
Solving Linear Inequalities over the Space of Convex Sets

& its Applications to Cryptography and Hydrodynamics

Abstract

Is a two-party function, possibly with randomized output, securely computable? We give
a finite procedure to answer this question, settling this foundational three-decade-old open
problem in secure computation and information complexity.

Beaver-Chor-Kushilevitz [CK89, Kus89, Bea89] answered this question for deterministic out-
put functions. Basu et al. [BKMN22a] recently gave a geometric characterization of randomized
functions securely computable with bounded communication complexity. Randomized functions
can have arbitrarily high communication complexity, even for fixed input-output sets [BKMN23].
Without an upper bound on the communication complexity, the decidability of the question
of whether a given two-party function with randomized output is securely computable was a
formidable challenge.

We reduce answering this question to proving specific lamination hulls are semi-algebraic.
Lamination hulls are an infinite union of recursively defined sets independently motivated by
the hydrodynamics literature. We connect this technical objective to solving a system of lin-
ear inequalities over convex sets in high dimensions, where inequalities represent the natural
containment relation. We present a Gaussian elimination-inspired algorithm to compute the
smallest simultaneous solutions to such systems. After that, using these solutions, we prove
that our lamination hulls are semi-algebraic.

Our technical solution introduces a novel set operator called positive geometric join. In our
application context, it characterizes algebraically well-behaved sets that generalize polytopes,
which we call hemihedra. The positive geometric join operator and hemihedral sets should
interest the broader mathematics and computer science community. These advancements should
help further information complexity investigations more broadly via the recently established
connection by Basu et al. [BKMN22a].

Keywords: Convex geometry, information complexity, secure computation, lamination hull.



Contents

1 Introduction 1
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Proof Overview of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Abridged Version: Solving System of Inequalities . . . . . . . . . . . . . . . . . . . . 6
1.4 Abridged version: Lamination Hull Computation . . . . . . . . . . . . . . . . . . . . 9

2 Representative Open Problems 11

3 Solving System of Linear Inequalities over the Semi-Ring of Convex Sets 12
3.1 Notation: System of Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Evaluation Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Algebraic Characterization of the Smallest Solution . . . . . . . . . . . . . . . . . . . 17
3.4 Operational Realization of the Smallest Solution . . . . . . . . . . . . . . . . . . . . 19

4 Lamination Hull: Grid Points, Structure Lemma, Reduction to System of In-
equalities 20
4.1 Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Computing any Restriction of the Lamination Hull . . . . . . . . . . . . . . . . . . . 23
4.3 Reduction to a System of Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A Solving Example System 25
A.1 Figure of the Smallest Solution for an Assignment . . . . . . . . . . . . . . . . . . . 27
A.2 Examples of Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.3 Iterated Solution Evolution for an Assignment . . . . . . . . . . . . . . . . . . . . . . 30

B Solving Example System: Restricted to Polytopes 30

C Properties of Our Set Operations 33

D Gaussian Elimination Algorithm 35
D.1 Rearrangement and Cancellation Lemmas . . . . . . . . . . . . . . . . . . . . . . . . 36
D.2 Substitution Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
D.3 Proof of Substitution Correctness: Proof of Lemma 1 . . . . . . . . . . . . . . . . . . 39
D.4 Technical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

E Algebraic Complexity of the Smallest Solution of a System of Inequalities 44

F Operational Realization: Proof of Lemma 2 45

G Preliminaries: Arrangements 46
G.1 Proofs of Proposition 7, Proposition 8, Proposition 9, Proposition 10 . . . . . . . . . 47
G.2 Proof of Lemma G.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

H Lamination Hull Restricted to Grid Points is Sufficient: Proof of Lemma 3 49
H.1 Notation: Witness trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
H.2 Proof of Lemma H.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
H.3 Proof of Lemma H.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
H.4 Proof of Lemma H.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
H.5 Technical Results: Statement and Proof of Lemma H.5 and Lemma H.6 . . . . . . . 57

I Bridging Lamination Hulls and Solutions of Systems of Inequalities: Proof of
Lemma 4 59
I.1 Statement and Proof of Lemma I.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
I.2 Statement and Proof of Lemma I.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

J Complexity of Answering Lamination Hull Membership Queries 62

K Hemihedra 64

References 66



1 Introduction

This work settles a long-standing open problem in the foundations of cryptography. To achieve
this, we develop new mathematical tools to solve systems of inequalities involving convex shapes in
high dimensions. The first is a new set operator that systematically helps reduce any system into
its “reduced row-echelon form.” After that, we identify well-behaved convex sets to characterize
the minimal solutions to such linear systems with respect to the partial order induced by inclusion.
Consequently, we show that certain classes of lamination hulls are semi-algebraic, resolving in
these cases an open problem in the study of lamination hulls, an important geometric object of
interest in the study of partial differential equations. These advancements should help further
information complexity investigations more broadly via the recently established connection by
Basu et al. [BKMN22a] and approach geometry problems in general.

Cryptographic application. Secure multi-party computation helps compute using sensitive
data. Consider the two-party information-theoretic setting with honest but curious adversaries:
Alice and Bob want to securely evaluate a function f : X × Y → RZ of their private inputs. Here,
f(x, y)z is the output probability of z ∈ Z when Alice and Bob have inputs x ∈ X and y ∈ Y ,
respectively. (Note that we consider real-valued functions f , and our model of computation is the
Blum-Shub-Smale model [BSS89].)

Cryptographic question: Is there a secure protocol for the function f : X × Y → RZ?

Beaver-Chor-Kushilevitz [CK89, Kus89, Bea89] answered this question for deterministic functions
– functions whose inputs fix their output. In its full generality, where output is randomized, this
foundational question has remained open for over three decades; c.f. [MPR13], [BKMN22b, Section
7], and [DP18, Section 1]. Investigating the information complexity of private-coin protocols at the
interface of security and information complexity has been challenging in general [Bra21, Wei15]. Re-
cently, Basu et al. [BKMN22a] made partial progress; they answered it when protocols are restricted
to a communication budget. However, the communication complexity of secure protocols could be
arbitrarily high even for small domains like X = Y = {0, 1} and Z = {1, 2, 3, 4, 5} [BKMN23].

This work presents a finite procedure to answer the cryptographic question posed above.

Note that if a secure protocol exists for computing a given function f , then using the main result
in Basu et al. [BKMN22a] one can find it. The main technical challenge is to decide whether such
a protocol exists; i.e., to reject the no instances. (This is similar to the well-known halting problem
for Turing machines, which, in contrast, is recursively enumerable but not recursive.) In this paper,
we provide a finite procedure for deciding whether a secure protocol exists for computing any given
function. The running time depends solely on the cardinalities of X,Y, and Z.

Lamination hulls. Lamination hulls are geometric objects that arise naturally in our procedure
to answer the cryptographic question discussed above. Lamination hulls are subsets of Rd and are
parameterized by a set Λ ⊆ Rd. Beginning with an initial set S(0,Λ) ⊆ Rd, recursively define the
following sets for i ∈ {0, 1, 2, . . . }.

S(i+1,Λ) :=
{
α · P + (1− α) · P ′ : P, P ′ ∈ S(i,Λ), α ∈ [0, 1], and P − P ′ ∈ Λ

}
. (1)

The following set is the lamination hull of the initial set S(0,Λ).

S(∞,Λ) :=
⋃

i∈{0,1,2,... }

S(i,Λ). (2)

1



Figure 1 illustrates the evolution of the lamination hull with an example.

S(0,Λ) S(1,Λ) S(2,Λ) S(3,Λ) S(4,Λ)

Figure 1: 2D Tartar square. Consider Λ := R × {0}
⋃
{0} × R ⊆ R2. The figure illustrates

the evolution of the sets S(0,Λ) → S(1,Λ) → · · · . This specific Λ ensures that, for any two axis-
aligned points P, P ′ ∈ S(i,Λ), the line segment PP ′ is added to the set S(i+1,Λ). These sets stabilize
S(i,Λ) = S(4,Λ), for all i ∈ {4, 5, . . . }. For this example, the lamination hull S(∞,Λ) = S(4,Λ).

Broader context. Lamination hulls appear naturally in many applications, beyond modeling
interactions between agents [BKMN22a]. When Λ = Rd, the lamination hull is the convex hull of
the initial set, and computing convex hulls of finite subsets of Rd is a problem of great interest in
the field of computational geometry [Mat02]. With other choices of Λ, lamination hulls play a role
in the calculus of variations and the study of nonlinear partial differential equations underlying
incompressible porous media [CG07, DLSJ09, CFG11, HL21]. An important special case that is
important in the theory of PDE’s is when Λ is the cone of rank-one matrices in the vector space
of real matrices of a fixed size, and the corresponding lamination hull has been studied extensively
under the name rank-one convexity [Bal90, Š93].

In a paper that is most closely related to our work, Matoušek and Plecháč [MP98] investigate
geometric properties of lamination hulls for various Λ; one being the union of the coordinate axes.
The corresponding lamination hull is called “functionally separate convex hull.” They prove that
the evolution of the sets S(0,Λ) → S(1,Λ) → S(2,Λ) →· · · stabilizes in a finite number of steps.

In this paper, we will prove that the hull S(∞,Λ) is semi-algebraic for a specific Λ ⊂ Rd that
arises in the context of secure computation protocols (semi-algebraic sets are defined in Section 1.1).
Our Λ is the union of the orthogonal complements of the coordinate axes. For the d = 2 case,
our Λ coincides with the one considered by Matoušek and Plecháč [MP98]; beyond that, our
problem becomes significantly more challenging because the evolution of sets for our Λ need not
stabilize [BKMN23].

The general problem of computing lamination hulls for arbitrary Λ remains open and is a difficult
problem. Indeed, very recently computing descriptions of lamination hulls was posed as an open
problem at the Oberwolfach Workshop on “New Directions in Real Algebraic Geometry” [BKNV23,
Page 20].

Our techniques are completely new, leading to intermediate problems of independent interest
(solving systems of inequalities whose unknowns are convex subsets of Rd)), and we hope these new
techniques can help solve the Λ-lamination hull problems for other sets Λ of interest. Our result
answers the cryptographic question due to the connection established in [BKMN22a].

Connecting lamination hulls and the cryptographic application. We denote the cardi-
nality of a set S by card(S). Let X,Y, Z be finite sets, and let Λ∗ ⊂ Rcard(X)+card(Y )+card(Z) be
defined as follows.

Λ∗ := Rcard(X) × {0}card(Y ) × Rcard(Z)
⋃

{0}card(X) × Rcard(Y ) × Rcard(Z). (3)

2



Basu et al. [BKMN22a] proved that for any given function f : X × Y → RZ , there exists
(an effectively computable) point Q(f) ∈ Rcard(X)+card(Y )+card(Z), such that f has a c-bit secure
protocol if and only if Q(f) ∈ S(c,Λ∗), for some appropriately defined initial set S(0,Λ∗). Therefore,
to answer our cryptographic question, it suffices to test the membership of the query point Q(f) in
the lamination hull S(∞,Λ∗) defined in Equation 2.

Paper organization. Below, Section 1.1 summarizes our contributions and Section 1.2 presents
a high-level overview of our proof strategy for Theorem 1, our main technical result. Section 3 and
Section 4 contain the main technical details of our research. However, due to space constraints in
this draft submission, Section 1.3 and Section 1.4, respectively, present an abridged version of these
technical sections. The appendices have all the (remaining) technical results. Section 2 presents
some representative (long-standing) open questions in geometric crypto-complexity and geometry.
The presentation in the rest of the paper is entirely geometric.

1.1 Our Contributions

We prove the following technical result.

Theorem 1 (Answering Membership Queries in Lamination Hull). Fix arbitrary a, b ∈ {1, 2, . . . }
and c ∈ {0, 1, 2, . . . }, and define

Λ := Ra × {0}b × Rc
⋃

{0}a × Rb × Rc.

Consider any finite initial set of points S(0,Λ) ⊂ Ra+b+c and a query point Q ∈ Ra+b+c. Figure 3
presents a finite procedure determining the membership of Q ∈ S(∞,Λ).

The recursive construction of Equation 1 for this specific parameter Λ adds any convex-linear
combination of any two points P and P ′ if (and only if) their first a coordinates or the following b
coordinates are identical. Two corollaries of this technical theorem are immediate.

Corollary 1 (Secure Protocols for Functions). Given any randomized output function f : X×Y →
RZ , a finite procedure can determine if it has a secure protocol. If such a protocol exists, it constructs
one with the minimum communication complexity. Otherwise, it presents an obstruction to security.

The time complexity of our membership algorithm is an elementary recursive function of
card(X) + card(Y ) + card(Z); optimizing it isn’t the focus of this work and is left as an open
research direction. In the cryptographic application, as is the convention in that line of work, the
input-output sets have constant size, so our procedure’s running time is (an enormous) constant.

Proof of Corollary 1. Consider a two-party randomized output function f : X × Y → RZ . If f
has Kilian’s obstruction [Kil00], then f does not have a secure protocol. Henceforth, assume that
f does not have Kilian’s obstruction. In this case, Basu et al. [BKMN22a] constructed a point
Q(f) ∈ Ra+b+c [BKMN22a, Equation 7], where a = card(X), b = card(Y ), and c = card(Z), and
an initial set S(0,Λ) ⊆ Ra+b+c [BKMN22a, Equation 5], where Λ := Ra × {0}b × Rc

⋃
{0}a ×

Rb × Rc. They proved that f has a secure protocol with communication complexity (at most)
c ∈ {0, 1, 2, . . . }, if (and only if) Q(f) ∈ S(c,Λ). Therefore, f has a secure protocol if (and only
if) Q(f) ∈ S(∞,Λ) :=

⋃
i⩾0
S(i,Λ); Theorem 1 gives a procedure to test this membership. Consider

the case when the query point Q(f) is outside the lamination hull. In that case, there is no secure
protocol, and the description of the lamination hull and the query point certifies the obstruction to

3



security. On the other hand, if Q(f) is inside the lamination hull, then iterate over c ∈ {0, 1, 2, . . . }
and identify the minimum communication complexity protocol for f using [BKMN22a, Theorem
2].

A subset S ⊆ Rd is a semi-algebraic set if S is a finite union of sets defined by a finite number
of polynomial equations and inequalities (also called basic semi-algebraic sets).

Corollary 2 (Lamination Hull is Semi-algebraic). Fix arbitrary a, b ∈ {1, 2, . . . }, c ∈ {0, 1, 2, . . . },
and define Λ := Ra×{0}b×Rc

⋃
{0}a×Rb×Rc. For any finite initial set of points S(0,Λ) ⊂ Ra+b+c,

the lamination hull S(∞,Λ) is a semi-algebraic set.

Computing the lamination hull for general Λ is an open problem; in particular, it was also open
for the specific Λ considered in Corollary 2.

Proof of Corollary 2. Each procedure step in Figure 3 is either computing a polynomial or branch-
ing according to the sign of a previously calculated polynomial. This procedure is a computation
tree testing membership in the lamination hull. Since the tree is finite, each path to a leaf node
corresponds to a basic semi-algebraic set. There are only finitely many leaves, so the lamination
hull is a union of finitely many basic semi-algebraic sets. Therefore, it is semi-algebraic.

Summary of our technical contributions. We introduce far-reaching generalizations of tech-
niques to solve systems of linear inequalities over the semi-ring of arbitrary convex subsets. Our
cryptographic applications need an accurate estimate of the solutions to these systems. Existing
techniques significantly overestimate their solutions, which would lead to mistakenly identifying
insecure functions as secure—a catastrophic blunder.

For example, when solutions are restricted to polytopes,1 the cancellation law for the semi-ring
of polytopes can recover the smallest solution for a system with one unknown.2 However, solutions
to some systems modeling our application scenarios are not polytopes [BKMN23]; apriori, they
need not even be tame (like semi-algebraic sets). Iterative techniques in formal languages (such as
those in [KS86, SS78]) have investigated the evolution of recursively constructed systems in the
limit. Taking the limit introduces spurious points in the solution, which, again, overestimates the
solutions.

We introduce a new set operator to address these shortcomings: the positive geometric join of
two sets. This operator allows for accurately and succinctly representing the smallest solution of
a system of inequalities (in several unknowns) and reasoning about them. We develop a Gaussian
elimination-inspired algebraic technique to incrementally simplify the system of inequalities while
preserving their smallest solution. After performing these simplifications, the algebraic representa-
tion of the smallest solution becomes obvious. In our applications, these solutions have a special
structure; they are convex sets expressible as the finite unions of the relative interiors of polytopes
(see Figure 16 for examples), which we call hemihedra.

1.2 Proof Overview of Theorem 1

This presentation below is a (very) high-level overview of the technical ingredients of proving
Theorem 1; use Figure 2 for reference. To begin, we identify finitely many grid points G ⊆ Ra×Rb.

1A polytope is the convex hull of a finite number of points [Grü03].
2The cancellation law for polytopes states that for any two polytopes X and A and 0 < ρ < 1, X ⊇ ρ·X+(1−ρ)·A,

if and only if X ⊇ A. [jh].

4



Define:
Formal System of Inequalities

(Section 3.1)

Interpret using
Evaluation Maps
(Section 3.2)

Characterize:
Smallest Solution of a
System of Inequalities

(Section 3.3)
Finite

Procedure

Algebra

Compute:
Lamination Hull

Reconstruction from
a finitely many Restrictions

(Section 4.2)

(Infinitely-long)
Iterative Construction guided
by a System of Inequalities

(Section 4.3)

Geometry

Answering
Cryptographic

Question

[BKMN22a]

Operational

Realization
(Section 3.4)

Figure 2: High-level overview of our work. [BKMN22a] reduced the cryptographic question to a
specific lamination hull computation; the rest is this work’s contribution.

Instead of reconstructing the entire lamination hull S(∞,Λ), our strategy is to compute the restriction
of the lamination hull to these grid points. For any grid point g ∈ G, define the restriction

S(∞,Λ)
∣∣∣
g
:=
{
(g, w) ∈ S(∞,Λ)

}
. (4)

We prove a structural lemma (Lemma 3) to determine the membership Q ∈ S(∞,Λ) from these
finitely many restrictions {

S(∞,Λ)
∣∣∣
g
: g ∈ G

}
. (5)

First, we prove that these restrictions S(∞,Λ)
∣∣
g
are convex sets, where g ∈ G. Next, to compute

them, we introduce unknowns Xg for each grid point g ∈ G, where each unknown represents a
convex set in Ra+b+c. Next, Section 4.3 defines a system I of linear inequalities involving these
unknowns using the natural containment relationship among convex sets. For example, the linear
inequality

Xg ⩾
1

3
·Xg′ +

2

3
·A

represents the semantics that “the convex set Xg contains the Minkowski sum of the convex set
1
3 · Xg′ and the polytope 2

3 · A.” Here, Xg and Xg′ are unknowns representing convex subsets,

and A is a polytope (to be thought of as a constant). Suppose
(
X

(∗)
g : g ∈ G

)
is the smallest

simultaneous solution to this system I of inequalities. Then, we prove that S(∞,Λ)
∣∣
g
= X

(∗)
g , for

all g ∈ G, see Lemma 4.
Finally, we present a procedure for finding the smallest simultaneous solution of any system

of inequalities – the technical workhorse of our work. We present a Gaussian elimination-inspired
algorithm that outputs an algebraic expression for the smallest solution of any system of inequalities.
These smallest solutions are certainly not polytopes (see the example in Appendix K). In fact, at
the outset, it is unclear that the smallest solutions should even be semi-algebraic. What type of
convex sets are they?

To this end, we introduce positive geometric join, an operation on two sets A and B that
contains all the relative interiors of line segments ab, where a ∈ A and b ∈ B. For finite A and

5



B, which is the case in the cryptographic application, the smallest solution is expressible as the
finite unions of the relative interiors of polytopes; we call such a set hemihedron. In particular,
hemihedral sets are semi-algebraic.

1. Determine the grid points G ⊆ Ra+b from the initial set of points S(0,Λ) ⊆ Ra+b+c using
Equation 20.

2. Construct the appropriate system of linear inequalities I with unknowns {Xg : g ∈ G} as
presented in Figure 8.

3. Theorem 2 computes the smallest simultaneous solution
(
X

(∗)
g : g ∈ G

)
for the linear system

of inequalities I using the procedure in Figure 4.

4. Define the restrictions S(∞,Λ)
∣∣
g
:= X

(∗)
g for every grid point g ∈ G.

5. The structural lemma (Lemma 3) determines the membership Q ∈ S(∞,Λ) from the restrictions{
S(∞,Λ)

∣∣
g
: g ∈ G

}
.

Figure 3: Algorithm for determining the membership of Q in the lamination hull S(∞,Λ).

Appendix J estimates the run-time of the algorithm in Figure 3. In particular, Equation 43
presents the running time to answer the cryptographic question.

1.3 Abridged Version: Solving System of Inequalities

This section is an abridged version of Section 3, which develops the theory underlying the procedure
to find the “smallest simultaneous solutions to a system of inequalities.”

Let us begin with an example to motivate the general research questions and introduce the
technical challenges. Consider two arbitrary sets P,Q ⊆ Rd (interpret them as constants) and an
unknown X representing a convex set in Rd. We are interested in enforcing two constraints:

1. X contains P , and
2. X contains the midpoint of every segment with one endpoint in X and the other in Q.

The first constraint is encoded as “X ⩾ P” and the second constraint is encoded as “X ⩾
1
2 · X + 1

2 · Q.” Here · denotes the scalar multiplication operator, + denotes the Minkowski sum
operator, and ⩾ denotes the containment relation. Together, we express them as the following
inequality:

X ⩾ P ⊕
(
1

2
·X +

1

2
·Q
)
, (6)

where ⊕ denotes the union operator. In this work, we will call it a linear inequality over {X,P,Q}.
We say that X is a solution to the inequality above if the set X satisfies both constraints above.

We aim to identify the smallest solution (by the containment relation); how do we define it? A
crucial observation is that if X and X ′ are both solutions to the inequality, their intersection is
also a solution. It follows that the smallest solution X∗ is the intersection of all solutions of this
inequality (see Equation 14).

In general, if the right-hand side of the inequality does not depend on the unknown, then the
smallest solution is the convex hull of the right-hand side. How do we determine the smallest
solution of an inequality whose right-hand side depends on the unknown? Observe that any con-
vex set containing P and Q is undoubtedly a solution. Equivalently, any convex set containing
conv(P ⊕ Q) is a solution, where conv(·) represents the convex hull operator. Thus, it is natural
to wonder: is conv(P ⊕Q) the smallest solution of the inequality? As will be illustrated below,
conv(P ⊕Q) is not the smallest solution.

6



The smallest solution of even simple systems may not admit easy descriptions.
To introduce the subtleties, let us investigate the smallest solution of this inequality
for specific instantiations of P and Q. Suppose P = {A} and Q = {B} are
singleton sets. The smallest solution is the union of (1) the singleton set {A} and
(2) the relative interior of the line segment AB. This set is illustrated on the right.

A B

The smallest solution is not a closed set even in this elementary set-
ting. Among all closed sets, the smallest solution is indeed conv(P ⊕Q)
when P and Q are closed as well; this is the well-known cancellation law
for closed convex sets [jh]. The challenge is to find the smallest solution
over all convex subsets of Rd – they need not be closed. It becomes even
more challenging to characterize for more complicated instantiations of
P and Q; for example, consider P and Q illustrated on the right.
Here, P is the red ellipse and Q is the blue ellipse. The smallest solution
for this instantiation is their convex hull, except for the dashed part of
Q’s boundary. Worse still, P and Q themselves may not be closed.

P

Q

To succinctly represent the smallest solution, we introduce our positive geometric join operator:

P
o
⋆Q :=

{
λ ·A+ (1− λ) ·B : A ∈ P,B ∈ Q,λ ∈ (0, 1)

}
.

In particular, if P and Q are semi-algebraic, then P
o
⋆Q is also semi-algebraic via effective quantifier

elimination. Using our new operator, the smallest solution is succinctly represented by

X∗ = conv
(
P ⊕ P

o
⋆Q

)
;

this is our new cancellation law over convex sets. To summarize, the smallest solution of our original
inequality X ⩾ P ⊕

(
1
2 ·X + 1

2 ·Q
)
is the smallest solution of the following new inequality:

X ⩾ P ⊕ P o
⋆Q. (7)

Although we eliminated the unknown from the right-hand side of the new inequality, it is no longer
linear over {P,Q}, a pyrrhic victory. When solving systems with more than one unknown, the
smallest solution of X may need to be “substituted” into other constraints, and, after substitution,
those constraints won’t remain linear any longer.

To this end, we investigate a generalization where the right-hand side of the inequalities in
a system are polynomials, not just linear. We have seen above that although the initial system
has linear inequalities, the intermediate systems may involve polynomial inequalities (including

the smallest solution). For example, P is a linear monomial and P
o
⋆Q is a degree-2 monomial,

and their sum is a polynomial. At this abstraction, we manipulate and simplify these polynomial
systems while they continue to be polynomial systems; refer to Section 3.1 for a formal definition.
We extend the concepts of (1) smallest solution, (2) cancellation law, and (3) substitution to
polynomial inequalities.

System of inequalities. In general, we consider a system of inequalities involving constants
P1, . . . , Pt ⊆ Rd and unknowns X1, . . . , Xn ⊆ Rd. The j-th inequality represents the constraints
for the unknown Xj , for j ∈ {1, . . . , n}. The right-hand sides of these inequalities have a spe-
cialized form, which we call polynomials over the set of constants and unknowns. So, a system

of inequalities is represented by
{
Xj ⩾ φj(Ω)

}
j∈{1,...,n}

, where φj(Ω) are polynomials over Ω =

{X1, . . . , Xn, P1, . . . , Pt}. Now, our aim is to find the smallest simultaneous solution (X∗1 , . . . , X
∗
n).

7



Again, each Xj will denote a convex set in Rd, and the coordinate-wise intersection of all possible
solutions (X1, . . . , Xn) will represent the smallest solution. Even with two unknowns, characterizing
the smallest solution becomes unwieldy due to inter-dependencies among the constraints through
the unknowns; as illustrated by the working example in Section 3.

Remark 1 (Are we in the Tropics?). What we are referring to as polynomials in this paper can be
interpreted as polynomials (with monomials having fractional exponents adding up to 1) in tropical
algebraic geometry. Determining the smallest solution described above bears only a superficial
resemblance to tropical linear programming (see, for instance, [Jos21, Chapter 8]). While the
connection with tropical algebraic geometry is intriguing and worth pursuing further, tropical linear
programming does not solve our problem. The set-theoretic minimizer for our problem does not
correspond to a minimizer of a tropical linear function.

Solving a system of inequalities: Gaussian elimination. Suppose we start with a system I
over n unknowns. Our solution strategy constructs a new system I ′ where the unknown X1 does
not appear on the right-hand side of the inequalities; however, I and I ′ have the identical smallest
solution. We emphasize that their set of solutions may be different; only their smallest solutions are
identical. Now, one can bootstrap from this procedure; it can be iterated to sequentially eliminate
the unknowns X1, . . . , Xn from the right-hand side of the constraints while preserving the smallest
solution. Once all the unknowns are eliminated from the right-hand side, the final system of

inequalities will look like
{
Xj ⩾ ψj(P1, . . . , Pt)

}
j∈{1,...,n}

; here ψjs are polynomials. Therefore,

with no unknowns on the right-hand side, there are no inter-dependencies among the constraints,
and the smallest solution is easy to compute: X∗j = conv( ψj(P1, . . . , Pt) ), for j ∈ {1, . . . , n}.
This formula for the smallest solution is independent of the specific instantiation of the constants
P1, . . . , Pt. Figure 4 presents our Gaussian-elimination inspired procedure.

If the constants are singleton sets, which is the case in systems arising from our cryptographic
application, X∗j is a finite union of the relative interiors of polytopes;3 we call such sets hemihedra.
To see this, note that every monomial is the relative interior of some polytope for such constants.
Next, the polynomial ψj(P1, . . . , Pt) is a finite union of the relative interiors of polytopes. As a
result, its convex hull is also a finite union of the relative interior of polytopes.

In the sequel, we outline our procedure to eliminateX1 from the right-hand side of all inequalities
– the last cog in our technical machinery. For intuition, consider the constraint being X1 ⩾
P ⊕

(
1
2 ·X1 +

1
2 ·Q

)
for the discussion below; our procedures work for general polynomials. Here

P and Q are sets that may depend on other unknowns X2, . . . , Xn and constants P1, . . . , Pt. We
forego explicitly showing these dependencies to facilitate the presentation below.

1. Rearrangement (Lemma D.1): First, we standardize X1’s inequality. In our context, we prove

that our inequality X1 ⩾ P ⊕
(
1
2 ·X1 +

1
2 ·Q

)
is equivalent to the inequality X1 ⩾ P ⊕ X1

o
⋆Q.

This inequality continues to be a polynomial inequality. Update the old inequality to this new
one; this change preserves the entire solution space.

2. Cancellation (Lemma D.2): Next, in this step, we will replace the previous inequality by X1 ⩾
P ⊕ P

o
⋆Q. We prove that this updated inequality preserves the smallest solution, not necessarily

the entire solution space. After this step, the right-hand side of X1’s inequality does not have
X1; we will build on this progress next. This cancellation extends to polynomial inequalities.

3. Substitution: After this, our plan is to substitute “P ⊕ P
o
⋆Q” for X1, where ever X1 appears

on the right-hand side of Xj ’s inequality, for j ∈ {2 . . . , n}. If we successfully execute it, then

3We use the convention that the relative interior of a singleton set is itself.

8



X1 will be eliminated from the right-hand side of all inequalities in our system, and we will be
done.
However, defining this substitution is nuanced. Consider the following analogy. Suppose we have
a polynomial f(x, y) in two unknowns and we want to substitute y = g(x), another polynomial.
Then, simply erasing every formal symbol “y” in f(x, y) and pasting the polynomial “g(x)” in
its place does not give a polynomial in x; it needs to be expanded appropriately to arrive at
the final polynomial.4 In our case, the algebra has four operators ·, +, ⊕, and o

⋆ ; Equation 18
defines how to perform this expansion carefully.

Operational realization. We give an iterative (possibly infinite) procedure to identify the small-
est solution. This alternative characterization of the smallest solution will help applications apply
these general research techniques to their research context, as illustrated in Section 1.4. Let us
revisit the original inequality X ⩾ P ⊕

(
1
2 ·X + 1

2 ·Q
)
.

We initialize X(0) = ∅. Suppose at time i ∈ {0, 1, . . . }, we already have some convex set X(i).
We can substitute this set on the right-hand side and compute P ⊕

(
1
2 ·X

(i) + 1
2 ·Q

)
, and define

X(i+1) as its convex hull. This produces a nested sequence X(i) ⊆ X(i+1) of convex sets and we
define its “limit” X(∞) :=

⋃
i⩾0X

(i). We prove that X(∞) is the smallest solution of the inequality;

in fact, X(∞) is the smallest solution containing X(0) (for arbitrary initialization).
For our example, we will haveX(0) = ∅,X(1) = P , andX(i) = conv

(
P ⊕

(
1

2i−1 · P +
(
1− 1

2i−1

)
·Q
) )

,

for i ∈ {2, 3, . . . }. As i→∞, X(i) grows to the smallest solution P ⊕ P o
⋆Q.

Remark 2. For intuition, X(∞) builds the smallest solution from the inside, growing every iteration
to its limit. This perspective will be helpful in the application of our theory. The previous “inter-
section of all solutions” characterization of the smallest solution whittles away from the outside,
and it is more amenable to algebraic approaches.

This iterative method generalizes to a system of linear inequalities over several unknowns. Ini-

tialize (X
(0)
1 , . . . , X

(0)
n ) := (∅, . . . , ∅). After that, defineX(i+1)

j = conv
(
φj(X

(i)
1 , . . . X

(i)
n , P1, . . . , Pt)

)
,

for j ∈ {1, . . . , n} and i ∈ {0, 1, . . . }. The smallest solution X
(∞)
j :=

⋃
i⩾0X

(i)
j , for each

j ∈ {1, . . . , n}. The evolution of these nested sets is significantly complicated when n > 1 (see
the evolution of these sets for our working example in Appendix A.3). Section 3.4 presents this
operational realization perspective on the smallest solution.

We want to emphasize a unique feature of this evolution when n > 1. The algebraic complexity

of describing the set X
(i)
j can increase with i; for example, it can be a polytope with i vertices. Yet,

we prove that the smallest solutionX
(∞)
j has a finite semi-algebraic complexity. In our cryptographic

application, this feature allows us to determine whether a function has a secure protocol in constant
time, independent of its communication complexity. The time to recover the secure protocol with
minimum communication complexity, if there is one, depends on its communication complexity.

1.4 Abridged version: Lamination Hull Computation

This section is an abridged version of Section 4, which presents a finite algorithm to compute our
specific lamination hull.

4For example, substituting y = (x + 1) in the polynomial x + y2 gives x + (x + 1)2, which is not a polynomial.
However, it is equivalent to the polynomial 2x2 + 2x+ 1 after expansion.

9



Lamination hull definition. We start with a finite initial set S(0) ⊂ Rd, where d = a + b + c,
a, b ∈ {1, 2, . . . }, and c ∈ {0, 1, . . . }. For i ∈ {0, 1, . . . }, the set S(i+1) contains the line segment
PP ′, for P, P ′ ∈ S(i) whose first a coordinates or the next b coordinates are identical. Our objective
is to provide a finite semi-algebraic description of the S(0)’s lamination hull S(∞) :=

⋃
i⩾0 S(i).

Reduction to computing a few restrictions. First, we construct a finite set of grid points

G ⊂ Ra+b such that given the restrictions
{
S(∞)

∣∣
g
: g ∈ G

}
, we present an algorithm to reconstruct

the entire lamination hull S(∞). Consider the following example illustrating our reconstruction
procedure. Suppose a = b = c = 1 and consider

S(0) = { (0, 0, 0) , (0, 1, 0) , (1, 0, 0) , (1, 1, 1) } .

Note that S(∞) = S(2) and the following identity holds for any restriction:

S(∞)
∣∣∣
x,y

= (1− x) · S(∞)
∣∣∣
0,y

+ x · S(∞)
∣∣∣
1,y

= (1− x) ·
(
(1− y) · S(∞)

∣∣∣
0,0

+ y · S(∞)
∣∣∣
0,1

)
+ x ·

(
(1− y) S(∞)

∣∣∣
1,0

+ y · S(∞)
∣∣∣
1,1

)
= (1− x)(1− y) · S(∞)

∣∣∣
0,0

+ (1− x)y · S(∞)
∣∣∣
0,1

+ x(1− y) · S(∞)
∣∣∣
1,0

+ xy · S(∞)
∣∣∣
1,1
.

As a result, we have S(∞) = { (x, y, xy) : x, y ∈ [0, 1] } . The
lamination hull is illustrated on the right. Our reconstruction
procedure generalizes this principle. It partitions the lamina-
tion hull into regions where the restrictions of the hull behave
“similarly.” The regions are products of polytopes, generalizing
the rectangle [0, 1]2 above. It reconstructs any restriction of the
hull within a region from the restrictions of the hull at the grid
points on the region’s boundary using a strategy akin to the one
presented above. Identifying the grid points is non-trivial when
a ⩾ 2 or b ⩾ 2; Section 4 presents this construction and Figure 7
presents a non-trivial example for a = 2.

Computing the restrictions to grid points. We will construct a system of linear inequalities,
where the constraints are of the form “unknown ⩾ a finite union of linear constraints.” Figure 8
presents this procedure, and the sequel presents its underlying intuition. Our system will have an
unknown Xg for every grid point g ∈ G. The smallest solution of this system will give us S(∞)

∣∣
g
,

which will complete our S(∞) construction.
Recall that the lamination hull is defined using a recursive construction that produces nested

sets S(i) ⊆ Rd, for i ∈ {0, 1, . . . }. We will explain how we add constraints to our system of equations.
Consider grid points g, g1, . . . , g5 ∈ G with identical first a coordinates.

Suppose g is the midpoint of two grid points g1, g2 ∈ G (refer to the figure
on the right for this presentation). Then, for i ∈ {0, 1, . . . }, it is evident
that

S(i+1)
∣∣∣
g
will contain the set

1

2
· S(i)

∣∣∣
g1

+
1

2
· S(i)

∣∣∣
g2
.

As a result, the following constraint must hold.

S(∞)
∣∣∣
g
⩾

1

2
· S(∞)

∣∣∣
g2

+
1

2
· S(∞)

∣∣∣
g2
.

g

g1

g2g3

g4

g5

10



We will add the constraint “Xg ⩾ 1
2 ·Xg1 +

1
2 ·Xg2” to our system of inequalities. Next, note

that g is also the barycenter of g3, g4, and g5. We can reason that, for i ∈ {0, 1, . . . },

S(i+2)
∣∣∣
g
will contain the set

1

3
· S(i)

∣∣∣
g3

+
1

3
· S(i)

∣∣∣
g4

+
1

3
· S(i)

∣∣∣
g5
.

We emphasize that we are considering S(i+2)
∣∣
g
, not S(i+1)

∣∣
g
; because the recursive construction of

S(i) only adds the line segment joining two points. Still, it will be true that

S(∞)
∣∣∣
g
⩾

1

3
· S(∞)

∣∣∣
g3

+
1

3
· S(∞)

∣∣∣
g4

+
1

3
· S(∞)

∣∣∣
g5
.

So, we add the constraint “Xg ⩾ 1
3 ·Xg3 +

1
3 ·Xg4 +

1
3 ·Xg5” to our system of inequalities.5

More generally, if g is in the relative interior of the simplex formed by k grid points, we will
consider i + ⌈log2(k)⌉. By Carathéodory’s theorem, we need to consider k ⩽ max{a + 1, b + 1} ⩽
d + 1, a finite number nevertheless. All such spatial constraints are added to our system of linear
inequalities constructed in Figure 8.

Finally, we have some additional base case constraints in the system of Figure 8. For every
P ∈ S(0), note that S(0)

∣∣
g
⩾ {P}, where g is the first a + b coordinates of P . Thus, we add

“Xg ⩾ {P}” to our system.

To conclude, Lemma 4 proves that
(
S(∞)

∣∣
g

)
g∈G

is the smallest solution of our system. To see

this, consider the iterated method of constructing the smallest solution for this system introduced

by the operational realization perspective. It produces sets X
(i)
g , for i ∈ {0, 1, . . . } and g ∈ G. The

sets X
(∞)
g are identical to the sets S(∞)

∣∣
g
.6 As a result,

(
S(∞)

∣∣
g

)
g∈G

is the smallest solution of

the system of linear inequalities we constructed.

2 Representative Open Problems

Basu et al. [BKMN22a] introduced a geometric framework to determine the communication com-
plexity of secure computation. Similar crypto-inspired complexity questions have engendered an
incredible motivation and opportunity to create new foundational mathematics. Lamination hulls
seem to be the right abstraction for capturing the cadence of information exchange between mul-
tiple agents; potentially, more generally, in the broader mechanism design literature (as evidenced
by the recent work [LSZ23]).

The current Basu et al.’s geometric framework [BKMN22a] models perfectly semi-honest secure
two-party protocols. Moving beyond perfect security, an immediate open problem is this question’s
statistical analog: Is there a secure protocol for f with communication complexity c and ⩽ ε
insecurity?

5To clarify, the two constraints illustrated here are expressed as one inequality below:

Xg ⩾

(
1

2
·Xg1 +

1

2
·Xg2

)
⊕

(
1

3
·Xg3 +

1

3
·Xg4 +

1

3
·Xg5

)
.

6We clarify that X
(i)
g is not identical to S(i)

∣∣∣
g
. For example, the sets X

(i)
g are convex; however, S(i)

∣∣∣
g
need not be

convex. Still, we prove that the set S(i)
∣∣∣
g
is sandwiched between X

(i′)
g and X

(i′′)
g , for appropriate i′ and i′′. Thus,

as i→∞, X
(∞)
g becomes identical to S(∞)

∣∣∣
g
.

11



Going by the state-of-the-art in deterministic secure computation [MPR09], it is likely that one
cannot always increase communication to dial down the insecurity. In that case, can we determine
whether f has a secure protocol with ⩽ ε insecurity? Answering this question will require extending
our results to semi-algebraic initial sets, not just finite ones. Are there randomized functions that
don’t have perfectly secure protocols but statistically secure ones? There are no such deterministic
functions [MPR09].

In the multiparty setting, the secure computability of even deterministic functions is not well-
understood, c.f. [CI01]. Essentially, reduction to the two-party case and partition arguments are
the only known techniques in this line of work. How can we extend the [BKMN22a] framework to
the multiparty setting where parties have secure point-to-point communication channels? Finally,
can we go beyond semi-honest security to, say, standalone security?

Beyond these, there are foundational open problems in geometry related to lamination hull
computation. For example, computing rank-one convex hulls, even proving their semi-algebraicity,
is an open problem. This problem corresponds to the lamination hull for Λ that is the code of
rank-one matrices of fixed size. It is an important problem arising in the study of non-linear
PDE’s [MP98]. Our new methods may potentially be useful in tackling this problem.

The mathematical tools we build – namely, computing the smallest solution of a system of
inequalities in the semi-ring of convex subsets of Rd – also have connections to tropical algebraic
geometry. The inequalities themselves can be interpreted in a certain tropical algebra. It would be
an interesting mathematical problem to pursue this connection further.

3 Solving System of Linear Inequalities over the Semi-Ring of
Convex Sets

Overview. This section will introduce systems of inequalities involving formal symbols (see Sec-
tion 3.1). These inequalities will be interpreted using an evaluation map introduced in Section 3.2;
the inequalities will correspond to containment relationships between subsets of Rd under this map.
Under any evaluation map, our objective will be to identify the smallest solutions of a system –
smallest w.r.t. the containment relationship among sets produced by that evaluation map. To
that end, Section 3.3 will present a general Gaussian elimination-inspired algebraic technique to
formally transform a system of inequalities while preserving its smallest solution under any evalu-
ation map. After completing the transformation, the smallest solution will be easily characterized.
Finally, Section 3.4 will present an operational realization of the smallest solution targeting appli-
cations, including the ones in mathematics and cryptography considered in this work. The entire
presentation will include a working example to illustrate the abstractions concretely.

The formal algebra and the evaluation maps will involve four set operations. The first three
are the standard scalar multiplication, Minkowski sum, and union operators. The fourth one,
namely, positive geometric join, defined in Equation 12, is our work’s contribution, including the
conceptualization, definition, and recognition of its central role in solving this problem. This
operator is necessary for succinctly and accurately capturing the smallest solution, even if the
system itself could be specified without this operation. Furthermore, this operation facilitates
reasoning about the properties of these systems during transformations.

12



3.1 Notation: System of Inequalities

The set of all formal symbols is Ω := {X1, . . . , Xn, P1, . . . , Pt}. Here X1, X2, . . . , Xn are unknowns
and P1, P2, . . . , Pt are constants. The set of all convex linear combinations of Ω is denoted by:

CL(Ω) :=

{ ∑
ω∈Ω

λω · ω : for ω ∈ Ω, λω ⩾ 0 and
∑
ω∈Ω

λω = 1

}
. (8)

The “+” symbol above will represent the Minkowski sum operator, and the “·” symbol will represent
the scaling operator.

A monomial M over CL(Ω) is E1
o
⋆E2

o
⋆ · · · o

⋆Ek, where k ∈ {1, 2, . . . } and E1, E2, . . . , Ek ∈
CL(Ω). The “

o
⋆ ” symbol will represent the positive geometric join operator (see Equation 12

below). Furthermore, the set of elements supp(M) := {E1, E2, . . . , Ek} is the monomial M ’s
support, and its degree deg(M) := k.

A polynomial φ over CL(Ω) is either ∅ or M1 ⊕M2 ⊕· · ·Mk, for k ∈ {1, 2, . . . } and monomials
M1,M2, . . . ,Mk over CL(Ω). Here, the “⊕” symbol will represent the union operator. The set
of all monomials of a polynomial mono(φ) := {M1,M2, . . . ,Mk}. For the φ = ∅ polynomial,
mono(φ) := ∅. For example, the following identity holds for any polynomial φ.

φ = ⊕
M∈mono(φ)

o
⋆

E∈supp(M)
E.

A system of inequalities is a collection {Xi ⩾ φi}ni=1, where φ1, φ2, . . . , φn are polynomials over
CL(Ω). The “⩾” symbol will represent the set containment relation.

Working example. We will use a concrete example to illustrate the concepts (as they appear)
in this section. Consider n = 2 and t = 4. In this case, the set of formal symbols is Ω =
{X1, X2, P1, P2, P3, P4}. Consider the following system of equations.

X1 ⩾ P1 ⊕ X1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
X2 ⩾ P2 ⊕ X2

o
⋆

(
1

2
·X1 +

1

2
· P4

)
The semantics of these equations and their properties are investigated under an “evaluation map”
introduced in Section 3.2 below; it will assign subsets of Rd to these formal objects.

3.2 Evaluation Map

We will assign subsets of Rd, where d ∈ {1, 2, . . . }, to the formal symbols in Ω. Under this
assignment, the sequel defines how to evaluate polynomials. To begin, for two sets A,B ⊆ Rd and
0 < ρ ⩽ 1, define the following set operators.

Scaling: ρ ·A := {ρ · x : x ∈ A} (9)

Minkowski sum: A+B := {a+ b : a ∈ A, b ∈ B} (10)

Union: A⊕B := {x : x ∈ A or x ∈ B} (11)

Positive Geometric Join: A
o
⋆B := {λ · a+ (1− λ) · b : 0 < λ < 1, a ∈ A, b ∈ B} (12)

13



Here the ·, +, and ⊕ operations denote the standard scaling, Minkowski sum, and union operations.
The

o
⋆ is a specialized operation introduced by our work that represents the set of all points in the

relative interior of the line segment joining some points a ∈ A and b ∈ B.

Remark 3 (Geometric Join). The standard geometric join

A ⋆ B := {λ · a+ (1− λ) · b : 0 ⩽ λ ⩽ 1, a ∈ A, b ∈ B}

is homomorphic to the join A⋆B [MBZ+03, 4.2.4 Proposition]. Note that, in contrast, our definition

of
o
⋆ restricts to 0 < λ < 1, and, hence, the name positive geometric join. The geometric join, in

fact, can be expressed as A ⋆ B = A ⊕ A
o
⋆B ⊕ B.

Proposition 1 (Associativity of
o
⋆ ). For any A,B,C ⊆ Rd, (A

o
⋆B)

o
⋆C = A

o
⋆ (B

o
⋆C).

Lemma C.1 summarizes several properties of the four set operations above; one among them is
this associativity of

o
⋆ , appearing as Equation 31.

The relation A ⩾ B holds if and only if B ⊆ A. Let Cd(R) be the set of all convex subsets
of Rd. For example, ∅ ∈ Cd(R), any polytope in Rd is in Cd(R), and the relative interiors of such
polytopes are also in Cd(R). Given any A ⊆ Rd, its convex hull, represented by conv(A) ∈ Cd(R),
is the smallest convex set containing it.

We also define an equivalence relation on the set of subsets of Rd. For A,B ⊆ Rd, we denote
A ∼ B holds if (and only if) conv(A) = conv(B).

Consider X1,X2, . . . ,Xn ∈ Cd(R) and arbitrary P1,P2, . . . ,Pt ⊆ Rd. We will assign Xi = Xi,
for i ∈ {1, 2, . . . , n}, and Pj = Pj , for j ∈ {1, 2, . . . , t}. Under such an assignment, we will define
our evaluation map.

Definition 1 (Evaluation Map). The evaluation of a polynomial φ over CL(Ω) with an assignment
X,P is

eval (φ ; X,P) := ⊕
M∈mono(φ)

o
⋆

E∈supp(M)
eval(E ; X,P),

where E = λ1 · X1 + · · · + λn · Xn + λn+1 · P1 + · · · + λn+t · Pt ∈ CL(Ω) and eval(E ; X,P) :=

(
∑n

i=1 λi ·Xi)+
(∑t

j=1 λn+j ·Pj

)
. We clarify that here, ‘

∑
’ represents the Minkowski summation.

Specifically, eval(∅ ; X,P) := ∅.

Fix an assignment P for the constants. Then, X = (X1, . . . ,Xn) ∈ Cd(R)n is a solution of
a system I of inequalities {Xi ⩾ φi}ni=1, if Xi ⩾ eval(φi;X,P), for all i ∈ {1, 2, . . . , n}. Let
sol(I;P) ⊆ Cd(R)n denote the set of all solutions of this system I and constant assignment P.

Proposition 2. sol(I;P) ̸= ∅.

Proof. Note that X1 = · · · = Xn = U , where U is the convex hull of P1⊕· · ·⊕Pt, is a solution. This
is because U contains the evaluation of any element in CL(Ω) with assignments that are subsets of
U . After that, the containment of monomials and polynomials is also immediate.

For X,Y ∈ Cd(R)n, their intersection defined below is also an element of Cd(R)n.

X ∩Y := (X1 ∩Y1,X2 ∩Y2, . . . ,Xn ∩Yn) . (13)

Proposition 3. If X,Y ∈ sol(I;P), then X ∩Y ∈ sol(I;P).

This proposition extends to the intersection of an arbitrary number of solutions (possibly in-
finitely many).

14



Proposition 4. Consider an index set Z and solutions X(ζ) ∈ sol(I;P), for every ζ ∈ Z. Then,⋂
ζ∈Z

X(ζ) ∈ sol(I;P).

Proof. For each ζ ∈ Z, and i ∈ {1, 2, . . . , n}, we have:

X
(ζ)
i ⩾ eval

(
φi;X

(ζ),P
)

(Since X(ζ) ∈ sol(I;P))

⩾ eval

φi;
⋂
ζ∈Z

X(ζ),P

 . (By Lemma D.5 and X(ζ) ⩾
⋂
ζ∈Z

X(ζ))

Thus, we conclude that
⋂
ζ∈Z

X
(ζ)
i ⩾ eval

(
φi;

⋂
ζ∈Z

X(ζ),P

)
. Therefore, we have the following for

every i ∈ {1, 2, . . . , n}: ⋂
ζ∈Z

X(ζ)


i

=
⋂
ζ∈Z

X
(ζ)
i ⩾ eval

φi;
⋂
ζ∈Z

X(ζ),P

 ,

which implies that
⋂
ζ∈Z

X(ζ) ∈ sol(I;P).

This proposition implies that the intersection of all solutions in sol(I;P) is also an element of
sol(I;P) – the smallest solution of I.

ss(I;P) :=
⋂

X∈sol(I;P)

X. (14)

Given a system I and assignments of the constants P = (P1, . . . ,Pt), we aim to identify the smallest
solution of this system.

Intuition behind the
o
⋆ operation. First, let us elaborate on the evaluation of an expression

A
o
⋆B, where A,B ⊆ Rd. When A and B are singleton sets, A

o
⋆B represents the relative interior

of the line segment joining the two points. Likewise, for singleton sets A,B, . . . , C ⊆ Rd, the set
A

o
⋆B

o
⋆ · · · o

⋆C represents the relative interior of the convex hull conv(A⊕B ⊕· · · ⊕ C).
In general (when A and B are not singleton sets), the set A

o
⋆B is the set of all points that can

be expressed as λ·a+(1−λ)·b for some a ∈ A and b ∈ B. Intuitively, these points are in the relative

interior of the line segment ab for some a ∈ A and b ∈ B. Clearly, A
o
⋆B is contained in conv(A⊕B)

and contains the relative interior of conv(A⊕B). We do not know how to characterize this set

using other elementary set operators precisely. However, the set A
o
⋆B

o
⋆ · · · o

⋆C is semi-algebraic
if the sets A,B, . . . , C are semi-algebraic, using standard quantifier elimination (see, for example,
[BPRon, Chapter 14]). These sets will be crucial to characterizing the smallest solution to our
systems with a succinct closed-form expression.

We note that even if the original system does not have
o
⋆ in the inequalities, its smallest

solutions may contain
o
⋆ . For example, the following system of equations, which does not use the

o
⋆ operator in its inequalities, has a solution set identical to that of the example system we have
been considering.

15



X1 ⩾ P1 ⊕
(
1

2
·X1 +

1

4
·X2 +

1

4
· P3

)
X2 ⩾ P2 ⊕

(
1

2
·X2 +

1

4
·X1 +

1

4
· P4

)
This fact follows from the property that X ∈ Cd(R) satisfies X ⩾ ρ ·X + (1− ρ) ·A if (and only if)

X ⩾ X
o
⋆A, for any A ⊆ Rd and 0 < ρ < 1 (see Lemma D.4).

Working example. For illustrative purposes, consider d = 2. Here, Cd(R) denotes the set of
all convex subsets of R2. Fix arbitrary assignment P to the constants. The semantics of the first
equation in our system is

X1 contains the set P1, and

X1 contains the set X1
o
⋆

(
1

2
·X2 +

1

2
·P3

)
The semantic of the second equation is analogous. The smallest solution of our example system
has the following closed-form expression.

ss(I;P)1 = conv

(
P1 ⊕ P1

o
⋆

(
1

2
·P2 +

1

2
·P3

)
⊕ P1

o
⋆

(
1

2
·P2 +

1

2
·P3

)
o
⋆

(
2

3
·P3 +

1

3
·P4

) )
ss(I;P)2 = conv

(
P2 ⊕ P2

o
⋆

(
1

2
·P1 +

1

2
·P4

)
⊕ P2

o
⋆

(
1

2
·P1 +

1

2
·P4

)
o
⋆

(
2

3
·P4 +

1

3
·P3

) )
Note that the formal expression for the smallest solution on the RHS is independent of the specific
constant assignment P used; the expression holds for any constant assignment. Our algebraic
approach to identifying the smallest solution of a system will also be independent of the specific
constant assignment. Determining the evaluation of the smallest solution will need P. The next
section presents a finite procedure to obtain their succinct closed-form expression.

Consider singleton sets P1,P2,P3,P4 for the intuition of the smallest solution; refer to Ap-
pendix A.1 for an illustration of an example. The set ss(I;P)1 is the smallest convex set containing:

1. the point in P1,

2. the relative interior of the line segment joining the two points in P1 and 1
2 ·P2 +

1
2 ·P3, and

3. the relative interior of the triangle formed by the three points in P1,
1
2 · P2 +

1
2 · P3, and

2
3 ·P3 +

1
3 ·P4.

Note that the union of the three sets above happens to be a convex set in this case. The set ss(I;P)2
is similarly defined. As we will see later, our Gaussian elimination-inspired solution methodology
will recover these solutions, albeit possibly with slightly different descriptions.

Remark 4 (Solutions Restricted to Polytopes). Consider the objective of restricting solutions
to polytopes (instead of allowing arbitrary convex sets). In this case, our positive geometric join

operator
o
⋆ is not needed to represent the smallest solution because the smallest polytope containing

the set A
o
⋆B is identical to the polytope containing A ⊕ B. Thus, “linear” polynomials (i.e.,

polynomials with only degree-1 monomials) can express the constraints for polytope solutions.

16



3.3 Algebraic Characterization of the Smallest Solution

We introduce a Gaussian elimination-inspired algorithm to algebraically characterize the smallest
solution of a system I of inequalities.

Theorem 2. Let Ω = {X1, . . . , Xn, P1, . . . , Pt} and ΩP = {P1, . . . , Pt}. Consider an arbitrary
system I of inequalities {Xi ⩾ φi}ni=1, where φ1, . . . , φn are polynomials over CL(Ω). Figure 4
presents a finite procedure to compute polynomials φ∗1, . . . , φ

∗
n over CL (ΩP ) with the guarantee that

ss(I;P)j = conv
(
eval(φ∗j ;P)

)
for every j ∈ {1, 2, . . . , n} and constant assignment P.

Appendix E estimates the number of monomials and degree of these polynomials φ∗1, . . . , φ
∗
n;

i.e., their “complexity.” Theorem 2 can be applied in certain very concrete situations to deduce
that if the members of the set ΩP (using the notation in Theorem 2 belong to a certain class of sets,
then each so do each ss(I;P)j , j ∈ {1, 2, . . . , n}. In particular, classes of subsets of Rd, d > 0, for
which the above statement is true include the class of all semi-algebraic sets, and more generally the
definable sets in any o-minimal expansion of the R ([vdD98]). We thus have the following corollary
of Theorem 2.

Corollary 3. When the constant assignments P1, . . . ,Pt ⊆ Rd are definable (resp., semi-algebraic),
the set ss(I;P)j is definable (resp., semi-algebraic) for j ∈ {1, 2, . . . , n}.

More specifically, if P1, . . . ,Pt are singleton sets, then the smallest solution is always a (finite)
union of the relative interiors of polytopes; we call such sets hemihedral sets.

We introduce additional notation to elaborate on this theorem, its proof, and our Gaussian
elimination-inspired algorithm.

Notation. For an unknown X ∈ Ω, let φX be a polynomial over CL(Ω \ {X}). Given an
assignment X,P, the assignment (X,P) JX ← φXK ∈ Cd(R)n is defined as follows:

(X,P) JX ← φXKY =

{
conv

(
eval (φX ; X,P)

)
, if Y = X.

XY , otherwise.
(15)

Here, Y ∈ Ω \{X} can be a constant. Read this assignment as “X with the unknown X substituted
by φX evaluation.” The intuition is to replace XX in the assignment X ∈ Cd(R)n by the evaluation
of the polynomial φX , a polynomial that doesn’t depend on the unknown X.

Next, for a polynomial φ over CL(Ω) and φX over CL(Ω \ {X}), we will define the polynomial
φ JX ← φXK over CL(Ω \ {X}). Our final target is to replace every occurrence of X with the
evaluation of φX . However, formally substituting every symbol X in φ with the polynomial φX

does not yield a polynomial. So, we define this new polynomial with an identical evaluation for all

assignments; it is unclear that such a polynomial exists. First, for E =
(
ρ ·X + (1− ρ) · E′

)
∈

CL(Ω), where 0 ⩽ ρ ⩽ 1 and E′ ∈ CL(Ω \ {X}), we define the following polynomial over CL(Ω \
{X}).

E JX ← φXK := ⊕
N∈mono(φX)

o
⋆

F∈supp(N)

(
ρ · F + (1− ρ) · E′

)
︸ ︷︷ ︸

EJX←F K

. (16)

Note that the E 7−→ E JX ← F K is a CL(Ω)→ CL(Ω \ {X}) map. When E ∈ CL(Ω \ {X}), this is
an identity map. For a monomialM over CL(Ω), define the following polynomial over CL(Ω\{X}).

M JX ← φXK := ⊕
N⃗∈mono(φX)supp(M)

o
⋆

E∈supp(M)

(
o
⋆

F∈supp( N⃗(E) )
E JX ← F K

)
(17)

17



Here N⃗ enumerates all possible supp(M)→ mono(φX) functions; there are card
(
mono(φX)

)deg(M)

of them. And, N⃗(E) is the evaluation of the function at E. Finally, for a polynomial φ over CL(Ω),
define the following polynomial over CL(Ω \ {X}).

φ JX ← φXK := ⊕
M∈mono(φ)

M JX ← φXK . (18)

We will prove the following property of the substituted polynomial

Lemma 1 (Substituted Polynomial). Consider a polynomial φ over CL(Ω), an unknown X ∈ Ω,
and a polynomial φX over CL(Ω\{X}). For all assignments X and P, the following identity holds
for the polynomial φ JX ← φXK over CL (Ω \ {X}).

eval (φ ; (X,P) JX ← φXK) ∼ eval (φ JX ← φXK ; X,P) .

Appendix D.3 proves this lemma.

1. Initialize I(0) = I

2. For j ∈ {1, 2, . . . , n}:

(a) Suppose I(j−1) is the system
{
Xi ⩾ φ

(j−1)
i

}n

i=1
, each φ

(j−1)
i is a polynomial over

CL({Xj , . . . , Xn, P1, . . . , Pt})
(b) Canceling Xj step. Use the rearrangement lemma (Lemma D.1) and cancellation lemma

(Lemma D.2) to obtain a polynomial φ̃ over CL(Ω \ {X1, X2, . . . , Xj}). Define the new

system I ′ identical to I(j−1) except that the inequality Xj ⩾ φ
(j−1)
j is replaced by Xj ⩾ φ̃.

(c) Substituting Xj step. Define the new system I(j) as the system
{
Xi ⩾ φ

(j)
i

}n

i=1
, where

φ
(j)
i :=


φ̃, if i = j

φ
(j−1)
i JXj ← φ̃K , otherwise.

3. Characterizing the smallest solution for a constant assignment. For a constant as-

signment P, output X ∈ Cd(R)n, where Xi = conv
(
eval

(
φ
(n)
i ; P

))
for i ∈ {1, 2, . . . , n}.

Figure 4: Our Gaussian elimination-inspired algorithm to solve the system of inequalities I.

Proof overview of Theorem 2. Beginning with the system I(0) = I, we will inductively con-
struct new systems of equations I(j) with polynomials over CL ({Xj+1, . . . , Xn, P1, . . . , Pt}) such
that the smallest solution ss

(
I(0);P

)
= ss

(
I(j);P

)
for any assignment P to the constants. However,

it is possible that their sets of solutions are not identical. The system I(n) is {Xi ⩾ φ∗i }
n
i=1 and every

φ∗i is a polynomial over CL(ΩP ). After that, it follows that ss
(
I(n) ; P

)
i
= conv( eval(φ∗i ; P) ) for

every i ∈ {1, 2, . . . , n}.
Consider the inner loop j ∈ {1, 2, . . . , n}. Note that the system I(j−1) will have polynomials

over CL({Xj , . . . , Xn, P1, . . . , Pt}). We consider the j-th inequality in this system: Xj ⩾ φ
(j−1)
j .

Lemma D.1 and Lemma D.2 present an explicit polynomial φ̃ over CL({j + 1, . . . , Xn, P1, . . . , Pt})

18



with the following guarantee: replacing the inequality Xj ⩾ φ
(j−1)
j with the inequality Xj ⩾ φ̃

preserves the smallest solution. The overview paragraph on Appendix D elaborates more on this
step. Let I ′ represent this new system.

Next, in the system I ′, our objective is to substitute every instance of Xj with the polynomial
φ̃ in the polynomials {

φ
(j−1)
ℓ : ℓ ∈ {1, . . . , j − 1, j + 1, . . . , n}

}
These are the polynomials φ

(j−1)
ℓ JXj ← φ̃K defined according to Equation 18. The substitution

lemma (Lemma D.3) proves that these substitutions preserve the smallest solution for any constant

assignmentP. Note that φ̃ and the φ
(j−1)
ℓ JXj ← φ̃K are polynomials over CL({Xj+1. . . . , Xn, P1, . . . , Pt}).

Therefore, at the end of the j-th loop, the unknowns X1, . . . , Xj are eliminated from the RHS of
every inequality. After the n-th iteration of the loop, our system will have polynomials only over
CL(ΩP ).

Working example. Appendix A elaborates how our algorithm solves our example system.

Remark 5. The procedure above eliminates unknowns X1, X2, . . . , Xn from the polynomials, one
at a time. Changing the elimination order may change the description of the smallest solution.

Remark 6. The transformation steps above may result in φ̃ = ∅ inside the loop, which can lead to
∅ polynomials on the RHS of the last system I(n). This occurrence depends on the structure of the
initial system I, not on the specific constant assignment P as long as they are non-empty.

3.4 Operational Realization of the Smallest Solution

This section presents an alternative characterization of the smallest solution of a system of inequal-
ities. Applications will reduce their research objectives to characterizing the smallest solution of a
system via this alternative characterization.

Consider a system I of inequalities {Xj ⩾ φj}nj=1 and arbitrary assignment P1, . . . ,Pt ⊆ Rd

of the constants. Figure 5 recursively defines a construction of nested sequence X(0) → X(1) →
X(2) →· · · where each X(i) ∈ Cd(R)n, for i ∈ {0, 1, . . . }. These sets are nested: X(i+1) ⩾ X(i) for
i ∈ {0, 1, . . . }, because, for any j ∈ {1, 2, . . . , n}, we have:

X
(i+1)
j = conv

(
eval

(
φj ; X

(i),P
) ) ∗

⩾ conv
(
eval

(
φj ; X

(i−1),P
) )

= X
(i)
j ,

where step (∗) relies on the inductive hypothesis. Appendix A.3 illustrates the evolution of these
sets for our example system when the constants are assigned singleton sets in R2. We denote
itr(i, I;P) := X(i).

1. Fix an arbitrary assignment P of the constants

2. X(0) = (∅, ∅, . . . , ∅) ∈ Cd(R)n

3. For i ∈ {0, 1, . . . }, define X(i+1) ∈ Cd(R)n as follows: For all j ∈ {1, 2, . . . , n}, let

X
(i+1)
j := conv

(
eval

(
φj ; X

(i),P
) )

.

Figure 5: Definition of X(i) for i ∈ {0, 1, 2, . . . } for a system I and assignment P of the constants.

19



We define the vectorized version of set union. For arbitrary sets A1, . . . , An, B1, . . . , Bn ⊆ Rd,
define

(A1, A2, . . . , An) ∪ (B1, B2, . . . , Bn) := (A1 ∪B1, A2 ∪B2, . . . , An ∪Bn) .

Finally, define

itr(I;P) :=
⋃
i⩾0

itr(i, I;P). (19)

Since each itr(i, I;P) ∈ Cd(R)n and they are nested sets, their union itr(I;P) is also an element of
Cd(R)n. Lemma 2 states that the set itr(I;P) is identical to the smallest solution ss(I;P).

Lemma 2 (Iterative Construction of the Smallest Solution). Consider a system I of inequalities
and an arbitrary assignment P to its constants. Then, itr(I;P) = ss(I;P).

Appendix F proves this result. In fact, it proves a stronger statement: Starting with an arbi-
trary initialization X(0) ∈ Cd(R)n, itr(I;P) is the smallest solution containing X(0). For any X(0)

satisfying ss(I;P) ⩾ X(0), it will be the case that itr(I;P) = ss(I;P). In particular, this happens
for X(0) = (∅, ∅, . . . , ∅).

Remark 7. Starting with X(0) = (∅, . . . , ∅) ∈ Cd(R)n and an assignment where P1, . . . ,Pt are

polytopes, note that each X
(i)
j is a convex set. The complexity of describing them may increase

indefinitely with i ∈ {0, 1, 2, . . . } (i.e. be unbounded as a function of i); for example, see Ap-
pendix A.3. However, their infinite union, the set itr(I;P)j, has a finite algebraic complexity.

4 Lamination Hull: Grid Points, Structure Lemma, Reduction to
System of Inequalities

We aim to answer membership queries into the lamination hull S(∞,Λ), where Λ = {0}a × Rb ×
Rc
⋃

Ra×{0}b×Rc. Starting with a finite S(0,Λ) ⊂ Ra+b+c, this section presents the construction of

the grid points G ⊂ Ra+b. Using the notation introduced in Section 4.1, define G(a) := VAS(0,Λ)[a] ⊂

Ra and G(b) := VAS(0,Λ)[b] ⊂ Rb. Here, for a set S ⊆ Ra+b+c, we are denoting

S[a] := { (P1, P2, . . . , Pa) : P ∈ S } ⊆ Ra

S[b] := { (Pa+1, Pa+2, . . . , Pa+b) : P ∈ S } ⊆ Rb

Above, Pi represents the i-th coordinate of P ∈ Ra+b+c. Finally, define the grid

G := G(a) × G(b) ⊂ Ra+b. (20)

Section 4.2 presents our structure lemma, which reconstructs any restriction of the lamination hull
from its restrictions to grid points. Finally, Section 4.3 obtains these restrictions by finding the
smallest solution to a system of inequalities over convex sets using Lemma 4.

4.1 Arrangements

For a finite set T ⊂ Rd, its convex hull is

conv(T ) :=

{ ∑
P∈T

λP · P :
∑
P∈T

λP = 1 and λP ⩾ 0 for all P ∈ T

}
. (21)

20



The relative interior of conv(T ) is

convo(T ) :=

{ ∑
P∈T

λP · P :
∑
P∈T

λP = 1 and λP > 0 for all P ∈ T

}
. (22)

We clarify that when card(T ) = 1, then convo(T ) is the point contained in T .
For a finite set S ⊂ Ra, we let

(
S
⩽k

)
denote the set of all subsets of S with cardinality ⩽ k. The

incidence vector of a point A ∈ Ra with respect to the set of points S ⊆ Ra is the unique element

of {0, 1}(
S

⩽(a+1)) satisfying for all R ∈
(

S
⩽(a+1)

)
:

inc(A;S)R :=

{
1, if A ∈ convo(R)

0, otherwise.
(23)

The total number of incidence vectors is ⩽ 22
card(S)

. Given an incidence vector I ∈ {0, 1}(
S

⩽(a+1)),
its realization is the set

Ra ⊇ realize(I;S) := { A ∈ Ra : inc(A;S) = I } . (24)

For a point A ∈ Ra, inc(A;S) = 0 implies that A ∈ Ra \ conv(S). Furthermore, realize(0;S) =
Ra \ conv(S). Finally, the arrangement of S is the set of all non-empty realizations with non-zero
incidence vector

AS :=
{
∅ ≠ realize(I;S) : 0 ̸= I ∈ {0, 1}(

S
⩽(a+1))

}
. (25)

Observe that for any incidence vector I ̸= 0, we have realize(I;S) ⊆ conv(S) because there is
an R ∈

(
S

⩽(a+1)

)
such that IR = 1; so realize(I;S) ⊆ convo(S) ⊆ conv(S). The vertices of the

arrangement AS is the set
VAS := { V : {V } ∈ AS } ⊆ Ra. (26)

So, if a realization in the arrangement AS is the singleton set {V }, then V ∈ Ra is included in the
vertex set.

We will also the notion of a simplicial decomposition af an arrangement AS. A simplicial
decomposition SAS is a set of subsets of Ra; each subset is the relative interior of some simplex,
and these subsets partition conv(S). It is possible to obtain such a decomposition without adding
any new vertices [Edm70].

Examples. Let us illustrate these notions with a few examples. When a = 1, the arrangement of
S =

{
S(1), S(2), . . . , S(t)

}
⊂ Ra, where S(1) < S(2) < · · · < S(t), contains the following realizations

(refer to Figure 6):

1. The vertices S(i), where i ∈ {1, 2, . . . , t}, and

2. convo
({
S(i), S(i+1)

})
, where i ∈ {1, 2, . . . , t− 1}.

For a > 1, the arrangements could be significantly more sophisticated. Figure 7 illustrates an
arrangement, its simplicial decomposition, and its vertices using an example for a = 2. Appendix G
will state and prove the properties of these arrangements useful in the context of the presentation
below.

21



S(1) S(2) S(3) S(4) S(5)

Figure 6: The arrangement AS (and its simplicial decomposition), where S :={
S(1), S(2), . . . , S(5)

}
⊂ Ra and a = 1. In this case, S = VAS.

AS A simplicial decomposition of AS

S(1)

S(2)

S(3)

S(4) S(5)

S(1)

S(2)

S(3)

S(4) S(5)

Figure 7: The arrangement AS, where S :=
{
S(1), S(2), . . . , S(5)

}
⊆ Ra, where a = 2 and its

simplicial decomposition. The filled circles (both gray and black) represent the vertices VAS.

22



4.2 Computing any Restriction of the Lamination Hull

We aim to answer the membership query Q = (u, v, w) ∈ Ra+b+c in S(∞,Λ). This is equivalent
to answering the membership of Q in S(∞,Λ)

∣∣
q
, where q = (u, v) ∈ Ra+b. The following structure

lemma will compute the restriction S(∞,Λ)
∣∣
q
from the restrictions of the hull to the grid points.

Lemma 3 (Structure Lemma). Given the simplicial decompositions S(a) := SAS(0,Λ)[a] ,S(b) :=

SAS(0,Λ)[b] , and the restriction of the lamination hull at the grid points
{
S(∞,Λ)

∣∣
g
: g ∈ G

}
, Fig-

ure 11 presents a finite procedure to compute S(∞,Λ)
∣∣
q
, for any q ∈ Ra+b.

4.3 Reduction to a System of Inequalities

Our objective is to design a system of linear inequalities over convex sets so that its smallest

solution corresponds to the restrictions
{
S(∞,Λ)

∣∣
g
: g ∈ G

}
. Figure 8 presents our system I of

linear inequalities.
We introduce unknown X(u,v), for each grid point (u, v) ∈ G. Our algorithm will incrementally

add constraints to a system of inequalities. We will start with the system {Xg ⩾ ∅}g∈G . Suppose

the current system is {Xg ⩾ φg}g∈G . When we add an inequality Xg∗ ⩾ φ′ to this system, then the

updated inequality for Xg∗ becomes Xg∗ ⩾ φg∗ ⊕ φ′.

1. Introduce unknown X(u,v), for each grid point (u, v) ∈ G, representing a convex set in Ra+b+c.

2. Base case constraints. For each point P ∈ S(0,Λ), add the following inequality to the system I.

X(u,v) ⩾ P, where u = P[a] and v = P[b]. (27)

3. Spatial information constraints. For all u, u(1), u(2), . . . , u(k) ∈ G(a) and v ∈ G(b) such that (A)
2 ⩽ k ⩽ a+1, (B) u(1), u(2), . . . , u(k) form a simplex, and (C) u = α(1) · u(1) +α(2) · u(2) +· · ·+
α(k) · u(k),

∑k
i=1 α

(i) = 1 and α(1), α(2), . . . , α(k) > 0, add the constraint

X(u,v) ⩾
k∑

i=1

α(i) ·X(u(i),v). (28)

Likewise, for u ∈ G(a) and v(1), v(2), . . . , v(k) ∈ G(b) satisfying (A) 2 ⩽ k ⩽ b + 1, (B)
v(1), v(2), . . . , v(k) form a simplex, and (C) v = α(1) ·v(1)+α(2) ·v(2)+· · ·+α(k) ·v(k),

∑k
i=1 α

(i) = 1
and α(1), α(2), . . . , α(k) > 0, add the constraint

X(u,v) ⩾
k∑

i=1

α(i) ·X(u,v(i)). (29)

Figure 8: Definition of our system I of inequalities for finding S(∞,Λ)
∣∣
g
for g ∈ G.

Base-case inequalities like Equation 27 capture the the semantics that X(u,v) contains the point

P in the initial set S(0,Λ), where u = P[a] and v = P[b].
Next, we present the semantics associated with the spatial information inequalities like Equa-

tion 28. Consider a simplex u(1), u(2), . . . , u(k) ∈ G(a) such that 2 ⩽ k ⩽ a+1. Suppose any u ∈ G(a)

23



is in the relative interior of this simplex; that is, there are unique α(1), α(2), . . . , α(k) > 0, such that∑k
i=1 α

(i) = 1 and

u =
k∑

i=1

α(i) · u(i).

Consider arbitrary v ∈ G(b). For arbitrary points P (i) ∈ X(u(i),v), for i ∈ {1, 2, . . . , k}, Equation 28

ensures that their convex linear combination
∑k

i=1 α
(i) · P (i) is in the set X(u,v). Inequalities like

Equation 29 are also encoding similar spatial information.
Finally, note that the total number of unknowns is card(G), and the total number of inequalities

added is ⩽ card
(
S(0,Λ)

)
+
(
card

(
G(a)

)a+2
card

(
G(b)

)
+ card

(
G(a)

)
card

(
G(b)

)b+2
)
.

We prove the following result.

Lemma 4 (Reduction to Solving System of Linear Inequalities over Convex Sets). Let
(
X

(∗)
g : g ∈ G

)
denote the smallest solution of this system I in Figure 8. Then, S(∞,Λ)

∣∣
g
= X

(∗)
g for every g ∈ G.

Appendix I presents the proof of this lemma. This result’s proof relies on the operational
realization interpretation of Section 3.4.

24



A Solving Example System

We will find the smallest solution of the following system over arbitrary convex sets using the
algorithm in Figure 4.

X1 ⩾ P1 ⊕X1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
X2 ⩾ P2 ⊕X2

o
⋆

(
1

2
·X1 +

1

2
· P4

)
During our presentation, it will be instructive to shadow along with the presentation on Appendix D.
Three terminologies will be used below.

1. Rearrangement as in Lemma D.1

2. Cancellation as in Lemma D.2

3. Substitution as in Lemma D.3

The equation of X1 does not need to be rearranged; we can proceed with cancellation. After the
cancellation of X1, we get the following system.

X1 ⩾ P1 ⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
X2 ⩾ P2 ⊕X2

o
⋆

(
1

2
·X1 +

1

2
· P4

)
Next, we aim to substitute X1 with the RHS of the first inequality in X2’s inequality (step 2.c. in
Figure 4 with j = 1). Below, we will illustrate how the substituted polynomial is obtained.

X2 ⩾ P2 ⊕X2
o
⋆

(
1

2
·X1 +

1

2
· P4

)
(original equation of X2)

⩾ P2 ⊕X2
o
⋆

(
1

2
·
[
P1 ⊕ P1

o
⋆

(
1

2
·X2 +

1

2
· P3

)]
+

1

2
· P4

)
(substituting the symbol X1 with the RHS of X1’s inequality)

(Remark: this expression in not a polynomial)

= P2 ⊕X2
o
⋆

([
1

2
· P1 ⊕

1

2
· P1

o
⋆

(
1

4
·X2 +

1

4
· P3

)]
+

1

2
· P4

)
(scalar multiplication distributes over ⊕ and

o
⋆ )

(Remark: this expression in not a polynomial)

∼ P2 ⊕X2
o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕X2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

4
·X2 +

1

4
· P3 +

1

2
· P4

)
(Minkowski sum distributes over ⊕ and

o
⋆ )

This final expression is a polynomial. Verify that this “derivation” of the substituted polynomial,
capturing what we intend to achieve, matches with the polynomial computed using our definition
of substituted polynomials in Example 1 of Appendix A.2. After substitution, we get the system:

25



X1 ⩾ P1 ⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
X2 ⩾ P2 ⊕X2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕X2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

4
·X2 +

1

4
· P3 +

1

2
· P4

)
At this point, note that X1 has been eliminated from the RHS of every inequality. This corresponds
to completing the j = 1 loop in Figure 4.

After that, in j = 2 loop, we begin by rearranging the inequality for X2 as follows:

X2 ⩾ P2 ⊕X2
o
⋆

(
1

2
· P1 ⊕

1

2
· P4

)
⊕X2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

4
·X2 +

1

4
· P3 +

1

2
· P4

)
⇐⇒ X2 ⩾ P2 ⊕X2

o
⋆

(
1

2
· P1 ⊕

1

2
· P4

)
⊕X2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

3
· P3 +

2

3
· P4

)
This derivation relies on the fact that X ⩾ (ρ ·X + (1− ρ) ·A) o

⋆B if (and only if) X ⩾ X
o
⋆A

o
⋆B,

for arbitrary sets X ∈ Cd(R), A,B ⊆ Rd and 0 < ρ < 1 (see Lemma D.4). After that, we cancel X2

from this rewritten inequality to get the following system.

X1 ⩾ P1 ⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
X2 ⩾ P2 ⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

3
· P3 +

2

3
· P4

)
Next, we aim to substitute the RHS of X2’s inequality into the symbol X2 in X1’s inequality. To
illustrate how the substituted polynomial is defined, we elaborate on the substitution process.

X1 ⩾ P1 ⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
(original equation)

⩾ P1 ⊕ P1
o
⋆

(
1

2
·
[
P2 ⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

3
· P3 +

2

3
· P4

)]
+

1

2
· P3

)
(substituting the symbol X2 with the RHS of X2’s inequality)

(Remark: this expression in not a polynomial)

= P1 ⊕ P1
o
⋆

([
1

2
· P2 ⊕

1

2
· P2

o
⋆

(
1

4
· P1 +

1

4
· P4

)
⊕ 1

2
· P2

o
⋆

(
1

4
· P1 +

1

4
· P4

)
o
⋆

(
1

6
· P3 +

1

3
· P4

)]
+

1

2
· P3

)
(scalar multiplication distributes over ⊕ and

o
⋆ )

(Remark: this expression is not a polynomial)

∼ P1 ⊕ P1
o
⋆

(
1

2
· P2 +

1

2
· P3

)
⊕ P1

o
⋆

(
1

2
· P2 +

1

2
· P3

)
o
⋆

(
1

4
· P1 +

1

4
· P4 +

1

2
· P3

)
⊕ P1

o
⋆

(
1

2
· P2 +

1

2
· P3

)
o
⋆

(
1

4
· P1 +

1

4
· P4 +

1

2
· P3

)
o
⋆

(
2

3
· P3 +

1

3
· P4

)
(Minkowski sum distributes over ⊕ and

o
⋆ )

This final expression is a polynomial, and it is used on the RHS of the substituted system below.
Example 2 of Appendix A.2 elaborates on how this polynomial is computed using our definition of
substituted polynomial.

26



X1 ⩾ P1 ⊕ P1
o
⋆

(
1

2
· P2 +

1

2
· P3

)
⊕ P1

o
⋆

(
1

2
· P2 +

1

2
· P3

)
o
⋆

(
1

4
· P1 +

1

4
· P4 +

1

2
· P3

)
⊕ P1

o
⋆

(
1

2
· P2 +

1

2
· P3

)
o
⋆

(
1

4
· P1 +

1

4
· P4 +

1

2
· P3

)
o
⋆

(
2

3
· P3 +

1

3
· P4

)
X2 ⩾ P2 ⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

3
· P3 +

2

3
· P4

)
This system, at the end of j = 2 loop, has eliminated all unknowns from the inequalities. As a
result, the smallest convex solution is straightforward to obtain; it is just the convex hull of the
RHS expressions. So, the smallest solution is:

X1 = conv

(
P1 ⊕ P1

o
⋆

(
1

2
· P2 +

1

2
· P3

)
⊕ P1

o
⋆

(
1

2
· P2 +

1

2
· P3

)
o
⋆

(
1

4
· P1 +

1

4
· P4 +

1

2
· P3

)
⊕P1

o
⋆

(
1

2
· P2 +

1

2
· P3

)
o
⋆

(
1

4
· P1 +

1

4
· P4 +

1

2
· P3

)
o
⋆

(
2

3
· P3 +

1

3
· P4

) )
X2 = conv

(
P2 ⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

3
· P3 +

2

3
· P4

) )
Note that the smallest solution characterized here for X2 is identical to the predicted solution
ss(I;P)2 in Section 3.2. The expression for X1 appears different; however, it describes the same set
(for any constant assignment P). The extra expression 1

4 ·P1 +
1
4 ·P4 +

1
2 ·P3 is redundant in the

expression. It is a convex linear combination of the sets P1 and 2
3 ·P3+

1
3 ·P4. After accounting for

this geometric property, it turns out to be identical to the solution ss(I;P)1 predicted in Section 3.2.

X1 = conv

(
P1 ⊕ P1

o
⋆

(
1

2
· P2 +

1

2
· P3

)
⊕ P1

o
⋆

(
1

2
· P2 +

1

2
· P3

)
o
⋆

(
2

3
· P3 +

1

3
· P4

) )
X2 = conv

(
P2 ⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

3
· P3 +

2

3
· P4

) )
This optimization in representing the sets is not the focus of our current work, so it is foregone here.
Additionally, if we eliminatedX2 first andX1 next, our expressions would have a similar redundancy
in the ss(I;P)2 expression. If P1, P2, P3, P4 are assigned convex sets, then the expressions within
the “conv(·)” are already convex; this may not hold in general.

Appendix A.1 will illustrate the solution for a specific assignment. Appendix B will solve this
system by restricting the solution to polytopes; it will contain spurious additional points.

A.1 Figure of the Smallest Solution for an Assignment

Suppose P1, P2, P3, P4 are assigned singleton sets in R2. For that constant assignment Figure 9
presents the smallest solution to our example system from Section 3.4.

A.2 Examples of Substitution

Example 1. We will show the computation of φ JX1 ← φX1K where

φ = P2 ⊕X2
o
⋆

(
1

2
·X1 +

1

2
· P4

)
and φX1 = P1 ⊕ P1

o
⋆

(
1

2
·X2 +

1

2
· P3

)
.

27



P1 P2

P3P4

1
2
·P2 +

1
2
·P3

1
2
·P1 +

1
2
·P4

2
3
·P3 +

1
3
·P4

1
3
·P3 +

2
3
·P4

X
(∗)
1

P1 P2

P3P4

1
2
·P2 +

1
2
·P3

1
2
·P1 +

1
2
·P4

2
3
·P3 +

1
3
·P4

1
3
·P3 +

2
3
·P4

X
(∗)
2

Figure 9: The smallest convex solutions
(
X

(∗)
1 ,X

(∗)
2

)
of the example system from Section 3.

By Equation 18, we have

φ JX1 ← φX1K = P2 JX1 ← φX1K⊕X2
o
⋆

(
1

2
·X1 +

1

2
· P4

)
JX1 ← φX1K .

Let us demonstrate the computation of the two substitutions on the RHS expression above.

Part 1. P2 JX1 ← φX1K = P2 JX1 ← P1K⊕ P2

s
X1 ← P1

o
⋆

(
1

2
·X2 +

1

2
· P3

){

(first step in the step-wise application of Equation 17)

= P2 JX1 ← P1K⊕ P2 JX1 ← P1K
o
⋆P2

s
X1 ←

1

2
·X2 +

1

2
· P3

{

(final step in the step-wise application of Equation 17)

= P2 ⊕ P2
o
⋆P2 (using Equation 16)

∼ P2. (using idempotence laws)

Idempotence laws are applied only for brevity in presentation; our proposed algorithms do not
perform this optimization.

In the substitution computation below, we will need all supp(M) → mono(φX1) functions,

where M = X2
o
⋆
(
1
2 ·X1 +

1
2 · P4

)
. That is, functions of the following form.{

X2,
1

2
·X1 +

1

2
· P4

}
→
{
P1, P1

o
⋆

(
1

2
·X2 +

1

2
· P3

)}
.

28



Part 2. X2
o
⋆

(
1

2
·X1 +

1

2
· P4

)
JX1 ← φX1K

= X2 JX1 ← P1K
o
⋆

(
1

2
·X1 +

1

2
· P4

)
JX1 ← P1K

⊕X2 JX1 ← P1K
o
⋆

(
1

2
·X1 +

1

2
· P4

)s
X1 ← P1

o
⋆

(
1

2
·X2 +

1

2
· P3

){

⊕X2

s
X1 ← P1

o
⋆

(
1

2
·X2 +

1

2
· P3

){
o
⋆

(
1

2
·X1 +

1

2
· P4

)
JX1 ← P1K

⊕X2

s
X1 ← P1

o
⋆

(
1

2
·X2 +

1

2
· P3

){
o
⋆

(
1

2
·X1 +

1

2
· P4

)s
X1 ← P1

o
⋆

(
1

2
·X2 +

1

2
· P3

){

(first step in the step-wise application of Equation 17)

= X2 JX1 ← P1K
o
⋆

(
1

2
·X1 +

1

2
· P4

)
JX1 ← P1K

⊕X2 JX1 ← P1K
o
⋆

(
1

2
·X1 +

1

2
· P4

)
JX1 ← P1K

o
⋆

(
1

2
·X1 +

1

2
· P4

)s
X1 ←

1

2
·X2 +

1

2
· P3

{

⊕X2 JX1 ← P1K
o
⋆X2

s
X1 ←

1

2
·X2 +

1

2
· P3

{
o
⋆

(
1

2
·X1 +

1

2
· P4

)
JX1 ← P1K

⊕X2 JX1 ← P1K
o
⋆X2

s
X1 ←

1

2
·X2 +

1

2
· P3

{
o
⋆

(
1

2
·X1 +

1

2
· P4

)
JX1 ← P1K

o
⋆

(
1

2
·X1 +

1

2
· P4

)s
X1 ←

1

2
·X2 +

1

2
· P3

{

(final step in the step-wise application of Equation 17)

= X2
o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕X2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

4
·X2 +

1

4
· P3 +

1

2
· P4

)
⊕X2

o
⋆X2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕X2

o
⋆X2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

4
·X2 +

1

4
· P3 +

1

2
· P4

)
(using Equation 16)

∼ X2
o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕X2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

4
·X2 +

1

4
· P3 +

1

2
· P4

)
.

(using idempotence laws)

We want to emphasize that every step of the derivation above is a polynomial. To conclude,
putting these two derivations together, we have:

φ JX1 ← φX1K ∼ P2⊕X2
o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕X2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

4
·X2 +

1

4
· P3 +

1

2
· P4

)
.

Example 2. We will show the computation of φ JX2 ← φX2K where

φ = P1 ⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
φX2 = P2 ⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
⊕ P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

3
· P3 +

2

3
· P4

)
By Equation 18, we have

φ JX2 ← φX2K = P1 JX2 ← φX2K⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
JX2 ← φX2K .

29



Next, we compute the substituted polynomials (short-circuiting the trivial substitutions).

φ JX2 ← φX2K = P1 ⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
JX2 ← P2K

⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)s
X2 ← P2

o
⋆

(
1

2
· P1 +

1

2
· P4

){

⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)s
X2 ← P2

o
⋆

(
1

2
· P1 +

1

2
· P4

)
o
⋆

(
1

3
· P3 +

2

3
· P4

){

= P1 ⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
JX2 ← P2K

⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
JX2 ← P2K

o
⋆

(
1

2
·X2 +

1

2
· P3

)s
X2 ←

1

2
· P1 +

1

2
· P4

{

⊕ P1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
JX2 ← P2K

o
⋆

(
1

2
·X2 +

1

2
· P3

)s
X2 ←

1

2
· P1 +

1

2
· P4

{

o
⋆

(
1

2
·X2 +

1

2
· P3

)s
X2 ←

1

3
· P3 +

2

3
· P4

{

= P1 ⊕ P1
o
⋆

(
1

2
· P2 +

1

2
· P3

)
⊕ P1

o
⋆

(
1

2
· P2 +

1

2
· P3

)
o
⋆

(
1

4
· P1 +

1

4
· P4 +

1

2
· P3

)
⊕ P1

o
⋆

(
1

2
· P2 +

1

2
· P3

)
o
⋆

(
1

4
· P1 +

1

4
· P4 +

1

2
· P3

)
o
⋆

(
2

3
· P3 +

1

3
· P4

)
This concludes the derivation of the substituted polynomial.

A.3 Iterated Solution Evolution for an Assignment

Suppose P1, P2, P3, P4 are assigned singleton sets in R2. Figure 10 illustrates the evolution of the
iterated solutions X(i), for i ∈ {0, 1, . . . } introduced in Section 3.4, corresponding to our example
system.

B Solving Example System: Restricted to Polytopes

We aim to find the smallest solution of the following system restricted to polytopes, not arbitrary
convex sets.

X1 ⩾ P1 ⊕X1
o
⋆

(
1

2
·X2 +

1

2
· P3

)
X2 ⩾ P2 ⊕X2

o
⋆

(
1

2
·X1 +

1

2
· P4

)
We will follow the solution strategy in Section 3.3 with an additional simplification rule: For
polytopes X,A,B, the following identity holds.

X ⩾ A
o
⋆B ⇐⇒ X ⩾ A⊕B,

For polytope constant assignments, we can simplify the original system directly into the system:

30



P (1) P (2)

P (3)P (4)

1
2
· P (2) + 1

2
· P (3)1

2
· P (1) + 1

2
· P (4)

2
3
· P (3) + 1

3
· P (4)1

3
· P (3) + 2

3
· P (4)

X
(5)
1 X

(5)
2

P (1) P (2)

P (3)P (4)

1
2
· P (2) + 1

2
· P (3)1

2
· P (1) + 1

2
· P (4)

2
3
· P (3) + 1

3
· P (4)1

3
· P (3) + 2

3
· P (4)

X
(7)
1 X

(7)
2

P (1) P (2)

P (3)P (4)

1
2
· P (2) + 1

2
· P (3)1

2
· P (1) + 1

2
· P (4)

2
3
· P (3) + 1

3
· P (4)1

3
· P (3) + 2

3
· P (4)

X
(9)
1 X

(9)
2

Figure 10: Illustration of the iterated convex sets
{
X(i)

}
i⩾0

in R2 proposed in Section 3.4 for the

system in Section 3, when i ∈ {5, 7, 9}. When i = 5, i = 7, and i = 9, the polytopes have 8, 12,
and 16 edges each, respectively.

31



X1 ⩾ P1 ⊕
(
1

2
·X2 +

1

2
· P3

)
⊕X1

X2 ⩾ P2 ⊕
(
1

2
·X1 +

1

2
· P4

)
⊕X2

After canceling X1 (and using the idempotence A⊕A = A), we get the system:

X1 ⩾ P1 ⊕
(
1

2
·X2 +

1

2
· P3

)
X2 ⩾ P2 ⊕

(
1

2
·X1 +

1

2
· P4

)
⊕X2

After substituting X1 into X2, we get the system:

X1 ⩾ P1 ⊕
(
1

2
·X2 +

1

2
· P3

)
X2 ⩾ P2 ⊕

(
1

2
· P1 +

1

2
· P4

)
⊕
(
1

4
·X2 +

1

4
· P3 +

1

2
· P4

)
⊕X2

Rewriting X2’s equation gives the system:

X1 ⩾ P1 ⊕
(
1

2
·X2 +

1

2
· P3

)
X2 ⩾ P2 ⊕

(
1

2
· P1 +

1

2
· P4

)
⊕X2

o
⋆

(
1

3
· P3 +

2

3
· P4

)
⊕X2

= P2 ⊕
(
1

2
· P1 +

1

2
· P4

)
⊕
(
1

3
· P3 +

2

3
· P4

)
⊕X2 (using simplification)

Canceling X2 gives the system:

X1 ⩾ P1 ⊕
(
1

2
·X2 +

1

2
· P3

)
X2 ⩾ P2 ⊕

(
1

2
· P1 +

1

2
· P4

)
⊕
(
1

3
· P3 +

2

3
· P4

)
Substituting X2 into X1 gives the system:

X1 ⩾ P1 ⊕
(
1

2
· P2 +

1

2
· P3

)
⊕
(
2

3
· P3 +

1

3
· P4

)
⊕
(
1

4
· P1 +

1

4
· P4 +

1

2
· P3

)
X2 ⩾ P2 ⊕

(
1

2
· P1 +

1

2
· P4

)
⊕
(
1

3
· P3 +

2

3
· P4

)

32



From this final system, we conclude that the smallest polytope solution is

X1 = conv

(
P1 ⊕

(
1

2
· P2 +

1

2
· P3

)
⊕
(
2

3
· P3 +

1

3
· P4

)
⊕
(
1

4
· P1 +

1

4
· P4 +

1

2
· P3

) )
∗
= conv

(
P1 ⊕

(
1

2
· P2 +

1

2
· P3

)
⊕
(
2

3
· P3 +

1

3
· P4

) )
X2 = conv

(
P2 ⊕

(
1

2
· P1 +

1

2
· P4

)
⊕
(
1

3
· P3 +

2

3
· P4

) )

The (∗) redundancy removal step uses the geometric fact that
(
1
4 · P1 +

1
4 · P4 +

1
2 · P3

)
is a convex

linear combination of P1 and
(
2
3 · P3 +

1
3 · P4

)
to drop that term (just like in Appendix A). Our

algorithm foregoes such redundancy removal using geometric facts.

C Properties of Our Set Operations

Lemma C.1. For subsets A,B,C ⊆ Rd and 0 < ρ < 1, the following identities hold.

A
o
⋆A ∼ A (30)

A
o
⋆ (B

o
⋆C) = (A

o
⋆B)

o
⋆C (31)

A
o
⋆ (B ⊕ C) = (A

o
⋆B) ⊕ (A

o
⋆C) (32)

ρ · (A⊕B) = (ρ ·A) ⊕ (ρ ·B) (33)

ρ · (A o
⋆B) = (ρ ·A) o

⋆ (ρ ·B) (34)

(A
o
⋆B) + C ∼ (A+ C)

o
⋆ (B + C) (35)

Proof of Equation 30, A
o
⋆A ∼ A. We will show that conv

(
A

o
⋆A
)
= conv(A).

First direction. To prove conv(A) ⊆ conv
(
A

o
⋆A
)
, it suffices to prove that A ⊆ A

o
⋆A. This

result follows from the observation that, for any point a ∈ A, we can rewrite a = 1
2 ·a+

1
2 ·a ∈ A

o
⋆A.

Second direction. To prove conv
(
A

o
⋆A
)
⊆ conv(A), it suffices to prove that A

o
⋆A ⊆ conv(A).

For this result, consider a point λ · a + (1 − λ) · a′ ∈ A
o
⋆A, for some a, a′ ∈ A and 0 < λ < 1.

By the convexity of the set conv(A), it is immediate that λ · a + (1 − λ) · a′ ∈ conv(A) for any
a, a′ ∈ A ⊆ conv(A).

Proof of Equation 31, A
o
⋆ (B

o
⋆C) = (A

o
⋆B)

o
⋆C. We show that both setsA

o
⋆ (B

o
⋆C) and (A

o
⋆B)

o
⋆C

are equal to the following set:

L :=
{
α · a+ β · b+ γ · c : a ∈ A, b ∈ B, c ∈ C, and α, β, γ > 0 satisfying α+ β + γ = 1

}
.

We first show that L = A
o
⋆ (B

o
⋆C).

33



First direction. L ⊆ A
o
⋆ (B

o
⋆C). Consider arbitrary points a ∈ A, b ∈ B, c ∈ C and reals

α, β, γ ∈ (0, 1), where α + β + γ = 1. Then, we can rewrite the point α · a + β · b + γ · c ∈ L as
follows:

α · a+ (1− α) ·
(

β

1− α
· b+ γ

1− α
· c
)
.

This element belongs to A
o
⋆ (B

o
⋆C) because α, β

1−α ,
γ

1−α ∈ (0, 1), and β
1−α + γ

1−α = 1

Second direction. A
o
⋆ (B

o
⋆C) ⊆ L. Consider arbitrary points a ∈ A, b ∈ B, c ∈ C, and reals

α, λ ∈ (0, 1). Then, we can rewrite the point α · a + (1 − α) · (λ · b+ (1− λ) · c) ∈ A o
⋆ (B

o
⋆C) as

follows:
α · a+ (1− α)λ · b+ (1− α)(1− λ) · c.

This element belongs to L because α, (1− α)λ, (1− α)(1− λ) are positive reals adding to 1.

The proof of L = (A
o
⋆B)

o
⋆C follows similarly by exchanging A and C.

Proof of Equation 32, A
o
⋆ (B ⊕ C) = (A

o
⋆B)⊕ (A

o
⋆C). We show that A

o
⋆ (B ⊕ C) ⊆ (A

o
⋆B) ⊕

(A
o
⋆C) and (A

o
⋆B)⊕ (A

o
⋆C) ⊆ A o

⋆ (B ⊕ C).

First direction. A
o
⋆ (B ⊕ C) ⊆ (A

o
⋆B) ⊕ (A

o
⋆C). Consider arbitrary point e ∈ A

o
⋆ (B ⊕ C).

Then, there are points a ∈ A, d ∈ B ⊕ C and real λ ∈ (0, 1) such that e = λ · a+ (1− λ) · d. Since
d ∈ B ⊕C, we have d ∈ B or d ∈ C. If d ∈ B, then e ∈ A o

⋆B, and if d ∈ C, then e ∈ A o
⋆C. Thus,

we have e ∈ (A
o
⋆B)⊕ (A

o
⋆C).

Second direction. (A
o
⋆B) ⊕ (A

o
⋆C) ⊆ A

o
⋆ (B ⊕ C). Consider arbitrary e ∈ A

o
⋆B. Then,

there are a ∈ A, b ∈ B, and real λ ∈ (0, 1) such that e = λ · a + (1 − λ) · b. Since b ∈ B ⊕ C,
we have e ∈ A

o
⋆ (B ⊕ C). This implies that A

o
⋆B ⊆ A

o
⋆ (B ⊕ C). Similarly, we can show that

A
o
⋆C ⊆ A o

⋆ (B ⊕ C). Thus, we have (A
o
⋆B)⊕ (A

o
⋆C) ⊆ A o

⋆ (B ⊕ C).

Proof of Equation 33, ρ · (A⊕B) = (ρ ·A)⊕ (ρ ·B). We will prove the following two directions.

First direction. ρ · (A⊕B) ⊆ (ρ ·A)⊕ (ρ ·B). Consider arbitrary point d ∈ ρ · (A⊕B). Then,
there is a point c ∈ A ⊕ B such that d = ρ · c. It follows from c ∈ A ⊕ B that c ∈ A or c ∈ B. If
c ∈ A, then we have d = ρ · c ∈ ρ ·A, and if c ∈ B, then we have d = ρ · c ∈ ρ ·B. Thus, we conclude
that d ∈ ρ ·A⊕ ρ ·B.

Second direction. (ρ ·A)⊕ (ρ ·B) ⊆ ρ · (A⊕B). Since A ⊆ A⊕B, we have ρ ·A ⊆ ρ · (A⊕B).
Similarly, we have ρ ·B ⊆ ρ · (A⊕B). This implies that (ρ ·A)⊕ (ρ ·B) ⊆ ρ · (A⊕B).

Proof of Equation 34, ρ · (A o
⋆B) = (ρ ·A) o

⋆ (ρ ·B). We prove the following two directions.

First direction. ρ · (A o
⋆B) ⊆ (ρ · A) o

⋆ (ρ · B). Consider arbitrary points a ∈ A, b ∈ B, and real

λ ∈ (0, 1). Then, we can rewrite the point ρ·(λ·a+(1−λ)·b) ∈ ρ·(A o
⋆B) as λ·(ρ·a)+(1−λ)·(ρ·b) ∈

(ρ ·A) o
⋆ (ρ ·B).

34



Second direction. (ρ · A) o
⋆ (ρ · B) ⊆ ρ · (A o

⋆B). Consider arbitrary points a ∈ A, b ∈ B, and

real λ ∈ (0, 1). Then, we can rewrite the point λ · (ρ · a) + (1 − λ) · (ρ · b) ∈ (ρ · A) o
⋆ (ρ · B) as

ρ · (λ · a+ (1− λ) · b) ∈ ρ · (A o
⋆B).

Proof of Equation 35, (A
o
⋆B) + C ∼ (A+ C)

o
⋆ (B + C). We need to prove that conv

(
(A

o
⋆B) + C

)
=

conv
(
(A+ C)

o
⋆ (B + C)

)
.

First direction. conv
(
(A

o
⋆B) + C

)
⊆ conv

(
(A+ C)

o
⋆ (B + C)

)
. It suffices to prove that

(A
o
⋆B) + C ⊆ (A + C)

o
⋆ (B + C). Consider a point (λ · a + (1 − λ) · b) + c ∈

(
A

o
⋆B
)
+ C

for some a ∈ A, b ∈ B, c ∈ C, and 0 < λ < 1. We rewrite this point as λ · (a+ c) + (1−λ) · (b+ c),

which is an element in (A+ C)
o
⋆ (B + C).

Second direction. conv
(
(A+ C)

o
⋆ (B + C)

)
⊆ conv

(
(A

o
⋆B) + C

)
. It suffices to prove that

(A + C)
o
⋆ (B + C) ⊆ conv

(
(A

o
⋆B) + C

)
. Consider a point λ · (a + c) + (1 − λ) · (b + c′) ∈

(A+C)
o
⋆ (B+C) for some a ∈ A, b ∈ B, c, c′ ∈ C, and 0 < λ < 1. We rewrite the point as follows

λ · ((λ · a+ (1− λ) · b) + c) + (1− λ) ·
(
(λ · a+ (1− λ) · b) + c′

)
∈ conv

(
(A

o
⋆B) + C

)
.

D Gaussian Elimination Algorithm

For brevity, for this section, we extend the evaluation map to Boolean predicates of the following
form: eval(X ⩾ φ;X,P) is true if (and only if) eval(X;X,P) ⩾ eval(φ;X,P), where X is an
unknown and φ is a polynomial over CL(Ω). To prove Theorem 2, we will need the following
results.

Overview. We present a high-level overview of the results proven in this section and how they
will be used.

1. Rearrangement lemma (Lemma D.1): Given an inequality X ⩾ φ, this lemma rewrites it as an
“equivalent” inequality with a very specific structure:

X ⩾ φ′ ⊕ X
o
⋆M1 ⊕ · · · ⊕ X

o
⋆Mk,

where φ′ is a polynomial andM1, . . . ,Mk are monomials over CL(Ω\{X}). Here, two inequalities
are considered equivalent when both are simultaneously true or both are simultaneously false
for all assignments.

2. Cancellation lemma (Lemma D.2): Consider a system where the inequality for X has the struc-
ture promised by the rearrangement lemma above. Cancellation lemma presents a polynomial φ̃
over CL(Ω\{X}) such that replacing the structured inequality with X ⩾ φ̃ preserves the small-
est solution for all assignments. Together with the rearrangement lemma above, the cancellation
lemma eliminates X from the RHS of the inequality for the unknown X.

3. Substitution lemma (Lemma D.3): Consider a system with inequalities X ⩾ φX and Y ⩾ φY ,
where φX is a polynomial over CL(Ω \ {X}). Our objective is to construct a new system where
Y ⩾ φX is replaced by the inequality Y ⩾ φY JX ← φXK. The substitution lemma will prove

35



that the new system’s smallest solution is identical to the smallest solution of the original system.
We can iteratively use this lemma for all unknowns Y ∈ Ω \ {X} to remove the dependence on
the unknown X from every polynomial in the system.

D.1 Rearrangement and Cancellation Lemmas

Lemma D.1 (Rearrangement Lemma). For an unknown X ∈ Ω, and a polynomial φ over CL(Ω),
there is a polynomial φ′ and monomials M1,M2, . . . ,Mk over CL(Ω \ {X}), where k ⩾ 0, such that
(for any assignment X and P) the following identity holds.

eval(X ⩾ φ ; X,P) = eval
(
X ⩾ φ′ ⊕ X

o
⋆M1 ⊕ · · · ⊕ X

o
⋆Mk ; X,P

)
.

Proof. If φ = ∅, then φ′ = ∅ and k = 0.
Otherwise, suppose φ = N1 ⊕ · · · ⊕ Nℓ and ℓ ⩾ 1. We say that a monomial M =

E1
o
⋆E2

o
⋆ · · · o

⋆Eu depends on X if there is i ∈ {1, 2, . . . , u} such that Ei = ρ · X + (1 − ρ) · E′,
where 0 < ρ < 1 and E′ ∈ CL(Ω \ {X}). If the polynomial φ has no monomial depending on X,
then φ′ = φ and k = 0.

Otherwise, I ⊆ {1, 2, . . . , u} be the subset of indices i such that the monomial Ni does not
depend on X. The complement J = {1, 2, . . . , u} \ I be the subset of indices i such that the
monomial Ni depends on X. Without loss of generality, let J = {1, 2, . . . , k}, where k ⩾ 1, and
I = {k + 1, . . . , ℓ}. For index i ∈ J , let

Ni = (ρ1 ·X + (1− ρ1) · E1)
o
⋆ · · · o

⋆ (ρvi ·X + (1− ρvi) · Evi)
o
⋆Evi+1

o
⋆ · · · o

⋆Eui ,

such that 1 ⩽ vi ⩽ ui, E1, . . . , Eui ∈ CL(Ω \ {X}), and ρ1, ρ2, . . . , ρvi ∈ (0, 1). Define the following
monomial over CL(Ω \ {X}).

Mi := E1
o
⋆ · · · o

⋆Evi

o
⋆Evi+1

o
⋆ · · · o

⋆Eui .

Define the following polynomial over CL(Ω \ {X}).

φ′ := Nk+1 ⊕ · · · ⊕ Nℓ.

Now, for any assignment X and P, we have the following argument.

eval (X ⩾ φ ; X,P) = eval (X ⩾ N1 ⊕ · · · ⊕ Nℓ ; X,P)

=
ℓ∧

i=1

eval (X ⩾ Ni ; X,P)

=

 ∧
1⩽i⩽k

eval (X ⩾ Ni ; X,P)

 ∧
 ∧

k+1⩽i⩽ℓ

eval (X ⩾ Ni ; X,P)


= eval

(
X ⩾ φ′ ; X,P

)
∧

 ∧
1⩽i⩽k

eval (X ⩾ Ni ; X,P)


†
= eval

(
X ⩾ φ′ ; X,P

)
∧

 ∧
1⩽i⩽k

eval
(
X ⩾ X

o
⋆Mi ; X,P

)
= eval

(
X ⩾ φ′ ⊕ X

o
⋆M1 ⊕ · · · ⊕ X

o
⋆Mk ; X,P

)
36



The explanation of (†) is that eval (X ⩾ Ni ; X,P) = eval
(
X ⩾ X

o
⋆Mi ; X,P

)
by using Lemma D.4

on E1, . . . , Evi , and, finally, using the idempotence X = X
o
⋆X (when X ∈ Cd(R)) from Equa-

tion 30.

Lemma D.2 (Cancellation Lemma). Consider a system I with an inequality

X ⩾

(
k′

⊕
i=1

M ′i

)
⊕
(

k
⊕
j=1

X
o
⋆Mj

)
,

where M1, . . . ,Mk,M
′
1, . . . ,M

′
k′ are monomials over CL(Ω\{X}). Define a new system I ′ identical

to I except that the inequality above is replaced by

X ⩾
k′

⊕
i=1

(
M ′i ⊕

(
k
⊕
j=1

M ′i
o
⋆Mj

) )
Then, ss(I;P) = ss(I ′;P) for all constant assignments P.

Proof. Our proof will have two components. For arbitrary constant assignments P, we have:

1. sol(I;P) ⊆ sol(I ′;P).

2. ss(I ′;P) ∈ sol(I;P).

These two results imply that ss(I;P) = ss(I ′;P).

Part 1. For this part, it suffices to prove that

eval

(
X ⩾

(
k′

⊕
i=1

M ′i

)
⊕
(

k
⊕
j=1

X
o
⋆Mi

)
; X,P

)
implies eval (X ⩾M ′i ; X,P) and eval

(
X ⩾M ′i

o
⋆Mj ; X,P

)
, for all i ∈ {1, 2, . . . , k′} and j ∈

{1, 2, . . . , k}. Note that the implication eval (X ⩾M ′i ; X,P) is obvious. Next, observe that we also

have the implication eval
(
X ⩾ X

o
⋆Mj ; X,P

)
, which (in turn) implies eval

(
X ⩾M ′i

o
⋆Mj ; X,P

)
.

This concludes the proof of the first part.

Part 2. Let ss(I ′;P)X := eval (X ; ss(I ′;P),P), the assignment to the unknown X in the
smallest solution ss(I ′;P). Similarly, let ss(I ′;P)\X represent the assignment to unknowns other
than X by ss(I ′;P). Define

AP := eval

(
k′

⊕
i=1

(
M ′i ⊕

(
k
⊕
j=1

M ′i
o
⋆Mj

) )
; ss(I ′;P)\X ,P

)
.

Here, we are using the fact that M ′i and Mj being monomials over CL(Ω \ {X}). Note that
ss(I ′;P)X = conv(AP); otherwise, replacing ss(I ′;P)X by conv(AP) (and leaving the other un-
known assignments identical) creates a smaller solution in sol(I ′;P).

After this, to prove ss(I ′;P) ∈ sol(I;P), it suffices to prove that

eval

(
X ⩾

(
k′

⊕
i=1

M ′i

)
⊕
(

k
⊕
j=1

X
o
⋆Mj

)
; ss(I ′;P),P

)
is true.

37



It is equivalent to proving

eval

(
conv(AP) ⩾

(
k′

⊕
i=1

M ′i

)
⊕
(

k
⊕
j=1

conv(AP)
o
⋆Mj

)
; ss(I ′;P)\X ,P

)
is true.

For brevity, let us introduce some notation. Define

UP := eval

(
k′

⊕
i=1

M ′i ; ss(I
′;P)\X ,P

)
VP := eval

(
k
⊕
j=1

Mj ; ss(I
′;P)\X ,P

)
.

Note that conv(AP) = conv
(
UP ⊕ UP

o
⋆ VP

)
. Using this new notation, we need to prove that

conv
(
UP ⊕ UP

o
⋆ VP

)
⩾ UP ⊕ conv

(
UP ⊕ UP

o
⋆ VP

)
o
⋆ VP

⇐⇒ conv
(
UP ⊕ UP

o
⋆ VP

)
⩾ UP ⊕

(
UP ⊕ UP

o
⋆ VP

)
o
⋆ VP

⇐⇒ conv
(
UP ⊕ UP

o
⋆ VP

)
⩾ UP ⊕ UP

o
⋆ VP ⊕ UP

o
⋆ VP

o
⋆ VP

⇐⇒ conv
(
UP ⊕ UP

o
⋆ VP

)
⩾ UP ⊕ UP

o
⋆ VP ⊕ UP

o
⋆ conv(VP) (By Equation 30)

⇐⇒ conv
(
UP ⊕ UP

o
⋆ VP

)
⩾ UP ⊕ UP

o
⋆ VP ⊕ UP

o
⋆ VP

⇐⇒ conv
(
UP ⊕ UP

o
⋆ VP

)
⩾ UP ⊕ UP

o
⋆ VP,

which is trivially true, completing the proof of part 2.

D.2 Substitution Lemma

Lemma D.3 (Substitution Lemma). Consider a system I ′ containing two inequalities X ⩾ φX and
Y ⩾ φY , where φX is a polynomial over CL(Ω \ {X}) and φY is a polynomial over CL(Ω). Define
a new system I ′′ identical to I ′ except that the inequality Y ⩾ φY is replaced by Y ⩾ φY JX ← φXK.
Then, ss(I ′;P) = ss(I ′′;P) for all constant assignments P.

Proof. Our proof will have two components. For arbitrary constant assignments P, we have:

1. sol(I ′;P) ⊆ sol(I ′′;P).

2. ss(I ′′;P) ∈ sol(I ′;P).

These two result imply that ss(I ′;P) = ss(I ′′;P).

Part 1. For this part, it suffices to prove that eval (X ⩾ φX ; X,P) and eval (Y ⩾ φY ; X,P)
implies eval (Y ⩾ φY JX ← φXK ; X,P) when X is an assignment. Note that (read the derivation
left to right).

eval (φY JX ← φXK ; X,P)
∗∼ eval (φY ; (X,P) JX ← φXK)

†
⩽ eval (φY ; X,P)

‡
⩽ eval (Y ; X,P) ,

which completes the proof. The explanations for the derivation steps are below.

1. Step ∗ is true by the definition of substituted polynomial, see Lemma 1

2. Step † holds because eval (X ⩾ φX ; X,P)

3. Step ‡ holds because eval (Y ⩾ φY ; X,P)

38



Part 2. It will suffice to prove that eval (Y ⩾ φY ; ss(I ′′;P),P).
We first claim that ss(I ′′;P)X ∼ eval (φX ; ss(I ′′;P),P); otherwise, we will find a smaller

solution of I ′′, which is a contradiction. Suppose not; i.e., ss(I ′′;P)X ∈ Cd(R) is a strict superset
of AP := conv(eval(φX ; ss(I ′′;P);P)). Recall that φX is a polynomial over CL(Ω \ {X}). Thus,
replacing ss(I ′′;P)X by AP in the smallest solution creates a smaller solution.

As a result of the claim, for any polynomial φ over CL(Ω), we have eval (φ ; ss(I ′′;P),P) ∼
eval (φ ; (ss(I ′′;P),P) JX ← φXK) . In particular,

eval
(
φY ; (ss(I ′′;P),P) JX ← φXK

)
∼ eval

(
φY ; ss(I ′′;P),P

)
.

By the definition of the polynomial φY JX ← φXK over CL(Ω \ {X}) (see Lemma 1), we have

eval
(
φY ; (ss(I ′′;P),P) JX ← φXK

)
∼ eval

(
φY JX ← φXK ; ss(I ′′;P),P

)
.

Consequently, we have

eval
(
φY ; ss(I ′′;P),P

)
∼ eval

(
φY JX ← φXK ; ss(I ′′;P),P

)
.

At this point, we have the conclusion that evaluations of φY and φY JX ← φXK have the same
convex hull.

Recall that ss(I ′′;P) ∈ Cd(R)n is a solution of I ′′ and (as a result) eval (Y ⩾ φY JX ← φXK ; ss(I ′′;P),P)
holds. Therefore, eval (Y ⩾ φY ; ss(I ′′;P),P) also holds, because φY and φY JX ← φXK have the
same convex hull. This completes the proof of part 2.

D.3 Proof of Substitution Correctness: Proof of Lemma 1

It suffices to prove the result when φ is a monomial (Equation 17). As a warmup, it is instructive
to prove the result for a degree-1 monomial, i.e., an element of CL(Ω) (Equation 16).

Warmup. Suppose φ = E = (ρ ·X + (1− ρ) · E′), where E′ is an element of CL(Ω \ {X}). We
use properties of our set operations presented in Lemma C.1 for the following derivation in † and
‡ steps.

eval (φ ; (X,P) JX ← φXK)
= eval

(
ρ ·X + (1− ρ) · E′ ; (X,P) JX ← φXK

)
(By the definition of φ)

= ρ · eval (X ; (X,P) JX ← φXK) + (1− ρ) · eval
(
E′ ; (X,P) JX ← φXK

)
(By the definition of the evaluation map)

= ρ · eval
(
φX ; X\X ,P

)
+ (1− ρ) · eval

(
E′ ; (X,P) JX ← φXK

)
(X\X is the unknown assignment restricted to unknowns ̸= X)

(By the definition of X JX ← φXK and φX is polynomial over CL(Ω \ {X}))
= ρ · eval

(
φX ; X\X ,P

)
+ (1− ρ) · eval

(
E′ ; X\X ,P

)
(Because E′ ∈ CL(Ω \ {X}))

= ρ · eval
(

⊕
M∈mono(φX)

o
⋆

F∈supp(M)
F ; X\X ,P

)
+ (1− ρ) · eval

(
E′ ; X\X ,P

)
(By the definition of the polynomial φX)

= ρ ·
(

⊕
M∈mono(φX)

o
⋆

F∈supp(M)
eval

(
F ; X\X ,P

))
+ (1− ρ) · eval

(
E′ ; X\X ,P

)
(By the definition of the evaluation map)

39



†
=

(
⊕

M∈mono(φX)

o
⋆

F∈supp(M)
ρ · eval

(
F ; X\X ,P

))
+ (1− ρ) · eval

(
E′ ; X\X ,P

)
(Because scalar multiplication distributes over ⊕ and

o
⋆ )

‡∼ ⊕
M∈mono(φX)

o
⋆

F∈supp(M)

(
ρ · eval

(
F ; X\X ,P

)
+ (1− ρ) · eval

(
E′ ; X\X ,P

) )
(Because Minkowski sum distributes over ⊕ and

o
⋆ )

= ⊕
M∈mono(φX)

o
⋆

F∈supp(M)
eval

(
EJX ← F K ; X\X ,P

)
(By the definition of EJX ← F K)

= eval

(
⊕

M∈mono(φX)

o
⋆

F∈supp(M)
EJX ← F K ; X\X ,P

)
(By the definition of the evaluation map)

= eval
(
φ JX ← φXK ; X\X ,P

)
(By the definition of the polynomial φ JX ← φXK over CL(Ω \ {X}))

= eval (φ JX ← φXK ; X,P) .

This completes the proof of the warmup case.

Primary case: φ is a monomial. The full proof is similar to the warmup proof.

eval (φ ; (X,P)JX ← φXK)

= eval

(
o
⋆

E∈supp(φ)
E ; (X,P)JX ← φXK

)
(By the definition of φ)

=
o
⋆

E∈supp(φ)
eval (E ; (X,P)JX ← φXK)

(By the definition of the evaluation map)

∼ o
⋆

E∈supp(φ)

(
⊕

M∈mono(φX)

o
⋆

F∈supp(M)
eval

(
EJX ← F K ; X\X ,P

) )
(By the derivation in the warmup case to one step after the ‡ step)

= ⊕
N⃗∈mono(φX)supp(φ)

o
⋆

E∈supp(φ)

(
o
⋆

F∈supp(N⃗(E))
eval

(
EJX ← F K ; X\X ,P

) )
(Because

o
⋆ distributes over ⊕)

= eval

(
⊕

N⃗∈mono(φX)supp(φ)

o
⋆

E∈supp(φ)

(
o
⋆

F∈supp(N⃗(E))
EJX ← F K

)
; X\X ,P

)
(By the definition of the evaluation map)

= eval (φ JX ← φXK ; X,P) .
(By the definition of the polynomial φ JX ← φXK over CL(Ω \ {X}))

This completes the proof of Lemma 1

D.4 Technical Results

Lemma D.4. Consider convex X ∈ Cd(R), arbitrary sets A,B ⊆ Rd, and 0 < ρ < 1.

40



1. X ⩾ (ρ ·X + (1− ρ) ·A) if and only if X ⩾ X
o
⋆A

2. X ⩾ (ρ ·X + (1− ρ) ·A) o
⋆ B if and only if X ⩾ X

o
⋆A

o
⋆B

Proof. We prove the first item.

Proof of ‘if ’. By definition, we have ρ · X + (1 − ρ) · A ⊆ X
o
⋆A when ρ ∈ (0, 1). Therefore,

X ⩾ X
o
⋆A implies X ⩾ (ρ ·X + (1− ρ) ·A).

Proof of ‘only if ’. Suppose that X ⩾ (ρ ·X+(1−ρ) ·A). Consider arbitrary x ∈ X, and a ∈ A.
It follows from the assumption that ρ ·x+(1−ρ) ·a ∈ X. We will show that if ρ ·x+(1−ρ) ·a ∈ X
then λ · x+ (1− λ) · a ∈ X, for all λ ∈ (0, 1). The proof will rely on the convexity of X ∈ Cd(R).

Define x(0) := x and recall that x(0) ∈ X. Then, inductively for i ∈ {0, 1, 2, . . . }, the point
x(i+1) := ρ · x(i) + (1 − ρ) · a also belongs to X using the fact that X ⩾ ρ ·X + (1 − ρ) · A. By
convexity of X, the line segment joining the points x and x(i) is a subset of X.

Note that x(i) = ρi · x + (1 − ρi) · a. Consider arbitrary λ ∈ (0, 1) and any iλ ∈ {0, 1, 2, . . . }
satisfying λ < ρiλ . Then, the point λ · x + (1 − λ) · a is on the line segment joining x and x(iλ),
which is a subset of X.

This demonstrates that λ · X + (1 − λ) · A ⊆ X, for any λ ∈ (0, 1); in turn, implying that

X ⩾ X
o
⋆A. Thus, X ⩾ (ρ ·X + (1− ρ) ·A) implies X ⩾ X

o
⋆A.

Next, we prove the second item.

Proof of ‘if ’. By definition, we have (ρ ·X + (1− ρ) ·A) o
⋆B ⊆

(
X

o
⋆A
)

o
⋆B = X

o
⋆A

o
⋆B when

ρ ∈ (0, 1). Therefore, X ⩾ X
o
⋆A

o
⋆B implies X ⩾ (ρ ·X + (1− ρ) ·A) o

⋆B.

Proof of ‘only if ’. Suppose X ⩾ (ρ · X + (1 − ρ) · A) o
⋆B. Consider arbitrary x ∈ X, a ∈ A,

and b ∈ B, and reals u, v ∈ (0, 1). Let u = 1 − u, v = 1 − v. We will show that the point

p := u · x+ u · (v · a+ v · b) ∈ X o
⋆A

o
⋆B is also in X. This proof will again rely on the convexity

of X ∈ Cd(R).
Inductively define a sequence of points x(i), for i ∈ {0, 1, 2, . . . }. To begin, define x(0) := x,

and define

x(i+1) :=
v

v + v ρ
·
(
ρ · x(i) + ρ · a

)
+

v ρ

v + v ρ
· b,

where ρ = 1 − ρ. Note that, inductively, if x(i) ∈ X, then x(i+1) ∈ (ρ · X + (1 − ρ) · A) o
⋆B, so

x(i+1) ∈ X according to the assumption. In summary, {x(0), x(1), . . . } ⊆ X.
We will prove that x(i) can be written as the following form:

x(i) = µ(i) · x+ v(1− µ(i)) · a+ v(1− µ(i)) · b.

For (base case) i = 0, we know µ(0) = 1. By the recursive definition, we have:

µ(i+1) =
vρ

v + v ρ
· µ(i)

Let µ = vρ
v+v ρ , then we conclude that, for i ∈ {0, 1, 2, . . . }, we have:

x(i) = µi · x+ v(1− µi) · a+ v(1− µi) · b.

Observe that 0 < µ < 1. Let iu ∈ {0, 1, 2, . . . } be an index such that µiu < u. Then, the point
p belongs to the line segment joining the points x and x(iu). By convexity of X, we conclude that
p ∈ X.

41



Lemma D.5. For any unknown assignments X ⩾ Y and constant assignments P ⩾ Q, and
any polynomial φ over CL(Ω), we will have eval (φ ; X,P) ⩾ eval (φ ; Y,Q). Furthermore,
eval (φ ; X,P) ∼ eval (φ ; Y,Q) if Xi ∼ Yi and Pj ∼ Qj for every i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , t}.

Proof. It suffices to prove the result for monomials. Suppose X ⩾ Y, and P ⩾ Q. Then, Yi ⊆ Xi

for each i ∈ {1, . . . , n}, and Qi ⊆ Pi for each i ∈ {1, . . . , t}. Let φ be a monomial M . For each
E = λ1 ·X1 +· · ·+ λn ·Xn + λn+1 · P1 +· · ·+ λn+t · Pt ∈ supp(M), we have,

eval (E;Y,Q) = λ1 ·Y1 +· · ·+ λn ·Yn + λn+1 ·Q1 +· · ·+ λn+t ·Qt

⊆ λ1 ·X1 +· · ·+ λn ·Xn + λn+1 ·P1 +· · ·+ λn+t ·Pt

= eval (E;X,P) .

Thus, we have,

eval (M ; Y,Q) =
o
⋆

E∈supp(M)
eval(E ; Y,Q)

⊆ o
⋆

E∈supp(M)
eval(E ; X,P)

= eval (M ; X,P) .

This implies that eval (M ;X,P) ⩾ eval (M ;Y,Q).
Now, suppose that Xi ∼ Yi and Pj ∼ Qj for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , t}. Thus,

conv(Xi) = conv(Yi), and conv(Pj) = conv(Qj) for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , t}.
For each E = λ1 ·X1 +· · ·+ λn ·Xn + λn+1 · P1 +· · ·+ λn+t · Pt ∈ supp(M), we have,

eval (E ; Y,Q) ⊆ conv(eval(E ; Y,Q))

= conv(λ1 ·Y1 +· · ·+ λn ·Yn + λn+1 ·Q1 +· · ·+ λn+t ·Qt)

= λ1 · conv(Y1) +· · ·+ λn · conv(Yn) + λn+1 · conv(Q1) +· · ·+ λn+t · conv(Qt)

= λ1 · conv(X1) +· · ·+ λn · conv(Xn) + λn+1 · conv(P1) +· · ·+ λn+t · conv(Pt)

= conv(λ1 ·X1 +· · ·+ λn ·Xn + λn+1 ·P1 +· · ·+ λn+t ·Pt)

= conv(eval(E ; X,P))

This implies that

eval (M ; Y,Q) =
o
⋆

E∈supp(M)
eval(E ; Y,Q)

⊆ o
⋆

E∈supp(M)
conv(eval(E ; X,P))

⊆ conv

(
o
⋆

E∈supp(M)
eval(E ; X,P)

)
(By Lemma D.7)

= conv(eval (M ; X,P)).

Thus, we have,
conv(eval (M ; Y,Q)) ⊆ conv(eval (M ; X,P)).

Similarly, we can show that conv(eval (M ; X,P)) ⊆ conv(eval (M ; Y,Q)). Thus, we have

conv(eval (M ; X,P)) = conv(eval (M ; Y,Q)),

as desired.

42



Lemma D.6. Suppose I is a system and X ⩾ φX is an inequality in it, where φX is a polynomial
over CL(Ω \ {X}). Then, ss(I;P)X = conv

(
eval(φX ; ss(I;P)\X ,P)

)
.

Proof. Since ss(I;P) is a solution of I, we have:

ss(I;P)X ⩾ eval(φX ; ss(I;P),P)

= eval(φX ; ss(I;P)\X ,P). (φX is a polynomial over CL(Ω \ {X}))

This implies that ss(I;P)X ⩾ conv
(
eval(φX ; ss(I;P)\X ,P)

)
. Now, it follows from the following

claim that

ZY =


conv

(
eval(φX ; ss(I;P)\X ,P)

)
if Y = X

ss(I;P)Y , if Y ∈ {X1, . . . , Xn} \ {X}

is also a solution. This implies that ss(I;P)X = conv
(
eval(φX ; ss(I;P)\X ,P)

)
.

Claim: Y ∈ sol(I;P) implies Z ∈ sol(I;P), where

ZY =


conv( eval(φX ; Y,P) ) if Y = X

YY , if Y ∈ {X1, . . . , Xn} \ {X}

To prove the above claim, it suffices to show that ZY ⩾ eval(φY ;Z,P) for each Y . We have the
following two cases:

Case 1: Y = X. We have:

ZX = conv( eval(φX ; Y,P) )

⩾ eval(φX ; Y,P)

= eval(φX ; Z,P) (φX is a polynomial over CL(Ω \ {X}), and YW = ZW for W ̸= X)

Case 2: Y ̸= X. First, note that YX ⩾ eval(φX ;Y,P) because Y ∈ ss(I;P). In particular,
this implies that YX ⩾ conv(eval(φX ;Y,P)) = ZX . This implies that Y ⩾ Z. So, we have:

ZY = YY

⩾ eval(φY ; Y,P) (Since Y ∈ sol(I;P))

⩾ eval(φY ;Z,P) (Since Y ⩾ Z)

Lemma D.7. Let A,B ⊆ Rd. Then, conv(A)
o
⋆ conv(B) ⊆ conv

(
A

o
⋆B
)

Proof. Consider an arbitrary element z ∈ conv(A)
o
⋆ conv(B). It follows from Carathéodory’s theo-

rem that there are subsets A′ ⊆ A,B′ ⊆ B of size at most (d+ 1) such that

z = λ ·

(∑
a∈A′

λa · a

)
+ λ ·

(∑
b∈B′

λb · b

)
,

43



where λa ∈ [0, 1] for each a ∈ A′, λb ∈ [0, 1] for each b ∈ B′, and λ ∈ (0, 1); and
∑

a∈A′ λa = 1,∑
b∈B′ λb = 1, and λ+ λ = 1. Then, since

∑
a∈A′, b∈B′

λaλb =

(∑
a∈A′

λa

)(∑
b∈B′

λb

)
= 1,

we have,

z = λ ·

(∑
a∈A′

λa · a

)
+ λ ·

(∑
b∈B′

λb · b

)
=

∑
a∈A′, b∈B′

λaλb ·
(
λ · a+ λ · b

)
∈ conv

(
A

o
⋆B
)
.

This completes the proof.

E Algebraic Complexity of the Smallest Solution of a System of
Inequalities

In this section, we will prove the following result.

Lemma E.1. Let I be a system of inequalities over n unknowns. Suppose every inequality in
a system I has (at most) k monomials, and each monomial has degree (at most) D. After our
Gaussian elimination-inspired algorithm in Figure 4 terminates, every inequality in our system
I(n) has (at most) k(D+1)n monomials and each monomial has a degree (at most) D3n.

Preparatory work. We say that the complexity of a polynomial φ over CL(Ω) is (k,D) if it has
(at most) k monomials, each of degree (at most) D.

Proposition 5. Let φ and φX have complexities (k,D) and (kX , DX) respectively. The polynomial
φ JX ← φXK has complexity (k · kDX , D ·DX).

Note that it suffices to prove this result for k = 1, i.e., when φ = M is a monomial. By
Equation 17, the number of monomials is kDX . The degree of each monomial in the substituted
polynomial is DX +DX +· · ·+DX︸ ︷︷ ︸

D-times

in Equation 17.

In a system of inequalities {Xi ⩾ φi}ni=1, we say that the complexity of the unknown Xi is the
complexity of the corresponding polynomial φi.

Proposition 6. Let (k,D) be the complexity of Xj in the system I. Let I ′ be the system produced
from I by rearranging Xj using the rearrangement lemma (Lemma D.1) and then canceling Xj using
the cancellation lemma (Lemma D.2) Then, the complexity of Xj in the system I ′ is (k2, D2).

Any element ρ · Xj + (1 − ρ) · E′ is rearranged into X
o
⋆E′, where 0 < ρ < 1. Otherwise,

the element is left unchanged if ρ = 0 or ρ = 1. Using the idempotence of
o
⋆ , the degree of any

monomial can either remain unchanged or increase by 1 during rearrangement. By the definition of
the cancellation lemma, the degree of each monomial is at most D2. The total number of monomials
is at most ( (k + 1)/2 )2 ⩽ k2.

44



Proof of Lemma E.1. We say that the complexity of a system is (k,D) if every unknown has
complexity (k,D). Suppose we start with a system I(0) with complexity (k,D). Suppose j = 1. At
the end of step 2.b. in Figure 4, the system I ′ has the following properties.

1. Complexity of X1 is
(
k2, D2

)
2. Complexity of any other variable is (k,D)

After substitution in step 2.c., the system I(1) has the following properties.

1. Complexity of X1 is
(
k2, D2

)
2. Complexity of any other variable is

(
kD+1, D3

)
Thus, I(1) has complexity

(
kD+1, D3

)
. Iterating in this manner, we conclude that the system I(n)

has complexity
(
k(D+1)n , D3n

)
.

F Operational Realization: Proof of Lemma 2

We prove that itr(I;P) ∈ Cd(R)n is the smallest solution that contains the initialization set X(0).
This result will follow from the following two claims.

1. itr(I;P) ∈ sol(I;P), and

2. Any solution Y ∈ Cd(R)n satisfying Y ⩾ X(0), also satisfyies Y ⩾ itr(I;P).

Part 1. Let us first show that itr(I;P) ∈ Cd(R)n is a solution. We already know that it is an
element of Cd(R)n. All that remains is to prove that it satisfies all the constraints. We will prove
that itr(I;P)j ⩾ eval(φj ; itr(I,P),P) for j ∈ {1, 2, . . . , n}. Consider an arbitrary element

x′ = (x′1, . . . ,x
′
n) ∈ itr(I;P) =

⋃
i⩾0

itr(i, I;P) =
⋃
i⩾0

X(i) =

(⋃
i⩾0

X
(i)
1 , . . . ,

⋃
i⩾0

X(i)
n

)
.

Then, for each j ∈ {1, . . . , n}, there exists ij such that x′j ∈ X
(ij)
j . Let i∗ = max(i1, . . . , in). Then,

we have x′j ∈ X
(ij)
j ⊆ X

(i∗)
j . Then, for each j ∈ {1, . . . , n},

eval(φj ;x
′,P) ⊆ eval(φj ;X

(i∗),P) ⊆ conv
(
eval(φj ;X

(i∗),P)
)
= X

(i∗+1)
j ⊆

⋃
i⩾0

X
(i)
j = itr(I;P)j .

This implies that eval(φj ; itr(I;P),P) ⊆ itrj(I;P). Thus, for each j ∈ {1, . . . , n}, itr(I;P)j ⩾
eval(φj ; itr(I;P),P). So, itr(I;P) is a solution.

Part 2. Consider an arbitrary solution Y ∈ Cd(R)n such that Y ⩾ X(0). We will prove that
Y ⩾ itr(I;P). We plan to prove this statement by contradiction. If possible, suppose the statement
is false; then there is j′ ∈ {1, 2, . . . , n} such that Zj′ ∩Yj′ ⊊ itr(I;P)j′ , where Z := itr(I;P) ∩Y.
Using Proposition 3, the intersection of solutions is also a solution. Consequently, Z is a (strictly)
smaller solution than these two solutions and Z ⩾ X(0); below, we prove its impossibility.

45



Consider the sequence of nested sets X(0) → X(1) →· · ·. Note that Z ⩾ X(0) = itr(0; I,P) but
Z ̸⩾ itr(I;P) =

⋃
i⩾0 itr(i, I;P).7 Therefore, there is an i ∈ {1, 2, . . . , } such that

Z ⩾ itr(i− 1, I;P) = X(i−1) but Z ̸⩾ itr(i, I;P) = X(i).

This implies that there is j∗ ∈ {1, 2, . . . , n} such that

Zj∗ ⩾ X
(i−1)
j∗ but Zj∗ ̸⩾ X

(i)
j∗ . (36)

Recall that X
(i)
j∗ is the smallest convex set containing eval(φj∗ ; X(i−1),P), i.e.,

X
(i)
j∗ = conv

(
eval

(
φj∗ ; X(i−1),P

) )
. (37)

On the other hand, Z ∈ sol(I;P), in particular, entailing that Zj∗ ⩾ eval(φj∗ ; Z,P). We know
that Z ⩾ X(i−1), which implies thatZj∗ ⩾ eval(φj∗ ; X(i−1),P). As a result, from Equation 37, we
conclude that

Zj∗ ⩾ X
(i)
j∗ ,

which contradicts Equation 36.

G Preliminaries: Arrangements

This section presents some fundamental properties of arrangements. Define d = a+ b+ c with the
assumptions that c ⩾ 0, a ⩾ 1, and b ⩾ 1. It follows that d = a+b+c ⩾ a+b ⩾ max{a+1, b+1} ⩾ 2.

For brevity, this section will use the following definitions and notation. For a finite set S ⊆ Rd,
the set So denotes the relative interior of the convex hull of S; i.e., So = convo(S). The set ∂S
denotes the boundary of conv(S); i.e., ∂S := conv(S) \ convo(S).

According to the first property below, which is an essential property of an arrangement, the

realization of an incidence vector I ∈ {0, 1}(
S

⩽(a+1)) is the intersection of the sets of relative interior
points of those subsets of S that are in the support of I. Below, we state propositions crucial for
our proof and prove them in Appendix G.1.

Proposition 7. Any incidence vector I ∈ {0, 1}(
S

⩽(a+1)) such that realize(I;S) ∈ AS, satisfies

realize(I;S) =
⋂

R∈( S
⩽(a+1))

IR=1

convo(R).

The non-triviality in proving this result is that the incidence vector also encodes the subsets T
such that the realization does not intersect conv(T ). The complement of conv(T ) is not convex.
So, these “negative constraints” lead to an intersection with non-convex sets; the result need not
necessarily be convex. However, the proposition above states that any realization is expressible
as the intersection of convex sets, and the negative constraints are redundant. From the above
proposition, we conclude the following proposition, which states that any realization of an incidence

vector I ∈ {0, 1}(
S

⩽(a+1)) is the relative interior of a polytope whose vertices are in VAS.

Proposition 8. The closure of any non-empty realize(I;S) ⊆ conv(S) is a polytope with vertices
in VAS.

7That is, there is j ∈ {1, 2, . . . , n} such that Zj does not contain itr(I;P)j .

46



The following result says that the arrangement of a finite set is a partition of its convex hull.

Proposition 9. The sets in AS partition conv(S).

The next proposition states that the set of vertices of an arrangement of a set S contains it.

Proposition 10. S ⊆ VAS

Notation. The set imm(A;SAS) denotes the immediate neighbors of a point A ∈ Ra in the
simplicial decomposition SAS. That is, imm(A;SAS) denotes the (unique) subset of vertices
Q ⊆ VAS such that A ∈ convo(Q) ∈ SAS.

We can uniquely express a point A ∈ Ra in SAS as a convex linear combination of the vertices
imm(A;SAS), and represent the corresponding coefficients as lin(A;SAS) ∈ Rimm(A;SAS). That
is, the following identity holds.

A =
∑

V ∈imm(A;SAS)

lin(A;SAS)V · V (38)

Because A ∈ convo(imm(A;SAS)), we must have lin(A;SAS)V > 0 for every V ∈ imm(A;SAS).

G.1 Proofs of Proposition 7, Proposition 8, Proposition 9, Proposition 10

This section presents the proof of the propositions introduced in Appendix G.
We start with the proof of Proposition 7. We use Lemma G.1 to prove Proposition 7. We

present the proof of Lemma G.1 in Appendix G.2.

Lemma G.1. Let T, S ⊆ Ra be two finite sets such that T ⊆ conv(S). Then, there is a simplicial
decomposition of conv(S) \ convo(T ) such that the vertices of each simplex are in the set S ∪ T .

Proof of Proposition 7. Define

B :=
⋂

R∈( S
⩽(a+1))

IR=1

convo(R).

We want to show that realize(I;S) = B. Note that according to the definition of realize(I;S) ∈ AS,
we have the following:

realize(I;S) =

 ⋂
R∈( S

⩽(a+1))
IR=1

convo(R)


︸ ︷︷ ︸

B

⋂
 ⋂

T∈( S
⩽(a+1))
IT=0

conv(S) \ convo(T )

 (39)

We show that B ∩ (conv(S) \ convo(T )) = B for any T ∈
(

S
⩽(a+1)

)
that IT = 0. Thus, it follows

from Equation 39 that realize(I;S) = B.
Take an arbitrary set T ∈

(
S

⩽(a+1)

)
such that IT = 0. We show that convo(T ) ∩B = ∅. Since

B =
⋂

R∈( S
⩽(a+1))

IR=1

convo(R) ⊆ conv(S),

47



it follows from B∩ convo(T ) = ∅ that B ⊆ (conv(S) \ convo(T )) i.e. B∩ (conv(S) \ convo(T )) = B.
Let us prove that convo(T )∩B = ∅. According to Lemma G.1, the set conv(S)\convo(T ) can be

written as the union of disjoint simplices convo
(
R(1)

)
, . . . , convo

(
R(t)

)
, for some setsR(1), R(2), . . . , R(t) ∈(

S
⩽(a+1)

)
, as follows:

conv(S) \ convo(T ) = ·∪tj=1conv
o
(
R(j)

)
We emphasize that the sets R(1), . . . , R(t) ⊆ S because T ⊆ S, and according to Lemma G.1, the
sets R(1), . . . , R(t) ⊆ S ∪ T = S.
It follows from IT = 0 that

realize(I;S) ⊆ (conv(S) \ convo(T )) = ·∪tj=1conv
o
(
R(j)

)
.

Since the simplices convo
(
R(1)

)
, . . . , convo

(
R(t)

)
are disjoint, there is a unique j′ ∈ {1, . . . , t} such

that
realize(I;S) ⊆ convo

(
R(j′)

)
.

This implies that IRj′ = 1, and so B =
⋂

R∈( S
⩽(a+1))

IR=1

convo(R) ⊆ convo
(
R(j′)

)
. It follows from

convo
(
R(j′)

)
⊆ (conv(S) \ convo(T )) that convo

(
R(j′)

)
∩ convo(T ) = ∅. Thus, it holds that B ∩

convo(T ) = ∅.

Proof of Proposition 8. We prove by induction on the dimension of realize(I;S). In the base case,
the the dimension of the set realize(I;S) is 0, and it has only one element. Then, according to the
definition of VAS, that element is a vertex in VAS. Then, according to Proposition 7, the closure
of any non-empty set realize(I;S) is

realize(I;S) =
⋂

R∈( S
⩽(a+1))

IR=1

conv(R).

This set is an intersection of a finite number of convex polytopes. Therefore, it is a polytope. Now,
suppose our claim is true when the dimension of realize(I;S) is k. We want to prove that our
claim holds when the dimension of realize(I;S) is k+1. Now, note that each facet of the polytope
realize(I;S) is itself a polytope that can be described as the closure of realize(I ′;S) for some I ′,
and it has dimension k. According to the induction hypothesis, the vertices of each facet belong to
VAS. Therefore, the vertices of realize(I;S), which is the union of the vertices of its facet are also
in VAS.

Proof of Proposition 9. Consider two distinct I, J ∈ {0, 1}(
S

⩽(a+1)). Then, according to the defini-
tion, we have B = realize(I;S)∩ realize(J ;S) = ∅. Otherwise, if P ∈ B, then for any R ∈

(
S

⩽(a+1)

)
,

we have IR = inc(P ;S)R = JR, which is a contradiction. On the other hand, for any P ∈ S, we
have P ∈ realize(inc(P ;S);S). So, we have S ⊆

⋃
P∈Ra realize(inc(P ;S);S) =

⋃
W∈ASW . This

completes the proof.

Proof of Proposition 10. It follows from the observation that realize(I;S) = {P}, where I{P} = 1
and P ∈ S.

48



G.2 Proof of Lemma G.1

To prove the claim, we use the lifting technique. Define the two sets U :=
{
(p, 1) ∈ Ra+1 : p ∈ S \ T

}
and V :=

{
(p, 0) ∈ Ra+1 : p ∈ T

}
. Let L be the lower convex hull ofW := U ∪V . Each face of L

is a polytope and has a simplicial decomposition without adding any additional vertices [Edm70].
Note that conv(V ) is a face of L. Let SL denote a simplicial decomposition of L achieved by
considering an arbitrary simplicial decomposition for each face of L. Let SL∗ be the same as SL
without considering the simplicial decomposition of convo(V ).

Let π : Ra+1 → Ra be a projection that maps (p1, . . . , pa, pa+1) ∈ Ra+1 to (p1, . . . , pa) ∈ Ra.
For an arbitrary subset A ⊆ Ra+1, define π(A) := {π(x) : x ∈ A}. Define π(SL), and π(SL∗) as
follows:

π(SL) := {π(convo(R)) : convo(R) ∈ SL, R ⊆W}
π(SL∗) := {π(convo(R)) : convo(R) ∈ SL∗, R ⊆W}

Then, π(SL) is a simplicial decomposition of conv(S) because π(L) is equal to conv(S). Similarly,
π(SL∗) is a simplicial decomposition of conv(S) \ convo(T ) since the set π(L \ convo(T )) is equal
to the set conv(S) \ convo(T ).
Since the vertices of the simplices in SL∗ are in the set W = U ∪ V , the vertices of π(SL∗), which
is the achieved simplicial decomposition for conv(S) \ convo(T ), are in π(W ) = S ∪ T .

H Lamination Hull Restricted to Grid Points is Sufficient: Proof
of Lemma 3

This section will prove our Structure Lemma (Lemma 3). Instead of directly working with S(∞,Λ),
we will define a new (related) sequence of recursively defined sets.

1. Initialization.
T (0) := S(0,Λ).

2. Recursive definition. For i ∈ {0, 1, 2, . . . }, define

T (i+1) :=


k∑

j=1

λj ·Q(j) :

k ∈ {1, 2, . . . , d}, λ1, λ2, . . . , λk > 0,
λ1 + λ2 +· · ·+ λk = 1

distinct Q(1), Q(2), . . . , Q(k) ∈ T (i)

Q
(1)
[a] = · · · = Q

(k)
[a] or Q

(1)
[b] = · · · = Q

(k)
[b]


3. Hull.

T (∞) :=
⋃
i⩾0

T (i).

We have the following relation between the two hulls.

Lemma H.1. S(∞,Λ) = T (∞).

Proof. It is clear that S(i,Λ) ⊆ T (i), for all i ∈ {0, 1, 2, . . . }. We can prove this by induction on
i. The base case of i = 0 has S(i,Λ) = T (i) by definition. In every recursive step, any two points
joined by a line segment in S(i+1,Λ) are also joined in T (i+1). Therefore, we have S(∞,Λ) ⊆ T (∞).

For the other direction, [BKMN22a, Corollary 1] proved that T (i) ⊆ S(d·i,Λ) for i ∈ {0, 1, 2, . . . }.
So, T (∞) ⊆ S(∞,Λ). The intuition is that T (i+1) permits convex linearly combining d points of T (i).
This can be emulated by iteratively convex linearly combining two points at a time.

49



Due to this equivalence, to prove our structure lemma, it suffices to show that T (∞)
∣∣
q
can be

computed from
{
T (∞)

∣∣
g
: g ∈ G

}
. We will prove that the algorithm in Figure 11 is correct.

Define S(a) := SAS(0,Λ)[a] , S(b) := SAS(0,Λ)[b] , G(a) := VAS(0,Λ)[a] , G(b) := VAS(0,Λ)[b] , G = G(a)×G(b)

and (u, v) := q.
1. If (u, v) ∈ G, return T (∞)

∣∣
q
.

2. If u ∈ G(a) but v ̸∈ G(b), return ∑
v′∈imm(v;S(b))

lin(v;S(b))v′ · T (∞)
∣∣∣
(u,v′)

.

3. If v ∈ G(b) but u ̸∈ G(a), return ∑
u′∈imm(u;S(a))

lin(u;S(a))u′ · T (∞)
∣∣∣
(u′,v)

.

4. Else (i.e., u ̸∈ G(a) and v ̸∈ G(b)), return∑
u′∈imm(u;S(a))

∑
v′∈imm(v;S(b))

lin(u;S(a))u′ · lin(v;S(b))v′ · T (∞)
∣∣∣
(u′,v′)

.

Figure 11: Algorithm to compute T (∞)
∣∣
q
from

{
T (∞)

∣∣
g
: g ∈ G

}
.

Lemma H.2 (Technical Result). The algorithm in Figure 11 is correct.

Observe that the returned answer always combines restrictions of T (∞) to grid points. Ap-
pendix H.4 presents the proof of Lemma H.2. This proof will require characterizing properties of
the T (i) sets, which are elaborated in the section below.

H.1 Notation: Witness trees

We introduce some notation to state and prove our results.
For a point Q ∈ Rd, we use tQ to denote the first time it appears in the sequence

{
T (i)

}
i⩾0

:

tQ := min
{
i : Q ∈ T (i), i ∈ {0, 1, 2, . . . }

}
. (40)

For a point P ∈ T (∞) ⊆ Rd, we can associate a natural witness tree Π with it. This tree has P
at its root, and its children are the points that were convex linearly combined to produce P . The
subtrees rooted at these children are their witnesses, respectively. The leaves of a witness tree are
points in T (0). Based on the recursive definition of the sequence

{
T (i)

}
i⩾0

, if P ′ is a child of P

then P[a] = P ′[a] or P[b] = P ′[b]. We highlight that a node in the witness tree may have one child;

this is permitted by the recursive definition of T (i+1) from T (i), where i ⩾ 0. So, any point has
multiple witness trees.

Next, we aim to measure the structure of points in T (∞). A point P ∈ T (∞) ⊆ Rd is gridded if
P[a] ∈ G(a) and P[b] ∈ G(b). It is grid-aligned if (1) P[a] ∈ G(a) but P[b] ̸∈ G(b), or (2) P[b] ∈ G(b) but

50



P[a] ̸∈ G(a). It is unaligned if P[a] ̸∈ G(a) and P[b] ̸∈ G(b). Note that the leaves of any witness tree

are gridded by the definition of T (0), G(a), and G(b).
Now, we will identify structured witness trees for points in T (∞).

Definition 2 (Gridded Witness). A witness tree Π for a point P ∈ T (∞) ⊆ Rd is gridded if the
following (mutually exclusive) conditions are satisfied.

1. If P is gridded: Every node in the witness tree Π is also gridded.

2. If P is grid-aligned: Except for the root, every node in the witness tree Π is gridded.

3. If P is unaligned: Except for the root and its children, every node in the witness tree Π is
gridded. The root’s children in the witness tree Π are grid-aligned.

We will prove the following result.

Lemma H.3. Any point P ∈ T (∞) has a gridded witness.

This salient feature may not exist for the witness trees for the recursive construction of S(∞,Λ),
which only convex linearly combines two points. For example, the barycenter of a triangle cannot
be expressed as the pairwise linear combination of its vertices such that each intermediate linear
combination is also a vertex of the triangle. This is one reason for defining and using the

{
T (i)

}
i⩾0

sequence for the proofs. Appendix H.3 proves this result. We emphasize that the depth of a gridded
witness for a point may be greater than that of its shortest-depth witness.

We define another form of structure in witness trees.

Definition 3 (Immediate Witness). A witness tree Π for a grid-aligned or unaligned point P ∈
T (∞) ⊆ Rd is immediate if the following (mutually exclusive) conditions are satisfied.

1. If P is grid-aligned and P[a] ∈ G(a): Any child P ′ of the root P in Π satisfies P ′[b] ∈
imm(P[b];S(b)).

2. If P is grid-aligned and P[b] ∈ G(b): Any child P ′ of the root P in Π satisfies P ′[a] ∈
imm(P[a];S(a)).

3. If P is unaligned: Any child P ′ of the root P in Π satisfies P ′[a] ∈ imm(P[a];S(a)) or P ′[b] ∈
imm(P[b];S(b)). Any grandchild P ′′ of the root P in Π satisfies P ′′[a] ∈ imm(P[a];S(a)) and

P ′′[b] ∈ imm(P[b];S(b)).

We will prove the following result.

Lemma H.4. Any grid-aligned point P ∈ T (∞) has an immediate and gridded witness. Any
unaligned P ∈ T (∞) has two immediate and gridded witnesses Π(a) and Π(b) satisfying:

1. Except for the children of the root P , all nodes are identical in Π(a) and Π(b).
2. Any child P ′ of the root P in Π(a) satisfies P ′[a] = P[a].

3. Any child P ′ of the root P in Π(b) satisfies P ′[b] = P[b].

Appendix H.2 will prove this result. Note that Lemma H.4 is a stronger version of Lemma H.3
for aligned and unaligned P . Lemma H.3 for gridded P will be used in a later proof.

51



v = 0

u = 1 •

u = 2 •

u = 3 •

v = 2

u = 1 •

u = 2 •

u = 3 •

v = 4

u = 1 •

u = 2 •

u = 3 •

v = 6

u = 1 •

u = 2 •

u = 3 •
QQ(1) Q(2)Q(1,1) Q(1,2)

v = 0

u = 1 •

u = 2 •

u = 3 •

v = 2

u = 1 •

u = 2 •

u = 3 •

v = 4

u = 1 •

u = 2 •

u = 3 •

v = 6

u = 1 •

u = 2 •

u = 3 •
Q Q(2)Q(1,1) Q(1,2)

v = 0

u = 1 •

u = 2 •

u = 3 •

v = 2

u = 1 •

u = 2 •

u = 3 •

v = 4

u = 1 •

u = 2 •

u = 3 •

v = 6

u = 1 •

u = 2 •

u = 3 •
Q Q(2)Q(1,1)

Q′(1,2)

Figure 12: This figure illustrates the proof of Lemma H.4, Case I, Subcase (A), presented in
Appendix H.2. In this figure, a = 1, b = 1. The bullet points are grid points. The point Q ∈ Rd is
a grid-aligned point, where u ∈ G(a), v ̸∈ G(b). The figure at the top represents a witness for Q. The
child Q(1) is grid-aligned and the child Q(2) is gridded. We represent the immediate and gridded
witness tree of Q(1) with dashed arrows. The figure in the middle represents a gridded witness for
Q after replacing Q(1) with its children. According to Lemma H.5, we can transform the gridded
witness to an immediate and gridded witness, represented in the figure at the bottom.

H.2 Proof of Lemma H.4

We prove Lemma H.4 using an extremal argument. Let B ⊆ T (∞) be the set of points for which
the lemma does not hold. We want to show that B = ∅. We prove this by contradiction. Suppose
B ̸= ∅. Let t∗ denote min{tQ : Q ∈ B}, where tQ is defined in Equation 40. Consider a point Q ∈ B
such that tQ = t∗. Let Π be a witness tree for Q of depth t∗. Let Q(1), . . . , Q(k) be the set of

children of Q in Π. Without loss of generality, let us assume that Q[a] = Q
(1)
[a] = · · · = Q

(k)
[a] = u.

For each j = 1, . . . , k, we have tQ(j) < tQ = t∗. Thus, for each j = 1, . . . , k, the lemma holds for

the point Q(j) ∈ T (∞). There are two cases that we need to consider:

Case I. [Q is grid-aligned] There are two subcases:

Subcase (A). The first subcase is u ∈ G(a) and v ̸∈ G(b). For each j = 1, . . . , k, the child

Q(j) is grid-aligned or gridded because Q
(j)
[a] = u ∈ G(a) (refer to Figure 12). First, for any child

Q(j) that is grid-aligned, we replace it with its immediate and gridded witness (For example, the
child Q(1) in Figure 12). The children of Q(j) are aligned with Q in that witness tree. Thus, in the
next step, we can remove any grid-aligned child Q(j) by replacing it with the subtrees rooted at its
children. Thus, there is a gridded witness tree for Q. Now, according to Lemma H.5 (Part 1), the
point Q ∈ T (∞) has an immediate and gridded witness, which is a contradiction.

52



v = 0

•u = 2

•u = 4

•u = 6

v = 2

•u = 2

•u = 4

•u = 6

v = 4

•u = 2

•u = 4

•u = 6

v = 6

•u = 2

•u = 4

•u = 6

Q
Q(1) Q(2)

Q(1,1)

Q(1,2)

Q(2,1)

Q(2,2)

Q(1,2,1) Q(1,2,2)

Q(1,1,1) Q(1,1,2)

v = 0

u = 2 •

u = 4 •

u = 6 •

v = 2

u = 2 •

u = 4 •

u = 6 •

v = 4

u = 2 •

u = 4 •

u = 6 •

v = 6

u = 2 •

u = 4 •

u = 6 •

Q

Q(2,1)

Q(2,2)Q(1,2,1) Q′(2)

Q(1,1,1) Q′(1)

Figure 13: This figure illustrates the proof of Lemma H.4, Case I, Subcase (B), presented in
Appendix H.2. In this figure, a = 1, b = 1. The bullet points represent grid points. In the figure
at the top, the point Q ∈ Rd is a grid-aligned point, where u ̸∈ G(a), v ∈ G(b). Its children are Q(1),
and Q(2); Q(1) is unaligned, and Q(2) is grid-aligned. We represent the immediate and gridded
witnesses of Q(1), and Q(2) with dashed arrows. The figure at the bottom represents an immediate
and gridded witness for Q.

53



Subcase (B). The second subcase is that Q[a] = u ̸∈ G(a) and Q[b] = v ∈ G(b). Then, for

each j = 1, . . . , k, the child Q(j) is grid-aligned or unaligned (refer to Figure 13). Consider some

grid-aligned child Q(i) where Q
(i)
[a] = u and Q

(i)
[b] = v(i) (for example, see Q(2) in Figure 13). Since

u ̸∈ G(a) and Q(i) is grid-aligned, it must be the case that v(i) ∈ G(b). Remember tQ(i) < t∗. Thus,

there is an immediate and gridded witness tree for Q(i). Similarly, there is an immediate and
gridded witness for any unaligned child Q(ℓ) (for example, the point Q(1) in Figure 13).

Consider an arbitrary child Q(j). Let Q(j,1), . . . , Q(j,r) be the children of Q(j) in its immediate
and gridded witness. Note that for the case that Q(j) is unaligned, there are two immediate and

gridded witnesses. We choose the one that r =
∣∣imm(u;S(a))

∣∣, Q(j,1)
[b] = · · · = Q

(j,r)
[b] = Q

(j)
[b] , and

imm(u;S(a)) =
{
Q

(j,1)
[a] , . . . , Q

(j,r)
[a]

}
(For example, see the immediate and gridded witness of Q(1)

in Figure 13). We do the same for the case that Q(j) is gridded-aligned (For example, see the
immediate and gridded witness of Q(2) in Figure 13).

Now, replace each child with the corresponding immediate and gridded witness tree. Then,
we have a new witness tree for Q. We apply the swap lemma (refer to Lemma H.6) to construct
another witness for Q. In the resulting witness, the point Q is grid-aligned and any child Q′ of
Q is gridded and Q′[b] = Q[b] ∈ G(b), and Q′[a] ∈ imm(u;S(a)). Thus, the resulting witness is an
immediate and gridded one for Q. This is a contradiction.

Case II. [Q is unaligned] In this case, u ̸∈ G(a), v ̸∈ G(b). For each j = 1, 2, . . . , k, the child Q(j)

is grid-aligned or unaligned (refer to Figure 14). Consider some child Q(i) that is grid-aligned (For
example, child Q(2) in Figure 14). Q(i) has an immediate and gridded witness. Let Q(i,1), . . . , Q(i,r)

be the children of Q(i) in that immediate and gridded witness. Note that r =
∣∣imm(u;S(a))

∣∣, and
Q

(i,1)
[b] = · · · = Q

(i,r)
[b] = Q

(i)
[b] , and imm(u;S(a)) =

{
Q

(i,1)
[a] , . . . , Q

(i,r)
[a]

}
. Consider some child Q(ℓ) that

is unaligned (For example, child Q(1) in Figure 14). It has an immediate and gridded witness with

children Q(ℓ,1), . . . , Q(ℓ,r). Note that r =
∣∣imm(u;S(a))

∣∣, and Q(ℓ,1)
[b] = · · · = Q

(ℓ,r)
[b] = Q

(ℓ)
[b] . Replace

any such grid-aligned child Q(i) and unaligned child Q(ℓ) with their corresponding immediate and
gridded witnesses previously discussed. Now, we have a new witness tree for Q. We apply the
swap lemma (refer to Lemma H.6) to construct another witness for Q. In the resulting witness,
the point Q is unaligned and any child Q′ of Q is grid-aligned, and Q′[b] = Q[b] ̸∈ G(b), and

Q′[a] ∈ imm(u;S(a)) ⊆ G(a). Since tQ′ < tQ, there is an immediate and gridded witness for each

child Q′ of Q.
Thus, Q has an immediate and gridded witness such that any child Q′ of the root Q satisfies

Q′[b] = Q[b]. According to swap lemma (Lemma H.6), this witness can be transformed into another

witness with an immediate and gridded witness such that any child Q′ of the root Q satisfies
Q′[a] = Q[a]. This is a contradiction.

H.3 Proof of Lemma H.3

It follows directly from Lemma H.4 that P has a gridded witness if it is grid-aligned or unaligned.
The result remains to be proven when P is gridded. We prove by contradiction and use an extremal
argument similar to the proof of Lemma H.4.

Suppose that there is some gridded point that does not have a gridded witness. Let Q be
one such point with the smallest tQ, which is defined in Equation 40 as the smallest i such that
Q ∈ T (i). Let Π be a witness for Q. It suffices to prove the result for the case that any child Q′ of
Q in Π satisfies Q′[a] = Q[a] (the proof for the other case is analogous).

54



v = 0

•u = 2

•u = 4

•u = 6

v = 2

•u = 2

•u = 4

•u = 6

v = 4

•u = 2

•u = 4

•u = 6

v = 6

•u = 2

•u = 4

•u = 6

Q
Q(1) Q(2)

Q(1,1)

Q(1,2)

Q(2,1)

Q(2,2)

Q(1,2,1) Q(1,2,2)

Q(1,1,1) Q(1,1,2)

v = 0

u = 2 •

u = 4 •

u = 6 •

v = 2

u = 2 •

u = 4 •

u = 6 •

v = 4

u = 2 •

u = 4 •

u = 6 •

v = 6

u = 2 •

u = 4 •

u = 6 •

Q

Q(2,1)

Q(2,2)Q(1,2,1)
Q′(1,2,2)

Q(1,1,1)

Q′(1,1,2)

Q′(2)

Q′(1)

v = 0

u = 2 •

u = 4 •

u = 6 •

v = 2

u = 2 •

u = 4 •

u = 6 •

v = 4

u = 2 •

u = 4 •

u = 6 •

v = 6

u = 2 •

u = 4 •

u = 6 •

Q

Q(2,1)

Q(2,2)Q(1,2,1)

Q′(1,2,2)

Q(1,1,1)
Q′(1,1,2)

Q′′(2)Q′′(1)

Figure 14: This figure illustrates the proof of Lemma H.4, Case II, presented in Appendix H.2. In
this figure, a = 1, b = 1. The bullet points represent grid points. In the figure at the top, the point
Q ∈ Rd is unaligned. Its children, Q(1), and Q(2) are unaligned and grid-aligned respectively. We
represent the immediate and gridded witnesses of Q in the middle and bottom figures.

55



v = 0

u = 1 •

u = 2 •

u = 3 •

v = 2

u = 1 •

u = 2 •

u = 3 •

v = 4

u = 1 •

u = 2 •

u = 3 •

v = 6

u = 1 •

u = 2 •

u = 3 •
QQ(1) Q(2)Q(1,1) Q(1,2)

v = 0

u = 1 •

u = 2 •

u = 3 •

v = 2

u = 1 •

u = 2 •

u = 3 •

v = 4

u = 1 •

u = 2 •

u = 3 •

v = 6

u = 1 •

u = 2 •

u = 3 •
QQ(1) Q(2)Q(1,1) Q(1,2)

Figure 15: This figure illustrates the proof of Lemma H.3. The lemma states that any point of
T (∞) has a gridded witness. In this figure, a = 1, b = 1. The bullet points are grid points. The
point Q is gridded. The figure at the top represents a witness for Q. Children of Q are the points
Q(1), and Q(2). The child Q(1) is grid-aligned. The child Q(2) is gridded. We represent a gridded
witness of Q(2) by dashed arrows. The figure at the bottom represents a gridded tree for Q. This
tree is achieved by replacing Q(1) with its children. We can transform it into a valid witness tree
by using the Carathéodory’s theorem.

Observe that any child of Q in ΠQ is either gridded or grid-aligned because Q is gridded (refer
to Figure 15). By Lemma H.4, every grid-aligned child of Q in ΠQ has a gridded witness. For
every such child Q′ (of Q), let ΠQ′ be a gridded witness. Then, any child Q′′ of Q′ in ΠQ′ satisfies
Q′′[a] = Q′[a] = Q[a]; otherwise Q

′
[b] = Q′′[b] which would imply that Q′ is gridded, contradicting that

Q′ is grid-aligned. Therefore, we can construct Q by a tree Π′ achieved by replacing every subtree
rooted at a grid-aligned child Q′ in ΠQ by subtrees in ΠQ′ rooted at the children of Q′ in ΠQ′ .

The degree of Q in Π′ could be more than d. We use Carathéodory’s theorem to transform it
into a valid witness tree. Let R = {Q(1), . . . , Q(r)} of size r ⩽ a + 1, be a subset of the children

of Q in Π′ such that R[a] :=
{
Q

(1)
[a] , . . . , Q

(r)
[a]

}
forms a simplex and Q[a] ∈ convo

(
R[a]

)
. Thus,

there are λ(1,R), . . . , λ(r,R) > 0 such that Q[a] =
∑r

i=1 λ
(i,R) · Q(i)

[a], and
∑r

i=1 λi = 1. Define

Q(R) :=
∑r

i=1 λ
(i,R) · Q(i). By Carathéodory’s theorem, for each such R there is λ(R) > 0 such

that Q =
∑

R λ
(R) ·Q(R), and

∑
R λ

(R) = 1. Therefore, we can have a gridded witness for Q. This
is a contradiction.

H.4 Proof of Lemma H.2

The proof proceeds by an exhaustive case analysis.

Case 1: u ∈ G(a), v ∈ G(b). Then q ∈ G. In this case, T (∞)
∣∣
q
is an element in the set{

T (∞)
∣∣
g
: g ∈ G

}
, so we return the appropriate element from that set.

Case 2: u ∈ G(a), v ̸∈ G(b). Consider any Q ∈ T (∞)
∣∣
q
. Then, Q is grid-aligned. It follows from

Lemma H.4 that Q has an immediate and gridded witness Π. By Equation 38,

Q[b] = v =
∑

v′∈imm(v;S(b))

lin(v;S(b))v′ · v′

This implies that

Q =
∑

v′∈imm(v;S(b))

lin(v;S(b))v′ ·Q(v′),

56



where Q(v′) is the child of Q in Π such that Q
(v′)
[a] = u and Q

(v′)
[b] = v′. Observe that Q(v′) ∈

T (∞)
∣∣
(u,v′)

, and hence

Q ∈
∑

v′∈imm(v;S(b))

lin(v;S(b))v′ · T (∞)
∣∣∣
(u,v′)

.

We have shown that

T (∞)
∣∣∣
(u,v)
⊆

∑
v′∈imm(v;S(b))

lin(v;S(b))v′ · T (∞)
∣∣∣
(u,v′)

.

For the other direction, for any point Q ∈
∑

v′∈imm(v;S(b)) lin(v;S(b))v′ · T (∞)
∣∣
(u,v′)

, there is some

i (since T (0)
∣∣
q
⊆ T (1)

∣∣
q
⊆ . . . ), such that

Q ∈
∑

v′∈imm(v;S(b))

lin(v;S(b))v′ · T (i)
∣∣∣
(u,v′)

⊆ T (i+1)
∣∣∣
(u,v)
⊆ T (∞)

∣∣∣
(u,v)

,

Therefore, the two sets are equal.

Case 3: u ̸∈ G(a), v ∈ G(b). The proof is similar to case 2.

Case 4: u ̸∈ G(a), v ̸∈ G(b). Proof is similar to case 2. However, this time, it follows from the
immediate and gridded witness for an unaligned Q ∈ T (∞) mentioned in Lemma H.4.

H.5 Technical Results: Statement and Proof of Lemma H.5 and Lemma H.6

Lemma H.5 (Immediate Witnesses). Let Q ∈ T (∞). The following statements hold.

1. If Q is grid-aligned and has a gridded witness such that Q′[a] = Q[a] ∈ G(a) for any child Q′,

then Q has a gridded witness such that any children Q′′ of Q satisfies Q′′[b] ∈ imm(Q[b];S(b)).

2. If Q is grid-aligned and has a gridded witness such that Q′[b] = Q[b] ∈ G(b) for any child Q′,

then Q has a gridded witness such that any children Q′′ of Q satisfies Q′′[a] ∈ imm(Q[a];S(a)).

3. If Q is unaligned and has a gridded witness, then Q has a gridded witness such that any

children Q′′ of Q satisfies
(
Q′′[a], Q

′′
[b]

)
∈ {(u′, v′) : u′ ∈ imm(Q[a],S(a)), v′ ∈ imm(Q[b],S(b))}.

Proof of Lemma H.5. We will prove part 1 and part 3. The proof of part 2 is similar to the proof
of part 1.

Proof of part 1. Suppose Q is a grid-aligned point. Let Q[a] = u ∈ G(a), Q[b] = v ̸∈ G(b). Suppose
Q has a gridded witness tree Π with gridded children Q(1), Q(2), . . . , Q(t) such that Q

(1)
[a] = Q

(2)
[a] =

· · · = Q
(t)
[a] = Q[a] = u ∈ Ga, and Q(1)

[b] , . . . , Q
(t)
[b] ∈ G

(b). Thus, Q ∈ conv
(
Q(1), . . . , Q(t)

)
.

Note that S(b) = SAS(0,Λ)[b] is a simplicial decomposition of the arrangement AS(0,Λ)[b] . Thus,

Q[b] ∈ conv
(
Q

(1)
[b] , . . . , Q

(t)
[b]

)
⊆ conv

(
S(0,Λ)[b]

)
. It follows from Proposition 7 that imm(v;S(b)) ⊆

conv(R) for any R ⊆ S(0,Λ)[b] such that Q[b] ∈ convo(R).

57



Therefore, any gridded point Q′ satisfying Q′[b] ∈ imm(v;S(b)) can be constructed by a witness

such that any children Q′′ of Q′ is a grid point that satisfies Q′′[b] ∈ S
(0,Λ)
[b] . Therefore, since

Q[b] ∈ convo
(
imm(v;S(b))

)
, we can construct a gridded witness for Q such that any children Q′′ of

Q satisfies Q′′[b] ∈ imm(v;S(b)).

Proof of part 3. For the third part, we again have Q ∈ conv
(
Q(1), . . . , Q(t)

)
. Each Q(i) is

grid-aligned according to the assumption. Without loss of generality, we can assume that Q
(i)
[a] =

Q[a] = u and Q
(i)
[b] = v(i). For each i, the point Q(i) is grid aligned and it is aligned with Q, but

Q itself is unaligned (Q is not a grid point or even aligned with a grid point). This implies that

Q
(i)
[b] ∈ G

(b). Thus, according to part (b), there is a witness for Q(i) whose children are the set of

grid points {Q(i,j)}rj=1 such that Q
(i,j)
[b] = Q

(i)
[b] =: v(i) and Q

(i,j)
[a] ∈ imm(u;S(a)) for each j, and

r =
∣∣imm(u,S(a))

∣∣.
Now, we use swap lemma (Lemma H.6) to construct a new witness for Q, such that the children

of Q is the set {P (j) ∈ T (∞)|p(j)}rj=1, where r =
∣∣imm(u,S(a))

∣∣, and p(j) = (u(j), v) (u(j) ∈
imm(u,S(a))) and the children of each P (j), {P (j,i)}ti=1 are such that P

(j,i)
[b] = v(i). Now, we use

part (a) of our lemma for each P (j) to construct it using immediate grid points whose projection
on Rb is in the set imm(v,S(b)). Thus, Q has a witness whose children are the set of grid points
{(u′, v′) : u′ ∈ imm(u,S(a)), v′ ∈ imm(v,S(b))}.

Lemma H.6 (Swap Lemma). Let Q ∈ T (∞). Let imm(Q[a],S(a)) = {u(1), u(2), . . . , u(r)}. Suppose

there is a witness Π for Q with t children Q(1), Q(2), . . . , Q(t) such that

1. Q =
∑t

i=1 βi ·Q(i), where β = (β1, . . . , βt),
∑t

i=1 βi = 1 and βi > 0 for all 1 ⩽ i ⩽ t,

2. Q
(1)
[a] = Q

(2)
[a] = · · · = Q

(t)
[a] = Q[a],

3. every child Q(i) has r children Q(i,1), Q(i,2), . . . , Q(i,r) satisfying Q
(i,j)
[a] = u(j) for all 1 ⩽ j ⩽ r.

Then, there is a witness Π′ for Q with r children P (1), P (2), . . . , P (r) such that

1. P
(j)
[a] = u(j) and P

(j)
[b] = Q[b] for all 1 ⩽ j ⩽ r,

2. Every child P (j) has t children Q(1,j), Q(2,j), . . . , Q(t,j) satisfying P (j) =
∑t

i=1 βi ·Q(i,j).

Proof of Swap Lemma (Lemma H.6). Recall that every point u ∈ S(a) can be uniquely written as
the convex combination of of its immediate neighbors (refer to Equation 38). In particular, there is
a unique (α1, α2, . . . , αr) such that

∑r
j=1 αj = 1, αj > 0 for all 1 ⩽ j ⩽ r, and Q[a] =

∑r
j=1 αj ·u(j).

Therefore, in the subtree rooted at Q(i) of Π, it holds that Q(i) =
∑r

j=1 αj ·Q(i,j) for all 1 ⩽ i ⩽ t.
This implies that

Q =
t∑

i=1

βi ·Q(i) =
t∑

i=1

r∑
j=1

βiαj ·Q(i,j).

The above equation naturally suggests the following construction of Π′.

1. Let the tree be rooted at Q′.

58



2. Let P (1), P (2), . . . , P (r) be children ofQ′ such that P
(j)
[a] = u(j) and P

(j)
[b] = Q[b] for all 1 ⩽ j ⩽ r,

and Q′ =
∑r

j=1 αj · P (j).

3. Every child P (j) has t children Q(1,j), Q(2,j), . . . , Q(t,j) satisfying P (j) =
∑t

i=1 βi · Q(i,j), and

Q
(1,j)
[a] = Q

(1,j)
[a] = · · · = Q

(t,j)
[a] = P

(j)
[a] = u(j).

4. The subtree rooted at Q(i,j) is the same as the subtree rooted at Q(i,j) in Π.

It is clear that Q′ = Q and so Π′ is a witness tree with all the desired properties.

I Bridging Lamination Hulls and Solutions of Systems of Inequal-
ities: Proof of Lemma 4

This section proves Lemma 4, bridging the lamination hull computation and the smallest solution of

a system of inequalities. Let
(
X

(∗)
g : g ∈ G

)
be the smallest solution of the system of inequalities

I built in Figure 8. Our objective is to prove that S(∞,Λ)
∣∣
g
= X

(∗)
g , for every grid point g ∈ G.

Our proofs will rely on the nested property of the sets S(i,Λ) for i ∈ {0, 1, 2, . . . }. Note that 0 is
in the specific Λ we consider. So, by considering P = Q in Equation 1, for every i ∈ {0, 1, 2, . . . },
we conclude that

S(i,Λ) ⊆ S(i+1,Λ). (41)

Now, we proceed to the proof.

Direction 1: X
(∗)
g ⊆ S(∞,Λ)

∣∣
g
. Our strategy is to prove that

(
S(∞,Λ)

∣∣
g
: g ∈ G

)
is a solution of

the system I; Lemma I.1 will prove it below.
(
X

(∗)
g : g ∈ G

)
is the smallest solution of the system

of inequalities I built in Figure 8. By definition of the smallest solution, we have X
(∗)
g ⊆ S(∞,Λ)

∣∣
g

for every grid point g ∈ G. This completes the first direction of the proof.

Direction 2: S(∞,Λ)
∣∣
g
⊆ X

(∗)
g . Instead of directly working with S(∞,Λ), we will define a new

(related) sequence of recursively defined sets. Appendix H had previously also defined these sets
and proved several properties that we will use in our proof.

1. Initialization.
T (0) := S(0,Λ).

2. Recursive definition. For i ∈ {0, 1, 2, . . . }, define

T (i+1) :=


k∑

j=1

λj ·Q(j) :

k ∈ {1, 2, . . . , d}, λ1, λ2, . . . , λk > 0,
λ1 + λ2 +· · ·+ λk = 1

distinct Q(1), Q(2), . . . , Q(k) ∈ T (i)

Q
(1)
[a] = · · · = Q

(k)
[a] or Q

(1)
[b] = · · · = Q

(k)
[b]


3. Hull.

T (∞) :=
⋃
i⩾0

T (i).

59



Roughly speaking, T (i+1) contains the convex hull of any⩽ d points in T (i) if their first a coordinates
or their next b coordinates match. On the other hand, the recursive construction of S(i+1,Λ) contains
the convex hull of only ⩽ 2 points in S(i,Λ). Intuitively, the

{
T (i)

}
i⩾0

evolves “faster.” However,
a convex linear combination of more points can be emulated by iteratively taking convex linear
combinations of only 2 points at a time. So, any point in T (i) will also lie in S(i′,Λ) for a (possibly)
larger i′. We will need the following results.

Result 1. S(∞,Λ) = T (∞). Lemma H.1 states this result, and we have proved it previously.

Result 2. T (i)
∣∣
g
⊆ X

(i+1)
g , where g ∈ G is a grid point and i ∈ {0, 1, 2, . . . }. Lemma I.2 will state

and prove this result below.

For an arbitrary grid point g ∈ G, using the results above, the proof follows from the following
sequence of reasoning.

S(∞,Λ)
∣∣∣
g
= T (∞)

∣∣∣
g

(by result 1 above)

=
⋃
i⩾0

T (i)
∣∣∣
g

(by definition)

⊆
⋃
i⩾0

X(i+1)
g (by result 2 above)

⊆ X(∗)
g . (by definition)

This completes the final direction of the proof.

At this point, all that remains to complete the proof of Lemma 4 is to prove Lemma I.1 and
Lemma I.2, which are stated and proved below.

I.1 Statement and Proof of Lemma I.1

Lemma I.1.
(
S(∞,Λ)

∣∣
g
: g ∈ G

)
is a solution of the system I introduced in Figure 8.

Proof. First, we will prove that S(∞,Λ)
∣∣
g
is convex, for each grid point g ∈ G. Then, we will prove

that
(
S(∞,Λ)

∣∣
g
: g ∈ G

)
is a solution of the system I.

Part 1: Convexity. Consider any grid point g ∈ G and arbitrary points P,Q ∈ S(∞,Λ)
∣∣
g
. There

there are r, k ∈ {0, 1, 2, . . . } such that P ∈ S(r,Λ)
∣∣
g
and Q ∈ S(k,Λ)

∣∣
g
. The nested guarantee of

Equation 41, implies that P,Q ∈ S(t,Λ)
∣∣
g
, where t := max{r, k}. Moreover, P,Q ∈ S(t,Λ)

∣∣
g
implies

that P[a] = Q[a]; therefore, P −Q ∈ Λ. So, all convex linear combinations of P and Q are contained

in S(t+1,Λ)
∣∣
g
. This proves that the set S(∞,Λ)

∣∣
g
is convex.

Part 2: Solution of our system. Now, we will prove that
(
S(∞,Λ)

∣∣
g
: g ∈ G

)
is a solution

of the system I when we assign Xg = S(∞,Λ)
∣∣
g
for grid point g ∈ G.

Base case constraints. Consider any point P ∈ S(0,Λ) and define g =
(
P[a], P[v]

)
. Let us focus

on the base case constraint Xg ⩾ {P} in our system I. Note that P ∈ S(0,Λ)
∣∣
g
. The nested

property of our sets imply S(i,Λ) ⊆ S(i+1,Λ) for all i ∈ {0, 1, 2, . . . }. Therefore, we conclude that
P ∈ S(∞,Λ)

∣∣
g
=
⋃

i⩾0 S(i,Λ)
∣∣
g
; thus, satisfying the inequality under consideration.

60



Spatial information constraints. Consider a spatial information constraint Equation 28 in Figure 8

X(u,v) ⩾
k∑

i=1

α(i) ·X(u(i),v)

such that u =
∑k

i=1 α
(i) · u(i). Consider arbitrary points P (i) ∈ S(∞,Λ)

∣∣
(u(i),v)

for i ∈ {1, 2, . . . , k}.
That implies P (i) ∈ S(ti,Λ)

∣∣
(u(i),v)

for some ti ∈ {0, 1, . . . }. By the nested property of our sets in

Equation 41, we conclude that P (i) ∈ S(t,Λ)
∣∣
(u(i),v)

for t = max{t1, t2, . . . , tk} and i ∈ {1, 2, . . . , k}.
Note that S(t+1,Λ) will contain the convex hull of any two points P (i1), P (i2), where i1, i2 ∈

{1, 2, . . . , k}, because P (i1)
[b] = P

(i2)
[b] . The indices i1, i2 need not be distinct. Next, S(t+2,Λ) will

contain the convex hull of any four (or fewer) points in {P (1), P (2), . . . , P (k)}. Continuing in this
manner, S(t+∆,Λ) will contain conv

(
P (1), P (2), . . . , P (k)

)
, where ∆ = ⌈log2 k⌉. In particular, the

point P :=
∑k

i=1 α
(i) ·P (i) belongs to the set S(t+∆,Λ). Since (u, v) =

∑k
i=1 α

(i) ·
(
u(i), v

)
, we have

P ∈ S(t+∆,Λ)
∣∣
(u,v)
⊆ S(∞,Λ)

∣∣
(u,v)

specifically. Therefore, we conclude that

S(∞,Λ)
∣∣∣
(u,v)

⩾
k∑

i=1

α(i) · S(∞,Λ)
∣∣∣
(u(i),v)

,

which implies that the spatial constraint above is satisfied. Spatial constraints of the form Equa-
tion 29 are also analogously satisfied.

This proves that
(
S(∞,Λ)

∣∣
g
: g ∈ G

)
is a solution of the system I.

I.2 Statement and Proof of Lemma I.2

Lemma I.2. For a grid point g ∈ G and i ∈ {0, 1, 2, . . . }, we have T (i)
∣∣
g
⊆ X

(i+1)
g .

Proof. Consider the system of inequalities of Figure 8. To prove this statement, we proceed by
induction on i ∈ {0, 1, 2, . . . }.

Base case i = 0. By definition, for any grid point g ∈ G, we have

T (0)
∣∣∣
g
=
{
P ∈ S(0,Λ) : g =

(
P[a], P[b]

) }
.

When constructing X(1) from X(0) according to the iterative procedure in Figure 5 of Section 3.4,
the base case constraints imply that

X(1)
g ⩾ {P},

for every P ∈ T (0) = S(0,Λ) satisfying g =
(
P[a], P[b]

)
. Therefore, we have T (i)

∣∣
g
⊆ X

(i+1)
g for i = 0.

Inductive hypothesis. For some i ∈ {0, 1, 2, . . . }, assume that T (i)
∣∣
g
⊆ X

(i+1)
g for every grid

point g ∈ G.

61



Induction. Now, we need to prove that T (i+1)
∣∣
g
⊆ X

(i+2)
g for any grid point g ∈ G. We will use

the following result.

Result. It follows from Lemma H.3 that for any P ∈ T (i+1)
∣∣
g
, there are appropriate grid points

g(1), g(2), . . . , g(ℓ) ∈ G such that P ∈
∑ℓ

j=1 α
(j) · T (i)

∣∣
g(j)

and g =
∑ℓ

j=1 α
(j) · g(j). Moreover,

g[a] = g
(1)
[a] = · · · = g

(ℓ)
[a] or g[b] = g

(1)
[b] = · · · = g

(ℓ)
[b] . The parameter ℓ may be larger than (a+ 1)

or (b+ 1).

By the inductive hypothesis, we have X
(i+1)

g(j)
⩾ T (i)

∣∣
g(j)

for j ∈ {1, 2, . . . , ℓ}. Without loss of

generality, assume that g[b] = g
(1)
[b] = · · · = g

(ℓ)
[b] =: v (the proof for the other case is analogous).

Denote u := g[a] =
∑ℓ

j=1 α
(j) · g(j)[a] .

Consider each simplex C with vertices g(j1,C), g(j2,C), . . . , g(jk,C), where k ⩽ a+1 (by Carathéodory’s
theorem [Car07], such that g is in its relative interior. Corresponding to this simplex, we have a
spatial constraint in Equation 28; say

Xg ⩾
k∑

t=1

α(t,C) ·Xg(jt,C) .

The iterative definition of X
(i+2)
g ensures that

X(i+2)
g ⩾

k∑
t=1

α(t,C) ·X(i+1)

g(jt,C)

†
⩾

k∑
t=1

α(t,C) · T (i)
∣∣∣
g(jt,C)

.

The (†) inequality above uses the inductive hypothesis.
The point P lies in the set

∑ℓ
j=1 α

(j) · T (i)
∣∣
g(j)

. This expression can be written as the convex

linear combination of expressions corresponding to simplices that contain g in their relative interior.8

Therefore, by considering all possible simplices containing g in its relative interior, we conclude that

X(i+2)
g ⩾

ℓ∑
j=1

α(j) · T (i)
∣∣∣
g(j)

is also satisfied. Consequently, any P ∈ T (i+1)
∣∣
g
also satisfies P ∈ X

(i+2)
g , and, therefore, T (i+1)

∣∣
g
⊆

X
(i+2)
g .

J Complexity of Answering Lamination Hull Membership Queries

This section presents the run-time analysis of our algorithm in Figure 3.
The initial set is S(0,Λ) ⊂ Ra+b+c, where a, b ⩾ 1 and c ⩾ 0. Let s ⩾ 2 denote the cardinality of

S(0,Λ). The total number of grid points is card
(
G(a)

)
· card

(
G(b)

)
, which is

†
⩽ 2s

a+1+sb+1
⩽ 2s

a+b+1
.

The (†) bound follows from estimating the number of arrangements in Equation 25.

8Even if ℓ > (a+ 1), this decomposition is possible due to Carathéodory’s theorem.

62



So, the procedure in Figure 8 creates a system of inequalities with n unknowns, where

n := card (G) = card
(
G(a)

)
· card

(
G(b)

)
⩽ 2s

a+b+1
. (42)

There are s base case constraints. The number of spatial information constraints like Equation 28
is

⩽ card(G) · card
(
G(a)

)a+1
= card

(
G(b)

)
· card

(
G(a)

)a+2
⩽ 2s

b+1+(a+2)·sa+1
⩽ 2(a+b+2)·2a+b

.

Likewise, the number of spatial constraints like Equation 29 is

⩽ 2(a+b+2)·sa+b
.

So, the total number of constraints is

⩽ s+ 2(a+b+3)·sa+b
⩽ 2(a+b+4)·sa+b

.

Therefore, every inequality in the system has ⩽ 2(a+b+4)·sa+b
=: k monomials, each of degree (at

most) max{a+ 1, b+ 1} ⩽ (a+ b) =: D.
Lemma E.1 states that after running our Gaussian elimination-inspired algorithm of Figure 4

on this system, we get a system such that each polynomial in it has the following properties:

1. The number of monomials is (at most)

k(D+1)n = 2(a+b+1)n·(a+b+4)·sa+b
⩽ 2(a+b+1)2

sa+b+1

·(a+b+4)·sa+b
⩽ 22

22
O(a+b+s)

.

2. The degree of each monomial is (at most)

D3n ⩽ (a+ b)3
2s

a+b+1

⩽ 22
22

O(a+b+s)

.

All that remains is to estimate the time taken to determine the membership of Q in Figure 3.
It is dominated by the time taken to determine the membership of a point in the convex hull of
k(D+1)n subsets of Ra+b+c, each of these subsets is the relative interior of a polytope with (at most)
D3n vertices. Lemma J.1 presents this estimate; it is stated and proved below. Using this estimate,
we conclude that the running time of Figure 3 is at most

22
22

2O(d+s)

,

where d = a+ b+ c. In our cryptographic application, we have s ⩽ c and d = card(X)+ card(Y )+
card(Z). Hence, for that specific application, the running time is

22
22

2O(card(X)+card(Y )+card(Z))

. (43)

63



Technical result. We will prove the following technical result here.

Lemma J.1. Suppose φ∗ be a polynomial over CL(ΩP ), where ΩP is the set of all constants.
Suppose φ∗ has k′ monomials with degree (at most) D′. Let P be a constant assignment such that
each constant is assigned singleton elements in Rd. One can answer whether a point Q ∈ Rd lies
in conv(eval (φ∗;P)) or not in time (

k′
)O((D′+d)2).

Proof. The evaluation of a monomial of degree (at most) D′ is the relative interior of a polytope
with (at most) D′ vertices. We remind the reader that the relative interior of a point is the point
itself. Consider k′ sets, one for the evaluation of each monomial. By Carathéodory’s theorem, it
suffices to test the membership of the point Q in the convex hull of all possible ⩽ (d + 1) choices
of sets among these k′ sets.

At this point, we have the following subproblem. Consider sets S(1), S(2), . . . , S(d′) ⊂ Rd, such
that 1 ⩽ d′ ⩽ (d+1), and each of these sets is the relative interior of a polytope with (at most) D′

vertices. Using quantifier elimination [BPRon, Chapter 14], we can determine the membership of

Q in conv
(
S(1) ∪ S(2) ∪· · · ∪ S(d′)

)
with complexity that can be bounded singly exponentially (in

the parameters D′ and d) using the complexity of the quantifier elimination algorithm in [BPRon].

Consider all
(

k′

⩽(d+1)

)
subsets, we get the final estimate of the running time.

K Hemihedra

Figure 16 presents a few examples illustrating hemihedral sets.

P1

P2 P3
P4 P5

(a) convo({P1, P2, P3})
⋃
convo({P4, P5})⋃

convo({P1})
⋃
convo({P4})

P1

P2

P3

P4

P5

P6

P7

P8

(b) convo({P1, P2, . . . , P8})
⋃
convo({P2})⋃

convo({P4})
⋃
convo({P6})

⋃
convo({P8})

Figure 16: Examples of Hemihedra. Here convo(S) represents the relative interior of the convex
hull of a finite set of points S. If S is a singleton set, then convo(S) is the point in S itself.

64



A motivating example. Let X ⊆ R be a convex set satisfying:

1. It contains the point P ∈ R and

2. It contains the midpoint of any point in X and the point Q ∈ R.

The following system represents these constraints.

X ⩾ {P} ⊕
(
1

2
·X +

1

2
· {Q}

)
.

The smallest convex X is the union of P and the relative interior of the line segment PQ, i.e.,
{P} ⊕ {P} o

⋆ {Q}. The smallest polytope simultaneously satisfying the equation is the line segment
PQ, which contains the spurious point Q.

Perspective: Hemihedra-like geometric objects in mathematics. Convex polytopes (as
well as polyhedra) in Rd are exceptionally well studied [Grü03, Zie95]. By definition, they are
closed subsets of Rd. This paper proves that lamination hulls of finite sets of points (for certain
choices of Λ) are not necessarily closed or even locally closed, but their closure is a convex polytope.
This necessitates a definition of a class of convex subsets, which we call hemihedra. Note that non-
closed convex polyhedra appear naturally when convex hull operators are applied, starting from
closed convex sets. For instance, the convex hull of the closed convex polyhedra in R2, {(0, 0)} and
{(x, y) : x ⩾ 1} is the convex set {

(0, 0)
} ⋃ {

(x, y) : x > 0
}
,

which is not closed or even locally closed. (Technically, it is not a hemihedron as per our definition
since it is not bounded). In semi-algebraic geometry, semi-algebraic sets that are not locally closed
arise naturally and create severe mathematical difficulties (for instance, in questions regarding
their topological complexity). Hence, such sets have been the object of special attention (see,
for example, [GV09, GV17]). For example, the problem of proving lower bounds on the depths
of algebraic computation trees for membership testing in semi-algebraic sets is considerably more
difficult when the set is not locally closed. The fundamental result of Yao [Yao97] in this direction
has only recently been extended to the non-locally closed case [GV17]. From the point of view of
topology, hemihedra are much more complicated objects than convex polytopes. For instance, the
generalized Euler-Poincaré characteristic [vdD98] of a convex polytope in Rd always equals 1. Yet,
it can be arbitrarily large for a hemihedron. For instance, the union of the interior of a regular 2n-
gon in the plane (with vertices P1, . . . , P2n) with the set of even-numbered vertices is a hemihedron
(see Figure 16 (b)), and has generalized Euler-Poincaré characteristic equal to (n + 1). Since the
generalized Euler-Poincaré characteristic of semi-algebraic sets is a homeomorphism invariant – this
implies, in particular, that even though the number of topologically distinct non-empty polytopes
(i.e., up to homeomorphisms) in Rd is d+1 (one in each dimension ⩽ d), there are infinitely many
topologically distinct hemihedra.

65



References

[Bal90] J. M. Ball. Sets of gradients with no rank-one connections. J. Math. Pures Appl. (9),
69(3):241–259, 1990. 2

[Bea89] Donald Beaver. Perfect privacy for two-party protocols. In Joan Feigenbaum and
Michael Merritt, editors, Distributed Computing And Cryptography, Proceedings of a
DIMACS Workshop, Princeton, New Jersey, USA, October 4-6, 1989, volume 2 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages
65–78. DIMACS/AMS, 1989. doi:10.1090/dimacs/002/03. 1

[BKMN22a] Saugata Basu, Hamidreza Amini Khorasgani, Hemanta K. Maji, and Hai H. Nguyen.
Geometry of secure two-party computation. In 63rd Annual Symposium on Founda-
tions of Computer Science, pages 1035–1044, Denver, CO, USA, October 31 – Novem-
ber 3, 2022. IEEE Computer Society Press. doi:10.1109/FOCS54457.2022.00101.
1, 2, 3, 4, 5, 11, 12, 49

[BKMN22b] Saugata Basu, Hamidreza Amini Khorasgani, Hemanta K. Maji, and Hai H. Nguyen.
Geometry of secure two-party computation (full version), 2022. https://www.cs.
purdue.edu/homes/hmaji/papers/BKMN22.pdf. 1

[BKMN23] Saugata Basu, Hamidreza Amini Khorasgani, Hemanta K. Maji, and Hai H. Nguyen.
Randomized functions with high round complexity. In Guy N. Rothblum and Hoeteck
Wee, editors, TCC 2023: 21st Theory of Cryptography Conference, Part I, vol-
ume 14369 of Lecture Notes in Computer Science, pages 319–348, Taipei, Taiwan,
November 29 – December 2, 2023. Springer, Cham, Switzerland. doi:10.1007/

978-3-031-48615-9_12. 1, 2, 4

[BKNV23] Saugata Basu, Mario Kummer, Tim Netzer, and Cynthia Vinzant. New directions
in real algebraic geometry, 2023. https://publications.mfo.de/bitstream/handle/mfo/
4031/OWR 2023 15.pdf?sequence=-1&isAllowed=y. 2

[BPRon] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry, volume 10
of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2006 (second
edition). 15, 64

[Bra21] Mark Braverman. Information complexity, 2021. https://mbraverm.princeton.edu/
research/information-complexity/. 1

[BSS89] LENORE BLUM, MIKE SHUB, and STEVE SMALE. On a theory of computation
and complexity over the real numbers: NP–completeness, recursive functions and
universal machines. AMERICAN MATHEMATICAL SOCIETY, 21(1), 1989. 1

[Car07] Constantin Carathéodory. Über den variabilitätsbereich der koeffizienten von poten-
zreihen, die gegebene werte nicht annehmen. Mathematische Annalen, 64(1):95–115,
1907. 62

[CFG11] Diego Cordoba, Daniel Faraco, and Francisco Gancedo. Lack of uniqueness for weak
solutions of the incompressible porous media equation. Archive for rational mechanics
and analysis, 200:725–746, 2011. 2

66

https://doi.org/10.1090/dimacs/002/03
https://doi.org/10.1109/FOCS54457.2022.00101
https://www.cs.purdue.edu/homes/hmaji/papers/BKMN22.pdf
https://www.cs.purdue.edu/homes/hmaji/papers/BKMN22.pdf
https://doi.org/10.1007/978-3-031-48615-9_12
https://doi.org/10.1007/978-3-031-48615-9_12
https://publications.mfo.de/bitstream/handle/mfo/4031/OWR_2023_15.pdf?sequence=-1&isAllowed=y
https://publications.mfo.de/bitstream/handle/mfo/4031/OWR_2023_15.pdf?sequence=-1&isAllowed=y
https://mbraverm.princeton.edu/research/information-complexity/
https://mbraverm.princeton.edu/research/information-complexity/


[CG07] Diego Córdoba and Francisco Gancedo. Contour dynamics of incompressible 3-d flu-
ids in a porous medium with different densities. Communications in Mathematical
Physics, 273:445–471, 2007. 2

[CI01] Benny Chor and Yuval Ishai. On privacy and partition arguments. Inf. Comput.,
167(1):2–9, 2001. URL: https://doi.org/10.1006/inco.2000.3013, doi:10.1006/INCO.
2000.3013. 12

[CK89] Benny Chor and Eyal Kushilevitz. A zero-one law for Boolean privacy (extended
abstract). In 21st Annual ACM Symposium on Theory of Computing, pages 62–72,
Seattle, WA, USA, May 15–17, 1989. ACM Press. doi:10.1145/73007.73013. 1

[DLSJ09] Camillo De Lellis and László Székelyhidi Jr. The euler equations as a differential
inclusion. Annals of mathematics, pages 1417–1436, 2009. 2

[DP18] Deepesh Data and Manoj Prabhakaran. Towards characterizing securely computable
two-party randomized functions. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018: 21st International Conference on Theory and Practice of Public Key
Cryptography, Part I, volume 10769 of Lecture Notes in Computer Science, pages
675–697, Rio de Janeiro, Brazil, March 25–29, 2018. Springer, Cham, Switzerland.
doi:10.1007/978-3-319-76578-5_23. 1

[Edm70] Allan L Edmonds. Simplicial decompositions of convex polytopes. Pi Mu Epsilon
Journal, 5(3):124–128, 1970. 21, 49

[Grü03] Branko Grünbaum. Convex polytopes, volume 221 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, second edition, 2003. Prepared and with
a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler. doi:10.1007/

978-1-4613-0019-9. 4, 65

[GV09] Andrei Gabrielov and Nicolai Vorobjov. Approximation of definable sets by compact
families, and upper bounds on homotopy and homology. J. Lond. Math. Soc. (2),
80(1):35–54, 2009. doi:10.1112/jlms/jdp006. 65

[GV17] Andrei Gabrielov and Nicolai Vorobjov. On topological lower bounds for alge-
braic computation trees. Found. Comput. Math., 17(1):61–72, 2017. doi:10.1007/

s10208-015-9283-7. 65

[HL21] Lauri Hitruhin and Sauli Lindberg. Lamination convex hull of stationary incompress-
ible porous media equations. SIAM Journal on Mathematical Analysis, 53(1):491–508,
2021. 2

[jh] joriki (https://math.stackexchange.com/users/6622/joriki). Cancel-
lation law for minkowski sums. Mathematics Stack Exchange.
URL:https://math.stackexchange.com/q/175016 (version: 2012-08-18). URL:
https://math.stackexchange.com/q/175016, arXiv:https://math.stackexchange.

com/q/175016. 4, 7

[Jos21] Michael Joswig. Essentials of tropical combinatorics, volume 219 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, [2021] ©2021.
doi:10.1090/gsm/219. 8

67

https://doi.org/10.1006/inco.2000.3013
https://doi.org/10.1006/INCO.2000.3013
https://doi.org/10.1006/INCO.2000.3013
https://doi.org/10.1145/73007.73013
https://doi.org/10.1007/978-3-319-76578-5_23
https://doi.org/10.1007/978-1-4613-0019-9
https://doi.org/10.1007/978-1-4613-0019-9
https://doi.org/10.1112/jlms/jdp006
https://doi.org/10.1007/s10208-015-9283-7
https://doi.org/10.1007/s10208-015-9283-7
https://math.stackexchange.com/q/175016
http://arxiv.org/abs/https://math.stackexchange.com/q/175016
http://arxiv.org/abs/https://math.stackexchange.com/q/175016
https://doi.org/10.1090/gsm/219


[Kil00] Joe Kilian. More general completeness theorems for secure two-party computation.
In 32nd Annual ACM Symposium on Theory of Computing, pages 316–324, Portland,
OR, USA, May 21–23, 2000. ACM Press. doi:10.1145/335305.335342. 3

[KS86] Werner Kuich and Arto Salomaa. Semirings, automata, languages, volume 5 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1986.
doi:10.1007/978-3-642-69959-7. 4

[Kus89] Eyal Kushilevitz. Privacy and communication complexity. In 30th Annual Symposium
on Foundations of Computer Science, pages 416–421, Research Triangle Park, NC,
USA, October 30 – November 1, 1989. IEEE Computer Society Press. doi:10.1109/
SFCS.1989.63512. 1

[LSZ23] Renato Paes Leme, Jon Schneider, and Shuran Zheng. Bayesian conversations. arXiv
preprint arXiv:2307.08827, 2023. 11

[Mat02] Jǐŕı Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 2002. doi:10.1007/978-1-4613-0039-7. 2

[MBZ+03] Jǐŕı Matoušek, Anders Björner, Günter M Ziegler, et al. Using the Borsuk-Ulam
theorem: lectures on topological methods in combinatorics and geometry, volume 2003.
Springer, 2003. 14

[MP98] J. Matoušek and P. Plecháč. On functional separately convex hulls. Discrete Comput.
Geom., 19(1):105–130, 1998. doi:10.1007/PL00009331. 2, 12

[MPR09] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of multi-party
computation problems: The case of 2-party symmetric secure function evaluation. In
Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference, volume
5444 of Lecture Notes in Computer Science, pages 256–273. Springer Berlin Heidelberg,
Germany, March 15–17, 2009. doi:10.1007/978-3-642-00457-5_16. 12

[MPR13] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of multi-party
computation functionalities. In Manoj Prabhakaran and Amit Sahai, editors, Secure
Multi-Party Computation, volume 10 of Cryptology and Information Security Series,
pages 249–283. IOS Press, 2013. doi:10.3233/978-1-61499-169-4-249. 1

[SS78] Arto Salomaa and Matti Soittola. Automata-theoretic aspects of formal power series.
Texts and Monographs in Computer Science. Springer-Verlag, New York-Heidelberg,
1978. 4

[vdD98] Lou van den Dries. Tame topology and o-minimal structures, volume 248 of London
Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
1998. doi:10.1017/CBO9780511525919. 17, 65

[Š93] Vladimı́r Šverák. On Tartar’s conjecture. Ann. Inst. H. Poincaré C Anal. Non
Linéaire, 10(4):405–412, 1993. doi:10.1016/S0294-1449(16)30208-6. 2

[Wei15] Omri Weinstein. Interactive Information Complexity and Applications. PhD thesis,
Princeton University, 2015. 1

68

https://doi.org/10.1145/335305.335342
https://doi.org/10.1007/978-3-642-69959-7
https://doi.org/10.1109/SFCS.1989.63512
https://doi.org/10.1109/SFCS.1989.63512
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/PL00009331
https://doi.org/10.1007/978-3-642-00457-5_16
https://doi.org/10.3233/978-1-61499-169-4-249
https://doi.org/10.1017/CBO9780511525919
https://doi.org/10.1016/S0294-1449(16)30208-6


[Yao97] Andrew Chi-Chih Yao. Decision tree complexity and Betti numbers. volume 55, pages
36–43. 1997. 26th Annual ACM Symposium on the Theory of Computing (STOC ’94)
(Montreal, PQ, 1994). doi:10.1006/jcss.1997.1495. 65

[Zie95] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1995. doi:10.1007/978-1-4613-8431-1. 65

69

https://doi.org/10.1006/jcss.1997.1495
https://doi.org/10.1007/978-1-4613-8431-1

	Introduction
	Our Contributions
	Proof Overview of [thm:tech-main]Theorem 1
	Abridged Version: Solving System of Inequalities
	Abridged version: Lamination Hull Computation

	Representative Open Problems
	Solving System of Linear Inequalities over the Semi-Ring of Convex Sets
	Notation: System of Inequalities
	Evaluation Map
	Algebraic Characterization of the Smallest Solution
	Operational Realization of the Smallest Solution

	Lamination Hull: Grid Points, Structure Lemma, Reduction to System of Inequalities
	Arrangements
	Computing any Restriction of the Lamination Hull
	Reduction to a System of Inequalities

	Solving Example System
	Figure of the Smallest Solution for an Assignment
	Examples of Substitution
	Iterated Solution Evolution for an Assignment

	Solving Example System: Restricted to Polytopes
	Properties of Our Set Operations
	Gaussian Elimination Algorithm
	Rearrangement and Cancellation Lemmas
	Substitution Lemma
	Proof of Substitution Correctness: Proof of [lem:substitute-poly-property]Lemma 1
	Technical Results

	Algebraic Complexity of the Smallest Solution of a System of Inequalities
	Operational Realization: Proof of [lem:itr-char]Lemma 2
	Preliminaries: Arrangements
	Proofs of [prop:realize-intersect]Proposition 7, [prop:realize-convex]Proposition 8, [prop:partition]Proposition 9, [prop:points-in-arrange]Proposition 10
	Proof of [applem:lifting]Lemma G.1

	Lamination Hull Restricted to Grid Points is Sufficient: Proof of [lem:struc]Lemma 3
	Notation: Witness trees
	Proof of [applem:everyone-immediate-gridded]Lemma H.4
	Proof of [applem:everyone-gridded]Lemma H.3
	Proof of [applem:algo-struc-correct]Lemma H.2
	Technical Results: Statement and Proof of [applem:immediate]Lemma H.5 and [applem:switching]Lemma H.6

	Bridging Lamination Hulls and Solutions of Systems of Inequalities: Proof of [lem:reduction-lam-system]Lemma 4
	Statement and Proof of [applem:lam-solution-of-oursystem]Lemma I.1
	Statement and Proof of [applem:systemsol-stepi-convlam]Lemma I.2

	Complexity of Answering Lamination Hull Membership Queries
	Hemihedra
	References

