this poses an issue in the639

experiment. To overcome this, following [24, 2], we calculate the objective function640

value using only the images available locally on each machine. This means the ground641

set for each machine is just the images present in that machine. This is motivated642

by an analysis from Mirzasoleiman et al. (Theorem 10, [24]) showing that computing643

f(S) with the ground set as some subset D ⊆ V chosen uniformly at random provides644

a high-probability additive approximation to the function value f(S) evaluated with645

ground set V . Additionally, they have also added subsets of randomly chosen images646

to the central machine to provide practical quality improvement. We have followed647

these techniques (local only and local with additional images) in the experiments for648

our multilevel GreedyML algorithm.649

In our experiments, we fix the number of machines (m = 32) and vary the ac-650

cumulation trees by choosing different L and b. We set the solution size k to 200651

images. For the variant with additional images, we add 1, 000 random images from652

the original dataset to each accumulation step.653

In Table 4, we show the relative objective function values and speedup for different654

accumulation trees relative to the RandGreedi algorithm. We observe that the ob-655

jective function values for GreedyML algorithm are almost similar to RandGreedi.656

Our results show that the GreedyML algorithm becomes gradually faster as we in-657

crease the number of levels with runtime improvement ranging from 1.45 − 2.01×.658

This is because the k-medoid function is compute-intensive, where computation cost659

increases quadratically with the number of images (Table 1). With k = 200 and660

m = 32, the RandGreedi algorithm has km = 6, 400 images at the root node but661

only n/m = 313 images at the leaves, thus the computation at the root node domi-662

nates in cost. On the other hand, as we decrease the branching factor (from b = 16663

to 2), the number of images (kb) in the interior nodes decreases from 3, 200 to 400 for664
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the GreedyML algorithm. This gradual decrease in compute time is reflected in the665

total time, and also in the observed speedup.666

Finally, in Fig. 7, we show 16 out of the 200 images determined to be cluster cen-667

ters by the GreedyML and RandGreedi algorithms. We can draw the conclusion668

that the submodular k-medoid function is able to generate a diverse set of exemplar669

images for this clustering problem.670

7. Conclusion and Future work. We have developed a new distributed algo-671

rithm that generalizes the existing state-of-the-art algorithm for monotone submodu-672

lar maximization subject to hereditary constraints. We prove that the new algorithm673

is α/(L + 1) approximate and showed its quality doesn’t degrade for the k-cover, k-674

dominating set, and k-medoid problems. We showed how this new algorithm reduces675

the inherent serial computation and communication bottlenecks of the RandGreedi676

algorithm. We also reduce the memory required to solve the problem enabling sub-677

modular maximization to be solved in an edge computation context and with larger678

k values. Finally, We showed a significant speedup in solving the popular exemplar-679

based clustering problem.680

As part of our future work, we plan to run experiments for other hereditary681

constraints, such as matroid and p-system constraints. We will also explore how this682

generalization technique can be applied to other classes of NP-Hard problems such as683

non-monotone submodular functions and weakly-submodular functions.684
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