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Abstract

Most secure computation protocols can be effortlessly adapted to offload a significant
fraction of their computationally and cryptographically expensive components to an
offline phase so that the parties can run a fast online phase and perform their intended
computation securely. During this offline phase, parties generate private shares of a
sample generated from a particular joint distribution, referred to as the correlation.
These shares, however, are susceptible to leakage attacks by adversarial parties, which
can compromise the security of the entire secure computation protocol. The objective,
therefore, is to preserve the security of the honest party despite the leakage performed
by the adversary on her share.

Prior solutions, starting with n-bit leaky shares, either used 4 messages or enabled
the secure computation of only sub-linear size circuits. Our work presents the first 2-
message secure computation protocol for 2-party functionalities that have Θ(n) circuit-
size despite Θ(n)-bits of leakage, a qualitatively optimal result. We compose a suitable
2-message secure computation protocol in parallel with our new 2-message correlation
extractor. Correlation extractors, introduced by Ishai, Kushilevitz, Ostrovsky, and
Sahai (FOCS–2009) as a natural generalization of privacy amplification and randomness
extraction, recover “fresh” correlations from the leaky ones, which are subsequently used
by other cryptographic protocols. We construct the first 2-message correlation extractor
that produces Θ(n)-bit fresh correlations even after Θ(n)-bit leakage.

Our principal technical contribution, which is of potential independent interest, is
the construction of a family of multiplication-friendly linear secret sharing schemes
that is simultaneously a family of small-bias distributions. We construct this family
by randomly “twisting then permuting” appropriate Algebraic Geometry codes over
constant-size fields.
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1 Introduction

Secure multi-party computation (MPC) allows mutually distrusting parties to compute se-
curely over their private data. Secure computation of most functionalities requires expensive
public-key primitives such as oblivious transfer even in the semi-honest setting.1 We can
effortlessly adjust most of these existing secure computation protocols so that they offload
a significant fraction of their complex operations to an offline preprocessing phase. Subse-
quently, during an online phase, parties can implement extremely fast secure computation
protocols.

For instance, in the two-party setting, we envision this offline phase as a secure implemen-
tation of a trusted dealer who generates private albeit correlated shares (rA, rB) for the Alice
and Bob, respectively, sampled from an appropriate joint distribution (RA, RB), referred to
as a correlation. This versatile framework allows the implementation of this trusted dealer
using computational hardness assumptions, secure hardware, trusted hardware, or physical
processes. Further, this offline phase is independent of the final functionality that is securely
computed, as well as the private inputs of the parties to the functionality.

A particularly useful correlation is the random oblivious transfer correlation, represented
by ROT. One sample of this correlation generates three random bits x0, x1, b and provides
private shares rA = (x0, x1) to Alice, and rB = (b, xb) to Bob. Note that Alice does not
know the choice bit b, and Bob does not know the other bit x1−b. Let F be the class
of functionalities that admit 2-message secure computation protocols in the ROT-hybrid.
Note that F includes the powerful class of functions that have a decomposable randomized
encoding [AIK04, IK02, App17]. Alice and Bob can compute the required ROTs in the
offline phase. Then, they can compute any functionality from this class using 2-messages, a
protocol exhibiting optimal message complexity2 and (essentially) optimal efficiency in the
usage of cryptographic resources.

However, the private share of the honest party is susceptible to leakage attacks by an
adversary, both during the generation of the shares and the duration of storing the shares.
We emphasize that the leakage need not necessarily reveal individual bits of the honest
party’s share. The leakage can be on the entire share and encode crucial global information
that can potentially jeopardize the security of the secure computation protocol. This concern
naturally leads to the following fundamental question.

“Can we preserve the security and efficiency of the secure computation during the online
phase despite the adversarial leakage on the honest party’s shares?”

Using the class F of functionalities (defined above) as a yardstick, let us determine the
primary hurdle towards a positive resolution of this question. In the sequel, Fm ⊂ F is the set
of all two-party functionalities that have a 2-message protocol in ROTm-hybrid. In the leaky
correlation setting, our objective is to design an (asymptotically) optimal secure computation
protocol for Fm. That is, starting with leaky correlations (of size n), we want to compute any
F ∈ Fm such that m = Θ(n) via a 2-message protocol despite t = Θ(n) bits of leakage. We
note that this task is equivalent to the task of constructing a secure computation protocol for

1A semi-honest adversary follows the prescribed protocol but is curious to find additional information.
2Message complexity refers to the number of messages exchanged between Alice and Bob.
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the particular functionality ROTm that also belongs to Fm. This observation follows from the
parallel composition of the secure protocol implementing the functionality ROTm from leaky
correlations with 2-message protocol for F in the ROTm-hybrid. To summarize, our overall
objective of designing optimal secure computation protocols from leaky ROT correlations
reduces to the following equivalent goal.

“Construct a 2-message protocol to compute ROTm securely, where m=Θ(n), from the
leaky ROTn/2 correlation in spite of t = Θ(n) bits of leakage.”

Note that in the ROTn/2-hybrid, both parties have private share of size n bits. The above
problem is identical to correlation extractors introduced in the seminal work of Ishai, Kushile-
vitz, Ostrovsky, and Sahai [IKOS09].

Correlation Extractors. Ishai et al. [IKOS09] introduced the notion of correlation ex-
tractor as an interactive protocol that takes a leaky correlation as input and outputs a new
correlation that is secure. Prior correlation extractors either used four messages [IKOS09]
or had a sub-linear production [GIMS15, BMN17], i.e., m = o(n). We construct the first
2-message correlation extractor that has a linear production and leakage resilience, that is,
m = Θ(n) and t = Θ(n). Note that even computationally secure protocol can use the output
of the correlation extractor in the online phase. Section 1.1 formally defines the notion of
correlation extractors, and we present our main contributions in Section 1.2.

1.1 Correlation Extractors and Security Model

We consider the standard model of Ishai et al. [IKOS09] for correlation extractors, which is
also used by subsequent works. We consider 2-party semi-honest secure computation in the
preprocessing model. In the preprocessing step, a trusted dealer draws a sample of shares
(rA, rB) from the joint distribution of correlated private randomness (RA, RB). The dealer
provides the secret share rA to Alice and rB to Bob. Moreover, the adversarial party can
perform arbitrary t-bits of leakage on the secret share of the honest party at the end of the
preprocessing step. We represent this leaky correlation hybrid as (RA, RB)[t].3

Definition 1 (Correlation Extractor). Let (RA, RB) be a correlated private randomness
such that the secret share of each party is n-bits. An (n,m, t, ε)-correlation extractor for
(RA, RB) is a two-party interactive protocol in the (RA, RB)[t] hybrid that securely imple-
ments the ROTm/2 functionality against information-theoretic semi-honest adversaries with
ε simulation error.

Note that the size of the secret shares output by the correlation extractor is m. We
emphasize that no leakage occurs during the execution of the correlation extractor protocol.

3That is, the functionality samples secret shares (rA, rB) according to the correlation (RA, RB). The
adversarial party sends a t-bit leakage function L to the functionality and receives the leakage L(rA, rB)
from the functionality. The functionality sends rA to Alice and rB to Bob. Note that the adversary does not
need to know its secret share to construct the leakage function because the leakage function gets the secret
shares of both parties as input.
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The t-bit leakage cumulatively accounts for all the leakage before the beginning of the online
phase.

For brevity, in this work, we shall use the term “correlation extractor for (X, Y )” to refer
to a correlation extractor that takes multiple samples of the correlation (X, Y ) as input (such
that the total size of the secret share of each party is n-bits), and outputs ROTm/2. We shall
always normalize so that the total length of the input shares is n-bits.

1.2 Our Contribution

Recall that Fm ⊂ F is the set of all two-party functionalities that have a 2-message protocol
in ROTm-hybrid. We prove the following results.

Theorem 1 (Asymptotically Optimal Secure Computation from Leaky Correlations). There
exists a correlation (RA, RB) that produces n-bit secret share such that for all F ∈ Fm/2 there
exists a 2-message secure computation protocol for F in the leaky (RA, RB)[t] hybrid, where
m = Θ(n) and t = Θ(n), with exponentially low simulation error.

The crucial ingredient of Theorem 1 is our new 2-message (n,m, t, ε)-correlation extractor
for ROTn/2. We compose the 2-message secure computation protocol for functionalities4 in
Fm/2 in the ROTm/2-hybrid with our correlation extractor. Our work presents the first 2-
message correlation extractor that has a linear production and a linear leakage resilience
(along with exponentially low insecurity).

Theorem 2 (Asymptotically Optimal Correlation Extractor for ROT). There exists a 2-
message (n,m, t, ε)-correlation extractor for ROTn/2 such that m = Θ(n), t = Θ(n), and
ε = exp(−Θ(n)).

The technical heart of the correlation extractor of Theorem 2 is another correlation
extractor (see Theorem 3) for a generalization of the ROT correlation. For any finite field
F, the random oblivious linear-function evaluation correlation over F [WW06], represented
by ROLE (F), samples random a, b, x ∈ F and defines rA = (a, b) and rB = (x, z), where z =
ax+ b. Note that, for F = GF [2], we have (x0 +x1)b+x0 = xb; therefore, the ROLE (GF [2])
correlation is identical to the ROT correlation. One share of the ROLE (F) correlation has
secret share size 2 lg |F|. In particular, the correlation ROLE (F)n/2 lg|F| provides each party
with n/2 lg |F| independent samples from the ROLE(F) correlation and the secret share size
of each party is n for suitable constant sized field F.

Theorem 3 (Asymptotically Optimal Correlation Extractor for ROLE(F)). There exists a 2-
message (n,m, t, ε)-correlation extractor for ROLE (F)n/2 lg|F| such that m = Θ(n), t = Θ(n),
and ε = exp(−Θ(n)).

In Fig. 5, we present our correlation extractor that outputs fresh samples from the same
ROLE (F) correlation. Finally, our construction obtains multiple ROT samples from each
output ROLE (F) sample using the OT embedding technique of [BMN17].

Fig. 1 positions our contribution vis-à-vis the previous state-of-the-art. In particular, it
highlights the fact that our result simultaneously achieves the best qualitative parameters.

4We use Fm/2 instead of Fm to be consistent with definition of correlation extractors (Definition 1).
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Correlation Message Number of OTs Number of Simulation
Description Complexity Produced (m/2) Leakage bits (t) Error (ε)

IKOS [IKOS09] ROTn/2 4 Θ(n) Θ(n) 2−Θ(n)

GIMS [GIMS15] ROTn/2 2 n/ poly lg n (1/4− g)n 2−gn/m

IP
(
Kn/ lg|K|) 2 1 (1/2− g)n 2−gn

BMN [BMN17] IP
(
Kn/ lg|K|) 2 n1−o(1) (1/2− g)n 2−gn

Our Result ROTn/2 2 Θ(n) Θ(n) 2−Θ(n)

ROLE (F)n/2 lg|F| 2 Θ(n) Θ(n) 2−Θ(n)

Figure 1: A qualitative summary of prior relevant works in correlation extractors and a
comparison to our correlation extractor construction. Here K is a finite field and F is a finite
field of constant size. The IP (Ks) is a correlation that samples random rA = (u1, . . . , us) ∈ Ks

and rB = (v1, . . . , vs) ∈ Ks such that u1v1 + · · · + usvs = 0. All correlations have been
normalized so that each party gets an n-bit secret share.

Next, we discuss the concrete performance numbers we obtain for Theorem 3 and The-
orem 2. For more details and numerical comparison with prior works [IKOS09, GIMS15,
BMN17], refer to Section 6.

Performance of Correlation Extractors for ROLE (F) (Theorem 3). Our correlation
extractor for ROLE (F) relies on the existence of suitable Algebraic Geometry codes5 over
the finite field F, such that |F| is an even power of a prime and |F| > 49. We shall use F
that is a finite field with characteristic 2.6 As the size of the field F increases, the “qual-
ity” of the Algebraic Geometry codes get better. However, the efficiency of the BMN OT
embedding protocol [BMN17] used to obtain the output ROT in our construction decreases
with increasing |F|. For example, with F = GF [214] we achieve the highest production rate
m/n = 16.32% if the fractional leakage rate is t/n = 1%. Fig. 8 in Section 6 summarizes
these tradeoffs for various choices of the finite field F.

Performance of Correlation Extractors for ROT (Theorem 2). We know extremely
efficient algorithms that use multiplications over GF [2] to emulate multiplications over any
GF [2s] [CC87, CÖ10a]. For example, we can use 15 multiplications over GF [2] to emu-
late one multiplication over GF [26]. Therefore, we can use 15 samples of ROLE (GF [2]) to
perform one ROLE (GF [26]) with perfect semi-honest security. Note that, by applying this
protocol, the share sizes reduce by a factor of 6/15. In general, using this technique, we can
convert the leaky ROLE (equivalently, ROT) correlation, into a leaky ROLE (F) correlation,
where F is a finite field of characteristic 2, by incurring a slight multiplicative loss in the
share size. Now, we can apply the correlation extractor for ROLE (F) discussed above. By
optimizing the choice of the field F (in our case F = GF [210]), we can construct a 2-message

5 Once the parameters of the Algebraic Geometry code is fixed, it is a one-time investment to construct
to construct its generator matrix.

6 The ROLE (F) correlation over the field F of characteristic 2 has a natural bit-representation for its
secret shares.
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correlation extractor for ROT that has fractional leakage resilience to t/n = 1% and achieves
production rate of m/n = 4.20% (see Fig. 9, Section 6). This is several orders of magnitude
better than the production and resilience of the IKOS correlation extractor and uses less
number of messages.7

High Leakage Resilience Setting. Ishai et al. [IMSW14] showed that t < n/4 is necessary
to extract even one new sample of ROT from the leaky ROLE (F)n/2 lg F correlation. Our
construction, when instantiated with a suitably large constant-size field F, demonstrates
that if t 6 (1/4 − g)n then we can extract Θ(n) new samples of the ROT correlation. The
prior construction of [GIMS15] only achieves a sub-linear production by using sub-sampling
techniques.

Theorem 4 (Near Optimal Resilience with Linear Production). For every g ∈ (0, 1/4], there
exists a finite field F with characteristic 2 and a 2-message (n,m, t, ε)-correlation extractor
for (RA, RB) = ROLE (F)n/2 lg F, where t = (1/4− g)n, m = Θ(n), and ε = exp(−Θ(n)).

The productionm = Θ(n) relies on the constant g, the gap to optimal fractional resilience.
Appendix F proves this result. Section 6 shows that we can achieve linear production even
for fractional resilience t = 0.22n using |F| = 210.

Correlation Extractors for Arbitrary Correlations. Similar to the construction of
IKOS, we can also use our construction to construct a correlation extractor from any cor-
relation and output samples of any correlation; albeit it is not round optimal anymore.
However, our construction achieves overall better production and resilience than the IKOS
construction because our correlation extractor for ROT has higher production and resilience.
Fig. 2 outlines a comparison of these two correlation extractor construction for the general
case.

1.3 Other Prior Relevant Works

Fig. 1 already provides the summary of the current state-of-the-art in correlation extractors.
In this section, we summarize works related to combiners; extractors where the adversary is
restricted to leaking individual bits of the honest party’s secret share. The study of OT com-
biners was initiated by Harnik et al. [HKN+05]. Since then, there has been work on several
variants and extensions of OT combiners [HIKN08, IPS08, MP06, MPW07, PW08]. Recently,
Ishai et al. [IMSW14] constructed OT combiners with nearly optimal leakage resilience.
Among these works, the most relevant to our paper are the ones by Meier, Przydatek, and
Wullschleger [MPW07] and Przydatek, and Wullschleger [PW08]. They use Reed-Solomon
codes to construct two-message error-tolerant8 combiners that produce fresh ROLEs over
large fields9 from ROLEs over the same field. Using multiplication friendly secret sharing

7 Even optimistic estimates of the parameters m/n and t/n for the IKOS construction are in the order
of 10−6.

8 An erroneous sample from a correlation is a sample (rA, rB) that is not in the support of the distribution
(RA, RB), i.e., it is an incorrect sample. An error-tolerant combiner is a combiner that is secure even if a
few of the input samples are erroneous.

9 The size of the fields increases with n, the size of the secret shares produced by the preprocessing step.
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Figure 2: Correlation extractors in the general setting: Extracting arbitrary correlations from
arbitrary correlations. Expanded IKOS [IKOS09] correlation extractor to enable efficiency
comparison with our correlation extractor of Fig. 5. In this figure, to reduce cumbersome
notations, it is implicit that there are multiple samples of the correlations. The ROLE
correlations are over suitable constant size fields. The superscript “(t]” represents that the
correlation is secure against adversarial leakage of only one party.

schemes based on Algebraic Geometry Codes introduced by Chen and Cramer [CC06], a
similar construction works over ROLEs over fields with appropriate constant size. We em-
phasize that this construction is insecure if an adversary can perform even 1-bit leakage on
the whole secret of the other party. We rely of a family of linear codes instead of a particular
choice of the linear code to circumvent this bottleneck. Section 1.4 provides the principal
technical ideas underlying our correlation extractor construction.

In the malicious setting, the feasibility result on malicious-secure combiners for ROT is
reported in [IPS08]. Recently, Cascudo et al. construct a malicious-secure combiner with
high resilience, but m = 1 [CDFR17]. The case of malicious-secure correlation extractors
remains entirely unexplored.
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1.4 Technical Overview

In this section, we provide a high-level summary of the technical ideas underlying the con-
struction of our new correlation extractor. For illustrative purposes, suppose F is a con-
stant size field with characteristic 2, say F = GF [26]. We fix (RA, RB) = ROLE (F)n/2 lg|F|.
Note that each party receives n-bit shares. Suppose we are in the leaky correlation hy-
brid (RA, RB)[t]. Our goal is to construct a 2-message correlation extractor that securely
computes a sample from the correlation ROLE (F)m/2 lg|F|.

This correlation extractor relies on the existence of a family of linear codes over F with
suitable properties that we define below. For this discussion, let us assume that s ∈ N is the
block-length of the codes. Let J be an index set, and we denote the family of linear codes
with block-length s as follows.

C = {Cj : j ∈ J }
This family of code C needs to have the following properties.

1. Multiplication Friendly Good Codes. Each code Cj ⊆ Fs in the family C is a good
code. That is, the rate and distance of every code Cj is Θ(s). Further, there exists
a linear code Dj such that the Schur-product10 of the codes Cj ∗ Cj is a sub-code of
the code Dj, and the distance of Dj is also Θ(s). Such codes, for instance, are used to
perform the multiplication of two secrets by multiplying their respective secret shares
in secure computation protocols, hence the name.

2. Small Bias Family. Intuitively, a small bias family defines a pseudorandom distri-
bution for linear tests. Let S = (S1, . . . , Ss) ∈ Fs and its corresponding linear test is
defined as LS(x1, . . . , xs) := S1x1 +· · ·+Ssxs. Consider the distribution D of LS(c) for
randomly sampled codeword c ∈ Cj and an index j ∈ J . If C is a family of ρ-biased
distributions, then the distribution D has statistical distance at most ρ from the out-
put of LS(u) for random element u ∈ Fs. For brevity, we say that the family C“ρ-fools
the linear test LS.”
An interesting property of any linear code C ⊆ Fs is the following. A random codeword
c ∈ C can 0-fool every linear test LS such that S is not a codeword in the dual of C.
However, if S is a codeword in the dual of the code C, then definitely the linear test
LS is not fooled.
So, a randomly chosen codeword from one fixed linear code cannot fool all linear tests.
However, when we consider an appropriate family of linear codes, then a randomly
chosen codeword from a randomly chosen code in this family can fool every linear test.

The construction of such a family of codes over small finite fields F is of potential inde-
pendent interest. Our starting point is an explicit Algebraic Geometry code C ⊆ Fs that is
multiplication friendly [GS96a]. Given one such code C, we randomly “twist then permute”
the code to define the family C. We emphasize that the production of our correlation ex-
tractor relies on the bias being small. So, it is extremely crucial to construct a family with
extremely small bias. Next, we describe our “twist then permute” operation.

10 Consider a linear code C ⊆ Fs. Let c = (c1, . . . , cs) and c′ = (c′1, . . . , c
′
s) be two codewords in the code

C. We define c ∗ c′ = (c1c
′
1, . . . , csc

′
s) ∈ Fs. The Schur-product C ∗C is defined to be the set of all c ∗ c′ such

that c, c′ ∈ C.
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Twist then Permute. Suppose C ⊆ Fs is a linear code. Pick any λ = (λ1, . . . , λs) ∈
(F∗)s. Note that we do not include 0 ∈ F in any of the coordinates. A λ-twist of the code C
is defined as the following linear code

Cλ := {(λ1c1, . . . , λscs) : (c1, . . . , cs) ∈ C}

Let π : {1, . . . , s} → {1, . . . , s} be a permutation. The π-permutation of the λ-twist of C is
defined as the following linear code

Cπ,λ := {
(
λπ(1)cπ(1), . . . , λπ(s)cπ(s)

)
: (c1, . . . , cs) ∈ C}

Define J as the set of all (π, λ) such that λ ∈ (F∗)s and π is a permutation over the
set {1, . . . , s}. Note that for our particular choice of C, the code Cπ,λ continues to be
multiplication friendly good code. A key observation towards demonstrating that C is a
family of small bias distributions is that the following two distributions are identical (see
Claim 2).

1. Fix S ∈ Fs. The output distribution of the linear test LS on a random codeword
c ∈ Cj, for a random index j ∈ J .

2. Let T ∈ Fs be a random element of the same weight as S.11 The output distribution
of the linear test LT on a random codeword c ∈ C.

Based on this observation, we can calculate the bias of the family of our codes. Note that

there are a total of
(
s
w

)
(q − 1)w elements in Fs that have weight w. Let Aw denote the

number of codewords in the dual of C that have weight w. Our family of codes C fools the

linear test LS with ρ = Aw ·
(
s
w

)−1

(q − 1)−w, where w is the weight of S ∈ Fs.

We obtain precise asymptotic bounds on the weight enumerator {Aw : w ∈ {0, 1, . . . , s}}
of the dual of the code C to estimate the bias ρ. This precise bound translates into higher
production m, higher resilience t, and exponentially low simulation error ε of our correlation
extractor.

We remark that if C has a small dual-distance, then the bias cannot be small. So, the
restriction that the dual distance of C is linear in the block-length is a manifestation of
ensuring the small-bias property.

Remark. The performance of the code C supersedes the elementary Gilbert-Varshamov
bound. These Algebraic Geometry codes are one of the few fields in mathematics and com-
puter science where explicit construction have significantly better quality than elementary
randomized constructions. So, elementary randomization techniques are unlikely to produce
any (qualitatively) better parameters for this approach, given that the estimations of the
weight enumerator in this work are asymptotically optimal. Therefore, finding better tech-
niques to construct the family of multiplication friendly good codes that is also a family of
small-bias distributions is the research direction that has the potential to reduce the bias.
This reduction in the bias can further improve the production and leakage resilience of our
correlation extractors.

11The weight of S ∈ Fs is defined as the number of non-zero elements in S.
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2 Preliminaries

Symbolic Notations. We denote random variables by capital letters, for example X, and
the values taken by small letters, for example X = x. For a positive integer n, we write [n]
and [−n] to denote the sets {1, . . . , n} and {−n, . . . ,−1}, respectively. Let Sn be the set of
all permutations π : [n]→ [n]. We consider the field F = GF [q], where q = pa, for a positive
integer a. For any c = (c1, . . . , cη) ∈ Fη, define the function wt(c) as the cardinality of the
set {i : ci 6= 0}. For any two x, y ∈ Fη, let x ∗ y represent the point-wise product of x and y.
That is, x∗y = (x1y1, x2y2, . . . , xηyη) ∈ Fη. For a set Y , UY denotes the uniform distribution
on the set Y .

2.1 Correlation Extractors

We denote the functionality of 2-choose-1 bit Oblivious Transfer as OT and Oblivious Linear-
function Evaluation over a field F as OLE(F). Also, we denote the Random Oblivious Trans-
fer Correlation as ROT and Random Oblivious Linear-function Evaluation over field F as
ROLE(F). For completeness, we define these formally in Appendix A.

Let η be such that 2η lg |F| = n. In this work, we consider the setting when Alice and
Bob start with η samples of the ROLE(F) correlation and the adversary performs t bits of
leakage. We give a secure protocol for extracting multiple secure OTs in this hybrid. Below
we define such an correlation extractor formally using initial ROLE(F) correlations.

Leakage model. We define our leakage model for ROLE(F) correlations as follows:

1. η-Random OLE correlation generation phase. Alice gets rA =
{(ai, bi)}i∈[η] ∈ F2η and Bob gets rB = {(xi, zi)}i∈[η] ∈ F2η such that for all i ∈ [η],
ai, bi, xi is uniformly random and zi = aixi + bi. Note that the size of secret share of
each party is n bits.

2. Corruption and leakage phase. A semi-honest adversary corrupts either the sender
and sends a leakage function L : Fη → {0, 1}t and gets back L(x[η]). Or, it corrupts
the receiver and sends a leakage function L : Fη → {0, 1}t and gets back L(a[η]). Note
that w.l.o.g. any leakage on the sender (resp., receiver) can we seen as a leakage on
a[η] (resp., x[η]).

We denote by (RA, RB) the above correlated randomness and by (RA, RB)[t] its t-leaky
version. Recall the definition for (n,m, t, ε)-correlation extractor (see Definition 1, Sec-
tion 1.1). Below, we give the correctness and security requirements.

The correctness condition says that the receiver’s output is correct in all m/2 instances of
ROT. The privacy requirement says the following: Let (s

(i)

0 , s
(i)

1 ) and (c
(i)
, z

(i)
) be the output

shares of Alice and Bob, respectively, in the ith ROT instance. Then a corrupt sender (resp.,
receiver) cannot distinguish between {c(i)}i∈[m/2] (resp.,

{
s
(i)

1−c(i)

}
i∈[m/2]

) and r
$← {0, 1}m/2

with advantage more than ε. The leakage rate is defined as t/n and the production rate is
defined as m/n.
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Our main sub-protocol for Theorem 3 shall take ROLE(F) as initial correlations and
produces secure ROLE(F). Towards this, we define a ROLE(F)-to-ROLE(F) extractor formally
below.

Definition 2 ((η, γ, t, ε)-ROLE(F)-to-ROLE(F) extractor). Let (RA, RB) = (ROLE(F))η be
correlated randomness. An (η, γ, t, ε)-ROLE(F)-to-ROLE(F) extractor is a two-party interac-
tive protocol in the (RA, RB)[t] hybrid that securely implements the (ROLE(F))γ functionality
against information-theoretic semi-honest adversaries with ε simulation error.

Let (ui, vi) ∈ F2 and (ri, zi) ∈ F2 be the shares of Alice and Bob, respectively, in the ith
output ROLE instance. The correctness condition says that the receiver’s output is correct
in all γ instances of ROLE, i.e., zi = uiri + vi for all i ∈ [γ]. The privacy requirement says
the following: A corrupt sender (resp., receiver) cannot distinguish between {ri}i∈[γ] (resp.,
{ui}i∈[γ]) and UFγ with advantage more than ε.

2.2 Fourier Analysis over Fields

We follow the conventions of [Rao07]. To begin discussion of Fourier analysis, let η be any
positive integer and let F be any finite field. We define the inner product of two complex
functions.

Definition 3 (Inner Product). Let f, g : Fη → C. We define the inner product of f and g
as

〈f, g〉 := E
x

$←Fη

[
f(x) · g(x)

]
=

1

|F|η
∑
x∈Fη

f(x) · g(x),

where g(x) is the complex conjugate of g(x).

Next, we define general character functions for both F and Fη.
Definition 4 (General Character Functions). Let ψ : F → C∗ be a group homomorphism
from the additive group F and the multiplicative group C∗. Then we say that ψ is a character
function of F.

Let χ : Fη × Fη → C∗ be a bilinear, non-degenerate, and symmetric map defined as
χ(x, y) = ψ(x · y) = ψ(

∑
i xiyi). Then, for any S ∈ Fη, the function χ(S, ·) := χS(·) is

a character function of Fη.
It is clear from the definition of χ that the function is indeed a symmetric, non-degenerate,

and bilinear map. Then we have the Fourier Transformation.

Definition 5 (Fourier Transformation). For any S ∈ Fη, let f : Fη → C and χS be a
character function. Then we define the map f̂ : Fη → C as f̂(S) := 〈f, χS〉. We say that f̂(S)

is a Fourier Coefficient of f at S and the linear map f 7→ f̂ is the Fourier Transformation
of f .

Note that this transformation is an invertible linear map. The Fourier inversion formula
is given as

Lemma 1 (Fourier Inversion). For any function f : Fη → C, we can write f(x) =
∑

S∈Fη f̂(S)χS(x).

For completeness, we provide the relevant proofs related to Fourier analysis over fields in
Appendix B.

10



2.3 Distributions and Min-Entropy

For a probability distribution X over a sample space U , entropy of x ∈ X is defined as
HX(x) = − lg Pr[X = x]. The min-entropy of X, represented by H∞(X), is defined to
be minx∈Supp(X) HX(x). The binary entropy function, denoted by h2(x) = −x lg x − (1 −
x) lg(1− x) for every x ∈ (0, 1).

Given a joint distribution (X, Y ) over sample space U × V , the marginal distribution Y
is a distribution over sample space V such that, for any y ∈ V , the probability assigned to
y is

∑
x∈U Pr[X = x, Y = y]. The conditional distribution (X|y) represents the distribution

over sample space U such that the probability of x ∈ U is Pr[X = x|Y = y]. The average
min-entropy [DORS08], represented by H̃∞(X|Y ), is defined to be − lgEy∼Y [2−H∞(X|y)].

Lemma 2 ([DORS08]). If H∞(X) > k and L is an arbitrary `-bit leakage on X, then
H̃∞(X|L) > k − `.

Lemma 3 (Fourier Coefficients of a Min-Entropy Distribution). Let X : Fη → R be a min-
entropy source such that H∞(X) > k. Then∑

S

|X̂(S)|2 6 1

|F|η 2k

We provide the proof of Lemma 3 in Appendix B.

2.4 Family of Small-Bias Distributions

Definition 6 (Bias of a Distribution). Let X be a distribution over Fη. Then the bias of X
with respect to S ∈ Fη is defined as BiasS(X) := |F|η · |X̂(S)|.

Dodis and Smith [DS05] defined small-bias distribution family for distributions over
{0, 1}η. We generalize it naturally for distributions over Fη.

Definition 7 (Small-bias distribution family). A family of distributions F = {F1, F2, · · · , Fk}
over sample space Fη is called a ρ2-biased family if for every non-zero vector S ∈ Fη following
holds

E
i

$←[k]

BiasS(Fi)
2 6 ρ2

Following extraction lemma was proven in previous works over {0, 1}η.

Lemma 4 ([NN90, AR94, GW97, DS05]). Let F = {F1, . . . , Fµ} be ρ2-biased family of
distributions over the sample space {0, 1}η. Let (M,L) be a joint distribution such that the
marginal distribution M is over {0, 1}η and H̃∞(M |L) > m. Then, the following holds: Let
J be a uniform distribution over [µ].

SD
(

(FJ ⊕M,L, J) ,
(
U{0,1}η , L, J

) )
6
ρ

2

(
2η

2m

)1/2

A natural generalization of above lemma for distributions over Fη gives the following.
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Theorem 5 (Min-entropy extraction via masking with small-bias distributions). Let F =
{F1, . . . , Fµ} be a ρ2-biased family of distributions over the sample space Fη for field F of size
q. Let (M,L) be a joint distribution such that the marginal distribution M is over Fη and
H̃∞(M |L) > m. Then, the following holds: Let J be a uniform distribution over [µ].

SD ( (FJ ⊕M,L, J) , (UFη , L, J) ) 6
ρ

2

(
|F|η

2m

)1/2

For completeness, we give the proof of the above in Appendix G.

2.5 Distribution over Linear Codes

Let C = [η, κ, d, d⊥, d(2)]F be a linear code over F with generator matrix G ∈ Fκ×η. We also
use C to denote the uniform distribution over codewords generated by G. For any π ∈ Sη,
define Gπ = π(G) as the generator matrix obtained by permuting the columns of G under
π.

The dual code of C, represented by C⊥, is the set of all codewords that are orthogonal
to every codeword in C. That is, for any c⊥ ∈ C⊥, it holds that 〈c, c⊥〉 = 0 for all c ∈ C.
Let H ∈ F(η−κ)×η be a generator matrix of C⊥.

The Schur product code of C, represented by C(2), is the set of all codewords obtained
as a Schur product of codewords in C. That is, C(2) = C ∗ C := {c ∗ c′ : c, c′ ∈ C} ⊆ Fη,
where c ∗ c′ denotes the coordinate-wise product of c and c′.

3 Family of Small-bias distributions with erasure recov-
ery

In this section, we give our construction of the family of small-bias distributions {Cj}j∈J
such that each Cj is a linear code and Cj ∗Cj supports erasure recovery. We formally define
the requirements for this family of distributions in Property 1. Next, our construction of
such a family is formally described in Fig. 3. We prove our construction satisfies Property 1
in Theorem 6.

Property 1. A family of linear code distributions C = {Cj : j ∈ J } over Fη∗ satisfy this
property with parameters δ and γ if the following conditions hold.

1. 2−δ-bias family of distributions. For any 0η
∗ 6= S ∈ Fη∗, the following holds for

ρ2 = 2−δ

E
j

$←J

[
BiasS(Cj)

2
]
6 ρ2 =

1

2δ

2. γ-erasure recovery in Schur Product. For all j ∈ J , the Schur product code of
Cj, that is Cj ∗Cj = C

(2)
j , supports erasure recovery the first γ coordinates. Moreover,

the first γ-coordinates of Cj and C
(2)
j are linearly independent of each other.
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3.1 Our Construction

Family of small-bias distributions with erasure recovery in the product distri-
bution:

Fix a linear code C = [η∗, κ, d, d⊥, d(2)]F with generator matrix G ∈ Fκ×η∗ , where |F| = q
and κ > d(2). Let γ be a fixed natural number (to be determined later during parameter
setting in Appendix E and Section 6) such that C ∗ C supports γ-erasure recovery. We
construct the family of small-bias distributions {Cπ,λ : π ∈ Sη∗ , λ ∈ (F∗)η∗} over Fη∗ as
follows.

1. Let λ ∈ (F∗)η∗ . Define Gλ = [λ1G1, . . . , λη∗Gη∗ ] ∈ Fκ×η∗ , where Gi is the ith column
of G and λiGi the multiplication of Gi by λi ∈ F∗.

2. Let π ∈ Sη∗ . Define Gπ,λ = π (Gλ) ∈ Fκ×η∗ , where π(Gλ) is the permutation of the
columns of Gλ according to permutation π. Then Cπ,λ is the uniform distribution
over the linear code generated by Gπ,λ.

(Enc,Dec) for Cπ,λ: Let (EncC ,DecC) be the Encoder and Decoder for the linear code C.

• Enc(m): Compute c = (c1, . . . , cη∗) = EncC(m). Compute c ∗ λ = (λ1c1, . . . , λη∗cη∗).
Output π(c ∗ λ).

• Dec(x): Compute c′ = (c′1, . . . , c
′
η∗) = π-1(x). Compute c′ ∗ λ′ = (λ-1

1 c
′
1, . . . , λ

-1
η∗c
′
η∗).

Output DecC(c′ ∗ λ′).

(Enc,Dec) for (Cπ,λ∗Cπ,λ): Let (EncC(2) ,DecC(2)) be the Encoder and Decoder for the linear
code C(2) = C ∗ C.

• Enc(m): Compute c = (c1, . . . , cη∗) = EncC(2)(m). Compute c ∗ λ ∗ λ =
(λ2

1c1, . . . , λ
2
η∗cη∗). Output π(c ∗ λ ∗ λ).

• Dec(x): Compute c′ = (c′1, . . . , c
′
η∗) = π-1(x). Compute c′ ∗ λ′ ∗ λ′ =

(λ−2
1 c′1, . . . , λ

−2
η∗ c
′
η∗). Output DecC(2)(c′ ∗ λ′ ∗ λ′).

Figure 3: Our Construction of a Family of Small Bias Linear Code Distributions.

Theorem 6. The family of linear code distributions {Cπ,λ : π ∈ Sη∗ , λ ∈ (F∗)η∗} over Fη∗

given in Fig. 3 satisfies Property 1 for any γ < d(2), where d(2) is the distance of the Schur
product code of C(2), and

δ =

(
d⊥ +

η∗
√
q − 1

− 1

)(
lg(q − 1)− h2

(
1

q + 1

))
− η∗
√
q − 1

lg q

where h2 denotes the binary entropy function.

Proof. We first prove erasure recovery followed by the small-bias property.
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(c1, c2, . . . , cη∗)

C

$
(λ1c1, λ2c2, . . . , λη∗cη∗)

λ

(F∗)η∗

$

(λπ(1)cπ(1), λπ(2)cπ(2), . . . , λπ(η∗)cπ(η∗))

π

Sη∗

$

Figure 4: A pictorial outline of our “twist then permute” operation.

γ-erasure recovery in Schur Product code. First we note that permuting or re-
ordering the columns of a generator matrix does not change its distance, distance of the
Schur product, or its capability of erasure recovery (as long as we know the mapping of new
columns vis-à-vis old columns). Let Iγ = {i1, . . . , iγ} be the indices of the erased coordinates
of codeword in C(2)

π,λ. Hence to show erasure recovery of the coordinates Iγ of a codeword of
C

(2)
π,λ, it suffices to show erasure recovery of the γ erased coordinates Jγ = {j1, . . . , jγ} of a

codeword of C(2)
λ , where Cλ is the uniform codespace generated by Gλ, and π(jk) = ik for

every k ∈ [γ].
Note that since γ < d(2), the code C(2) supports erasure recovery of any γ coordinates.

This it suffices to show that this implies that C(2)
λ also supports the erasure recovery of any

γ coordinates. Note that since λ ∈ (F∗)η∗ , multiplication of the columns of G according to λ
does not change its distance or distance of the Schur product. Thus, we do the following to
perform erasure recovery of γ coordinates in C(2)

λ . Let c(2) ∈ C(2)
λ be a codeword with erased

coordinate Jγ = {j1, . . . , jγ}, and let Jη = {j′1, . . . , j′η} be the coordinates of c(2) that have
not been erased. Then, for every j ∈ Jη, compute cj = (λ-1

j )2c
(2)
j . Then the vector (cj)j∈Jη is

a codeword of C(2) with coordinates ci erased for i ∈ Jγ. Since C(2) has γ erasure recovery,
we can recover the ci for i ∈ Jγ. Once recovered, for every i ∈ Jγ, compute c(2)

i = λ2
i ci. This

produces the γ erased coordinates of c(2) in C(2)
λ . Finally, one can map the c(2)

i for i ∈ Jγ to
the coordinates Iγ using π, recovering the erasures in C(2)

π,λ.

2−δ-bias family of distributions. Let C,Cλ, Cπ,λ be the uniform distribution over the
linear codes generated by G,Gλ, Gπ,λ, respectively. Recall that d⊥ is the dual distance for
C. Note that Cλ, Cπ,λ have dual-distance d⊥ as well. Let η∗ = η + γ. Since BiasS(Cπ,λ) =

|F|η∗|Ĉπ,λ| for every S ∈ Fη∗ , it suffices to show that

E
π,λ

[
Ĉπ,λ(S)2

]
6

1

|F|2η∗ · 2δ
.

To begin, we first give an equivalent definition of Cπ,λ:

Cπ,λ := {π(λ1c1, . . . , λη∗cη∗) | (c1, . . . , cη∗) ∈ C}.

Next, given any S ∈ Fη∗ , define

S(S) := {π(λ1S1, . . . , λη∗Sη∗) ∈ Fη∗ | ∀π ∈ Sη∗ ∧ λ ∈ (F∗)η∗}
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Note that S(S) is equivalently characterized as

S(S) = {T = (T1, . . . , Tη∗) ∈ Fη∗ | wt(T ) = wt(S)}.

It is easy to see that |S(S)| =
(
η∗

w0

)
(q−1)η

∗−w0 , where w0 = η∗−wt(S); i.e., w0 is the number
of zeros in S. We prove the following claim.

Claim 1. For any S ∈ Fη∗, we have Ĉπ,λ(S) = Ĉ(π-1(S) ∗ λ).

Proof. Notice that by definition for any x ∈ Cπ,λ, we have Cπ,λ(x) = C(c) since x =
π(λ1c1, . . . , λη∗cη∗) for c ∈ C. This is equivalently stated as Cπ,λ(π(c ∗ λ)) = C(c). For
x = π(λ1y1, . . . , λη∗yη∗) ∈ Fη∗ and any S ∈ Fη∗ , we have

S · x =

η∗∑
i=1

Sixi =

η∗∑
i=1

Si(λπ(i)yπ(i)) =

η∗∑
i=1

(Sπ-1(i))λiyi = (π-1(S) ∗ λ) · y.

where S ·x is the vector dot product. By definition of χS(x), this implies χS(x) = χy(π
-1(S)∗

λ). Using these two facts and working directly from the definition of Fourier Transform, we
have

Ĉπ,λ(S) =
1

|F|η∗
∑
x∈Fη∗

Cπ,λ(x)χS(x)

=
1

|F|η∗
∑
c∈Fη∗

Cπ,λ(π(λ1c1, . . . , λη∗cη∗))χS(π(λ1c1, . . . , λη∗cη∗))

=
1

|F|η∗
∑
c∈Fη∗

C(c)χc(π-1(S) ∗ λ) = Ĉ(π-1(S) ∗ λ)

It is easy to see that wt(π-1(S) ∗ λ) = wt(S), so (π-1(S) ∗ λ) = T ∈ S(S). From this fact and
Claim 1, we prove the following claim.

Claim 2. For any S ∈ Fn, E
π,λ

[
Ĉπ,λ(S)2

]
= E

T
$←S(S)

[
Ĉ(T )2

]
.

Proof. Suppose we have codeword x ∈ Cπ,λ such that π(λ1c1, . . . , λ
∗
ηc
∗
η) = x, for some

codeword c ∈ C. Let {i1, . . . , iw0} be the set of indices of 0 in c; that is, cj = 0 for all
j ∈ {i1, . . . , iw0}. Then for any permutation π, the set {π(i0), . . . , π(iw0)} is the set of in-
dices of zero in x. Note also that for any index j 6∈ {π(i0), . . . , π(iw0)}, we have xj 6= 0. If
this was not the case, then we have xj = cπ-1(j)λπ-1(j) = 0. Since j 6∈ {π(i0), . . . , π(iw0)}, this
implies π-1(j) 6∈ {i0, . . . , iw0}, which further implies that cπ-1(j) 6= 0. This is a contradiction
since λ ∈ (F∗)η∗ . Thus any permutation π must map the zeros of S to the zeross of c, and
there are w0!(η∗ −w0)! such permutations. Notice now that for any ck = 0, λk can take any
value in F∗, so we have (q− 1)w0 such choices. Furthermore, if ck 6= 0 and λkck = xπ-1(k) 6= 0,
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then there is exactly one λk ∈ F∗ which satisfies this equation. Putting it all together, we
have

E
π,λ

[
Ĉπ,λ(S)2

]
=

1

η∗!(q − 1)η∗
∑
π,λ

Ĉπ,λ(S)2

=
1

η∗!(q − 1)η∗
∑
π,λ

Ĉ
(
π-1(S) ∗ λ

)2
[by Claim 1]

=
(w0!(η∗ − w0)!(q − 1)w0)

η∗!(q − 1)η∗
∑
T∈S(S)

Ĉ(T )2

=
w0!(η∗ − w0)!

η∗!(q − 1)η∗−w0

∑
T∈S(S)

Ĉ(T )2

=

((
η∗

w0

)
(q − 1)η

∗−w0

)-1 ∑
T∈S(S)

Ĉ(T )2

= E
T

$←S(S)

[
Ĉ(T )2

]

With Claim 2, we now are interested in finding δ such that for 0η
∗ 6= S ∈ Fη∗

E
T

$←S(S)

[
Ĉ(T )2

]
6

1

|F|2η∗2δ

To do so, we first note that since C is a linear code, C has non-zero Fourier coefficients only
at codewords in C⊥. For completeness, we provide the proof in Appendix B.1.

Claim 3. For all S ∈ Fη∗, Ĉ(S) =


1

|F|η∗
S ∈ C⊥

0 otherwise

Let Aw = |C⊥ ∩ S(S)|, where w = η∗ − w0 = wt(S). Intuitively, Aw is the number of
codewords in C⊥ with weight w. Then from Claim 3, we have

E
T

$←S(S)

[
Ĉ(T )2

]
=

|C⊥ ∩ S(S)|
|F|2η∗

(
η∗

η∗−wt(S)

)
(q − 1)wt(S)

=
Aw

|F|2η∗
(
η∗

w

)
(q − 1)w

Now, our goal is to upper bound Aw. Towards this goal, the weight enumerator for the code
C⊥ is defined as the following polynomial.

WC⊥(x) =
∑
c∈C⊥

xη
∗−wt(c)

This polynomial can equivalently be written in the following manner.

WC⊥(x) =
∑

w∈{0,...,η∗}

Awx
η∗−w

Define a = η∗ − d⊥.
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Theorem 7 (Exercise 1.1.15 from [VNT07]). We have the following relation

WC⊥(x) = xη
∗

+
a∑
i=0

Bi(x− 1)i,

where

Bi =

η∗−i∑
j=η∗−a

(
η∗ − j
i

)
Aj > 0 Ai =

a∑
j=η∗−i

(−1)η
∗+i+j

(
j

η∗ − i

)
Bj

For weight w ∈
{
d⊥, . . . , η∗

}
, we use the following expression to estimate Aw.

Aw =

(
η∗ − w
η∗ − w

)
Bη∗−w −

(
η∗ − w + 1
η∗ − w

)
Bη∗−w+1 +· · · ±

(
η∗ − d⊥
η∗ − w

)
Bη∗−d⊥

Since we are interested in the asymptotic behavior (and not the exact value) of Aw, we
note that logAw ∼ log Γ(w), where

Γ(w) = max

{(
η∗ − w
η∗ − w

)
Bη∗−w,

(
η∗ − w + 1
η∗ − w

)
Bη∗−w+1, . . . ,

(
η∗ − d⊥
η∗ − w

)
Bη∗−d⊥

}
Thus, it suffices to compute Γ(w) for every w (see Appendix D, Lemma 20) and then the
bias (see Appendix D.1). By Appendix D.1, we have the desired result.

δ =

(
d⊥ +

η∗
√
q − 1

− 1

)(
lg(q − 1)− h2

(
1

q + 1

))
− η∗
√
q − 1

lg q

which completes the proof.

4 Unpredictability Lemma

In this section, we give our unpredictability lemma as a game between an honest challenger
H and an adversary A. This lemma crucially relies on a family of small-bias distributions.
Later, we will prove the security of our ROLE extractor protocol by reducing it to this
unpredictability lemma.

Lemma 5 (Unpredictability Lemma). Let C = {Cj : j ∈ J } be a 1
2δ
-biased family of linear

code distributions over Fη∗, where η∗ = γ+η. Consider the following game between an honest
challenger H and an adversary A:
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1. H samples m[η] ∼ UFη .

2. A sends a leakage function L : Fη → {0, 1}t.

3. H sends L(m[η]) to A.

4. H samples j $← J . H samples a uniform random (r−γ, . . . , r−1, r1, . . . , rη) ∈ Cj. H
computes y[η] = r[η] +m[η] and sends (y[η], j) to A.

H picks b $← {0, 1}. If b = 0, then H sends chal = r[−γ] to A; otherwise (if b = 1) H
sends chal = u[γ] ∼ UFγ .

5. A sends b̃ ∈ {0, 1}.

The adversary A wins the game if b = b̃. For any A, the advantage of the adversary is

6 1
2

√
|F|γ2t

2δ
.

Proof. Let M[η] be the distribution corresponding to m[η]. Consider M ′
[η+γ] = (0γ,M[η]). By

Lemma 2, H̃∞(M ′|L(M ′)) > η log |F| − t. Recall that C = {Cj : j ∈ J } is a 1
2δ
-bias family

of distributions over Fη+γ. Then, by Theorem 5, we have the following:

SD ( (CJ ⊕M ′,L(M ′),J ) , (UFη+γ ,L(M ′),J ) ) 6
1

2

(
|F|η+γ

2δ · |F|η · 2−t

)1/2

=
1

2

√
|F|γ2t

2δ

5 Construction of Correlation Extractor

In this section, we would give our constructions of correlation extractors. In Section 5.1,
we would give our construction for Theorem 3. Later, in Section 5.4, we would build on
construction for Theorem 3 and give construction for Theorem 2.

5.1 Protocol for ROLE(F) correlation extractor

In this section, we give our construction proving Theorem 3. As already mentioned in
Section 1.2, our main building block will be (η, γ, t, ε)-ROLE(F)-to-ROLE(F) extractor (see
Definition 2). That is, the parties start with η ROLE(F) correlations such that size of
each party’s share is n = 2η log |F| bits. The adversarial party gets t bits of leakage. The
protocol produces (ROLE(F))γ with simulation error ε. We give the formal description of
the protocol, which is inspired by the Massey secret sharing scheme [Mas95], in Fig. 5. Note
that our protocol is round-optimal. The protocol uses a family of distributions C = {Cj}j∈J
that satisfies Property 1 with parameters δ and γ.

Next, we use the ROT embedding technique from [BMN17] to embed σ ROTs in each
fresh ROLE(F) obtained from above protocol. For example, we can embed two ROTs into
one ROLE(GF [26]). Using this we get production m = 2σγ, i.e., we get m/2 = σγ secure
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(η, γ, t, ε)-ROLE(F)-to-ROLE(F) Extractor:

Let C = {Cj : j ∈ J } be a family of distributions over Fη+γ satisfying erasure recovery for
appropriate values of δ and γ.

Hybrid (Random Correlations): Client A gets random (a[η], b[η]) ∈ F2η and Client B gets
random (x[η], z[η]) ∈ F2η such that for all i ∈ {1, 2, . . . , η}, aixi + bi = zi.

1. Code Generation. Client B samples j $←J .

2. ROLE Extraction Protocol.

(a) Client B picks random r = (r−γ, . . . , r−1, r1, . . . , rη) ∼ Cj and computes m[η] =
r[η] + x[η]. Client B sends (m[η], j) to client A.

(b) Client A picks the same distribution Cj as client B. Client A picks random u =

(u−γ, . . . , u−1, u1, . . . , uη) ∼ Cj and random v = (v−γ, . . . , v−1, v1, . . . , vη) ∼ C
(2)
j .

Client A computes α[η] = u[η] − a[η], and β[η] = a[η] ∗m[η] + b[η] + v[η] and sends
(α[η], β[η]) to Client B.

(c) Client B computes t[η] = (α[η] ∗ r[η]) + β[η] − z[η]. Cleint B performs erasure
recovery on t[η] for C

(2)
j to obtain t[−γ].

(d) Client A outputs {ui, vi}i∈{−1,...,−γ} and Client B outputs {ri, ti}i∈{−1,...,−γ}

Figure 5: ROLE(F)-to-ROLE(F) Extractor Protocol

ROTs. We note that the protocol from [BMN17] is round-optimal, achieves perfect security
and composes in parallel with our protocol in Fig. 5. Hence, we maintain round-optimality.
We give more details on this in Section 5.3.

Next, we prove the correctness of protocol in Fig. 5 below. We prove the security in
Section 5.2.
Correctness. We first prove the correctness of the scheme presented in Fig. 5. More
precisely, we prove the following:

Lemma 6 (Correctness). If the family of distributions C = {Cj}j∈J satisfies Property 1,
i.e., erasure recovery of first γ coordinates in Schur product, then for all i ∈ {−γ, . . . ,−1},
it holds that ti = uiri + vi.

Proof. First, we prove the following claim:

Claim 4. For all i ∈ [η], it holds that ti = uiri + vi.
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ti = αiri + βi − zi = (ui − ai)ri + (aimi + bi + vi)− zi
= uiri − airi + ai(ri + xi) + bi + vi

= uiri + aixi + bi + vi − zi
= uiri + vi

From the above claim, we have that t[η] = u[η] ∗ r[η] + v[η]. From the protocol, we have
that u, r ∈ Cj and v ∈ C(2)

j . Consider t̃ = u ∗ r + v ∈ C(2)
j . Note that ti = t̃i for all i ∈ [η].

Hence, when client B performs erasure recovery on t[η] for a codeword in C(2)
j , it would get

t̃[−γ]. This follows from erasure recovery guarantee for first γ coordinates by Property 1.

5.2 Security of protocol in Fig. 5

To argue the security of our protocol, we prove that the output of the protocol is secure
(ROLE(F))γ against a semi-honest adversary that corrupts either the sender or the receiver
and leaks at most t bits from the secret state of the honest party at the beginning of the
protocol. At a high level, we prove the security of our protocol by reducing it to our un-
predictability lemma (see Lemma 5) exactly. More formally, we prove the following security
lemma.

Lemma 7. The simulation error of our protocol is ε 6
√
|F|γ2t

2δ
, where δ is the parameter

for family of distributions C provided by Property 1.

We first prove Bob privacy followed by Alice privacy.

Bob Privacy. In order to prove privacy of client B against a semi-honest client A, it suffices
to show that the adversary cannot distinguish between Bob’s secret values (r−γ, . . . , r−1) and
UFγ . We show that the statistical distance of (r−γ, . . . , r−1) and UFγ given the view of the
adversary is at most ε, where ε is defined above.

We observe that client B’s privacy reduces directly to our unpredictability lemma (Lemma 5)
for the following variables: Let X[η] be the random variable denoting the B’s input in the
initial correlations. Then, X[η] is uniform over Fη. Note that the adversary gets L = L(X[η])

that is at most t bits of leakage. Next, the honest client B picks j $← J and a random
r = (r−γ, . . . , r−1, r1, . . . , rη) ∈ Cj. Client B sends m[η] = r[η] + x[η]. This is exactly the
game between the honest challenger and an semi-honest adversary in the unpredictability
lemma (see Lemma 5). Hence, the adversary cannot distinguish between r[−γ] and UFγ with
probability more than ε.

Alice Privacy. In order to prove privacy of client A against a semi-honest client B, it suf-
fices to show that the adversary cannot distinguish between Alice’s secret values (u−γ, . . . , u−1)
and UFγ . We show that the statistical distance of (u−γ, . . . , u−1) and UFγ given the view of
the adversary is at most ε, where ε is defined above by reducing to our unpredictability
lemma (see Lemma 5).
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H A′

A

Fixed C = {Cj}j∈J
Pick a[η]

$← Fη

Pick x[η], z[η]
$← Fη(

x[η], z[η]

)
L(·)

` = L(a[η])

Pick j $←J
m[η]

Pick u = (u−γ, . . . , uη) ∼ Cj

Compute α[η] = u[η] − a[η]

α[η]

Compute r[η] = m[η] − x[η]

Pick w = (w−γ, . . . , wη)
$← C

(2)
j

Set β[η] = w[η] − α[η] ∗ r[η] + z[η]

α[η], β[η]

b ∼ U{0,1}, y ∼ UFγ

chal = by ⊕ (u[−γ])

chal

b̃

Figure 6: Simulator for Alice Privacy.

Let A[η] denote the random variable corresponding to the client A’s input a[η] in the
initial correlations. Then, without loss of generality, the adversary receives t bits of leakage
L(A[η]). We show a formal reduction to Lemma 5 in Fig. 6. Given an adversary A who can
distinguish between (u−γ, . . . , u−1) and UFγ , we construct an adversary A′ against an honest
challenger H of Lemma 5 with identical advantage. It is easy to see that this reduction is
perfect. The only difference in the simulator from actual protocol are as follows: In the
simulation, the index j of the distribution is picked by the honest challenger H instead of
client B. This is identical because client B is a semi-honest adversary.

Also, the simulator A′ generates β[η] slightly differently. We claim that the distribution
of β[η] in simulation is identical to that of real protocol.

This holds by correctness of the protocol: t[η] = u[η] ∗ r[η] + v[η] = (α[η] ∗ r[η]) + β[η] − z[η].
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Hence, β[η] = (u[η] ∗ r[η] + v[η]) − (α[η] ∗ r[η]) + z[η] = w[η] − (α[η] ∗ r[η]) + z[η], where w[−γ,η]

is chosen as a random codeword in C
(2)
j . This holds because in the real protocol v[−γ,η] is

chosen as a random codeword in C(2)
j and u[−γ,η] ∗ r[−γ,η] ∈ C(2)

j . Here, we denote by [−γ, η]
the set {−γ, . . . ,−1, 1, . . . , η}.

5.3 OT Embedding

The second conceptual block is the ROT embedding protocol from [BMN17], referred to as the
BMN embedding protocol, that embeds a constant number of ROT samples into one sample
of ROLE (F), where F is a finite field of characteristic 2. The BMN embedding protocol is a
two-message perfectly semi-honest secure protocol. For example, asymptotically, [BMN17]
embeds (s)1−o(1) samples of ROT into one sample of the ROLE (GF [2s]) correlation. However,
for reasonable values of s, say for s 6 250, a recursive embedding embeds slog 10/ log 32 samples
of ROT into one sample of the ROLE (GF [2s]) correlation, and this embedding is more
efficient than the asymptotically good one. Below, we show that this protocol composes in
parallel with our protocol in Fig. 5 to give our overall round optimal protocol for (n,m, t, ε)-
correlation extractor for ROLE(F) correlation satisfying Theorem 3.

We note that the BMN embedding protocol satisfies the following additional properties.
(1) The first message is sent by client B, and (2) this message depends only on the first
share of client B in ROLE(F) (this refers to ri in Fig. 5) and does not depend on the second
share (this refers to ti in Fig. 5). With these properties, the BMN embedding protocol
can be run in parallel with the protocol in Fig. 5. Also, since protocol from BMN satisfies
perfect correctness and perfect security, to prove overall security, it suffices to prove the
correctness and security of our protocol in Fig. 5. This holds because we are in the semi-
honest information theoretic setting.

5.4 Protocol for ROT Extractor (Theorem 2)

In this section, we build on Theorem 3 to give a protocol to construct (ROLE(F)η)[t] using
(ROLEn)[t], that is the starting point of our protocol in Section 5.1. This would prove
Theorem 2. Recall that ROLE and ROT are equivalent.

One of the several fascinating applications of algebraic function fields pioneered by the
seminal work of Chudnovsky and Chudnovsky [CC87], is the application to efficiently multi-
ply over an extension field using multiplications over the base field. For example, 6 multipli-
cations over GF [2] suffice to perform one multiplication over GF [23], or 15 multiplications
over GF [2] suffice for one multiplication over GF [26] (cf., Table 1 in [CÖ10a]).

Our first step of the correlation extractor for (ROLEn)[t] uses these efficient multiplication
algorithms to (perfectly securely) implement (ROLE(F)η)[t], where F = GF(2α) is a finite field
with characteristic 2.

We start by describing a protocol for realizing one ROLE (F) using ROLE`, i.e., ` inde-
pendent samples of ROLE (in the absence of leakage) in Fig. 7. Our protocol implements, for
instance, one sample of ROLE (GF [23]) correlation using 6 samples from the ROT correlation
in two rounds. Our protocol uses a multiplication friendly code D over {0, 1}` encoding F.
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That is, That is, D ∗ D = D(2) ⊂ {0, 1}` is also a code for F. Later, we show how to extend
this to the leakage setting.

Protocol for ROLE(F) in ROLE` hybrid:

Let D ⊂ {0, 1}` be a multiplication friendly code encoding F = GF(2α). Let (EncD,DecD)
(resp., EncD(2) ,DecD(2)) be encoding and decoding procedures for D (resp., D(2)).
Hybrid ROT`: Client A and client B have access to a single call to ROLE` functionality.
Client A will play as the sender and client B will play as the receiver.

Inputs: Client A has inputs a0, b0 ∈ F and client B has inputs x0 ∈ F.

1. Client A picks a random codeword a[`] ∼ EncD(a0) and b[`] ∼ EncD(2)(b0) Client A
sends a[`], b[`] as sender inputs to ROLE` functionality.

2. Client B picks a random codeword x[`] ∼ EncD(x0) and sends x[`] as receiver input to
ROLE`. Client B gets z[`] ∈ {0, 1}` as output. Client B runs DecD(2)(z[`]) to obtain
z0 ∈ F.

3. Client A outputs a0, b0 and Client B outputs x0, z0.

Figure 7: Perfectly secure protocol for ROLE(F) in ROLE` hybrid

Security Guarantee. It is easy to see that the protocol in Fig. 7 is a perfectly secure real-
ization of ROLE(F) in ROLE` hybrid against a semi-honest adversary. Moreover, [IKOS09]
proved the following useful lemma to argue t-leaky realization of ROLE(F) if the perfect
oracle call to ROLE` is replaced by a t-leaky oracle.

Lemma 8 ( [IKOS09]). Let π be a perfectly secure (resp., statistically ε secure) realization
of f in the g-hybrid model, where π makes a single call to g. Then, π is also a perfectly
secure (resp., statistically ε secure) realization of f [t] in the g[t]-hybrid model.

Using the above lemma, we get that the protocol in Fig. 7 is a perfect realization of
(ROLE(F))[t] in (ROLE`)[t] hybrid. Finally, by running the above protocol in parallel, we get
a perfectly secure protocol for (ROLE(F)η)[t] in (ROLEη`)[t] hybrid.
Round Optimality. Note that the first messages of protocols in Fig. 7 and Fig. 5 can
be sent together. This is because the first message of client B in protocol of Fig. 5 is
independent of the second message in Fig. 7. The security holds because we are in the
semi-honest information theoretic setting. Hence, overall round complexity is still 2.

6 Parameter Comparison

6.1 Correlation Extractor from (X, Y )

In this section, we shall compare our correlation extractor for ROLE (F) correlation, where
F is a constant size field with the BMN correlation extractor [BMN17].
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Field F # of OTs Embedded Production (α = m/n)

Per ROLE (F) [BMN17]

GF [26] 2 4.83%

GF [28] 3 11.39%

GF [210] 4 15.59%

GF [214] 5 16.32%

GF [220] 6 14.31%

Figure 8: The production rate of our correlation extractor for ROLE (F), where β = t/n = 1%
rate of leakage using different finite fields.

Production rate of BMN Correlation Extractor [BMN17]. The BMN correlation
emphasizes high resilience while achieving multiple ROT as output. Roughly, they show the
following. If parties start with the IP

(
GF
[
2∆n
]1/∆) correlation, then they (roughly) achieve

1
2
− ∆ fractional resilience with production that depends on (∆n). Here, ∆ has to be the

inverse of an even natural number > 4.
In particular, the IP

(
GF
[
2n/4

]4) correlation achieves the highest production using the
BMN correlation extractor. The resilience of this correlation is (1

4
−g), where g ∈ (0, 1/4] is a

positive constant. Then the BMN correlation extractor produces at most (n/4)log 10/ log 38 ≈
(n/4)0.633 fresh samples from the ROT correlation as output when n 6 250. This implies
that the production is m ≈ 2 · (n/4)0.633, because each ROT sample produces private shares
that are two-bits long. For n = 103, for example, the production is m 6 66, for n = 106 the
production is m 6 5, 223, and for n = 109 the production is m 6 413, 913.

We emphasize that the BMN extractor cannot increase its production any further by
sacrificing its leakage resilience by going below 1/4.
Our Correlation Extractor for ROLE (F). We shall use F such that q = |F| is an even
power of 2. For the suitable Algebraic Geometry codes [GS96b] to exist, we need q > 49.
Since, the last step of our construction uses the OT embedding technique introduced by
BMN [BMN17], we need to consider only the smallest fields that allow a particular number
of OT embeddings. Based on this observation, for fractional resilience β = (t/n) = 1%, Fig. 8
presents the achievable production rate α = (m/n). Note that the Algebraic Geometry codes
become better with increasing q, but the BMN OT embedding gets worse. So, the optimum
α = 16.32% is achieved for F = GF [214]. For n = 103, for example, the production is
m = 163, for n = 106 the production is m = 163, 200, and for n = 109 the production is
m = 163, 200, 000. The production rate is overwhelmingly higher than the BMN production
rate.
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Field Bilinear Comp.
n′ = s

µ2(s)
n β′ = µ2(s)

s
β

OT Embed.
α′ α = s

µ2(s)
α′

F = GF [2s] Mult. µ2(s) [CÖ10b] [BMN17]

GF [26] 15 6
15
n 2.50% 2 4.05% 1.62%

GF [28] 24 24
8
n 3.00% 3 10.07% 3.35%

GF [210] 33 33
10
n 3.30% 4 13.86% 4.20%

GF [214] 51 14
51
n 3.64% 5 14.46% 3.97%

GF [220] 81 20
81
n 4.05% 6 12.48% 3.08%

Figure 9: The production rate of our correlation extractor for ROT. We are given n-bit
shares of the ROTn/2 correlation, and fix β = t/n = 1% fractional leakage. Each row
corresponds to using our ROLE (F)-to-ROT correlation extractor as an intermediate step.
The final column represents the production rate α = m/n of our ROT-to-ROT correlation
extractor corresponding to the choice of the finite field F.

6.2 Correlation Extraction from ROT

In this section we shall compare our construction with the GIMS [GIMS15] correlation ex-
tractor from ROT. The IKOS [IKOS09] is a feasibility result with minuscule fractional
resilience and production rate.
GIMS Production. The GIMS correlation extractor for ROT [GIMS15] trades-off sim-
ulation error to achieve higher production by sub-sampling the precomputed ROTs. For
β = (t/n) = 1% fractional leakage, the GIMS correlation extractor achieves (roughly)
m = n/4p production with ε = m · 2−p/4 simulation error. To achieve negligible simula-
tion error, suppose p = log2(n). For this setting, at n = 103, n = 106, and n = 109, the
GIMS correlation extractor obtains m = 3, m = 625, m = 277, 777, respectively. These
numbers are significantly lower than what our construction achieves.
Our Production. We use a bilinear multiplication algorithm to realize one ROLE (F) by per-
forming several ROT. For example, we use µ2(s) = 15 ROT to implement one ROLE (GF [2s]),
where s = 6. Thus, our original n-bit share changes into n′-bit share, where n′ = (6/15)n
while preserving the leakage t = βn. So, the fractional leakage now becomes t = β′n′, where
β′ = (15/6)β. Now, we can compute the production m′ = α′n′ = αn.

The highest rate is achieved for s = 10, i.e., constructing the correlation extractor for ROT
via the correlation extractor for ROLE (GF [210]). For this choice, our correlation extractor
achieves production rate α = (m/n) = 4.20%, if the fractional leakage is β = (t/n) = 1%.
For n = 103, n = 106, and n = 109, our construction obtains m = 42, m = 42, 000, and
m = 42, 000, 000, respectively.

6.3 Close to Optimal Resilience

An interesting facet of our correlation extractor for ROLE (F) is the following. As q = |F|
increases, the maximum fractional resilience, i.e., the intercept of the feasibility curve on the
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Y -axis, tends to 1/4. Ishai et al. [IMSW14] showed that any correlation extractor cannot
be resilient to fractional leakage β = (t/n) = 25%. For every g ∈ (0, 1/4), we show that,
by choosing sufficiently large q, we can achieve positive production rate α = (m/n) for
β = (1/4 − g). Thus, our family of correlation extractors (for larger, albeit constant-size,
finite fields) achieve near optimal fractional resilience. Fig. 10 demonstrates this phenomenon
for a few values of q. Appendix F provides a proof of this result, thus proving Theorem 4.
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Figure 10: A comparison of the feasibility regions for our correlation extractors for ROLE (F)
for various finite fields F of characteristic 2. For each plot, the X-axis represents the relative
production rate α = m/n and the Y -axis represents the fractional leakage resilience β = t/n.
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A Functionalities and Correlations

We define some useful functionalities and correlations below.

Oblivious Transfer. A 2-choose-1 bit Oblivious Transfer (referred to as OT ) is a two
party functionality which takes input (x0, x1) ∈ {0, 1}2 from Alice and input b ∈ {0, 1} from
Bob and outputs xb to Bob.

Random Oblivious Transfer Correlation. A Random 2-choose-1-bit Oblivious Transfer
(referred to as ROT) is an input-less two party correlation that samples bits x0, x1, b uniformly
and independently at random. It outputs secret share rA = (x0, x1) to Alice and rB = (b, xb)
to Bob. The joint distribution of Alice and Bob shares is called a ROT-correlation.

Oblivious Linear-function Evalutation. Given a field (F,+, ·) an Oblivious Linear-
function Evaluation, represented by OLE(F), is a two party functionality that takes input
(a, b) ∈ F2 from Alice and input x ∈ F from Bob and outputs ax + b to Bob. Moreover, we
use OLE to denote OLE(GF([2]).

Random Oblivious Linear-function Evalutation. Given a field (F,+, ·) a em Random
Oblivious Linear-function Evaluation, represented by ROLE(F), is a two party correlation
that samples field elements a, b, x ∈ F uniformly and independently at random. It provides
Alice the secret share rA = (a, b) and provides Bob the secret share rB = (x, ax + b).
Moreover, we use ROLE to denote ROLE(GF([2]). Note that ROLE and ROT are functionally
equivalent correlations.

B Fourier Analysis Basic Definitions

We show that χ as stated in Definition 4 is indeed a symmetric, non-degenerate, bilinear
map.

Proof. The proof follows directly the definition of χ.

Bilinear map. The function χ is a bilinear map if and only if for every x ∈ Fη, both χ(x, ·)
and χ(·, x) are homomorphisms. This follows immediately by the fact that ψ is a group
homomorphism. Namely, for fixed x ∈ Fη and any y, z ∈ Fη, we have

χx(y + z) = ψ (x · (y + z)) = ψ

(∑
i

xi(y + z)i

)
= ψ

(∑
i

xiyi + xizi

)
= ψ(x · y + x · z) = ψ(x · y)ψ(x · z) = χx(y)χx(z).

The function χ(·, x) is a homomorphism by the same argument.

Non-degenerate. The function χ is non-degenerate if and only if for every 0η 6= x ∈ Fη,
both χ(x, ·) and χ(·, x) are non-trivial. Taking the function ψ to be non-trivial (ψ 6= 1)
immediately yields this property.
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Symmetric. The function χ is symmetric if and only if for all x, y ∈ Fη, we have χx(y) =
χy(x). This follows directly since the vector dot product is symmetric.

We show properties of any character function χS.

Lemma 9 (Character Magnitude). |χS| = 1 for any character χS.

Proof. Since χS is a group homomorphism, we have χS(x+y) = χS(x)χS(y) for any x, y ∈ Fη.
Thus χS(0η) = χS(0η)2, which implies that χS(0η) = 1 since ψ(0) = 1. Applying the
homomorphism property repeatedly for x = y, we have

χS(x)|F
η | = χS(|Fη|x) = χS(0) = 1

Hence |χS(x)| = 1 for all x ∈ Fη.

Lemma 10 (Character Conjugate). For any character χS and any x ∈ Fη, we have χS(x) =
χS(x)−1 = χS(−x).

Proof. Note that |χS(x)| = 1 for any S, x ∈ Fη by Lemma 9. Thus by definition of complex
conjugate we have

χS(x)χS(x) = |χS(x)|2 = 1.

This implies χS(x) = χS(x)−1 in C∗. Furthermore, since χ is a bilinear map, for any x ∈ Fη
we have

χS(x)χS(−x) = χS(x− x) = χS(0) = 1 = χS(x)χS(x)

Therefore χS(x) = χS(−x).

Lemma 11. For any non-trivial character χS, we have
∑
x∈Fη

χS(x) = 0.

Proof. Since χS is a non-trivial character, there exists a vector v ∈ Fη such that χS(v) 6= 1.
We have

χS(v)
∑
x∈Fη

χS(x) =
∑
x∈Fη

χS(v)χS(x) =
∑
x∈Fη

χS(v + x) =
∑
y∈Fη

χS(y) =
∑
x∈Fη

χS(x)

Thus, we must have
∑
x∈Fη

χS(x) = 0.

Lemma 12 (Orthogonality). For any two characters χS and χT , we have that

〈χS, χT 〉 =

{
1 if S = T
0 otherwise
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Proof.

〈χS, χT 〉 =
1

|F|η
∑
x∈Fη

χS(x)χT (x) =
1

|F|η
∑
x∈Fη

χx(S)χx(−T ) =
1

|F|η
∑
x∈Fη

χx(S − T )

If S = T , then 〈χS, χT 〉 =
1

|F|η
∑
x∈Fη

χx(0) = 1. Otherwise, by Lemma 11, we have 〈χS, χT 〉 =

0.

The following corollary is a direct result of Lemma 9 and Lemma 12.

Corollary 8 (Orthonormal Basis). The set {χS}S∈Fη is an orthonormal basis for the vector
space {f | f : Fη → C}.

We show linearity of Definition 5.

Lemma 13 (Linearity of Fourier Transform). For any two functions f, g : Fη → C and for
any a, b ∈ C and S ∈ Fη, we have

̂(af + bg)(S) = af̂(S) + bĝ(S)

Proof. This follows from definition of Fourier transform and the linearity property of inner
product.

̂af + bg(S) = 〈af + bg, χS〉 = 〈af, χS〉+ 〈bg, χS〉 = a〈f, χS〉+ b〈g, χS〉 = af̂(S) + bĝ(S)

We note that Lemma 1 follows directly from Corollary 8 and Definition 5 since any
f : Fη → C can be written as f(x) =

∑
S∈Fη 〈f, χS〉χS(x) =

∑
S∈Fη f̂(S)χS(x) by definition

of orthonormal basis. Next we show how to express the inner product of two functions in
terms of their Fourier coefficients.

Lemma 14. For any two functions f, g : Fη → C, we have 〈f, g〉 =
∑

S∈Fη f̂(S)ĝ(S).

Proof.

〈f, g〉 = E
x

$←Fη
f(x)g(x)

=
1

|F|η
∑
x∈Fη

(∑
S∈Fη

f̂(S)χS(x)

)(∑
T∈Fη

ĝ(T ) χT (x)

)
[Lemma 1]

=
1

|F|η
∑

x,S,T∈Fη
f̂(S)χS(x)ĝ(T ) χT (x)

=
∑

S,T∈Fη
f̂(S)ĝ(T )

(
1

|F|η
∑
x∈Fη

χS(x)χT (x)

)
=
∑

S,T∈Fη
f̂(S)ĝ(T )〈χS, χT 〉 [Definition 3]

=
∑
S∈Fη

f̂(S)ĝ(S) [Lemma 12]
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When f = g, we have Parseval’s identity as a corollary.

Corollary 9 (Parseval’s Identity). Let f : Fη → C. Then E
x

$←Fη
|f(x)|2 =

∑
S∈Fη
|f̂(S)|2.

Next we prove Lemma 3.

Proof. By Corollary 9 and assumption H∞(X) > k, we have∑
S

|X̂(S)|2 =
1

|F|η
∑
x∈Fη
|X(x)|2 6 1

|F|η
∑
x∈Fη

1

2k
|X(x)|

=
1

|F|η
1

2k

∑
x∈Fη
|X(x)| = 1

|F|η 2k

We introduce the Convolution operator and prove related properties.

Definition 8 (Convolution). For any two functions f, g : Fη → R, the convolution of f and
g is defined as

(f ∗ g)(x) := E
y∈Fη

f(x− y)g(y)

Lemma 15 (Fourier Transform of Convolution). For every vector S ∈ Fη, we have f̂ ∗ g(S) =

f̂(S)ĝ(S)

Proof.

f̂ ∗ g(S) =
1

|F|η
∑
x∈Fη

(f ∗ g)(x)χS(x) =
1

|F|2η
∑
x,y∈Fη

f(x− y)g(y)χS(x)

=
1

|F|2η
∑
x,y∈Fη

f(x− y)χS(x− y)g(y)χS(y)

=
1

|F|2η
∑
y∈Fη

g(y)χS(y)
∑
x∈Fη

f(x− y)χS(x− y)

=
1

|F|η
∑
y∈Fη

g(y)χS(y) · f̂(S) =
1

|F|η
f̂(S)

∑
y∈Fη

g(y)χS(y)

= f̂(S)ĝ(S)

We prove facts about distributions and their Fourier coefficients.

Lemma 16 (Masking Lemma). Let X, Y : Fη → R be two independent random variables
(functions, distributions). Then |Fη| (X ∗ Y ) is the distribution of the random variable Z =

X ⊕ Y and X̂ ⊕ Y (S) = |F|η ̂(X ∗ Y )(S) = |F|η X̂(S)Ŷ (S).
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Proof.

Z(z) = Pr[Z = z] = Pr[X + Y = z] = Pr[X = z − Y ]

=
∑
y∈Fη

Pr[X = z − y|Y = y] =
∑
y∈Fη

Pr[X = z − y] Pr[Y = y]

=
∑
y∈Fη

X(z − y)Y (y) = |F|η (X ∗ Y )

Lemma 17 (Zeroth Fourier Coefficient of a Distribution). For any distribution f : Fη → R,
we have f̂(0) = 1

|F|η .

Proof.

f̂(0) =
1

|F|η
∑
x∈|F|η

f(x)χ0(x) =
1

|F|η
∑
x∈|F|η

f(x) · 1 =
1

|F|η

Lemma 18 (Fourier Coefficients of Uniform Distributions). Let UFη be the uniform distri-
bution over Fη. Then, for every nonzero S ∈ Fη, we have ÛFη(S) = 0.

Proof.

ÛFη(S) =
1

|F|η
∑
x∈Fη

UFη(x)χS(x) =
1

|F|η
∑
x∈Fη

1

|F|η
χS(−x)

=
1

|F|2η
∑
S∈Fη

χS(−x) = 0 [Lemma 11]

Note χS is non-trivial if S 6= 0.

B.1 Proof of Claim 3

By definition of Ĉ(S), we have

Ĉ(S) =
1

|F|η∗
∑
x∈Fη∗

C(x)χS(x) =
1

|F|η∗
∑
x∈C

1

|F|κ
χS(−x)

=
1

|F|η∗+κ
∑
x∈C

ψ(−S · x)

where (S ·x) is the vector dot product over Fη∗ . By definition if S ∈ C⊥, then (S ·x) = 0 for
all x ∈ C. Since ψ(0) = 1, this implies Ĉ(S) = 1

|F|η∗+κ
∑

x∈C ψ(−S ·x) = 1
|F|η∗ for all S ∈ C⊥.
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Next, for S 6∈ C⊥, we use Parseval’s identity (Corollary 9):∑
S 6∈C⊥

|Ĉ(S)|2 =
1

|F|η∗
∑
x∈Fη∗

|C(x)|2 −
∑
S∈C⊥

Ĉ(S)2

=
1

|F|η∗
∑
x∈C

|C(x)|2 −
∑
S∈C⊥

|Ĉ(S)|2

=
1

|F|η∗
∑
x∈C

1

|F|2κ
−
∑
S∈C⊥

1

|F|2η∗

=
1

|F|η∗
· |F|

κ

|F|2κ
− |F|

η∗−κ

|F|2η∗
=

1

|F|η∗+κ
− 1

|F|η∗+κ
= 0

C Algebraic Geometry Codes

Theorem 10 (Garcia-Stichtenoth [GS96a]). For every q that is an even power of a prime,
there exists an infinite family of curves {Cu}u∈N such that:

1. The number of rational points #Cu(Fq) > qu/2(
√
q − 1), and

2. The genus of the curve g(Cu) 6 qu/2.

Using the above theorem, we get the following corollary.

Corollary 11. For every q that is an even power of a prime, there exists an [η∗, κ, d, d⊥]q
code C such that:

1. η∗ = qu/2(
√
q − 1),

2. κ = ∆− qu/2 + 1,

3. d = η∗ −∆, and

4. d⊥ > κ− qu/2 + 1.

Further, d(2) = d(C(2)) = η∗ − 2∆, and there exists an efficient decoding algorithm for C(2)

that can correct
⌊
d(2)−1

2

⌋
errors and d(2) − 1 erasures.

Proof. By choosing the Garcia-Stichtenoth curves over Fq (see, Theorem 10) and a divisor
D such that degD = ∆, we can define a Goppa code [Gop81] with these parameters.

O’Sullivan [O’S95] proved that the unique decoding can be performed efficiently by the
syndrome-based Berlekamp-Massey-Sakata algorithm with the Feng-Rao [FR93] majority
voting.
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D Analysis of Γ(w)

In this section, we analyze the behavior of the function

Γ(w) = max
η∗−w6j6η∗−d⊥

{(
j

η∗ − w

)
Bj

}
from Section 3. Let q be an even prime power and let

a = η∗ − d⊥

a′ = a−
(

η∗
√
q − 1

)
+ 1

a′′ = a− 2

(
η∗

√
q − 1

)
+ 1.

We use the following results.

Theorem 12 (Theorem 1.1.18 and 1.1.28 from [VNT07]). For i ∈ {0, 1, . . . , a}, we have the
following estimates of Bi.

1. For 0 6 i 6 a′′

Bi =

(
η∗

i

)(
qa
′

qi
− 1

)
2. For a′′ < i 6 a′ (

η∗

i

)(
q

η∗
(
√
q−1) − 1

)
> Bi >

(
η∗

i

)(
qa
′

qi
− 1

)
3. For a′ < i 6 a (

η∗

i

)(
qa+1

qi
− 1

)
> Bi > 0

Note that
(

i
η∗−w

)(
η∗

i

)
=
(
η∗

w

)(
w

i−(η∗−w)

)
. Thus the above theorem implies the following bounds.

1. For 0 6 i 6 a′′ (
i

η∗ − w

)
Bi 6

(
η∗

w

)(
w

i− (η∗ − w)

)
qa
′−i

2. For a′′ < i 6 a′ (
i

η∗ − w

)
Bi 6

(
η∗

w

)(
w

i− (η∗ − w)

)
q

η∗
(
√
q−1)

3. For a′ < i 6 a (
i

η∗ − w

)
Bi 6

(
η∗

w

)(
w

i− (η∗ − w)

)
qa+1−i
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Lemma 19. Assume η∗, w are fixed. Let f(i) =
(

w
i−(η∗−w)

)
q−i for η∗ − w 6 i 6 η∗. Let

• f1(i) =
(
η∗

w

)
qa
′ · f(i) for 0 6 i 6 a′′,

• f2(i) =
(
η∗

w

)
q

η∗
(
√
q−1)

+i · f(i) for a′′ < i 6 a′,

• f3(i) =
(
η∗

w

)
qa+1 · f(i), for a′ < i 6 a

Then f, f1, f3 (asymptotically) have the same critical point at i = η∗ − w + w/(q+1). More
concretely, they are asymptotically increasing in the range [η∗−w, η∗−w+ w

q+1
] and asymp-

totically decreasing in the range [η∗−w+ w
q+1

, η∗]. In addition, the function f2 is increasing
in the range [η∗ − w, η∗ − w/2],and decreasing in the range [η∗ − w/2, η∗].

Proof. The function f is asymptotically similar to a binomial distribution of bias p, where

p

1− p
=

1

q
⇐⇒ p =

1

q + 1

The maximum of the binomial distribution shall be achieved at the critical point

i− (η∗ − w) = p · w =
w

q + 1

Thus, f(i) is increasing in the range [η∗ − w, η∗ − w + w
q+1

] and is decreasing in the range
[η∗ − w + w

q+1
, w].

Since the three functions f1, f2, f3 are just scalar multiplication of f(i), they behave asymp-
totically same as f .

Now, we state the result of upper-bounding Γ(w) as following.

Lemma 20. Let p∗ = η∗ − w + w
q+1

. For w ∈ {d⊥, . . . , η∗}, we have Γ(w) is less than or
equal to

1.
(
η∗

w

)(
w
d⊥

)
q, where w ∈ I1 = [d⊥, ( q+1

q
)d⊥]

2.
(
η∗

w

)(
w
w
q+1

)
qa+1−p∗, where w ∈ I2 = [( q+1

q
)d⊥, η∗ − a′]

3.
(
η∗

w

)(
w
w
q+1

)
q

η∗
(
√
q−1) , where w ∈ I3 = [η∗ − a′, ( q+1

q
)(η∗ − a′)]

4.
(
η∗

w

)(
w

η∗−a′
)
q

η∗√
q−1 , where w ∈ I4 = [( q+1

q
)(η − a′), η∗ − a′′]

5.
(
η∗

w

)(
w

η∗−a′
)
q

η∗
(
√
q−1) , where w ∈ I5 = [η∗ − a′′, q+1

q
(η∗ − a′′)]

6.
(
η∗

w

)
· max

{(
w
w
q+1

)
qa
′−p∗ ,

(
w

η∗−a′
)
q

η∗
(
√
q−1)

}
, if w ∈ I6 = [ q+1

q
(η∗ − a′′), 2d⊥ + 2η∗√

q−1
] or

w ∈ I8 = [2d⊥ + 4η∗√
q−1

, η∗].(
η∗

w

)
·max

{(
w
w
q+1

)
qa
′−p∗ ,

(
w
w/2

)
q

η∗
(
√
q−1)

}
, if w ∈ I7 = [2d⊥ + 2η∗√

q−1
, 2d⊥ + 4η∗√

q−1
].
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Proof. We will use the facts stated in Lemma 19 frequently in our proof.

Case 1: d⊥ 6 w 6
(
q+1
q

)
d⊥, which implies a > η − w > a′ and p∗ > a. In this case, the

function f3 is increasing. So Γ(w) is maximized at a. Therefore

Γ(w) 6

(
η∗

w

)(
w

a− η∗ + w

)
q =

(
η∗

w

)(
w

w − d⊥
)
q =

(
η∗

w

)(
w
d⊥

)
q

Case 2:
(
q+1
q

)
d⊥ 6 w 6 η∗ − a′, which implies η∗ − w > a′ and p∗ 6 a. In this case, the

maximum is achieved at p∗. Thus

Γ(w) 6

(
η∗

w

)(
w
w
q+1

)
qa+1−p∗

Case 3: η∗ − a′ 6 w 6
(
q+1
q

)
(η∗ − a′), which implies a′′ < η − w 6 a′, p∗ > a′, and η∗ −

w/2 > a′. In this case, the function f3 is maximized at p∗. Thus for a′ < i 6 a,(
i

η∗ − w

)
Bi 6

(
η∗

w

)(
w
w
q+1

)
qa+1−p∗

This also implies that f2(i) is increasing in the interval [η∗ − w, a′], so the maximum
within this interval is achieved at a′, which yields(

i
η∗ − w

)
Bi 6

(
η∗

w

)(
w

a′ − η∗ + w

)
q

η∗
(
√
q−1) =

(
η∗

w

)(
w

η∗ − a′
)
q

η∗
(
√
q−1)

Comparing the two expressions, we note that
(
w
w
q+1

)
>

(
w

a′ − η∗ + w

)
since w/2 >

w/(q + 1) > a′ − η∗ + w, and similarly q
η∗

(
√
q−1) > qa+1−p∗ . So in this case, we can see

that

Γ(w) 6

(
η∗

w

)(
w
w
q+1

)
q

η∗
(
√
q−1) .

Case 4:
(
q+1
q

)
(η∗ − a′) 6 w 6 η∗ − a′′, which implies a′′ 6 η∗ − w < a′, p∗ 6 a′, and

η∗ − w/2 > a′. In this case, the function f2 is maximized at a′. This implies that for
every η∗ − w 6 i 6 a′(

i
η∗ − w

)
Bi 6

(
η∗

w

)(
w

a′ − η∗ + w

)
q

η∗
(
√
q−1) .

Further this implies that the function f3(i) is decreasing in the range [a′, a], and thus
we have(

i
η∗ − w

)
Bi 6

(
η∗

w

)(
w

a′ − η + w

)
qa+1−a′ =

(
η∗

w

)(
w

a′ − η∗ + w

)
q

η∗√
q−1

Thus we have

Γ(w) 6

(
η∗

w

)(
w

a′ − η + w

)
q

η∗√
q−1 =

(
η∗

w

)(
w

η∗ − a′
)
q

η∗√
q−1
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Case 5: η∗ − a′′ 6 w 6
(
q+1
q

)
(η∗ − a′′), which implies η∗−w 6 a′′, p∗ > a′′, and η∗−w/2 >

a′ as long as d⊥ > 2η∗

(q−1)(
√
q−1)

. In this case, f2 is maximized at a′. This implies that
for every a′′ 6 i 6 a′, (

i
η∗ − w

)
Bi 6

(
η∗

w

)(
w

a′ − η∗ + w

)
q

η∗√
q−1

Further this implies that the function f1 is increasing. Thus we have for every η∗−w 6
i 6 a′′, (

i
η∗ − w

)
Bi 6

(
η∗

w

)(
w

a′′ − η∗ + w

)
q

η∗√
q−1

It also implies that the function f3 is decreasing. Thus we have for every a′ 6 i 6 a,(
i

η∗ − w

)
Bi 6

(
η∗

w

)(
w

a′ − η∗ + w

)
q

η∗
(
√
q−1)

Note that a′ − η∗ + w < w
2
and a′′ < a′. Hence, in this subcase

Γ(w) 6

(
η
w

)(
w

a′ − η∗ + w

)
q

η∗
(
√
q−1) =

(
η∗

w

)(
w

η∗ − a′
)
q

η∗
(
√
q−1)

.

Case 6:
(
q+1
q

)
(η∗ − a′′) 6 w 6 η, which implies η∗ − w 6 a′′ and p∗ 6 a′′. In this case, f1

is maximized at p∗. Thus, for every η∗ − w 6 i 6 a′′,(
i

η∗ − w

)
Bi 6

(
η∗

w

)(
w
w
q+1

)
qa
′−p∗

Further this implies that the function f3 is also decreasing in the range [a′, a], and thus
we have (

i
η∗ − w

)
Bi 6

(
η∗

w

)(
w

a′ − η∗ + w

)
q

η∗
(
√
q−1) for every a′ 6 i 6 a

1. Subcase 1:
(
q+1
q

)
(η∗ − a′′) 6 w 6 2d⊥ + 2η∗√

q−1
, which implies η∗ − w/2 > a′.

Thus, f2 is maximized at a′, which yields for every a′′ 6 i 6 a′(
i

η∗ − w

)
Bi 6

(
η∗

w

)(
w

η∗ − a′
)
q

η∗√
q−1

Hence,

Γ(w) 6 max

{(
η∗

w

)(
w
w
q+1

)
qa
′−p∗ ,

(
η∗

w

)(
w

η∗ − a′
)
q

η∗
(
√
q−1)

}
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2. Subcase 2: 2d⊥ + 2η∗√
q−1

6 w 6 2d⊥ + 4η∗√
q−1

, which implies a′′ 6 η∗ − w/2 6 a′.
So f2 is maximized at η∗ − w/2, which yields for every a′′ 6 i 6 a′(

i
η∗ − w

)
Bi 6

(
η∗

w

)(
w
w/2

)
q

η∗√
q−1

Hence,

Γ(w) 6 max

{(
η∗

w

)(
w
w
q+1

)
qa
′−p∗ ,

(
η∗

w

)(
w
w/2

)
q

η∗
(
√
q−1)

}
3. Subcase 3: 2d⊥ + 4η∗√

q−1
6 w 6 η∗, which implies η∗ − w/2 6 a′′. So f2 is

maximized at a′′, which yields for every a′′ 6 i 6 a′(
i

η∗ − w

)
Bi 6

(
η∗

w

)(
w

η∗ − a′′
)
q

η∗√
q−1

By Lemma 21, we can show that
(
w
w
q+1

)
qa
′−p∗ >

(
w

η∗ − a′′
)
q

η∗√
q−1 . Hence,

Γ(w) 6 max

{(
η∗

w

)(
w
w
q+1

)
qa
′−p∗ ,

(
η∗

w

)(
w

η∗ − a′
)
q

η∗
(
√
q−1)

}
This completes the proof.

We prove the following lemma used to prove Lemma 20.

Lemma 21. For every natural number ∆, we have the following inequality

q∆ ·
(

w
w/(q + 1)

)
>

(
w

w/(q + 1) + ∆

)
Proof. Let k = w/(q + 1). then w = k(q + 1). It is easy to see that w−k−i

k+∆−i 6 q for every
0 6 i 6 ∆− 1. Therefore, we have(

w
k + ∆

)
(
w
k

) =
k!(w − k)!

(k + ∆)!(w − k −∆)!
=

(w − k)(w − k − 1) . . . (w − k −∆ + 1)

(k + ∆)(k + ∆− 1) . . . (k + 1)

=
∆−1∏
i=0

w − k − i
k + ∆− i

6
∆−1∏
i=0

q

= q∆

Lemma 22. For every natural number ∆, we have the following inequality(
w

w/(q + 1)

)
> q∆

(
w

w/(q + 1)−∆

)
41



Proof. Let k = w/(q + 1). then w = k(q + 1). It is easy to see that w−k+∆−i
k−i > q for every

0 6 i 6 ∆− 1. Therefore, we have(
w
k

)
(

w
k −∆

) =
(k −∆)!(w − k + ∆)!

k!(w − k)!
=

(w − k + ∆)(w − k + ∆− 1) . . . (w − k + 1)

k(k − 1) . . . (k −∆ + 1)

=
∆−1∏
i=0

w − k + ∆− i
k − i

>
∆−1∏
i=0

q

= q∆

D.1 Bias Calculation

Note that in this section S(S) is the same as S(w), where w = wt (S). We are interested in
finding the maximum possible bias. That is,

2−δ 6 max
d⊥6w6η

Γ(w)

|S(w)|
.

which is equivalent to

δ > min
d⊥6w6η

lg
|S(w)|
Γ(w)

Define g(w) = lg |S(w)|
Γ(w)

.

Lemma 23. We have the following.

1. Let g1(w) = w lg(q − 1)− h2(d
⊥

w
)w − lg q for w ∈ I1, then g1 is decreasing.

2. Let g2(w) = w lg(q − 1) − h2( 1
q+1

)w − ( wq
q+1
− d⊥ + 1)(lg q) for w ∈ I2, then g2 is

decreasing.

3. Let g3(w) = w lg(q − 1)− η∗√
q−1

(lg q)− h2( 1
q+1

)w for w ∈ I3, then g3 is increasing.

4. Let g4(w) = w lg(q − 1) − h2(η
∗−a′
w

)w − ( wq
q+1
− d⊥ + 1)(lg q) for w ∈ I4, then g4 is

decreasing.

5. Let g5(w) = w lg(q − 1)− h2(η
∗−a′
w

)w − η∗√
q−1

(lg q) for w ∈ I5, then g5 is increasing.

6. Let g6(w) = w lg(q − 1)− η∗√
q−1

(lg q)− h2

(
1
2

)
w for w ∈ I7. Then g6 is increasing.

We use the Lemma 23 to bound Lemma 20. We do case analysis on each case of Γ(w).
In the following proof, we will use the facts stated in Lemma 23 frequently. Recall that
g(w) = lg |S(w)|

Γ(w)
.
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Case 1: d⊥ 6 w 6
(
q+1
q

)
d⊥. Let w1 =

(
q+1
q

)
d⊥, then we have

g(w) > lg (q − 1)w − lg

[
q

(
w
d⊥

)]
≈ w lg(q − 1)− h2

(
d⊥

w

)
w − lg q

> g1(w1)

Case 2:
(
q+1
q

)
d⊥ 6 w 6 η∗ − a′. Let w2 = η∗ − a′, then

g(w) > lg(q − 1)w − lg

[(
w
w
q+1

)
qa+1−p∗

]
≈ w lg(q − 1)− h2

(
1

q + 1

)
w − (a+ 1− p∗) lg q

= w lg(q − 1)− h2

(
1

q + 1

)
w −

(
wq

q + 1
− d⊥ + 1

)
(lg q)

> g2(w2)

Case 3: η∗ − a′ 6 w 6 q+1
q

(η∗ − a′). Let w3 = η∗ − a′, then

g(w) > lg(q − 1)w − lg

[(
w
w
q+1

)
q

η∗√
q−1

]
= w lg(q − 1)− η∗

√
q − 1

lg q − h2

(
1

q + 1

)
w

> g3(w3)

Case 4: q+1
q

(η∗ − a′) 6 w 6 η∗ − a′′. Let w4 = η∗ − a′′,

g(w) > lg(q − 1)w − lg

[(
w

η∗ − a′
)
qa+1−p∗

]
≈ w lg(q − 1)− h2

(
η∗ − a′

w

)
w − (a+ 1− p∗) lg q

= w lg(q − 1)− h2

(
η∗ − a′

w

)
w −

(
wq

q + 1
− d⊥ + 1

)
(lg q)

> g4(w4)

Case 5: η∗ − a′′ 6 w 6 q+1
q

(η∗ − a′′). Let w5 = η∗ − a′′.

g(w) > lg(q − 1)w − lg

[(
w

η∗ − a′
)
q

η∗√
q−1

]
≈ w lg(q − 1)− η∗

√
q − 1

(lg q)− h2

(
η∗ − a′

w

)
w

> g5(w5)
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Case 6: q+1
q

(η∗ − a′′) 6 w 6 η∗. Let w6 = q+1
q

(η∗ − a′′), w7 = 2d⊥ + 2η∗√
q−1

, and w8 = 2d⊥ +
4η∗√
q−1

.

g(w) > lg(q − 1)w − lg

(
w
w
q+1

)
− lg qa

′−p∗

≈ w lg(q − 1)− h2

(
1

q + 1

)
w − (a′ − p∗) lg q

= w lg(q − 1)− h2

(
1

q + 1

)
w −

(
qw

q + 1
− d⊥ − η∗

√
q − 1

)
(lg q)

Let g7(w) = g2(w) + η∗√
q−1

(lg q)

1. Subcase 1:
(
q+1
q

)
(η∗ − a′′) 6 w 6 2d⊥ + 2η∗√

q−1
, we have

g(w) > min (g7(w7), g5(w6))

2. Subcase 2: 2d⊥ + 2η∗√
q−1

6 w 6 2d⊥ + 4η∗√
q−1

, we have

g(w) > min (g7(w8), g6(w7))

3. Subcase 3: 2d⊥ + 4η∗√
q−1

6 w 6 η∗, we have

g(w) > min (g7(η∗), g5(w8))

Combining all cases together, we obtain

δ > g3(w3) = (d⊥ +
η∗

√
q − 1

− 1)(lg(q − 1)− h2(
1

q + 1
))− η∗

√
q − 1

lg q

Let h2(x) = −x lg x−(1−x) lg(1−x). We claim the following result by applying Stirling’s
approximation.

Claim 5. For every positive integers n,m, we have

lg

(
n

m

)
≈ h2(m/n)n

E Parameter Choices

We shall now instantiate the parameters of the code discussed in Appendix C. The code C
has the following parameters.

• |F| = q = ps, for prime p and even integer s and q > 49.
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• η∗ = (
√
q − 1) · (√q)u, or equivalently η∗/(√q − 1) = (

√
q)u, and genus g = (

√
q)u for

u ∈ N

• Divisor D with degD = (
√
q−1

2
− ρ)g − 1, for ρ > 0

• κ = deg D − g + 1 = (
√
q−1

2
− ρ− 1)g

• d = η∗ − deg D = (
√
q−1

2
+ ρ)g + 1

The code C⊥ has the following parameters.

• Divisor D⊥ with degree degD⊥ = (
√
q−1

2
+ ρ+ 2)g − 1

• κ⊥ = deg D⊥ − g + 1 = (
√
q−1

2
+ ρ+ 1)g

• d⊥ = η∗ − deg D⊥ = (
√
q−1

2
− ρ− 2)g + 1

The code C(2) has the following parameters.

• Divisor D(2) with degree degD(2) = (
√
q − 1− 2ρ)g − 2

• κ(2) = deg D(2) − g + 1 = (
√
q − 2− 2ρ)g − 1

• d(2) = η∗ − deg D(2) = 2ρg + 2

• Set γ = d(2) − 2 = 2ρg

Simulation Error Computation. We have secret share length n = 2 · η · lg |F| = 2(η∗ −
γ) lg |F|, where η = η∗ − γ. This implies n = 2(lg q)(

√
q − 1− 2ρ)g.

For each ROLE(GF [2s]), let f(s) be the number of samples of ROT we extract using
[BMN17]. Therefore, the number of ROT samples is m/2 = f(s)γ = f(s)2ρg, which implies
that m = f(s)4ρg.

We have production rate α = m/n = f(s)2ρ
(lg q)(

√
q−1−2ρ)

. Given a fixed α, we can compute the

value of ρ from this equation; namely, ρ =
(lg q)(

√
q−1)α

2(f(s)+(lg q)α)
.

Define

QN := (γ/n) lg |F|+ (t/n) = [m/(2f(s)n)](lg q) + β = [(lg q)/(2f(s))]α + β

Then we are interested in computing the small bias. By Theorem 6, we have that

δ =

(
d⊥ +

η∗
√
q − 1

− 1

)
·
(

lg(|F| − 1)− h2

(
1

q + 1

))
− η∗
√
q − 1

lg |F|

=

[(√
q − 1

2
− ρ− 1

)
g

] [
lg(q − 1)− h2

(
1

q + 1

)]
− g(lg q)
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Define QD := δ
n
. Then we have

QD =

[(√
q−1

2
− ρ− 1

)
g
] [

lg(q − 1)− h2

(
1
q+1

)]
− g(lg q)

2(lg q)(
√
q − 1− 2ρ)g

=

(√
q−1

2
− ρ− 1

)(
lg(q − 1)− h2

(
1
q+1

))
− lg q

2(lg q)(
√
q − 1− 2ρ)

Now, ζ = − 1
n

lg ε = QD −QN . We need to ensure that QD > QN so that ζ > 0.

One Choice of parameters. Suppose for q = 214, we are interested in α = 16% and
β = 1%. For these choices of α and β, we have ζ > 0. Fig. 10 shows the feasibility region
for α and β for q = 214, as well as other values of q.

F Proof of Theorem 4

We will show that our correlation extractor can achieve t = (1/4 − g)n, m = Θ(n), and
ε = exp(−Θ(n)). In this section we use the same parameters as in Appendix E for general
field F of size q.

• production rate α = m
n

• leakage resilience β = t
n

= 1
4
− g, where m = c′γ for some constant c′.

• QD = δ
n
, where δ is the small bias calculated in Appendix D.1

• QN = (γ/n) lg |F|+ (t/n) = cα + β = cα + 1/4− g for some constant c > 0

• ζ = − 1
n

lg ε = QD −QN = δ/n− 1/4− cα + g

Choose α = (g − ε′)/c > 0 for some constant ε′ ∈ (0, g). It is clear that α is a constant.
Then we need to show that there exists a large enough field size q∗ such that ζ is a positive
constant. Recall that

• δ = (d⊥ + η∗√
q−1
− 1)(lg(q − 1)− h2( 1

q+1
))− η∗√

q−1
lg q

• d⊥ =
(√

q−1

2
− 2− ρ

)
η∗√
q−1

• n = 2(η∗ − γ) lg q

• γ = 2ρη∗√
q−1

, where ρ is a constant

46



Thus, we have the following as η∗ →∞

δ

n
≈

(
√
q−1

2
− 1− ρ) η∗√

q−1
(lg(q − 1)− h2( 1

q+1
))− η∗√

q−1
lg q

2η∗(1− 2ρ/(
√
q − 1)) lg q

≈
lg(q − 1)− h2( 1

q+1
)

4(1− 2ρ/(
√
q − 1)) lg q

−
(1 + ρ)

(
lg(q − 1)− h2( 1

q+1
)
)
− lg q

2(1− 2ρ/(
√
q − 1))(

√
q − 1) lg q

= f(q)

Note that f(q) is increasing and that f(q)→ 1/4 as q →∞, which implies that there exists
a large enough constant q∗ such that f(q∗) > 1/4− ε′/2. Therefore

ζ > (1/4− ε′/2)− 1/4− c · g − ε
′

c
+ g = ε′/2 > 0

which completes our proof.

G Proof of Theorem 5

For completeness, we restate and prove Theorem 5.
Let F = {F1, . . . , Fµ} be a ρ2-biased family of distributions over the sample space Fη for

field F of size q. Let (M,L) be a joint distribution such that the marginal distribution M is
over Fη and H̃∞(M |L) > m. Then, the following holds:

SD ( (FJ ⊕M,L, J) , (UFη , L, J) ) 6
ρ

2

(
|F|η

2m

)1/2

where J is a uniform distribution over [µ].

Proof.

2SD ( (FJ ⊕M,L, J) , (UFη , L, J) )

= E
`∼L
j∼J

2SD ( (Fj ⊕M | `, j) , (UFη | `, j) )

= E
`∼L
j∼J

∑
x∈Fη
|(Fj ⊕M | `, j)(x)− (UFη | `, j)(x)|

6 E
`∼L
j∼J

(
|F|η

∑
x∈Fη
|[(Fj ⊕M | `, j)− (UFη | `, j)] (x)|2

)1/2

[1]

= |F|η/2 E
`∼L
j∼J

(
|F|η

∑
S∈Fη

∣∣∣[(Fj ⊕M | `, j)− (UFη | `, j)]
∧

(S)
∣∣∣2)1/2

[2]

= |F|η E
`∼L
j∼J

(∑
S∈Fη

∣∣∣(Fj ⊕M | `, j)∧(S)− (UFη | `, j)
∧

(S)
∣∣∣2)1/2

[3]
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= |F|η E
`∼L
j∼J

 ∑
S∈Fη\{0}

∣∣∣(Fj ⊕M | `, j)∧(S)
∣∣∣2
1/2

[4]

= |F|η E
`∼L
j∼J

 ∑
S∈Fη\{0}

|F|2η
∣∣∣(Fj | `, j)∧(S)

∣∣∣2 ∣∣∣(M | `, j)∧(S)
∣∣∣2
1/2

[5]

6 |F|2η
 E
`∼L
j∼J

∑
S∈Fη\{0}

∣∣∣(Fj | `, j)∧(S)
∣∣∣2 ∣∣∣(M | `, j)∧(S)

∣∣∣2
1/2

[6]

= |F|2η
 ∑
S∈Fη\{0}

E
`∼L

E
j∼J

∣∣∣(Fj | `, j)∧(S)
∣∣∣2 ∣∣∣(M | `, j)∧(S)

∣∣∣2
1/2

[7]

= |F|2η
 ∑
S∈Fη\{0}

E
`∼L

[∣∣∣(M | `)∧(S)
∣∣∣2 E
j∼J

∣∣∣(Fj | `, j)∧(S)
∣∣∣2]
1/2

[8]

= |F|2η
 ∑
S∈Fη\{0}

E
`∼L

[∣∣∣(M | `)∧(S)
∣∣∣2 E
j∼J

∣∣∣(Fj | j)∧(S)
∣∣∣2]
1/2

[9]

6 |F|2η
 ∑
S∈Fη\{0}

E
`∼L

[∣∣∣(M | `)∧(S)
∣∣∣2 · ρ2

|F|2η

]1/2

[10]

6 ρ|F|η
(∑
S∈Fη

E
`∼L

∣∣∣(M | `)∧(S)
∣∣∣2)1/2

= ρ|F|η
(

E
`∼L

∑
S∈Fη

∣∣∣(M | `)∧(S)
∣∣∣2)1/2

[11]

6 ρ|F|η
(
E
`∼L

2−H∞(M | `)
)

[12]

= ρ|F|η
(

2−H̃∞(M | L)
)1/2

[13]

6 ρ|F|η
(

1

|F|η2m

)1/2

[14]

= ρ

(
|F|η

2m

)1/2
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[1] Cauchy-Schwartz [8] M is independent of j
[2] Corollary 9 [9] Fj is independent of ` for every j
[3] Linearity of Definition 5 [10] F is a ρ2-biased family
[4] Lemma 17 and Lemma 18 [11] Linearity of E
[5] Lemma 16 [12] Lemma 3
[6] Jensen’s Inequality [13] Definition of H̃∞
[7] Linearity of E [14] H̃∞(M |L) > m
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