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Abstract

We consider the problem of distributing a computation between two parties, such that any
bounded-communication leakage function applied to the local views of the two parties reveals
essentially nothing about the input. This problem can be motivated by the goal of outsourcing
computations on sensitive data to two servers in the cloud, where both servers can be simulta-
neously corrupted by viruses that have a limited communication bandwidth.

We present a simple and efficient reduction of the above problem to that of constructing
parity-resilient circuits, namely circuits that map an encoded input to an encoded output so
that the parity of any subset of the wires is essentially independent of the input. We then
construct parity-resilient circuits from circuits that are resilient to local leakage, which can in
turn be obtained from protocols for secure multiparty computation. Our main reduction builds
on a novel generalization of the “ε-biased masking lemma” that applies to interactive protocols.

Applying the above, we obtain two-party protocols with resilience to bounded-communication
leakage either in the information-theoretic setting, relying on random oblivious transfer corre-
lations, or in the computational setting, relying on non-committing encryption which can be
based on a variety of standard cryptographic assumptions.
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1 Introduction

The goal of leakage-resilient cryptography is to maintain the traditional guarantees of cryptography
even when partial information about internal secrets can be leaked. A central theme of research in
this area is that of securing general computations against leakage. Originating from [ISW03, MR04,
FRR+10], this goal has been pursued in a variety of computational models and with different types
of natural leakage functions.

In this work we focus on securing general computations against leakage in the following simple
scenario. Suppose that a client wishes to outsource the computation of a function f on a sensitive
input x to the cloud. The client trusts the cloud servers to perform the computation correctly, but
would like to ensure that no information about x is revealed. A direct solution is to have the client
encrypt x using fully homomorphic encryption (FHE) [Gen09], and have a cloud server compute f
on the encrypted input. However, FHE is currently still quite far from being practical, its existence
relies on a relatively narrow class of cryptographic assumptions related to the intractability of lattice
problems, and its fully compact form requires an ad-hoc circular security assumption.

A potentially more efficient alternative approach is to distribute the computation of f between two
non-colluding servers. That is, the client starts by secret-sharing x between the two servers. This
step should be done very efficiently, e.g., in quasi-linear time, and should be independent of the
function f . Given a description of f , the servers then engage in an interactive secure two-party
computation protocol [Yao82, GMW87] for evaluating the shares of y = f(x) from the shares of x.
Finally, the servers send the shares of y back to the client, who reconstructs the output. Again, the
final reconstruction step should be efficient and independent of f .

In addition to not requiring the use of FHE, such two-server solutions offer several other advantages
over the single-server solution: They can minimize the amount of work performed by the client
(eliminating expensive “cryptographic” computations), they can provide information-theoretic se-
curity given correlated randomness between the servers that can be set up before the input x is
known, and they do not require the client to maintain a secret state for reconstructing the output.
The latter feature is useful for accommodating more general scenarios in which inputs originate
from and/or outputs are delivered to multiple clients.

Bounded-communication leakage. If such a two-server solution is implemented using standard
protocols for secure two-party computation, the client is protected against any single corrupted
server. The question we consider is that of providing a meaningful protection even when the two
servers are simultaneously corrupted. We envision a scenario where both servers are infected by
cooperating viruses, but the viruses are subject to a bound on the total number of bits they can
communicate with each other. We refer to this type of leakage as bounded-communication leakage
(BCL). Our goal is to design BCL-resilient two-party protocols, namely ones that allow the servers
to interactively compute shares of f(x) from shares of x while completely hiding x from the viruses.
See Figure 1 for an illustration of this motivating scenario.

Note that the standard notion of security for two-party protocols coincides with BCL-resilience when
the communication bound is 0 (i.e., the viruses cannot communicate at all). However, the security
guarantees of standard protocols for secure two-party computation break down if even a small
amount of leakage is allowed [BCH12]. In particular, both “GMW-style” protocols and “Yao-style”
protocols effectively generate a simple secret-sharing of all intermediate values of the computation,
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Figure 1: Motivating Example.

and any such intermediate value can be recovered using a single bit of leakage regardless of the
amount of communication required to compute this value given the inputs alone.

Other than the restriction on the total amount of communication between the viruses, we do not
impose any other restriction on the way they may interact. For instance, the viruses may first
store their local views of the entire protocol execution, and only then run a multi-round (bounded-
communication) protocol for recovering information about the secret input x from their local views.
We do assume, however, that the viruses are passive in the sense that they do not tamper with the
messages sent by the infected servers during the protocol execution.

The BCL assumption can be justified by the existence of virus detection mechanisms that make it
difficult for the viruses to directly communicate with each other or to alter the messages sent by the
servers without being detected. Still, the viruses can communicate at a slow rate, e.g., by carefully
controlling the timing of the messages. Earlier works that impose bounds on the communication of
adversarial parties include [Dzi06, DLW06, DP07, DNW08].

A very different motivating scenario for the BCL assumption is that of protecting the computation
performed by the servers against unintentional leakage of partial information resulting from the
computation process itself. This type of leakage is captured by the “only computation leaks” (OCL)
assumption put forward in the influential work of Micali and Reyzin [MR04]. The OCL assump-
tion is typically motivated by side-channel leakage in hardware implementations, where the servers
correspond to different hardware components. The BCL assumption we consider is less restrictive
in that it can apply globally to the entire views of the servers throughout the protocol execution,
regardless of the way in which computations are carried out. Making the stronger OCL assumption
does not seem to make the problem considerably easier. On the other hand, unlike previous works
on the OCL model, in this work we focus on a simple single-execution setting, where only one
(stateless) computation is being performed, as opposed to the more challenging continuous leakage
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setting in which a sequence of computations with a common secret state are subject to leakage.
The following comparison captures the best adaptations of previous results to our simpler model,
ignoring FHE-based solutions [GR10, JV10] that are trivialized in our single-execution setting.

The first goal of the present work is to study the feasibility of BCL-resilient computation.

Under which cryptographic assumptions or setup assumptions can general computations
be protected against bounded-communication leakage?

The prior state of the art can be summarized as follows. In the information-theoretic setting, a
construction of Dziembowski and Faust [DF12] (the “DF-construction” for short) provides uncondi-
tional security by employing leak-free hardware components whose size must inherently grow with
both the leakage bound and the statistical security parameter. Concretely, each hardware com-
ponent samples a random pair of orthogonal vectors that are distributed to the two servers. The
security of the construction breaks down if the entire output of any component is leaked. While
some form of setup seems necessary in the information-theoretic setting even without leakage,1 the
DF-construction leaves open the possibility of using constant-size (or “finite”) hardware components,
namely ones whose size does not depend on the leakage bound or the statistical security parameter.

The breakthrough work of Goldwasser and Rothblum [GR12] and subsequent variants of Bitansky
et al. [BDL14] show that information-theoretic OCL and BCL security is possible even without any
setup. However, these protocols require a large number of servers, whereas in this work we focus on
2-server solutions.

In the computational security model, Dachman-Soled et al. [DLZ15] showed how to instantiate the
hardware components of the DF-construction in the plain model by using a strong form of deniable
encryption [CDNO97], whose only known instantiations rely on indistinguishability obfuscation
(iO) [GGH+13, SW14]. The possibility of computational solutions in the plain model that do not
rely on FHE or iO remained open.

In addition to the feasibility questions, we will be interested in the achievable leakage rate, measured
as the ratio between the leakage communication bound c and the size S of the circuits required for
implementing the protocol for f . (This captures the fractional information leakage about internal
computation steps.) We will also be interested in the computational overhead of protocols, measured
as the ratio between S and the circuit size of f , denoted by s.

What are the best achievable leakage rate and computational overhead of BCL-resilient
protocols?

In previous two-party solutions that do not rely on FHE the leakage rate is worse than 1/cs, which
is inherited from the parameters of the DF-construction (see Table 1 in [DLZ15]). Moreover, the
computational overhead of these solutions is at least quadratic in c. The latter holds also for
protocols from [GR12, BDL14] that involve more than two servers.

1Indeed, all known approaches for information-theoretic secure two-party computation using correlated randomness
require the entropy of the correlated randomness to be bigger than the circuit size, except for the extreme case of
exponential-size circuits [BIKK14]. Thus, the small amount of correlated randomness provided by the client’s messages
is unlikely to be sufficient.
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1.1 Our Results

We introduce a simple and general technique for constructing and analyzing BCL-resilient protocols.
Our technique yields efficient protocols that achieve information-theoretic security using a minimal
setup, or alternatively provide computational security under a variety of standard assumptions.

The BCL-resilient protocols we construct can be obtained from any standard protocol for secure
multiparty computation (MPC), where the security threshold of the MPC protocol serves as a
leakage communication bound in the BCL-resilient protocol. Alternatively, they can be obtained
from any multi-server OCL-resilient protocol (such as the one from [GR12]), where the statistical
error of the multi-server protocol determines the leakage bound of the two-server protocol.

More concretely, we obtain the following new results on BCL-resilient protocols.

◦ Feasibility: information-theoretic setting. We construct (2-server) BCL-resilient
protocols with information-theoretic security using only an oblivious transfer (OT) setup.
That is, the servers either have access to an OT oracle or to constant-size leak-free hardware
components that produce OT correlations.2 As discussed above, this is the best one can
hope for barring a major breakthrough in information-theoretic cryptography. This should be
contrasted with the hardware components required by the DF-construction, whose size should
grow with both the leakage bound and the security parameter.

◦ Feasibility: computational setting. We obtain the first 2-server computational BCL-
resilient protocols (in the plain model) that do not rely on FHE or iO. Concretely, our con-
struction only requires the use of non-committing encryption (NCE) [CFGN96], which can be
based on a variety of standard cryptographic assumptions that include the intractability of
factoring Blum integers [CDMW09] or Decisional Diffie Hellman [DN00]. These instantiations
make a crucial use of the simple setup of our information-theoretic protocols.

◦ Leakage rate and computational overhead. Our BCL-resilient protocols, in both
settings, offer qualitative improvements in leakage rate and efficiency over previous protocols.
Recall that in the information-theoretic setting, the 2-server DF-construction [DF12] the leak-
age bound is inherently smaller than the size of the trusted hardware compontents. Moreover,
previous solutions in both settings [DF12, GR12, BDL14, DLZ15] involve multiplicative com-
putational overhead on the server side which is bigger than the leakage bound. Our protocols
get around these limitations. In particular, whenever f can be computed by a circuit whose
size s and depth h satisfy the mild conditions s ≥ c2 and s ≥ h2, where c is the leakage
communication bound, we can tolerate Ω̃(

√
s) bits of leakage with logO(1)(c) computational

overhead using either constant-size hardware (alternatively, OT-correlations) or NCE.

More generally, if f : {0, 1}n → {0, 1}n is computable by a circuit of size s and depth h, then
we get BCL-resilient protocols with security against c bits of leakage where the client can
be implemented by circuits of size Õ(n + c), and where the servers can be implemented by
circuits of size Õ(s+ ch+ c2) in the information-theoretic protocols, or alternatively invoke an
NCE protocol a similar number of times in the computational protocols. These parameters
are inherited from known honest-majority MPC protocols [DIK10]. The information-theoretic

2An OT correlation delivers a pair of random bits (s0, s1) to one server and the pair (b, sb) to the other, where b
is a random bit.
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protocols can be efficiently implemented by having the client distribute the instances of the
OT correlation to the servers in an offline preprocessing phase, before the input x is known.3

The above results are based on two technical ingredients that may be considered as independently
interesting results: (1) the construction of so-called parity-resilient circuits, a natural computational
analogue of small-bias generators [NN90]; and (2) a generalization of the so-called ε-biased masking
lemma [DS05a] that applies to interactive protocols. These are described in the next section.

1.2 Overview of Techniques

We start by observing what goes wrong when trying to evaluate f using a very simple protocol for
secure two-party computation, namely the “GMW protocol” [GMW87, Gol04] for passive adversaries
when implemented over ideal OT. In this protocol, the local views of the two parties essentially form
an additive secret sharing of the gate values in a circuit computing f . That is, letting z denote the
vector of gate values on the input x, the joint views are distributed as (z⊕r, r) where r is a uniformly
random bit-string.

This protocol miserably fails in achieving our goal: any intermediate value zi in the computation of
f can be revealed by leaking only a single bit from a local view. Moreover, by the F2-linearity of the
secret sharing of z, revealing an arbitrary parity of bits from a local view reveals the corresponding
parity of the bits of z.

The first idea is that in order to protect the protocol against such simple parity attacks, it suffices
to protect the computation of f via a parity-resilient circuit: a randomized circuit that receives a
randomized encoding x̂ of an input x and produces an encoded output ŷ, where the parity of any
subset of the gate values (when evaluating the circuit on x̂) reveals essentially nothing about x. A
bit more precisely, the circuit is ε-parity-resilient if for any inputs x, x′, the distributions of the gate
values z(x̂) and z(x̂′) are ε-indistinguishable by parity functions.

Using such a parity-resilient circuit, we can easily obtain a protocol with resilience to a single bit of
parity leakage. The client locally encodes the input x, and additively shares the encoding x̂ between
the two servers. The servers now run the GMW protocol to obtain additive shares of an output
encoding ŷ. The shares of ŷ are sent back to the client, who decodes y.

Constructing parity-resilient circuits. We turn to the question of constructing parity-resilient
circuits. Despite this being a very natural object, we are not aware of any previous related study.
Our first observation is that any multi-party protocol which is ε-resilient to a single bit of OCL
leakage per computation step, such as the protocol of [GR12], directly implies an ε-parity-resilient
circuit. Indeed, arbitrarily representing each computation step by a boolean circuit, the parity of an
arbitrary subset of gates can be recovered using a single bit of leakage from each computation step.
However, given the complexity and the relatively poor parameters of the construction from [GR12]
and its variants, we seek an alternative and more direct construction.

Our main construction of parity-resilient circuits can be based on any general MPC protocol that
3Note that the DF-construction can also be implemented in this setting by having the client distribute (large) in-

stances of an inner product correlation instead of OT correlation. However, our protocol has the efficiency advantages
discussed above.
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offers security against k passively corrupted parties. The construction is broken into several modular
steps, where the first two steps mimic previous constructions of small-bias PRGs from bounded
independence [MST03, IKOS09]. The first step is a transformation of a k-secure MPC protocol
into a k-private circuit, namely a circuit with the same syntax as parity-resilient circuits, except
that the joint values of any k gates should reveal nothing about x. The transformation, pointed
out in [ISW03], is straightforward: let f ′ denote a randomized function which maps a secret-shared
input for f to a secret-shared output for f . Then, a k-secure MPC protocol for f ′ can be directly
implemented as a k-private circuit. The second step replaces each atomic gate in the k-private circuit
by a constant-size (“finite”) randomized gadget that maps a non-linear encoding of the inputs to a
non-linear encoding of the output. The existence of a gadget with the required properties follows
by a probabilistic argument (cf. [?]), however we also give a simple explicit construction of a gadget
g : {0, 1}9 → {0, 1}3.

The combination of the above two steps gives a construction of 2−Ω(k)-parity-resilient circuits over
the finite gadget, where the size of a parity resilient-circuit for f is linear in the circuit size of the
k-secure MPC protocol for f ′. Somewhat surprisingly, turning a circuit over g to a circuit over a
standard binary gates is not as straightforward as it may seem. In particular, a naive implementation
of g will compromise parity resilience. Instead, we will consider for now a natural generalization
of the GMW protocol that works over g-gates instead of binary gates by using a finite two-party
oracle H instead of the standard OT oracle. When applied to a parity-resilient circuit over g, this
protocol generates a pair of views distributed as (z ⊕ r, r), where z is a parity-resilient encoding of
the input. The protocol still offers resilience to a single bit of parity-leakage.

From parities to bounded communication via generalized ε-biased masking. Our next,
and most technical, step is arguing that parity-resilience automatically implies general BCL-resilience
with related parameters. Concretely, we prove the following theorem. Suppose that µ0 and µ1 are
two distributions that are ε-indistinguishable by parities. Then any interactive two-party protocol
with c bits of communication can have at most an ε · 2c/2 advantage in distinguishing between a
secret sharing of µ0 and µ1, namely between the distributions (µ0 ⊕ r, r) and (µ1 ⊕ r, r), where r
is a random bit-string chosen independently of µ0, µ1. This means that as long as ε � 2−c/2, an
ε-parity-resilient circuit (combined with the GMW protocol) offers good BCL-resilience against c
bits of leakage. Together with the above, we get a transformation from k-secure MPC protocols to
BCL-resilient protocols over a finite two-party oracle H that tolerate Ω(k) bits of leakage.

Specializing the above theorem to 1-message protocols and for the case where one of the two dis-
tributions is uniform, the theorem can be shown to be essentially equivalent to the so-called ε-
biased masking lemma from [DS05a]. The ε-biased masking lemma says that M ⊕ X, where M
is a high entropy source and S is an independent small-bias distribution, is statistically close to
uniform. See Appendix C for a proof of the equivalence. Our theorem is more general in two
orthogonal ways: it applies to multi-round protocols, and it extends pseudorandomness to indis-
tinguishability. In light of the usefulness of the original ε-biased masking lemma in cryptography
(see, e.g., [DS05b, AIK08, FS08, IKOS09]) we expect our generalized version to find additional
applications.

Wrapping up. The above is almost enough to get our results for the information-theoretic model.
The only remaining step is to replace the finite oracle H by a standard OT oracle, or alternatively
an OT correlation. (The latter protocols directly imply parity-resilient circuits over the binary
basis.) This step follows by observing that a simple deterministic reduction from H to OT re-
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spects BCL-resilience. More generally, to respect BCL-resilience we need such reductions to satisfy
a strong notion of security we refer to as joint simulation security. This notion, previously con-
sidered in [DLZ15], strengthens the standard simulation-based definition of secure computation by
considering the outputs of the two simulators jointly. To make this possible, the two simulators
share a common source of randomness. Finally, we obtain our results for the computational model
by observing that the standard construction of OT from NCE is also secure under the strong joint
simulation requirement.

These final steps crucially rely on the constant-size setup feature of our information-theoretic pro-
tocols. Indeed, the setup required previous DF-construction could only be instantiated in the plain
model using iO [DLZ15]. This qualitative difference between our constant-size setup and the com-
putationally simple inner-product setup required by DF may seem surprising. However, natural
attempts to realize the DF setup via standard protocols for secure two-party computation (even
ones that offer adaptive security [CFGN96]) fail. This can be attributed to the fact, already dis-
cussed above, that applying a low-communication leakage attack to standard secure computation
protocols [Yao82, GMW87] reveals intermediate values of the computation that cannot be computed
via a low-communication protocol.

More broadly, obtaining “leakage tolerant” forms of information-theoretic protocols for functions
with a super-polynomial input domain appears to be a difficult task even for simple functions [BGI+14].
We bypass this problem by using constant-size oracles, whose brute-force secure evaluation using a
truth-table representation is trivially leakage tolerant.

See Figure 2 for a roadmap of the different steps of our construction and the relations between
different types of leakage-resilient objects and Section 2 for the relevant definitions and formal
theorem statements.

1.3 Open Problems

Our work gives rise to two natural open questions: extending the results from the single-execution
setting to the more challenging continuous leakage setting, and obtaining similar information-
theoretic results in a multi-party setting without a setup (reproducing the result of [GR12] with
better parameters). We believe that the ideas introduced in this work will serve as a useful basis
for such extensions.

2 Outline of Definitions and Theorems

2.1 Definitions

We consider boolean circuits over a basis B of gates. Each gate in B computes a function of the
form g : {0, 1}α → {0, 1}β . When the basis is not specified, it is understood to be the full binary
basis B = {AND,OR,NOT,XOR} where AND,OR,XOR gates have fan-in 2. We will consider both
deterministic and randomized circuits (a circuit is deterministic by default). We let |C| denote the
number of gates in C, also including inputs and randomness gates.

7



Honest-majority MPC

Private circuit

Parity-resilient circuit over a finite basis

BCL-resilient 2-party protocol over a finite oracle

BCL-resilient 2-party protocol over OT

Parity-resilient circuit
over the standard basis

Computational BCL-resilient
2-party protocol in the plain model

(assuming non-committing encryption)

Multi-party
OCL protocol
(e.g., [GR12])

[ISW03](instantiated with
[DIK10] in Theorem 1)
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Figure 2: Relations between different notions of leakage-resilient circuits and protocols.
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We consider a simple model for leakage-resilient circuits that generalizes the stateless variant of
private circuits from [ISW03] (see also [FRR+10, BIVW15]). Such circuits map an encoded input
for a function f into an encoded output, where the internal gate values of C should hide the input
in the presence of partial leakage.

Definition 1 (Leakage-resilient circuits and k-private circuits). For f : {0, 1}ni → {0, 1}no, a
leakage-resilient circuit for f is defined by (I, C,O), where:

◦ I : {0, 1}ni → {0, 1}n̂i is a randomized input encoder circuit, which maps an input x to an
encoded input x̂;

◦ C is a randomized circuit, mapping an encoded input x̂ ∈ {0, 1}n̂i to an encoded output ŷ ∈
{0, 1}n̂o;

◦ O : {0, 1}n̂o → {0, 1}no is a deterministic output decoder circuit, which maps an encoded
output ŷ to an output y.

We say that (I, C,O) is an (L, ε)-leakage-resilient implementation of f , for a leakage function
L : {0, 1}|C| → {0, 1}∗ and ε > 0, if the following requirements hold:

◦ Correctness: For any input x ∈ {0, 1}ni , we have Pr[O(C(I(x))) = f(x)] = 1, where the
probability is over the randomness of I and C;

◦ Leakage-resilience: For any x, x′ ∈ {0, 1}ni , the statistical distance between the distributions
L(C[I(x)]) and L(C[I(x′)]) is at most ε, where C[x̂] denotes the joint distribution of the |C|
gate values in the computation of C on input x̂.

For a class L of leakage functions, we say that (I, C,O) is an (L, ε)-leakage-resilient implementation
of f , if it is an (L, ε)-leakage-resilient implementation of f for all L ∈ L. We say that (I, C,O) is
a k-private implementation of f if it is an (L, 0)-leakage-resilient implementation of f for the class
L of all k-bit projection functions (which output k fixed entries of the input).

Without any requirements on I and O, the above definition can be met by having I compute a
leakage-resilient secret sharing of the input that is passed by C directly to the output decoder.
The decoder decodes the circuit output and computes f . To rule out such a solution, we require
the encoder and the decoder to be universal (i.e., depend only on ni, no and the circuit size of f
but not on f itself). Furthermore, we would like the encoder and decoder size to be considerably
smaller than the circuit size f . These requirements effectively force C to perform the bulk of the
computation in a leakage-resilient manner.

The following bound on the efficiency of k-private circuits follows by implementing a secure mul-
tiparty computation protocol from [DIK10] as a circuit, via the general transformation suggested
in [ISW03]. The protocol achieves security against k semi-honest parties by using n = O(k) parties.
The private circuit is obtained by applying the protocol to the function which maps a secret sharing
of the input for f to a secret sharing of the output of f . In the private circuits model, the secret
sharing of the input is implemented by the input encoder and the reconstruction of the output from
its shares is implemented by the output decoder.
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Theorem 1 (Implicit in [DIK10]). There is an efficient algorithm Q such that for every positive
integer k and every circuit Cf of size s and depth h computing a function f : {0, 1}ni → {0, 1}no ,
the output of Q(1k, Cf ) is a k-private implementation (I, C,O) of f with |I| = Õ(ni + k), |C| =

Õ(s+ kh+ k2) and |O| = Õ(no + k).

We will be particularly interested in the following special case of leakage-resilient circuits.

Definition 2 (Parity-resilient circuits). We say that (I, C,O) is an ε-parity-resilient implementation
of f if it is an (L, ε)-leakage-resilient implementation of f for the class L of all parity functions,
namely the class of functions that output the parity of a subset of the wires.

The main goal of this work is to construct two-party protocols that are resilient to bounded-
communication leakage. We consider two-party protocols that start with encoded inputs and end
with encoded outputs. Furthermore, we also consider protocols that receive correlated random
inputs, or alternatively invoke a two-argument function as an oracle.

Definition 3 (Two-party protocol with encoded input and output). A two-party protocol for
f : {0, 1}ni → {0, 1}no is defined by Π = (I, (R1, R2), (M1,M2), O), where:

◦ I : {0, 1}ni → {0, 1}n̂i × {0, 1}n̂i is a randomized input encoder circuit, which maps an input
x for f to a pair of protocol inputs (x̂1, x̂2).

◦ R1 and R2 are distributions over {0, 1}nr that capture the random inputs of the two parties.
They are assumed to be uniform and independent by default. Otherwise, we say that Π uses
correlated randomness (R1, R2).

◦ M1 and M2 are deterministic next message functions, where Mj determines the next message
to be sent by party j as a function of its input x̂j, random input rj, and the sequence of
previous messages received from the other party. Messages are sent in rounds, where party 1
sends messages in odd rounds and party 2 in even rounds. After a predetermined number of
rounds, the function Mj returns a local output ŷj ∈ {0, 1}n̂o for party j.

◦ O : {0, 1}n̂o ×{0, 1}n̂o → {0, 1}no is a deterministic output decoder circuit, which maps a pair
of protocol outputs (ŷ1, ŷ2) to an output y of f .

For x ∈ {0, 1}ni , we denote by Π(x) the output of π on input x, namely the result of applying the
input encoder I to x, interacting as specified by (R1, R2), (M1,M2), and applying the output decoder
O to the pair of protocol outputs. We say that Π correctly computes f : {0, 1}ni → {0, 1}no if for
every input x ∈ {0, 1}ni we have Pr[Π(x) = f(x)] = 1.

We denote by view(x) the joint distribution (view1, view2) obtained by running Π on input x, where
viewj includes the encoded input x̂j, the random input rj (sampled from Rj), and the sequence of
messages received by party j. (The messages sent by party j as well as its output ŷj are uniquely
determined by viewj.) We denote by |Π| the total circuit size required for implementing all invocations
of the next message functions, including the input and randomness gates.

Finally, we also consider oracle-aided protocols, where the parties can invoke a two-party oracle
H : {0, 1}α1 × {0, 1}α2 → {0, 1}β. After receiving an input from each party, the oracle delivers the
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output to party 2. In an oracle-aided protocol, the outputs of the next message function Mj also
include messages sent by party j as inputs to H and the inputs of M2 include messages received by
party 2 as outputs of H. The oracle may be invoked several times in parallel, where each party can
send inputs to several invocations of H in a single round.

We now define our main notion of bounded-communication leakage resilience.

Definition 4 (BCL-resilient protocol). We say that Π is a (c, ε)-bounded-communication leak-
age resilient protocol for f (or (c, ε)-BCL-resilient for short) if Π correctly computes f , and the
following security requirement holds. For any communication protocol π : {0, 1}n1 × {0, 1}n2 →
{0, 1} with communication complexity at most c, and any pair of inputs x, x′ ∈ {0, 1}ni we have
|Pr[π(view(x)) = 1]− Pr[π(view(x′)) = 1]| ≤ ε, where nj = |viewj |.

For a polynomial-time computable f : {0, 1}∗ → {0, 1}∗, the above definition can be naturally
extended to capture computational BCL-resilient protocols for f . Such a protocol is specified by
PPT algorithms Π = (I, (M1,M2), O). We say that Π is computationally c(n)-BCL-resilient if for
every input length n it is (c(n), ε(n))-BCL-resilient for some negligible function ε, with respect to
every leakage protocol π that is implemented by circuits of size poly(n).

2.2 Main Theorems

Following are the main theorems and corollaries that correspond to the steps of the construction
described in Section 1.2. See Figure 2 for a roadmap. Transformations between different objects
are always polynomial-time computable, even when we do not say so explicitly.

Theorem 2 (Private circuits ⇒ parity-resilient circuits over a finite basis). There is a function
g : {0, 1}9 → {0, 1}3 such that every k-private implementation (I, C,O) of a function f can be
efficiently transformed into a 2−Ω(k)-parity-resilient implementation (I ′, C ′, O′) of f over the basis
B = {g}, with |I ′| = O(|I|), |C ′| = O(|C|), and |O′| = O(|O|).

Theorem 3 (Generalized ε-biased masking). Let µ0, µ1 be probability distributions over {0, 1}n that
are ε-indistinguishable by parities. Then any communication protocol π : {0, 1}n × {0, 1}n 7→ {0, 1}
with communication complexity at most c obeys:∣∣∣∣∣∣ E

x∼µ0
E

r
$←{0,1}n

[π(x⊕ r, r)]− E
x∼µ1

E
r

$←{0,1}n
[π(x⊕ r, r)]

∣∣∣∣∣∣ 6 2c/2ε

Theorem 4 (Parity-resilient circuits ⇒ BCL-resilient oracle-aided protocols). Suppose (I ′, C ′, O′)
is a 2−k-parity-resilient implementation of f over a basis B = {g}, where g : {0, 1}α → {0, 1}β,
and where C ′ has depth h. Then there is a (c, ε)-BCL-resilient O(h)-round two-party protocol Π =
(I ′′, (R1, R2), (M1,M2), O′′) for f using an oracle H : {0, 1}α+β×{0, 1}α → {0, 1}β, with c = Ω(k),
ε = 2−Ω(k), |I ′′| = O(|I ′|), |R1| = β · |C ′|, |R2| = 0, |O′′| = O(|O′|), and |Π| = O(|C ′|).

Lemma 1 (Finite oracle ⇒ OT oracle). For any positive integers α1, α2, β, a (c, ε)-BCL-resilient
H-aided protocol Π for f , where H : {0, 1}α1 × {0, 1}α2 → {0, 1}β, can be efficiently transformed to
a similar OT-aided protocol Π′ for f , where Π′ has the same input encoder and output decoder as
Π, and where |Π|′ ≤ 2α2 · β · |Π|.
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Corollary 5 (BCL-resilient protocols over OT). For every positive integer k and circuit Cf of size s
and depth h computing a function f : {0, 1}ni → {0, 1}no , there is a (k, 2−k)-BCL-resilient OT-aided
protocol Π = (I, (R1, R2), (M1,M2), O) for f , where |Π| = Õ(s + kh + k2), |I| = Õ(ni + k), and
|O| = Õ(no + k), and where the OT oracle is called Õ(s+ kh+ k2) times. Alternatively, there is a
similar protocol that uses independent instances of OT correlation instead of an OT oracle.

Corollary 6 (Parity-resilient circuits over a binary basis). For every positive integer k and circuit
Cf of size s and depth h computing a function f : {0, 1}ni → {0, 1}no , there is a 2−k-parity-resilient
implementation (I, C,O) of f over the full binary basis, with |I| = Õ(ni +k), |C| = Õ(s+kh+k2),
and |O| = Õ(no + k).

Theorem 7 (Computational BCL-resilient protocols in the plain model). Suppose the DDH assump-
tion holds. Then, for every polynomial-time computable f : {0, 1}n → {0, 1}m(n) and polynomial
c(n), there is a computational c(n)-BCL-resilient implementation Π = (I, (M1,M2), O) of f , where
the running time of I is Õ(n+ c(n)) and the running time of O is Õ(m(n) + c(n)).

3 Private Circuits imply Parity Resilience

In this section, we shall prove the following theorem:

Theorem 2 Restated (Private circuits ⇒ parity-resilient circuits over a finite basis). There is
a function g : {0, 1}9 → {0, 1}3 such that every k-private implementation (I, C,O) of a function f
can be efficiently transformed into a 2−Ω(k)-parity-resilient implementation (I ′, C ′, O′) of f over the
basis B = {g}, with |I ′| = O(|I|), |C ′| = O(|C|), and |O′| = O(|O|).

Recall that a k-private implementation (I, C,O) of f has the property that (the joint distribution
of) the values of any k wires of C is independent of the input x. We transform the k-private
implementation into a parity-resilient implementation (I ′, C ′, O′) by encoding each wire of C using a
small-bias encoding of constant block-length. In more detail, the circuit C ′ mimics the computation
of C while maintaining the small-bias encoding of each wire of C. To emulate the computation of a
gate g in C, the circuit C ′ takes as input the encodings of the respective input wires and additional
fresh randomness to produce the encoding of the output wire of g. We start by assuming that this
entire procedure is atomically performed by a finite-size gadget. In this case, parity resilience is
ensured because the parity of a small number of wires in C ′ is independent of the input x, due to
k-privacy guarantee of C. On the other hand, a parity of a large number of wires in C ′ is close
to uniform because it XORs a large number of independent small bias distributions (this crucially
relies on the fact that the encoding of each wire of C was created using independent random bits).
We note, however, that because the finite-size gadget is deterministic and receives its randomness
as an external input, we need the small-bias property to hold even with respect to parities that
involve the random inputs.

To formally present our transformation, we need to define small-bias distributions and encodings
with small bias.
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3.1 Small-bias Encoding

For a subset S ⊆ [n], the character χS : {0, 1}n → {0, 1} is defined as χS(x):= ⊕i∈S xi. Note that
χ∅(x) = 0 for all x ∈ {0, 1}n, and there are a total of 2n different possible characters.

Definition 5 (Small-bias Distribution). A distribution D over the sample space {0, 1}n is ε-biased
if for all non-empty subsets S ⊆ [n], the following condition is satisfied.∣∣∣∣ Pr

x∼D
[χS(x) = 0]− Pr

x∼D
[χS(x) = 1]

∣∣∣∣ 6 ε

For n = 1, if a distribution has small bias then it is close to the uniform random bit. And, if its
bias is less than 1, then the outcome of the distribution is unpredictable. More generally, any linear
test cannot distinguish an ε-biased distribution from the uniform distribution over n-bits.

Definition 6 ((Strong) Small-bias Generator). A function G : {0, 1}m → {0, 1}n is an ε-bias gener-
ator if the distribution G(Um) is ε-biased, where Um is the uniform distribution over m-bit strings.
The generator G is a strong ε-bias generator if the distribution (Um, G(Um)) over {0, 1}m+n is
ε-biased.

Next, we define small-biased encodings. Let Enc : {0, 1} × {0, 1}c
′
→ {0, 1}c be a function. For

x ∈ {0, 1}, the encoding of x is defined by (r,Enc(x; r)), where r ∼ Uc′ . Let Enc[x] represent the
corresponding joint distribution, i.e. the distribution (Uc′ ,Enc(x;Uc′)) over {0, 1}c

′+c. The function
Enc is a valid encoding function, if Supp(Enc(0;Uc′)) is disjoint from Supp(Enc(1;Uc′)).

The corresponding (canonical) decoding function Dec : ∪x∈{0,1}Supp(Enc(x;Uc′))→ {0, 1} is defined
as follows: Dec(x̂) = x ∈ {0, 1}, where x̂ ∈ Supp(Enc(x;Uc′)).

Definition 7 (Small-bias Encoding). A valid encoding function Enc : {0, 1} × {0, 1}c
′
→ {0, 1}c is

an ε-biased encoding if, for any x ∈ {0, 1}, the function Enc(x; ·) is a strong ε-bias generator.

For t ∈ N, let Enc : {0, 1} × {0, 1}(2t+1) → {0, 1}(2t+1) be defined as follows.

Enc(x; r0 . . . r2t) =

{
r0 r1 . . . r2t, if maj {r0, . . . , r2t} = x

r2t r0 . . . r(2t−1), if maj {r0, . . . , r2t} = x

The corresponding canonical decoding function is the following.

Dec(x̂0, . . . , x̂2t) = maj {x̂0, . . . , x̂2t}

Figure 3: Strong Small-bias Encoding Scheme.

Lemma 2 (Small-bias Encodings). There exists a valid encoding function Enc : {0, 1} × {0, 1}c
′
→

{0, 1}c and (constant) ε ∈ (0, 1) such that the encoding Enc is ε-biased.

Proof. The construction provided in Figure 3 is a small-bias distribution for all t ∈ N. Claim 5

proves that the bias of the distribution Enc[x] is ε = 1/2 +

(
2t
t

)
2−(2t+1), for all x ∈ {0, 1}.
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3.2 Small-bias Gadget

Let Enc : {0, 1} × {0, 1}c
′
→ {0, 1}c be a function that defines a valid encoding and let Σ =

∪x∈{0,1}Supp(Enc(x;Uc′)).

Definition 8 (Gadget of a Function). Given a function f : {0, 1}n → {0, 1}, the gadget of f using
encoding function Enc is a function GEnc,f : Σn × {0, 1}c

′
→ {0, 1}c defined as follows:

1. Let the input to the gadget be (x̂1, . . . , x̂n, r) ∈ Σn × {0, 1}c
′

2. For i ∈ [n], let xi = Dec(x̂i)

3. Define y = f(x1, . . . , xn) and output ŷ = Enc(y; r).

Consider any (x1, . . . , xn) ∈ {0, 1}n. Let ri be uniformly random and x̂i = Enc(xi; ri), for all
i ∈ [n], and r is also uniformly random. Recall that the encoding distribution Enc[xi] is the
joint distribution (ri, x̂i) for uniformly random ri, for all i ∈ [n], and Enc[y] represents the joint
distribution (r, y) for uniformly random r. Then GEnc,f [x1, . . . , xn] represents the joint distribution
(Enc[x1], . . . ,Enc[xn],Enc[y]).

Definition 9 (Small-bias Gadget). The gadget GEnc,f is ε-biased if, for all (x1, . . . , xn) ∈ {0, 1}n
the distribution GEnc,f [x1, . . . , xn] is ε-biased.

Lemma 3. If Enc : {0, 1}×{0, 1}c
′
→ {0, 1}c is ε-biased, then for any function f : {0, 1}n → {0, 1},

the gadget GEnc,f is ε-biased.

Proof. Fix x1, . . . , xn (thus, fixing y) and a non-empty subset S.

Suppose S contains some wires of Enc[xi]. Let T be the restriction of S to the wires in Enc[xi]. Then,
for every fixing of (r1, x̂1), . . . , (ri−1, x̂i−1), (ri+1, x̂i+1), . . . , (rn, x̂n), (r, ŷ), the bias of χS(GEnc,f [x1, . . . , xn])
is identical to the bias of χT (Enc[xi]), which is at most ε. Averaging over all fixings, the overall bias
of χS(GEnc,f [x1, . . . , xn]) is at most ε.

If S does not contain any wire of Enc[xi] for any i ∈ [n], then S must contain wires only from
Enc[y]. Then, for every fixing of (r1, x̂1), . . . , (rn, x̂n), the bias of χS(GEnc,f [x1, . . . , xn]) is identical
to the bias of χS(Enc[y]), which is at most ε. Again, averaging over all fixings, the overall bias of
χS(GEnc,f [x1, . . . , xn]) is at most ε.

3.3 Proof

Suppose (I, C,O) is a k-private implementation of a function f : {0, 1}ni → {0, 1}no given by Theo-
rem 1 over a basis B. In particular, we get B = {NAND}. Let Enc be an (ε∗ = 3/4)-biased encoding
as defined in Figure 3 when t = 1.
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x̂1,0 x̂1,1 x̂1,2 x̂2,0 x̂2,1 x̂2,2

Dec(·) Dec(·)

x1 x2

NAND

y

r2

r1

r0

Look-up Table

ŷ0 ŷ1 ŷ2

Figure 4: The NAND Gadget: GEnc,NAND. Enc is the encoding function in Figure 3 with t = 1.
The inputs are x̂1 = (x̂1,0, x̂1,1, x̂1,2) and x̂2 = (x̂2,0, x̂2,1, x̂2,2) and randomness r = (r0, r1, r2).
The decoding function Dec is the majority function. Output is ŷ = (ŷ0, ŷ1, ŷ2). The lookup table
implements the deterministic function ŷ = Enc(NAND(x1, x2) ; r).
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Ensure:

1. (I, C,O) is a k-private implementation of f over the basis B.

2. Let Enc : {0, 1} × {0, 1}α → {0, 1}β be an ε∗-bias encoding scheme.

Construction of (I ′, C ′, O′):

1. Let B′ = GEnc,B = {GEnc,g : g ∈ B}.

2. Definition of I ′: On input x, compute I(x) ∈ {0, 1}n̂i . For each bit x̂k in x̂, pick α bits
of random bits rk and compute x̂′k = Enc(x̂k; rk). Output the concatenation of these bits
(x̂′1, . . . , x̂

′
n̂i

) ∈ {0, 1}βn̂i .

3. Definition of C ′: The circuit C ′ mimics the computation of C gate-wise as follows. Suppose
C computes a function g ∈ B (say, g = NAND) of two wires w1 and w2 and the output wire
is w3. In C ′ we will have an encoding of wire values of w1 and w2 using Enc and it will
compute an encoding of the output wire value w3 using GEnc,g ∈ B′. Formally, let v̂w1 and
v̂w2 be the encodings of values of wire w1 and w2 using the encoding function Enc. C ′ picks
fresh randomness r $← {0, 1}α and uses these as input to GEnc,g. The output is an encoding
v̂w3 = GEnc,g(v̂1, v̂2, r) that corresponds to an encoding of the wire value of w3 using Enc. The
output wires of C ′ correspond to the encoding of each output wire in C using the encoding
scheme Enc.

4. Definition of O′: Given inputs (ŷ′1, . . . , ŷ
′
n̂o

) ∈ {0, 1}βn̂o , decode ŷk = Dec(ŷ′k), for k ∈ [n̂o],
and output O(ŷ′1, . . . , ŷ

′
n̂o

).

5. Privacy Guarantee: This is an (ε∗)k-parity-resilient implementation of f over the basis B′.

Particular Instantiation:

1. Let (I, C,O) be the construction provided by Theorem 1.

2. Let Enc be the construction in Figure 3 with t = 1, α = β = 3 and ε∗ = 3/4.

Figure 5: Using a Private Implementation of f to construct a Parity-resilient Implementation of f .

16



Transformation. The transformation of a private implementation of f into a parity-resilient
implementation of f is provided in Figure 5. Intuitively, the input encoder I ′ computes I(x) and
then encodes each of its bits with Enc. The circuit C ′ obtains the input of C with each bit encoded
by Enc. Thereafter, C ′ mimics the computation of each wire of C but keeps it encoded using Enc.
If C performs a g-gate computation, then C ′ performs a corresponding GEnc,g computation. Finally,
O′ decodes each bit using Dec and then applies O to output y.

We will show that (I ′, C ′, O′) is an ε-parity resilient implementation, where ε = (ε∗)k. Let χS ∈ L
be a function that, on input C ′[x], outputs the parity of wires indexed by S. We say that a wire
w in C is touched by S if any wire of Enc[w] lies in S. Let T be the set of all wires in C that are
touched by S and kS = |T | be the number of wires in C that are touched by S.

If kS 6 k, then the output distribution χS(C ′[x]) is independent of the input x.

If kS > k, then consider a fixing v of values of all wires in C when the input is x, i.e. C[x] = v.
Consider the following equivalent technique of sampling C ′[x] consistent with C[x] = v: Encode
the value corresponding to each wire w ∈ C independently according to the distribution Enc[v(w)],
where v(w) represents the value of the wire w according to v.

Let S(w) be the restriction of S to the wires in C ′ that are encoding of the wire w ∈ C. So, we
have the following:

χS(C ′[x]) =
∑
v

Pr[C[x] = v] ·
(
χS(C ′[x]) | C[x] = v

)
=
∑
v

Pr[C[x] = v] ·
⊕
w∈T

χS(w)(Enc[v(w)])

Each random variable χS(w)(Enc[v(w)]), for w ∈ T , is ε∗-biased for every fixing v. So, the distri-
bution ⊕w∈T χS(w)(Enc[v(w)]) is (ε∗)kS -biased for every fixing v (by Claim 2). Thus, χS(C ′[x]) is
(ε∗)kS/2 close to uniform (by Claim 3). Consequently, the statistical distance between χS(C ′[x])
and χS(C ′[x′]) is at most (ε∗)k.

Note that the circuit C ′ uses GEnc,B and, in particular, GEnc,NAND suffices. Further, I ′, C ′ and O′

can be implemented using circuits that are a constant times the size of a circuit implementing I, C
and O, respectively.

4 Communication Complexity Bound

In this section, we present a generalization of the popular “Small-bias Masking Lemma” [NN90,
AR94, GW97, DS05a] (refer to Appendix C) in the two-party setting.

Theorem 3 Restated (Generalized ε-biased masking). Let µ0, µ1 be probability distributions over
{0, 1}n that are ε-indistinguishable by parities. Then any communication protocol π : {0, 1}n ×
{0, 1}n 7→ {0, 1} with communication complexity at most c obeys:∣∣∣∣∣∣ E

x∼µ0
E

r
$←{0,1}n

[π(x⊕ r, r)]− E
x∼µ1

E
r

$←{0,1}n
[π(x⊕ r, r)]

∣∣∣∣∣∣ 6 2c/2ε
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Intuitively, the theorem states the following. Suppose we have a distribution µ0 and µ1 that are
ε-indistinguishable from each other w.r.t. any linear test. That is, given a sample that is drawn
according to the distribution µb (where b $← {0, 1}), any linear test can predict b with at most ε
advantage.

Now, we additively secret share a sample according to the distribution µb, for b
$← {0, 1}, among

two parties, i.e. the joint views of parties is (U, µb⊕U). Next, the parties run a low communication
protocol (communication complexity bounded by c) among themselves. Now, given this communi-
cation, the advantage to predict b is at most 2c/2ε, i.e. at most 2c/2 times the advantage to predict
b using linear tests on a sample drawn according to µb.

To prove this result, we will need some elementary Fourier analysis. The characters χS : {0, 1}n → R
of the Fourier transform are given by χS(x) = (−1)S·x. The Fourier coefficients of a function
f : {0, 1}n → R are denoted by: f̂(S) = 1

N

∑
x∈{0,1}n f(x)χS(x), where N = 2n.

Definition 10 (ε-Indistinguishability by Parities). Two probability distributions µ0, µ1 over {0, 1}n
are called ε-indistinguishable by parities if, for every S ⊆ [n],∣∣∣∣∣∣

∑
x∈{0,1}n

µ0(x)χS(x)−
∑

x∈{0,1}n
µ1(x)χS(x)

∣∣∣∣∣∣ 6 ε

Equivalently, for every S ⊆ [n],∣∣∣∣ Pr
x∼µ0

[χS(x) = 1]− Pr
x∼µ1

[χS(x) = 1]

∣∣∣∣ 6 ε

We need to show: ∣∣∣∣∣∣ E
x∼µ0

E
r

$←{0,1}n
[π(x⊕ r, r)]− E

x∼µ1
E

r
$←{0,1}n

[π(x⊕ r, r)]

∣∣∣∣∣∣ 6 2c/2ε (1)

Let ∆ stand for the left-hand side of Equation 1. Consider the matrix:

P = 2−n [µ0(x⊕ r)− µ1(x⊕ r)]x,r∈{0,1}n

We have

∆ =

∣∣∣∣∣∣
2−n

∑
x,r∈{0,1}n

µ0(x)π(x⊕ r, r)

−
2−n

∑
x,r∈{0,1}n

µ1(x)π(x⊕ r, r)

∣∣∣∣∣∣
=

∣∣∣∣∣∣2−n
∑

x,r∈{0,1}n
(µ0((x⊕ r)⊕ r)− µ1((x⊕ r)⊕ r)) · π(x⊕ r, r)

∣∣∣∣∣∣
=

∣∣∣∣∣∣2−n
∑

x,r∈{0,1}n
(µ0(x⊕ r)− µ1(x⊕ r)) · π(x, r)

∣∣∣∣∣∣
= |〈P, π〉| ,
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where we view π as a matrix π = [π(x, r)]x,r. Decompose the protocol as a sum of combinatorial
rectangles:

π =
∑
i∈[2c]

1Ai1
T
Bi
,

where Ai, Bi ⊆ {0, 1}n are some sets and 1Ai , 1Bi are their, respective, characteristic vectors. Then,

∆ = |〈P, π〉|

6
∑
i∈[2c]

∣∣∣1TAi
P1Bi

∣∣∣
6
∑
i∈[2c]

√
|Ai| · |Bi| ‖P‖

6 2c/2
√∑
i∈[2c]

|Ai| · |Bi| ‖P‖

6 2c/22n ‖P‖
= 2n+c/2 ‖P‖ ,

where ‖·‖ denotes the spectral norm (equivalently, the largest singular value).

Claim 1. ‖P‖ 6 ε2−n

Proof. The singular value decomposition of P is found as follows:

P =

∑
S⊆[n]

2−n (µ̂0(S)− µ̂1(S)) · χx(S)χr(S)


x,r

= [χS(x)]x,S ·


. . .

2−n (µ̂0(S)− µ̂1(S))
. . .

 · [χS(r)]S,r

= H ·


. . .

2−n (µ̂0(S)− µ̂1(S))
. . .

 ·HT,

where H = 2−n/2 [χS(x)]x,S is a unitary matrix. In particular,

‖P‖ = max
S⊆[n]

|µ̂0(S)− µ̂1(S)| 6 ε2−n,

where the final step uses the assumption that µ0, µ1 are ε-indistinguishable.

Thus, we get that ∆ 6 2n+c/2 ‖P‖ 6 2c/2ε.
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5 Parity Resilience implies Bounded-Communication Leakage Re-
silience

In this section we prove the following theorem.

Theorem 4 Restated (Parity-resilient circuits ⇒ BCL-resilient oracle-aided protocols). Suppose
(I ′, C ′, O′) is a 2−k-parity-resilient implementation of f over a basis B = {g}, where g : {0, 1}α →
{0, 1}β, and where C ′ has depth h. Then there is a (c, ε)-BCL-resilient O(h)-round two-party protocol
Π = (I ′′, (R1, R2), (M1,M2), O′′) for f using an oracle H : {0, 1}α+β × {0, 1}α → {0, 1}β, with
c = Ω(k), ε = 2−Ω(k), |I ′′| = O(|I ′|), |R1| = β · |C ′|, |R2| = 0, |O′′| = O(|O′|), and |Π| = O(|C ′|).

Recall that a parity-resilient implementation (I ′, C ′, O′) of f fools all linear tests on its wire values
and it is constructed over a basis B′. To construct a bounded-communication resilient implemen-
tation Π of f , we leverage Theorem 3. Parties begin with an additive secret sharing of the input
encoding. Thereafter, parties implement a GMW-style [GMW87] protocol where the invariant that
parties have additive secret shares of the wires in C ′ is maintained. To compute the output wires of a
(possibly, randomized) gate h in C ′, our construction Π uses a trusted hardware that takes as input
the additive shares of the inputs to h from both parties, additive secret shares of the randomness
needed to compute the gate h and the additive secret share of the output of h from the first party.
Then, it performs the computation of h based on these inputs and provides an additive share to
the second party that is consistent with the inputs provided by both parties and the additive share
of the output provided by the first party. The size of the trusted hardware that implements this
deterministic computation is finite, if the oracle h is finite.

The construction is formally provided in Figure 6.

Intuitively, the functionality F(h), described in Figure 6, takes as input the additive secret shares
(x1, x2) of the input x and re-computes an additive secret share of the output y = h(x), where the
share of party 1 is y1. Let Th represent an oracle that implements the functionality F(h).

Suppose (I ′, C ′, O′) is an ε′-parity-resilient implementation of f over the basis B′. Then we will
construct a (c, ε)-BCL-resilient two-party protocol Π using oracles in TB′ = {Tg : g ∈ B′}, where
ε = 2c/2 · ε′. For example, B′ = {GEnc,NAND} suffices. Our construction, intuitively, additively secret
shares the values of wires in C ′ among the parties. And to perform a g-gate evaluation in C ′, our
protocol will invoke the finite oracle Tg.

So, the input encoder I ′′, on input x, additively secret shares the output of I ′(x). Then, similar to
the GMW [GMW87] protocol, parties recursively maintain the additive secret-shares of wire-values
of C ′ among themselves. Corresponding to a g-gate evaluation in C ′, our protocol invokes Tg to
obtain the additive secret-shares of the output wires of g. Finally, the output decoder O′′ adds the
shares of the two parties and uses the decoder O′ to compute the output y.

Note that the joint distribution (view1, view2) is identically distributed as (U,U+C ′[x]) and, applying
Theorem 3, we get that π(view[x]) and π(view[x′]) have statistical distance at most 2c/2 · ε′, for any
two-party protocol π with communication complexity c.
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Trusted Oracle. Given an oracle h : {0, 1}α → {0, 1}β , consider the two-party functionality
F(h) defined below:

1. It takes input (x1, y1) ∈ {0, 1}α × {0, 1}β from party 1 and x2 ∈ {0, 1}α from party 2.

2. It computes y = h(x1 ⊕ x2).

3. It outputs y2 = y ⊕ y1 to party 2.

Let Th represent an oracle that implements the functionality F(h).

Ensure:

1. Suppose (I ′, C ′, O′) is an ε′-parity-resilient implementation of f over the basis B′.

Transformation:

1. TB′ = {Tg : g ∈ B′}

2. Input Encoder Description I ′′: Given input x ∈ {0, 1}ni , compute x̂ = I ′(x) ∈ {0, 1}n̂
′
i ,

x̂1
$←{0, 1}n̂

′
i and x̂2 = x̂⊕ x̂1.

3. Randomness Distributions (R1, R2): Let R1 = U|C′|, where |C ′| represents the number of
wires in C ′, and R2 = ∅.

4. Next Message Functions (M1,M2): Iteratively, the protocol performs the gate-wise compu-
tation of C ′ such the value of each wire in C ′ is additively secret-shared between the two
parties. Suppose a gate g : {0, 1}α → {0, 1}β takes as input wires (w1, . . . , wα) and the out-
put wires are (wα+1, . . . , wα+β). Let ŵk,1 and ŵk,2 be the additive secret-shares of the value
corresponding to the wire wk, and party 1 has ŵk,1 and party 2 has wk,2, where k ∈ [α].
Party 1, using fresh bits from its local randomness r1, defines ŵα+`,1

$←{0, 1}, where ` ∈ [β].
Now, parties invoke H = Tg with, respective, inputs (ŵ1,1, . . . , ŵα+β,1) and (ŵ1,2, . . . , ŵα,2).
Party 2 defines the output of the instance of Tg as (ŵα+1,2, . . . , ŵα+β,2). Note that the round
complexity of this protocol is the depth of the circuit C ′, because all gate computations at
a certain level of C ′ can be performed in parallel in one round of the protocol.

5. Output Decoder Description O′′: Given ŷ1 ∈ {0, 1}n̂
′
o and ŷ2 ∈ {0, 1}n̂

′
o , output O′(ŷ1 ⊕ ŷ2).

6. Privacy Guarantee: For a leakage protocol with communication complexity c, this is a 2c/2·ε′-
BCL-resilient protocol.

Particular Instantiations:

1. Let (I ′, C ′, O′) be the (3/4)k-parity-resilient implementation of f over the basis GEnc,B as
produced by Theorem 2.

Figure 6: Using a Parity-resilient Implementation of f to construct a BCL-resilient Implementation
of f .
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6 Replacing Finite Oracles with 2-choose-1 OT

In this section, we shall prove the following lemma:

Lemma 1 Restated (Finite oracle ⇒ OT oracle). For any positive integers α1, α2, β, a (c, ε)-
BCL-resilient H-aided protocol Π for f , where H : {0, 1}α1 × {0, 1}α2 → {0, 1}β, can be efficiently
transformed to a similar OT-aided protocol Π′ for f , where Π′ has the same input encoder and
output decoder as Π, and where |Π|′ ≤ 2α2 · β · |Π|.

First, we shall show that (t, 1)-OT, for constant t, suffices and then we shall show that (2, 1)-OT
suffices.

Let Π be an (c, ε)-BCL implementation of f using trusted oracles in B′′. While executing Π, every
invocation of an oracle H ∈ B′′ is replaced as follows.

1. Let H : {0, 1}α1 × {0, 1}α2 → {0, 1}β . Define Hi : {0, 1}α1 × {0, 1}α2 → {0, 1}β as the i-th
output bit of H, where i ∈ [β].

2. Suppose parties invoke H with respective inputs x1 ∈ {0, 1}α1 and x2 ∈ {0, 1}α2 .

3. For each i ∈ [β], do the following. Perform
(
2β, 1

)
-OT where the sender bits are: Hi(x1, 0),

. . . , Hi(x1, 2
β − 1), and the receiver choice index is x2 ∈ {0, . . . , 2β − 1}. Party 2 receives

Hi(x1, x2).

The protocol incurs an additional 2β multiplicative overhead and the view of the transformed
protocol is identical to the view of the protocol using oracles in B′′. This new protocol uses oracles
in {

(
2β, 1

)
-OT : H ∈ B′′ has output domain {0, 1}β}.

Next, we shall show that (2, 1)-OT suffices. For this, we need the notion of “joint simulation of
views,” (Section 6.1) and the final proof is presented in Section 6.2.

The intuitive reasoning underlying our approach is the following. The number of (m, 1)-OT in-
stances is typically significantly larger than the additional communication that our BCL-protocol
can tolerate. So, simply implementing (m, 1)-OT using a secure protocol and basing the security
of the composed protocol on a small loss in the security parameter of the original BCL protocol is
not possible (a technique akin to “complexity leveraging”). To circumvent this issue, we implement
(m, 1)-OT using a stronger notion of security, namely joint simulation security. This stronger secu-
rity notion ensures that the joint views of the composed protocol can be simulated by the parties
using coordinated-simulators that they run on their respective local views. Under joint simulation
security, we provide protocols that: (1) Reduce (m, 1)-OT to (2, 1)-OT, (2) Reduce (2, 1)-OT to
precomputed ROT-correlations, and (3) Reduce (2, 1)-OT to the plain model using computational
hardness assumptions. Towards this direction we present a composition theorem in Theorem 8.

6.1 Joint Simulation Security

Party i ∈ {1, 2} has private input xi and local private randomness ri. The randomness (r1, r2) can
either be sampled independently in the plain model or according to some fixed joint distribution in
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the correlated private randomness model. The protocol π((x1, r1), (x2, r2)) is a two-party protocol
starting with respective inputs (xb, rx) with party i. We also consider protocols that are oracle-
aided, i.e. parties can interact via a deterministic 2-party functionality oracle. Without loss of
generality, we assume that party i uses no randomness other than ri.

For fixed inputs (x1, x2), the view of the protocol, represented by view(x1, x2), is the random variable
obtained by executing π((x1, R1), (x2, R2)) and outputting ((x1, R1, T1), (x2, R2, T2)), where Ti rep-
resents all messages received by party i either from the other party or from the oracle functionalities.

Definition 11 (Joint Simulation Security). Let f : X1 ×X2 → Y1 × Y2 be a deterministic function
such that f(x1, x2) = (y1, y2). We say that a protocol π(·, ·) realizes f with ε-joint simulation security
if the following conditions hold:

1. (Perfect) Correctness: For every inputs (x1, x2), we have Pr[π(x1, x2) outputs f(x1, x2)] = 1.

2. Joint Simulation Security: There exists a pair of simulators S1 and S2, and a randomness
distribution T shared between the simulators such that for all inputs we following holds:

SD ( (S1(x1, y1, T ), S2(x2, y2, T )) , view(x1, x2) ) 6 ε

In particular, if ε = 0 then we say that π perfectly realizes f with joint simulation security. And, if
the distributions (S1(x1, y1, T ), S2(x2, y2, T )) and view(x1, x2) can only be ε-distinguished by compu-
tationally bounded distinguishers then we say that π realizes f with ε-computational joint simulation
security.

We highlight that this definition is similar to the notion of “strong oblivious simulation” as introduced
by [DLZ15].

6.1.1 Composition Theorem

In this section we present a composition theorem that is useful to modularly construct BCL-resilient
protocols.

Theorem 8 (Composition Theorem). Let Πf |g is a (c, ε)-BCL-resilient implementation of f that
uses oracle calls to g. Let Πg perfectly realizes g with perfect joint simulation security. Consider the
protocol Πf obtained by replacing every invocation of g in Πf |g by an independent execution of the
protocol Πg. Then Πf is a (c, ε)-BCL-resilient implementation of f .

Further, if Πg realizes g with ε′-computational joint simulation security then Πf is a computationally
c-BCL-resilient implementation of f .

Proof. Let Π′ be Πf |g with one of its g-invocations replaced by Πg. Let π′ be a protocol running on
views generated by Π′ and has communication complexity c. Let viewΠ′ [x] be the joint distribution
of view of parties generated by Π′ on input x.

We will study the random variable π′(viewΠ′[x]) using a hybrid argument.
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Suppose the inputs to the substituted instance of g are (u1, u2) and the outputs are (v1, v2). Consider
a new protocol π̃ that runs identical to π, except that it erases the execution of Πg and substitutes
it with viewΠg using (S1(u1, v1, T ), S2(u2, v2, T )). The views of π′ and π̃ are identical (by perfect
joint simulation security of Πg). So, π′(viewΠ′[x]) is identical to π̃(viewΠ′[x]).

Next, consider the following. Run Πg|f on input x. Consider the protocol π that, for i ∈ {1, 2},
instructs party i to execute Si(u1, v1, T ) and then runs the protocol π̃. It is clear that π̃(viewΠ′[x])
is identical to π(viewΠf |g [x]).

Note that π′, π̃ and π have identical communication complexity. So, Π′ is also (c, ε)-BCL-resilient
implementation.

Analogously, all invocations to g-oracle can be replaced by the protocol Πg and the result follows.

In the computational case, since, S1 and S2 are efficient, the overall distinguishing advantage can
be at most ε+

∣∣Πf |g
∣∣ · ε′. And, hence, the result.

6.1.2 Protocols with Joint Simulation Security

In this section we present some protocols with joint simulation security.

Theorem 9 (Joint Simulation: Instantiations). There exists a πf |g that perfectly realizes f with
joint simulation strategy while invoking oracle calls to g, when:

1. f = (n, 1)-OT, g = (2, 1)-OT and R1 = R2 = ∅.

2. f = (2, 1)-OT, g = ∅ and (R1, R2) is the ROT-correlated private randomness.

3. f = (m, 1)-OT, g = ∅ and (R1, R2) are sufficiently long independent random strings in the
computational setting.

Proof. 1. Construction 1. Consider the protocol presented below:

Ensure:

(a) Input to party 1: (x1, . . . , xn) and input to party 2: i ∈ [n].

(b) Output of party 1: ∅ and Output of party 2: xi.

Protocol:

(a) Party 2 computes (c1, . . . , cn) such that cj = 1 if j = i, otherwise cj = 0.

(b) Parties invoke n independent instances of (2, 1)-OT with party 1 inputs (0, xi) and
party 2 input ci. Party 2 receives zj = xcj , for j ∈ [n].

(c) Party 2 outputs zi.

Consider the following simulation strategies. Let S1((x1, . . . , xn)) be the simulator that out-
puts the view that it invoked n instances of (2, 1)-OT with respective inputs (0, xi). Let

24



S2(i, z = xi) be the simulator that outputs the view that it invoked n instances of (2, 1)-OT
with respective input cj , where cj = 1 if j = i, otherwise cj = 0. And it receives zj as output
from the j-th instantiation of (2, 1)-OT, where zj = z if j = i, otherwise zj = 0.

It clear that this is a perfect joint simulation.

2. Construction 2. Consider the protocol presented below.

Ensure:

(a) Input to party 1 is (x0, x1) and input to party 2 is c.

(b) Output of party 1 is ∅ and output of party 2 is xc.

Protocol:

(a) Party 1 obtains (y0, y1) and party 2 obtains (b, w = yb), where y0, y1, b
$← {0, 1} (this

is the ROT private correlated randomness).

(b) Party 2 sends m = b+ c.

(c) Party 1 sends α0 = x0 + ym and α1 = x1 + ym.

(d) Party 2 computes z = αc + w.

Consider the following simulation strategies. Let the randomness sample shared among the
simulators be: (α̃0, α̃1, m̃), where each bit is chosen uniformly at random. S1((x0, x1), (α̃0, α̃1, m̃))
generates a view where:

(a) It obtains y0 = α̃m + xm and y1 = α̃m + xm from the ROT correlation.

(b) It receives m = m̃ from party 2, and

(c) It sends α0 = α̃0 and α1 = α̃1 to party 2.

S2(c, z = xc, (α̃0, α̃1, m̃)) generates a view where:

(a) It obtains b = m̃+ c and w = α̃c + xc from the ROT correlation.

(b) It sends m = m̃ to party 1,

(c) It receives α0 = α̃0 and α1 = α̃1 from party 1, and

(d) It computes z = αc + w = xc.

This is a perfect simulation because, given a fixed (x0, x1, c), the distribution (y0, y1, b) is
uniformly random. And the random variables corresponding to messages (w,m,α0, α1) in the
protocol are deterministically defined in terms of (x0, x1, c) and (y0, y1, b). One can verify that
the random variables as output by the simulators satisfy those relations.

3. Construction 3. We present a protocol for (2, 1)-OT inspired by the construction in [BCH12].
The protocol for (m, 1)-OT can be constructed analogously. Consider the protocol presented
below:
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Ensure:

(a) Input to party 1 is (x0, x1) and input to party 2 is i.

(b) Output of party 1 if ∅ and output of party 2 is xi.

(c) (NC-Gen,NC-Enc,NC-Dec,NC-Sim,NC-oGen,NC-oSim) is a special non-committing
bit encryption scheme that has oblivious key sampling (see Appendix B for definition).

Protocol:

(a) Party 2 computes (ei, di) = NC-Gen(1k; rG) and ei = NC-oGen(1k; r
Ĝ

). Party 2 sends
encryption keys (e0, e1) to party 1.

(b) Party 1 computes cb = NC-Enceb(xb; rE,b), for b ∈ {0, 1}. Party 1 sends (c0, c1) to
party 2.

(c) Party 2 outputs xi = NC-Decdi(ci).

The joint simulation strategy samples two random strings (r0, r1) as the common random
string. The simulation strategy S1(x0, x1, (r0, r1)) does the following.

(a) Obtain (eb, cb, r
0
G,b, r

0
E,b, r

1
G,b, r

1
E,b)← NC-Sim(1k, rb), for b ∈ {0, 1}.

(b) Create the view of party 1 as follows. Message (e0, e1) is received from party 2.

(c) And message (c0, c1) is sent to party 2, where cb is encryption of xb using the key eb and
randomness rxbE,b, for b ∈ {0, 1}.

The simulation strategy S2(i, xi, (r0, r1)) does the following.

(a) Obtain (eb, cb, r
0
G,b, r

0
E,b, r

1
G,b, r

1
E,b)← NC-Sim(1k, rb), for b ∈ {0, 1}.

(b) Create the view of party 2 as follows. Party 2 sent (e0, e1) such that (ei, di)← NC-Gen(rxiG,i)
and claim that ei was generated by NC-oGen using randomness r′ ← NC-oSim(ei ).

(c) Party 2 receives (c0, c1) and outputs xi as a decoding of ci with decryption-key di.

We prove the security of the joint simulation strategy using a hybrid argument. Consider the
following sequence of hybrids.

(a) Hybrid 0 (Real World). Parties follow the protocol honestly.

(b) Hybrid 1. Party 2 generates both (eb, db) ← NC-Gen(1k; rG,b), for b ∈ {0, 1}. And
explains ei using the randomness r′ $← NC-oSim(ei ). The “special” property of our
scheme ensures that this hybrid is indistinguishable from the previous hybrid.

(c) Hybrid 2. Substitute (e0, c0, rG,0, rE,0) by the simulated string (e0, c0, r
x0
G,0, r

x0
E,0) from the

outputs of NC-Sim(1k, r0) and let (e0, d0) ← NC-Gen(1k; rx0G,0). This hybrid is indistin-
guishable from the previous hybrid due to the security of non-committing encryption.

(d) Hybrid 3. Substitute (e1, c1, rG,1, rE,1) by the simulated string (e1, c1, r
x1
G,1, r

x1
E,1) from the

outputs of NC-Sim(1k, r1) and let (e1, d1) ← NC-Gen(1k; rx1G,1). This hybrid is indistin-
guishable from the previous hybrid due to the security of non-committing encryption.

(e) Hybrid 4 (Joint Simulation World). Note that this is identical to the previous hybrid.
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This shows that the joint simulation of the views is computationally indistinguishable from the
joint views of the parties in the real world. Similarly, we can also prove the joint simulation
security for the analogous protocol for (m, 1)-OT.

6.2 Final Part of Proof

Consider a (c, ε)-BCL-resilient protocol using {
(
2β, 1

)
-OT : H ∈ B′′ has output domain {0, 1}β}.

Substitute each invocation of
(
2β, 1

)
-OT with the protocol presented in Theorem 9 (Part 1.) that

uses an oracle implementing (2, 1)-OT. Using the composition theorem Theorem 8, we get the
result.

7 Protocol Instantiations

Here we prove the main corollaries of our theorems by instantiating them with appropriate con-
structions. Our aim is to reduce the construct bounded-communication resilient implementation of
a functionality f (that is implemented by a circuit Cf ) using random OT pre-computations or using
computational assumptions in the plain model.

7.1 Proof of Corollary 5

For any function f : {0, 1}ni → {0, 1}no , there exists an (κ, 2−κ)-BCL-resilient protocol of f using
(2, 1)-OT-oracle. The construction proceeds as follows:

1. Let (I, C,O) be a k-private implementation of the function f using Theorem 1 over the basis
B.

2. Let (I ′, C ′, O′) be an ε1-parity-resilient implementation of f using Theorem 2 over the basis
GEnc,B, where Enc is the encoding function in Figure 3 with t = 1 and ε1 = (3/4)k.

3. Let Π be a (c, ε2)-BCL-resilient implementation of f using Theorem 4 over the oracles in
TGEnc,B , where ε2 = 2c/2 · (3/4)k.

4. Let Π′ be a (c, ε2)-BCL-resilient implementation of f using Lemma 1 over the oracle {(2, 1)-OT}.

Using c = κ and k = 2κ log4/3 2 in the construction, (I ′′, C ′′, O′′) is a (κ, 2−κ)-parity resilient
implementation of f over the standard basis B, and there exists circuit implementations such that
|I ′′| = Õ(ni + κ), |C ′′| = Õ(s+ κh+ κ2) and |O′′| = Õ(no + κ).

Using Theorem 8 and Theorem 9 (Part 2), we get that the same construction using precomputed
ROT-correlated private randomness is also (κ, 2−κ)-bounded-communication resilient implementa-
tion of f .
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7.2 Proof of Corollary 6

Fix c = 1 and consider the Π′ as constructed in Section 7.1. Now construct a circuit C ′′ over the
standard basis that generates the joint view of parties (the input encoder I ′′ and the output decoder
O′′ remain unchanged). In this circuit, any invocation of the (2, 1)-OT with inputs (x0, x1) and b is
computed by: t = x∧ b and z = x0⊕ t. Note that we can express the intermediate wire t as x0⊕ z,
and the values x0 and z already occur in the views of party 1 and 2, respectively, generated by
Π′. Any parity of wires in C ′′ can, thus, be expressed as parities of values that exists in the views
of parties as generated in Π′. So, any parity of wires of C ′′ can be computed by performing 1 bit
of communication in Π′. Therefore, (I ′′, C ′′, O′′) is an ε2-parity resilient implementation of f over
the standard basis B. Using k = (1 + κ) · log4/3 2 in the construction, (I ′′, C ′′, O′′) is a 2−κ-parity
resilient implementation of f over the standard basis B, and there exists circuit implementations
such that |I ′′| = Õ(ni + κ), |C ′′| = Õ(s+ κh+ κ2) and |O′′| = Õ(no + κ).

8 Computational Bounded-communication Leakage Resilience

In this section we prove the following theorem.

Theorem 7 Restated (Computational BCL-resilient protocols in the plain model). Suppose the
DDH assumption holds. Then, for every polynomial-time computable f : {0, 1}n → {0, 1}m(n) and
polynomial c(n), there is a computational c(n)-BCL-resilient implementation Π = (I, (M1,M2), O)
of f , where the running time of I is Õ(n+ c(n)) and the running time of O is Õ(m(n) + c(n)).

This result follows by using the composition theorem (Theorem 8) on the following two results:
(1) Construction of BCL-resilient protocol using (2, 1)-OT by Corollary 5, and (2) Computational
joint simulation secure protocol for (m, 1)-OT presented in Theorem 9 (Part 3) instantiated using
the special NCE construction with oblivious key sampling based on the computational hardness of
factoring Blum integers or Decisional Diffie-Hellman by [CDMW09].
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A Technical Results

This section contains technical results needed to prove our main results.

A.1 Bias of Distributions

Claim 2. Let X1, . . . , Xt be independent random variables such that, for all 1 6 j 6 t, the distri-
bution Xj is εj-biased. Then, the random variable

(
⊕ti=1Xi

)
is
(∏t

i=1 εi
)
-biased.

Proof. Proof for t = 2 suffices. Let Pr[X1 = 0]−Pr[X1 = 1] = α1 and Pr[X2 = 0]−Pr[X2 = 1] = α2.
Let X = X1 ⊕X2. Then, we have:

Pr[X = 0]− Pr[X = 1] = Pr[X1 = 0] (Pr[X2 = 0]− Pr[X2 = 1]) + Pr[X1 = 1] (Pr[X2 = 1]− Pr[X2 = 0])

= (Pr[X1 = 0]− Pr[X1 = 1]) · (Pr[X2 = 0]− Pr[X2 = 1]) = α1α2

Taking absolute value both sides, we get the result.

Claim 3. If the distribution X is ε-biased then the statistical distance of X from uniform distribution
is at most ε/2.

A.2 Small-bias Encodings

Claim 4. For t > 1, let Maj(2t+1)[x] be the uniform distribution over (2t + 1)-length bit strings
whose majority of bits are x. For any non-empty S ⊆ [2t + 1], the distribution χS(Maj(2t+1)[x]) is

ε-biased, where ε =

(
2t
t

)
2−2t.

Proof. For a non-empty subset S ⊆ [n], note that the bias of χS(Maj(2t+1)[x]) is equal to
∣∣∣22t+1 · ̂Maj(2t+1)[x](S)

∣∣∣.
Let r ∈ {0, 1}2t+1. Interpreting the probability distribution Maj(2t+1)[x] as a function over (2t+ 1)-
length bit strings, observe that Maj(2t+1)[x](r) is 0 if the majority of the bits in r is not x, and is
2−2t if the majority of the bits in r is x.

Let f : {0, 1}2t+1 → {−1,+1} be a function such that f(r) = 1 if the majority of the bits in r is 0,
and f(r) = −1 if the majority of the bits in r is 1. Note that f ≡ 22t+1 ·Maj(2t+1)[0]− 1.

Suppose x = 0. Using the linearity of Fourier transform, the bias of χS(Maj(2t+1)[x]) is equal to∣∣∣f̂(S)
∣∣∣. We know the following about the Fourier coefficients of the function f [O’D14]:

f̂(S) =



0, if |S| is even

(−1)v

t
v


2t

2v


·

(
2t

t

)
2−2t, if |S| = 2v + 1
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Thus, we have the following upper bound:
∣∣∣f̂(S)

∣∣∣ 6 (2t
t

)
2−2t, because

(
t
v

)
6

(
2t
2v

)
.

For x = 1, use the fact that f ≡ 1− 22t+1 ·Maj(2t+1)[1] to obtain an identical upper bound on the
bias of χS(Maj(2t+1)[x])

Claim 5. Consider the encoding function Enc defined in Figure 3. For any x ∈ {0, 1} and non-empty

subset S, the distribution χS(Enc[x]) is ε-biased, where ε = 1/2 +

(
2t
t

)
2−(2t+1).

Proof. Let S be partitioned into two subsets SR and SY by restricting S to the indices in the
randomness r and the indices in Enc(x; r), respectively. We make the following observations:

1. Conditioned on majority of the bits in r being x, χS(Enc[x]) is identical to χ(SR∆SY )(Maj(2t+1)[x]).

2. Conditioned on majority of the bits in r being x, χS(Enc[x]) is identical to z⊕χ(SR∆S′Y )(Maj(2t+1)[x]),
where S′Y is the left-rotation of SY by one position and z is the parity of |S′Y |.

3. And each of the above two events occur with probability 1/2 when r is drawn uniformly at
random.

For a non-empty S, note that SR∆SY 6= ∅ or SR∆S′Y 6= ∅. So, the bias of χS(Enc[x]) is at most
1
2 · 1 + 1

2 ·
(

2t
t

)
2−2t (using Claim 4).

B Special Non-Committing Encryption

In this section we introduce the definition of a special non-committing encryption. To begin, we
recall the definition of non-committing encryption:

Definition 12 (Non-Committing Encryption [CFGN96]). A non-committing (bit) encryption (NCE)
scheme consists of a tuple (NC-Gen,NC-Enc,NC-Dec,NC-Sim), where (NC-Gen,NC-Enc,NC-Dec)
is a semantically secure (public-key) encryption scheme (with negligible decryption error), and
NC-Sim is a PPT simulation algorithm that on input 1k outputs a tuple (e, c, r0

G, r
0
E , r

1
G, r

1
E) such

that for every b ∈ {0, 1}, the following distributions are computationally indistinguishable:

1. The joint view of an honest sender and an honest receiver in a normal encryption of b:

{(e, c, rG, rE) : (e, d) = NC-Gen(1k; rG), c = NC-Ence(b; rE)}

2. A simulated view of an encryption of b:

{(e, c, rbG, rbE) : (e, c, r0
G, r

0
E , r

1
G, r

1
E)← NC-Sim(1k)}

The scheme is said to have oblivious key sampling if in addition to the above:
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◦ There is an oblivious public key sampling algorithm NC-oGen, which on input (1k, r
Ĝ

) samples
a public key ê which is indistinguishable from the public keys generated by NC-Gen(1k).

Next, we define a special form of non-committing encryption that is crucial for our joint simulation
security.

Definition 13 (Special Non-committing Encryption). Let (NC-Gen,NC-Enc,NC-Dec,NC-Sim,NC-oGen,NC-oSim)
be a scheme such that:

1. (NC-Gen,NC-Enc,NC-Dec,NC-Sim,NC-oGen) is a non-committing encryption scheme that
has oblivious key sampling, and

2. The following two distributions are computationally indistinguishable:{
(ê, r

Ĝ
) : ê← NC-oGen(1k, r

Ĝ
)
}
,

and {
(e, r′) : (e, d)← NC-Gen(1k; rG), r′ ← NC-oSim(1k, e)

}
Then, (NC-Gen,NC-Enc,NC-Dec,NC-Sim,NC-oGen,NC-oSim) is a special non-committing en-
cryption scheme with oblivious key sampling.

Based on the computational hardness of factoring Blum integers or the computational hardness of
the Decisional Diffie-Hellman (DDH), constructions of special non-committing encryption schemes
with oblivious key sampling exist [CDMW09].

C Small-bias Masking

Theorem 10 (Small-bias Masking Lemma [NN90, AR94, GW97, DS05a]). Let M be a source over
the sample space {0, 1}n with min-entropy at least (n− `). Let X be an independent source over the
same sample space {0, 1}n such that it has bias at most ε. Then the following holds:

2SD ( M ⊕X , Un ) 6 2`/2 · ε

To understand the relation between Theorem 10 and the “one-round version” of Theorem 3, consider
the following pairs of reductions.

First Reduction. Suppose X is an ε-bias distribution over {0, 1}n. We additively share X
between two parties, party 1 and party 2. That is, party 1 receives Un and party 2 receives X⊕Un.
Now, party 1 obtains an `-bit leakage on the view of party 1. Conditioned on this leakage, the
view of party 1 has min-entropy (n − `).4 The view of party 2, despite `-bits of leakage, remains
2`/2 · ε-close to uniform. So, the “one-round version” of our Theorem 3 is implied by Theorem 10.

4 If L is the leakage random variable, then we have H̃∞(X|L) > (n − `), i.e., the average min-entropy of X is
high [DORS08]. Theorem 10 also holds if X has (n − `) average min-entropy. At an intuitive level, a source with
average min-entropy is close to convex linear combination of min-entropy sources.
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Second Reduction. Suppose X is an ε-bias distribution over {0, 1}n and party 1 has view Un
and party 2 has view (X ⊕ Un). Without loss of generality, assume that M is a flat with support
2n−`. The leakage communication protocol does the following: Party 1 sends 1, if its view is in the
support of M ; otherwise it sends 0. The statistical distance of party two’s view (at the end of the
1-bit protocol) from uniform is at most 21/2ε.

With probability 2−`, party 1 sends 1. Conditioned on the message being 1, the distance of party
2’s view from uniform be: ∆. Then we get that: 2−`∆ 6 21/2ε, that is ∆ 6 2`+1/2ε. So, instead of
a 2`/2ε bound we get the slightly weaker bound of 2`ε.

The tighter version of this direction of the reduction can be proven for the following small-bias
masking result.

SD
(

(X ⊕ Un,L(Un)) , (U ′n,L(Un))
)
6
√

2` · ε,

where X is an ε-bias source and L : {0, 1}n → {0, 1}` be any leakage function. We know that
H̃∞(Un|L(Un)) > (n− `).

Suppose the respective views of party 1 and party 2 are Un and X ⊕Un. Now, party 1 sends L(Un)
to party 2. Given this leakage, using Theorem 3 the view of party 2 is 2`/2ε close to uniform.
Thus, our theorem for one round leakage protocols yields the small-bias masking result for average
min-entropy source obtained by performing `-bits of leakage.
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