®

Check for
updates

Explicit Rate-1 Non-malleable Codes
for Local Tampering

Divya Gupta', Hemanta K. Maji2, and Mingyuan Wang?(®)
! Microsoft Research, Bangalore, India
divya.gupta@microsoft.com
2 Department of Computer Science, Purdue University, West Lafayette, USA
{hmaji,wang1929}@purdue.edu

Abstract. This paper constructs high-rate non-malleable codes in the
information-theoretic plain model against tampering functions with
bounded locality. We consider é-local tampering functions; namely, each
output bit of the tampering function is a function of (at most) §
input bits. This work presents the first explicit and efficient rate-1 non-
malleable code for d-local tampering functions, where § = &lgn and
&£ < 1 is any positive constant. As a corollary, we construct the first
explicit rate-1 non-malleable code against NC° tampering functions.

Before our work, no explicit construction for a constant-rate non-
malleable code was known even for the simplest 1-local tampering func-
tions. Ball et al. (EUROCRYPT-2016), and Chattopadhyay and Li
(STOC-2017) provided the first explicit non-malleable codes against
d-local tampering functions. However, these constructions are rate-
0 even when the tampering functions have 1-locality. In the CRS
model, Faust et al. (EUROCRYPT-2014) constructed efficient rate-1
non-malleable codes for § = O(logn) local tampering functions.

Our main result is a general compiler that bootstraps a rate-0 non-
malleable code against leaky input and output local tampering functions
to construct a rate-1 non-malleable code against £ lgn-local tampering
functions, for any positive constant £ < 1. Our explicit construction
instantiates this compiler using an appropriate encoding by Ball et al.
(EUROCRYPT-2016).

1 Introduction

Dziembowski, Pietrzak, and Wichs [18] introduced the notion of non-malleable
codes as an extension of the standard objective of error-correction. Non-malleable
codes provide message-integrity assurances even when error-detection, let alone
error-correction, is impossible. Suppose a sender encodes a message m € {0, 1}6
and transmits the codeword over a channel. If the channel adds an error that

H. K. Maji—The research effort is supported in part by an NSF CRII Award CNS-
1566499, an NSF SMALL Award CNS-1618822, and an REU CNS-1724673.

H. K. Maji and M. Wang—The research effort is supported in part by a Purdue
Research Foundation grant.

© International Association for Cryptologic Research 2019

A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11692, pp. 435-466, 2019.
https://doi.org/10.1007/978-3-030-26948-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26948-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-26948-7_16

436 D. Gupta et al.

has a small Hamming weight, then the sender can encode the message using an
error-correcting code and the receiver can error-correct and retrieve the original
message. Algebraic Manipulation Detection codes [16] help the receiver detect
if the transmitted codeword is tampered using algebraic operations. For more
sophisticated classes of tampering function F, demanding manipulation detec-
tion or error-correction might be far-fetched. For example, suppose the channel
replaces the original codeword with a fixed valid codeword. In this case, error-
correction or error-detection is impossible. Non-malleable codes provide a mean-
ingful message integrity assurance against sophisticated tampering families.

Let us fix an encoding and a decoding scheme (Enc, Dec), and a tampering
function family F. Non-malleable codes ensure that for any message m € {0, 1}6
and tampering function f € F, the tampered message Dec(f(Enc(m))) is either
identical to the original message m or a simulator Simy can simulate this distri-
bution (that is, it is independent of the original message). Even such a weak mes-
sage integrity assurance turns out to be cryptographically useful, for example, in
storing secret-keys for cryptographic primitives [18,28] and non-malleable mes-
saging [22,23]. Naturally, we measure the quality of non-malleable codes using
the following two parameters.

1. Rate. The ratio of the length of the message to the length of its encoding.
2. Sophistication of the tampering family. The complexity of the tampering
attacks captured by the tampering functions in this family.

Constructing explicit non-malleable codes with high rate against sophisticated
tampering function families is the guiding principle for the research in non-
malleable codes. However, both these objectives, even independently, have been
significantly non-trivial to achieve. Only recently, using elegant probabilistic
arguments, [13,20] constructed rate-1 non-malleable codes in the CRS model
for tampering families of bounded size.!

In this paper, for any positive constant & < 1, we present the first rate-
1 explicit non-malleable codes against any tampering function that has £lgn
output locality, i.e., at most £lgn input-bits influence any output bit of the
tampering function. Note that there is no bound on the input locality, i.e., the
number of output positions one input bit can influence during tampering. Here
lg represents the logarithm with base 2, and n represents the length of the
codeword. Notably, our construction is in the information-theoretic plain model.
We emphasize that our construction does not rely on any computational hardness
assumption or a CRS.

1.1 Prior Relevant Works

Note that it is impossible to construct a non-malleable code (NMC) that is
secure for all tampering functions. Consider a tampering function that obtains
an advantage in predicting the first bit m; of the message m. Then, the tamper-
ing function f overwrites the codeword with a fized encoding of m{, which we

! Tampering functions can access the CRS; however, they cannot tamper the CRS.

Explicit Rate-1 Non-malleable Codes for Local Tampering 437

hardwire into it. This result indicates that, given the codeword ¢, no tampering
function f € F should have an advantage in predicting any bit of the message
m € {0, 1}5. Consequently, we fix the class of tampering function family F, and
construct a non-malleable encoding scheme (Enc, Dec) for that tampering family.

Monte-Carlo Constructions. Dziembowski et al. [18], introduced the notion
of non-malleable codes and showed the existence of rate-1 NMC against bit-
wise tampering (each output bit is a function of the corresponding input bit).
Next, Faust et al. [20] showed the existence of rate-1 non-malleable codes against
any tampering family of size 2P°%¥(") 2 Cheraghchi and Guruswami [13] proved
that there exists (possibly inefficient) (1 — a)-rate NMC against any tampering
function family of size 22°". These results are probabilistic in nature and it is
unknown whether we can derandomize them to obtain explicit constructions in

the plain model. Note that there are (roughly) <<n) 22")~ 272" distinct o-

5
local tampering functions. If 6 = O(logn) then [20] indicates the existence of
an efficient rate-1 non-malleable code. Further, for 6 = o(n), [13] implies the
existence of a (possibly inefficient) rate-1 non-malleable code.

Explicit Constructions. A famous line of research explores designing NMCs
against k-split-state tampering functions where k different locations store the
k shares of the encoding. The tampering of each share is performed arbitrarily,
albeit independently. The maximum achievable rate in this setting is R < 1 —
1/k [13]. Dziembowski et al. [17] constructed NMC for one-bit messages in the
2-split-state model. A sequence of highly influential works have constructed near-
optimal constant-rate NMCs using only k = 3 shares of the encoding [2,3,10,
12,24,27,28]. Currently, Li’s construction [29,30] achieves the highest rate R =
O(logloglogn/loglogn) for 2-split-state tampering.

Another research direction allows the tampering function to tamper the entire
codeword but constrains its computational power. For example, local tampering
functions have an a priori upper bound of how many input bits influence each
output bit. [7,11] construct explicit NMC for local tampering functions. The rate
of [7] is at most the product of inverse of locality and rate of the 2-split-state
NMC. Hence, their construction has rate-0 even for constant locality. Recently,
[6] consider constant depth circuits and construct the first explicit NMC against
AC® tampering. Both [11] and [6] have inverse-polynomial rate.

Explicit Rate-1 Constructions. Explicit rate-1 NMC constructions are even
more scarce. Cheraghchi and Guruswami [14,18] construct a rate-1 NMC for
bit-wise tampering. Agrawal et al. [4,5] provide an explicit rate-1 NMC against
tampering functions that perform bit-wise tampering after permuting the input
bits. Both these constructions amplify the rate of a base NMC (possibly, with
additional properties) that has sub-optimal rate into a rate-1 NMC using a
compiler. We emphasize that these two particular tampering families are not
only 1-local but also have the constraint that each input bit influences at most

2 This construction is also an efficient rate-1 construction in the CRS model.

438 D. Gupta et al.

one output bit (that is, 1-input local). Note that the focus of this work is d-local
tampering functions with 4 > 1 and no bound on input locality.

In the computationally bounded setting, [1] construct a rate-1 NMC against
2-split-state tampering based on the existence of one-way functions. Further-
more, there are constructions of NMC that rely on a CRS [8,20,31].

Non-malleable codes have also been considered in the continual tampering
model, for example, [19,26,33]; covering which is beyond the scope of this work.

1.2 Owur Contribution

Our work focuses on constructing non-malleable codes, in the information-
theoretic plain model, against tampering functions that are d-local, i.e., at most
¢ input bits influence any output bit. We emphasize that § can be a function of
n, the size of the codeword. Our work, for any positive constant £ < 1, constructs
explicit rate-1 NMC against d-local tampering functions, where § = £1gn, which
has a tampering family of size 27" In our case, the locality § = w(1) and,
hence, the set of all §-local tampering functions subsumes the family of NCY
tampering functions.

We present a general black-box compiler that takes three ingredients as input
and constructs a non-malleable code for local functions. At an intuitive level, we
prove the following result.

Informal Theorem 1. For any positive constant & < 1, there exists an explicit
and efficient rate-1 NMC' against £ 1gn-local tampering functions using the fol-
lowing primitives in a black-box manner (refer to Fig. 2).

1. Rate-1 linear error-correcting code® with (near) linear distance and dual-
distance (see Definition 7),

2. Rate—l/no(l) NMC against leaky input and output local tampering for message
length n (referred to as the base NMC) (see Definition 6), and

3. A pseudorandom generator for finite state machines with super-polynomial
stretch (see Definition 9).

The compiler (refer to Fig.1 for an outline) encodes the message m using
the error-correcting code. Then, it samples a few entries of the codeword (at a
suitable rate) and adds errors at half of them. The compiler tabulates all the sam-
pled entries (both the erroneous and unaltered ones) along with their respective
locations. The erroneous codeword forms the primary payload of the message m.
The list of tabulated entries is appropriately encoded using a combination of the
base NMC and the PRG and is juxtaposed (at the end) for consistency checks
during decoding. If the rate of subsampling is sufficiently low, then the overall
construction is rate-1. The security argument proceeds by demonstrating that if
the subsampling rate is sufficiently high, then any local function cannot change

3 Error-correcting codes can be converted into error-correcting secret sharing schemes
using standard share-packing techniques [9,21,34].

Explicit Rate-1 Non-malleable Codes for Local Tampering 439

the payload without being inconsistent with the tabulated entries themselves.
Section 1.3 provides an intuitive overview of our compiler’s construction.

Finally, we instantiate the respective primitives using (1) Reed-Solomon
Codes over characteristic 2 fields, (2) An appropriate encoding introduced by
Ball et al. [7], and (3) Nisan’s PRG [32]. As a consequence, we construct explicit
efficient rate-1 NMC against £lgn-local tampering functions, for any positive
constant £ < 1, with negligible simulation error (refer Theorem 2).

Remark. We note that the resulting decoding function for our construction
is randomized. However, the randomization stems solely from the randomized
decoding function of the base NMC construction of [7]. Given an appropriate
NMC against leaky input and output local tampering with deterministic decod-
ing, our construction will have deterministic decoding.

Remark. If the base NMC is only rate-1/ poly n, then our compiler with suit-
ably modified parameters, constructs an explicit rate-1 NMC against o(logn)-
local tampering functions. We defer this modification to the full version.

1.3 Technical Overview

As a starting point, it is instructive to understand the construction of
Agrawal et al. [5] for a rate-1 NMC against tampering functions with input
and output locality 1. The conceptual hurdles in generalizing this approach to
d-local functions, we believe, motivates the components used in our construction.

Construction of Agrawal et al. [5]. The construction of Agrawal et al. [5]
encodes the message m with an error correcting secret sharing (ECSS) scheme
to obtain a. Then, it samples a small number of bits from a indexed by E, which
are represented by ag, and replaces ag with a (uniformly random) error e. This
creates an erroneous codeword c. Observe that half of the bits of e match the
original entries in ag and the remaining do not. Next, an NMC of rate-1/ poly
encodes the consistency checks (F,e) as e, and the final encoding is (¢, cerr)-
The decoding algorithm error-corrects ¢ to obtain a (and hence, m) and checks
the consistency between a, ¢, corr. For an appropriately chosen size of the set F,
the encoding (¢, cerr) is non-malleable and has rate-1.

We represent the tampered codeword and error, respectively, by ¢ and cepy.
The security argument proceeds, roughly, as follows.

(1) The tampering on ¢,y is independent of the message m. This argument
crucially relies on the output-locality of the tampering function. The indepen-
dence* of the ECSS is sufficiently high to permit the simulation of the tampering
on Cey independent of the message m.

(2) The non-malleability of the encoding ce,, ensures that ce; encodes either
(a) the original (E,e), or (b) an entirely unrelated (E*,e*). The case of the
tampering function creating an invalid encoding is not particularly insightful.

4 An ECSS of independence ¢ has the property that any t shares are uniformly and
independently random.

440 D. Gupta et al.

(3.a.) Consider the case where the tampering function preserves error;
namely, the same* case. In this case, they argue that the only way to get a valid
tampered codeword is by keeping ¢ identical to ¢ and that the probability of
encoding being valid independent of the original message m. For this argument,
they perform a case analysis based on the number of bits that the tampering
function does not directly copy from the codeword (a.k.a., the not-copied-bits).
The tampering function, by definition, directly copies the remaining bits from
the codeword into the tampered codeword.

If the number of not-copied-bits in the tampering function is small, then
the simulation proceeds as follows. Since the tampering function has a small
number of not-copied-bits, most bits in ¢ are identical to their corresponding
bits in ¢. These copied bits define a unique codeword (using the high distance
property of ECSS®). Decoding succeeds if every not-copied-bit of ¢ matches the
corresponding bit in ¢. Moreover, decoding fails if any not-copied bit of ¢ does not
match the corresponding input bit in ¢. Since, the number of the not-copied-bits
is small and they have output locality 1, we can simulate this check independent
of the original message m by leveraging the (sufficiently large) independence of
the ECSS.

On the other hand, if the number of not-copied-bits is large, then they argue
that the tampered codeword is invalid (w.h.p.). The following intuition underlies
their argument. Due to the input-locality 1 of the tampering functions, the error
Cerr can influence only a few bits in ¢. Consequently, there still remains a large
number of bits in ¢ that are not-copied-bits and are not influenced by cepy.
Therefore, the subset of these bits that is sampled in F is also large (over the
random choice of E). Among these indices, leveraging the high independence of
the ECSS and input locality 1 of the tampering function, there is a large subset
where each indexed bit in the tampered codeword independently disagrees with
the tabulated (F,e) with probability (at least)® 1/2. So, with high probability,
the tampered codeword fails the consistence check.

(3.b.) Consider the case where the tampering function replaces the error
with an unrelated (E*,e*). In this case, they argue that the only way to get
valid tampered codeword is by replacing ¢ by an unrelated ¢* that is consistent
with (E*,e*). For this argument, they perform a case analysis based on the
number of output-bits of the tampering function that are non-constant (a.k.a.,
the non-constant-bits). If the number of non-constant-bits is small, then the
tampered message is simulatable independent of the message due to the high
independence of the ECSS and output locality 1 of tampering function. On the
other hand, if the number of non-constant-bits is large, then the decoding fails
with high probability. In this case, each bit in ¢ that is influenced by a bit in ¢
risks creating an independent inconsistency with (E*,e*) with probability 1/2.
Hence, if there is a large number of these bits where each of them is inconsistent

5 An ECSS with distance d ensures that, for two different secrets, at least d secret
shares are different.

5 If the tampering function flips the input bit then the probability of disagreement is
1; otherwise, the probability of disagreement is 1/2.

Explicit Rate-1 Non-malleable Codes for Local Tampering 441

with (E*, e*) independently with probability 1/2, then the overall codeword will
be invalid with high probability. Similar to case 3.a., this argument relies on
leveraging the high independence of the ECSS, input locality 1 of the tampering
function, and the fact that E is randomly chosen.

To summarize, two key properties are crucial to our arguments.

(A) Being non-committal to the errors. We rely on randomness of errors to argue
inconsistency with tabulated errors in ceyy.

(B) Independence of failure. Our objective is to identify output bits that cause
decoding failure independently.

Consequently, we have the following objective.

“Find a large subset of bits in ¢ that independently fail the consistency check” while,
simultaneously, “remaining noncommittal to (most of) the error (E,e)”

In the sequel, we elaborate the unique challenges to achieve this objective
against d-local functions, with 6 > 1, and no a priori bound on the input-locality.

Intuition underlying Our Construction. For a tampering function with
output locality § (referred to as a d-local function), intuitively, every bit in the
tampered codeword is influenced by some bits in ¢ and some bits in ce.. The 2-
local tampering functions suffice to capture these two influences and we use these
to illustrate some primary challenges and key components of our construction.

Using the output locality of the tampering function, we can argue that tam-
pering on ce, would be independent of the message m. Next, we use non-
malleablity of encoding ce to simulate whether co, encodes (a) the original
errrors, (2) an unrelated (E*,e*), or (3) L. Let us consider the case when the
tampering function preserves the original errors. In this case, we perform a case
analysis on the number of not-copied-bits. So the first (somewhat minor) hurdle
is how to define not-copied-bits for d-local functions. Since a bit in ¢ can be
influenced by ¢ bits, it is a not-copied-bit if it is not a copy for (at least) 1 out
of the 2° possible inputs. Hence, in the final argument, this bit shall fail the
consistency check with probability 1/2°. Thus, as ¢ increases, we need to find
exponentially more bits that independently fail to be consistent.

The second hurdle is that, unlike Agrawal et al. [5], our tampering functions
are not input-local. So, for instance, one bit in the (¢, cerr) can influence every
bit of the tampered codeword. Therefore, even though there might be many
not-copied-bits, their probability of being inconsistent is possibly correlated. To
resolve this challenge, Viola [35] proposed a technique to fix the values of the
highly influential input bits (sampled from an appropriate distribution) of the
tampering function. This technique, intuitively, transforms an output local tam-
pering function into a convex combination of tampering function that are both
input and output local. We use this technique to fix the highly influential bits
in ¢ to be uniform random bits (relying on output locality of tampering func-
tion and independence of ECSS). However, as we discuss below, many challenges
remain related to the bits in cere that are highly influential for ¢.

442 D. Gupta et al.

Consider the following representative 2-local tampering function. Each bit is
¢ is influenced by corresponding bit in ¢ and a bit in ¢, while ensuring that all
bits in cery have an identical number of output neighbors.

(1) If the threshold to identify “highly influential” input bits is set too low,
then the procedure mentioned above might fix the entire ce., because the size
of cer is very small. Consequently, the error (E,e) gets fixed. Thereafter, it
is unclear how to proceed and catch any non-trivial tampering of c¢. So, the
threshold to identify “highly influential” cannot be too low. Therefore, in this
case, it is possible that no bit in ce, is fixed and cep cumulatively influences a
lot of bits in ¢.

(2) Ideally, we would like that the bits we pick from ¢ to argue failure do not
depend on c¢e. However, in this case, all the bits in ¢ depend on cer.

(3) Furthermore, there is another subtle issue. Conditioning on the fact that
the tampered cey encodes the same error or a fixed (E*, e*) distorts the distri-
bution of cepp, which, in turn, influences the distribution of the tampered ¢. To
summarize, the distributions ¢ and (F,e) are correlated when conditioned on
whether the cqor encodes the same cgpr or a fixed cepr.

Rate-0 NMC against

Message m local tampering [7]

ECSS scheme | '
Random errors e at

Valid Codeword a random indices E

NMC against leaky
Replace ¢ local tampering [7] ot
ag with e

fm—mm - -

Hide c* inside a” ' Hide ¢® inside off

using Nisan’s PRG | using Nisan’s PRG

[32] with seed s* | [32] with seed s%
1
:
1

Main codeword ¢ : (s, a®) (s afh

Fig. 1. Block diagram of the compiler to construct NMC against local tampering.

To resolve these concerns simultaneously, the high level idea is to hide the
informative bits about (F,e), i.e., Cerr, in a polynomially larger string, say o
(refer to Fig.1 for a block diagram of our compiler). We use a PRG with a
super-polynomial stretch to determine the positions with informative bits inside
«a and store the PRG seed s along with « as the new payload. So our final

Explicit Rate-1 Non-malleable Codes for Local Tampering 443

codeword is (c, s, a).” We argue that for any tampering function, the number of
bits from ce that are highly influential for ¢ is small. To simulate these bits,
we perform a small leakage on ce,,. Since our base NMC from [8] is resilient to
small leakage, we stay non-committal to (F,e) even conditioned on this leakage.
Note that the rest of the bits in c¢.;, have a bounded input locality onto ¢ and
hence, ¢, influences only a small subset of bits in ¢.

Now, if we had a large number of not-copied-bits in ¢, we have a large number
of not-copied-bits in ¢ that are not influenced by ce;.. But these bits might share
input neighbors in ¢ and have correlated probability of failing consistency checks.
Recall that we have already fixed the highly influential bits in ¢. Finally, we can
use the bounded input and output locality to identify independent bits in ¢
(using the greedy neighbor-of-neighbor argument of Viola [35]).

This section presents only the intuitive rationale underlying the crypto-
graphic primitives needed for our construction. There are further subtleties
involved in the security arguments. Section5.1 presents the full proof of our
compiler using a hybrid argument.

Remark: Limit of Our Approach. We present a simple rationale for why our
construction works for d-local functions, where 6 = £lgn and £ < 1 is a positive
constant. Note that in steps 3.a. and 3.b., the probability of inconsistency with
the tabulated error was at least 1/2 in a 1-local tampering function. However,
the probability of inconsistency in a d-local tampering function can be as low
as 279, The probability of u independent consistency checks to simultaneously
pass is (1 —27%)%. We need u = w(2°logn) for this quantity to be negligible.
On the other hand, we have u < n. Consequently, we must have 2° < n/logn,
or, in particular, § < Ign.

2 Preliminaries

We use [n] to denote the set {1,2,...,n}. For z = (z1,22,...,2,) and S C [n],
we use rg to denote (xg,,%s,,...,Zs,), where S = {s1,82,...,8,} and s1 <
sy < -+ < sg. For brevity, we write z_; for x[,)\ (5. We use Ug to represent

the uniform distribution over the set S. If D is a distribution, we write z ~
D to denote that x is sampled according to distribution D. The support of a
distribution D, represented by Supp(D), is the set {z: Pr[D = z] > 0}. For any
binary strings z,y € {0,1}", we use HD(z, %) to denote their Hamming distance
defined by HD(z,y) := [{i: x; # y; and 1 <@ < n}.

2.1 Local Functions

Let f:{0,1}* — {0,1}" be a deterministic function. We write f as
(fl7f2a"'7fn) such that f(x) = (fl(x)’fQ(‘r))afn(x))7 where each

" Similar to [6], hash function families with sufficiently high independence also suffice
in this context.

444 D. Gupta et al.

fi: {0,1}" — {0,1} and 1 < i < n. We say that the i-th bit (of the input)
has influence on the j-th bit (of the output) if there exists an z* ; such that

fiel, o 0,7,) # fi(l, . xi, Lal g,)

For every output position 1 < j < n, we define the input neighbors Inp ¢ (j) to be
{i]1 < i < n,i has influence on j}. Similarly, for an input position 1 < i < n, we
define its output neighbors Out ¢ () to be {j|1 < j < n,¢ has influence on j}. We
extend this notion naturally to a set of indices. We write Inp;(S) = Uses Inp(s)
and Outf(S) = Uses Outs(s).

A function f has input locality 4, if, for all 1 <4 < n, we have |Outs(i)] < 4.
Similarly, a function f has output locality ¢, if for all 1 < j < n, we have
[Inp ()] < 6.

Definition 1 (Local Functions). A function f:{0,1}" — {0,1}" is called
a d-local function if it has output locality §.

We use Local’ to represent the set of all such functions because n shall be
implicit from our context.

Recall that NC? is the set of all functions f such that for all i, f; can be
computed by a circuit of fan-in 2 and constant depth. Trivially, NC® C Local®®.

We follow the convention in the literature and define the restriction of boolean
functions as follows.

Definition 2 (Restriction). Let g : {0,1}" — {0,1} be a boolean function and
(I,1) be a partition of [n]. Let x € {0,1} . Then, we write 9112 1 {0,1}" — {0,1}
for function g with input of indices in I being restricted to x. For function
f {01} — {0,1}" such that f = (f1,fa,..., fn) we write f1jz to denote
((fl)]\aca (f2)1|w, cee (f”)ﬂx)' We say that i € I has influence on j if there exists
a x*; such that 27 =z and

(friz)i(@t, o xi g, 0,27 g, xy) # (fre)i (2], - m g, Lol g, ... o)

Note that for all j € [n], Inpy, (j) = {i[1 <i < n,i has influence on j} C I

2.2 Non-malleable Codes
We define non-malleable codes below similar to previous works.

Definition 3 (Coding Schemes). Let Enc: {0,1} — {0,1}" and
Dec: {0,1}" — {0,1}* U{L} be randomized functions (that is, they has access
to private randomness). The pair (Enc,Dec) defines an encoding scheme with
block length n and message length ¢ if it satisfies perfect (resp., statistical) cor-
rectness. That is, for all m € {0, 1}2, over the randomness of Enc and Dec,
Pr[Dec(Enc(m)) = m] = 1 (resp., Pr[Dec(Enc(m)) = m] = 1 — negl(¢)). The
rate R of this encoding scheme is defined as R ={/n.

Let F,, denote the set of all functions f: {0,1}" — {0,1}". Non-malleable
codes are defined w.r.t. a family of tampering functions, say F C F,, as follows.

Explicit Rate-1 Non-malleable Codes for Local Tampering 445

Definition 4 ((n,¥,¢)-Non-malleable Codes). A coding scheme (Enc, Dec)
with block length n and message length € is said to be non-malleable against
tampering family F C F,, with (simulation) error €, if for all functions f € F,
there exists a distribution Sim(f) over {0,1}* U {L} U {same*} such that for all
messages m € {0, 1},

Tampery" ~. copy (Sim(f),m)
where Tampery" stands for the following distribution of the tampered message

¢ ~Enc(m), ¢ = f(c), m = Dec(a)}

Tamper” :=
ety { Output: m.

and
Yy, if x = same?*;
copy(z,y) = .
x, otherwise.

2.3 Hypergeometric Distribution

Consider a universe of size N with K success samples. An (N, K, n)-
hypergeometric distribution is the probability distribution of number of success
samples picked when n random samples are picked from the universe without
replacement. Specifically, we define the distribution as follows.

Definition 5. A distribution D over the sample space [n] is an (N, K,n)-
hypergeometric distribution if, for any k € [n], we have

(1)

Using standard coupling arguments, it is known that the hypergeometric
distribution is more concentrated than the corresponding Bernoulli distribution.
Consequently, we have the following tail bound.

Lemma 1. ([15,25]) Let X be a random wvariable sampled from a (N, K,n)-
hypergeometric distribution. Then for any e € (0, %),

Pr[X < (K/N —¢) - n] < exp (—2¢°n)
The following corollary suffices for our proof.

Corollary 1. Let A C [n] be an arbitrary subset of size a. Let B C [n] be a
random subset of size b. Then

Pr[|AN B| < ab/2n] < exp (—a®b/2n?)

Note that |A N B| is an (n, a,b)-hypergeometric distribution. The corollary
follows from the previous lemma with € = a/2n.

446 D. Gupta et al.

3 Building Blocks

In this section we describe the building blocks of our compiler.

3.1 Non-malleable Codes Against Leaky Input and Output Local
Tampering

Our construction relies on an encoding scheme that satisfies non-malleability
against leaky input and output local tampering that we define below.

Definition 6. Let (Enc,Dec) be a coding scheme such that Enc : {0,1}" —
0,13 x {0,1}™* and Dec : {0,1}"* x {0,1}"" — {0,1}". We call (Enc, Dec)
a (A, p, i, £,)-non-malleable code against leaky input and output local tampering
with simulation error € if it satisfies the following conditions.

Let L C [nz] and LB C [ng] be arbitrary subsets of size at most Any, and

Ang, respectively. Consider any function F with domain {0, l}lﬁL‘ x {0, 1}|£R|
that outputs a tampering function g : {0,1}"* x {0,1}"" — {0,1}"* x {0,1}""

Vol Vo —
such that for any x € {0,1}'~ ', y € {0,1}'" ', and g = F(z,y)

1. The output locality of the tampering function g is at most £,, and
2. All but (at most) uny, input-bits of the first ny, input-bits of g have input
locality (at most) ¢;.

Then, there exists a distribution Sim(LY, LT F) over ({O7 1} u {L,same*}) X
{0, l}wL‘ x {0, l}wRI such that for any message m € {0, 1},

Tamperys pr p ~e copy (Sim (L%, £ F), m), where

(¢, c®) ~ Enc(m),z = ckp,y = cBn
g:=F(z,y)

(ZE, gé) = g(ct, By, m = Dec(gi, gé)

Output (m, z,y)

m .
Tamperyz pr p 1=

Intuitively, leaky input and output local tampering allows the adversary to
first pick a subset of indices and peek into the codeword at those places, then
use this leakage as an advice to select a output-local, (almost) input-local tam-
pering function. Then, non-malleability against leaky input and output local
tampering guarantees that the tampered message and the leakage are simulat-
able independent of the original message only given the position of leaked indices
and the map F from leakage to the tampering function. Ball et al. [7] construct
this non-malleable code as an intermediate step toward their final rate-0 non-
malleable codes against local tampering. As a corollary of their results, we have
the following lemma, which suffices for our construction.

Explicit Rate-1 Non-malleable Codes for Local Tampering 447

Lemma 2 ([7]). There exist constants A, u such that, for any ¢;,£, = O(logk),
there exists an explicit and efficient (A, u, £;, £,)-non-malleable code against leaky
input and output local tampering with simulation error ¢ = negl(k) and rate
l/k"(l), where k is the length of the message.

Remark 1. Note that [7] reduces the problem of constructing non-malleable
codes against leaky input and output local tampering to the problem of con-
structing non-malleable codes against 2-split-state tampering family. The rate
of their final construction will be the product of the rate of the reduction, which
is inverse of the locality (i.e., 1/ max(¥;, £,)) and the rate of the given 2-split-state
non-malleable code. Instantiated with the state-of-the-art 2-split-state construc-
tion by Li [29,30], which has rate 2(logloglog k/ log log k), the final rate of [7]’s
construction can be as high as 1/ polylog(k), which is 1/k°(") and satisfies this
lemma.

3.2 Error-Correcting Secret-Sharing Schemes

Definition 7. An encoding scheme (Enc, Dec) with block length n and message
length £ is said to be an (n, £, d,t)-error-correcting secret sharing scheme (ECSS
scheme) if it satisfies the following conditions.

1. Distance d. For any two codewords ¢,c’', HD(c,c") > d.
2. Independence t. For any message m € {0,1}" and a subset S C [n] such that
|S| < t, the distribution of Enc(m)g is identical to the uniform distribution

U |S] -
{01}
3. Error Correction d/2. There exists an error-correcting function ECorr such
that for any ¢ € {0,1}", ECorr(c) outputs a codeword c¢* such that HD(c, ¢*) <
d/2. If no such codeword exists, then it outputs L.

Lemma 3. For every ¢ € (0, 1), there exists an explicit (n, ¢, d,t)-ECSS scheme
with n = (14 o(1))¢ and d,t > n*=¢.

Standard Reed-Solomon codes over characteristic 2 fields achieve the prop-
erties required by Lemma 3. We defer such a construction to the full version.

3.3 Pseudorandom Generator for Finite State Machines

Definition 8 (Finite State Machine). A finite state machine (FSM) Q with
space w over the alphabet X satisfies the following properties.

1. There exists a state-transition function q: {0,1}" x X — {0,1}" that takes
as input the current state s € {0,1}" and an alphabet x € X, and outputs the
new state q(s,x).

2. There exists a subset S C {0,1}" such that if the final state s € S then the
FSM accepts the input and outputs 1. Otherwise, it outputs 0.

448 D. Gupta et al.

Definition 9. A function G: {0,1}’ — X" is a pseudorandom generator for
FSMs with space w and alphabet X with error ¢ if for any distinguisher FSM @
with space w and alphabet X we have

Pr{Q (Use) = 1] = Pr [Q (G(Uppy)) = 1] | <

Lemma 4 ([32]). There exists a constant k > 0 such that for all integers d > 0
and u < kd, there is an explicit pseudorandom generator G: X3 — X2 for
FSMs with alphabet X = {0, 1}d and space kd with error 275%,

4 Our Compiler

In this section, we will present our compiler. That is, for all constants £ < 1, given
a rate-1 ECSS scheme, a rate 1/ n°() non-malleable code against leaky input and
output local tampering (for 1 length messages) and a PRG secure against finite
state machines with appropriate parameters, we construct a rate-1 non-malleable
coding scheme against all §-local tampering family Local® for § = ¢ -lgn. Here
n is the length of the codeword. We begin by giving some notation, specifying
the building blocks used followed by our construction overview.

Notation: Throughout our construction and proof, we use the notation that after
the tampering is done, any variable of original codeword, for example, a, will
have a tilde on it, i.e., a. For example, ¢ is the original main codeword and ¢
would be the tampered version of the main codeword. Thus, when we talk about
bits from ¢, it refers to the input-bits of the tampering function and on the other
hand, bits from ¢ are output-bits of the tampering function.

Building blocks used. We use the following three building blocks. Let 6 = £ -lgn
for £ < 1 be the locality of the tampering function.

1. An (n,¢,d,t)-ECSS scheme with d,t > n'=¢ and n = (1 + o(1))¢ for an
appropriate constant ¢ to be fixed later. This is provided by Lemma 3.

2. For any constant A\, p and 7 = n®M a (X u, £, £0,)-NMC against leaky
input and output local tampering for messages in {0,1}"7 rate 1/77"(1)7
l, = 6 = O(logn), ¢; = 46/ = O(logn), simulation error negligible in 7.
This is provided by Lemma 2. We denote the corresponding simulator by
Simo.

3. A PRG G : ({0, l}log2n)3A1°g" — ({0, 1}1°g2")"A that is secure against all
FSMs with alphabet X = {0, 1}1°g2n and space klog®n with error 2-%108’n
for an appropriate constant A to be fixed later. Here, is a constant provided
by Lemma 4 for v = Alogn and d = log® n.

Explicit Rate-1 Non-malleable Codes for Local Tampering 449

Building blocks:
o (ECSS. Enc, ECSS. Dec) is an (n, ¢, d, t) ECSS scheme.
o (NMEnco, NMDeco) is a (A, p, 4;, £o)-non-malleable code against leaky input and
output local tampering.
G : ({0, 1}1032")3/‘ leem ({0, 1}log2n)nA is a PRG that fools all FSMs with
space log? n. We set A below.

NMEnc; (m): NMDec, (G, s&, aL, sE, aF):
1. Sample a random E C [n] of sizel 1. Let Recover , Recover”™ be as below.
n'7°1, where £, is a small constant. o CL = RecoverL(L aL)
2. For all ¢ € E, sample e; ~ Uyg,13- o cR — RecoverR(sR aR)
3. Sample a ~ ECSS.Enc(.m)E 9 If NMDeco(CL,cR) — L, output L
4. Define c as ¢; = {ai’ Z % 3. (Else) (E ~) NMDGCQ(CL CR)
e, 1€k 4. 1f ECSS. ECorr(¢) = L, output L
5. Let (¢”, c®) ~ NMEnco(FE, e) 5. (Else) a = ECSS. ECorr(¢)

6. Pick seeds s, s™ & {0, 1}~3A'1°gS " , , G, i¢E
7. Let Embed”, Embed” be as below. 6. Define ¢ as c; = g, ickE
L _ L(.L L ’

= EmbedR(s N CR) 7. if ¢ #7¢, output L
o a = Embed™(s", ") 8. (Else) i = ECSS. Dec(a)

8. Output (¢, s*, o, s%, o) 9. Output 7

Let lengths of ¢& and ¢ be nP' and n®2, respectively. First, pick® a constant ~ s.t.
max(51, 32) <y < 1. Next, let 7 > 0 be a constant s.t. A =~ 427 < 1.

Embed?, Recover”: Let p” : {0,1}1032" — {0,1} be any function with bias®
2n~ (A=A First, compute G(s*) = (yl,yg,...,ynA) s.t. each y; € {0, 1}log " and
Advt = (pP (1), p* (2), . . ., p¥(y,a)). Then, a® = Embed” (s¥, c") is defined as:

. [IfAdvl s the 5 1in Adv”
. 0 Otherwise.

To recover during decoding, compute G(/Z) = (91,92, -,Yna) and

— L — L

Adv = (p"(G1), ..., p"(¥na)). Then, if Adv does not contain > n?! many 1’s, quit

decoding by outputing L. Otherwise, L = Recover” (sL aL) is defined as:

~ — L — L
cli=al where Adv; is the ™ 1in Adv
Embed?, Recover™: Let p% : {071}1°g2" — {0,1} be any function with bias
2n~“=P2) Now Embed’, Recover’ are defined analogously to above using p*.

® This is possible because (F,e) has length n = n'"“'(logn + 1) and
(NMEnco, NMDeco) is a 1/9° rate coding scheme.
b Bias of a function is the probability that output is 1 for a uniformly sampled input.

Fig. 2. Our rate-1 non-malleable codes against d-local functions

450 D. Gupta et al.

Construction Quverview. Our construction starts with encoding the message m €
{0,1}" using ECSS scheme a ~ ECSS. Enc(m) such that a € {0,1}". Next, we
sample a random subset E C [n] of size n' =1 for a small constant e; specified
later. Next, for each index i € F, we sample a random bit e;. These will be
our planted errors. Then, all bits at E in codeword a are replaced by these
random bits e; to produce c. We refer to this an erroneous codeword c as the
main codeword. We note that a bit at index in F has probability 1/2 of being
an error.

Next, for the second part of our codeword, we record the error indices E
as well as planted errors e = (e, ez,...,eg|) using (poor-rate) non-malleable
codes against leaky input and output local tampering. We sample (c”,cf?)
NMEncy(E,e). Finally, we hide the codeword (c’,c'?) inside a larger code
(a®, a’?) at pseudorandom locations as follows: We will sample two seeds s, s
of appropriate length (See Fig.2). And invoke our pseudorandom generator G
on st (resp., sf) and use appropriate bias function p’ (resp., pf) to generate
advice string Adv” (resp., Adv®). At a high level, positions having a 1 in the
advice string will store an actual bit of the code, and positions with 0 will store a
redundant 0. Intuitively, this step ensures that when bits from o or af* are used
for tampering, most of these bits would be redundant 0’s. Our final codeword is
(c, s, ol s® aft).

Conversely, to decode, we use seeds s, sf* to determine the indices of ¢, ¢!t

~

in ol aft. Then, we decode (cL, cF) to get the error index set E and error bits
¢. Next, we compare ¢ with planted errors (E,¢) to check (1) whether all the
bits from ¢ with index in E and ¢ are equal; (2) we error correct ¢ to obtain
correct codeword @ and check whether all the errors in ¢ were recorded in E.
If both conditions are satisfied, we will consider the codeword valid and output
the decoding of @ as the decoded message.

Setting the parameters. Next, we will set the various constants used in our
construction (as well as proof of non-malleability).

o A\, u: We pick constants A, p arbitrarily.

o A,7y,7: Let [cF| = n®t and |cf| = nf2. Since n = |(E, e)| = n'~¢1(logn) and
rate of NMEncy is 1/17°("), we have that max(8;,32) < 1. We pick positive
constants v, 7 such that max(0;, 32) <y < 1 and y+27 < 1. Set A = v+ 27.
o £1,€2: The number of erroneous indices |E| = n'~°!. In our security hybrids,
we have another small constant e; and we require €7 + 2e5 < 1 — £, where
£ is defined by the tampering family. Hence, given £, we pick two positive
constants satisfying the condition.

o ¢: In our construction, we use an (n, ¢, d, t)-ECSS scheme with d,t > n'~¢.
In our security proof, we require ¢ < min(e, €2, 7,1 — A) and hence, ¢ can be
picked as a sufficiently small positive constant satisfying the constraint.

Theorem 1. Let {0, 1}2 be the message space and 6 = £-lgn, for some constant
& < 1. There exists an explicit and efficient rate-1 NMC' against Local’ with
simulation error that is megligible in n and uses the following primitives in a
black-box manner.

Explicit Rate-1 Non-malleable Codes for Local Tampering 451

1. For appropriate ¢ > 0, an (n,!,d,t)-ECSS scheme with d,t > n'~¢ and
n=(1+o0(1))¢.

2. For some constant A\, and n = n°M, q (A 1, 8, £)-NMC' against leaky
input and output local tampering for messages in {0,1}", rate 1/7)0(1), ly, =
O(logn), ¢; = O(logn), simulation error negligible in 7).

3. For some constant A >0, a PRG G : ({0, 1}1°g2")3A legn ({0, 1}1Og2n)”A
that is secure against FSM with alphabet size log® n and space 9(log2 n) with
error that is negligible in n.

The above theorem when instantiated with Lemmas 3, 2 and 4 gives following
theorem.

Theorem 2. For all constants & < 1, there exists an explicit rate-1 non-
malleable code against Local'®™ with negligible in n simulation error, where
n is the length of the codeword.

In particular, this implies an explicit rate-1 non-malleable code against NC°
tampering.

4.1 Proof of Theorem 1

Here, we will prove that the our construction has rate-1 and perfect correctness.
We provide proof of non-malleability in the next section.

Rate of our construction. Our codeword is (c,s”, o, s®, aft). Note that our
main codeword ¢ has length n = £ + o(¢). Next, |s| = [s®| = 34log®n. And,
—al| = |a®f| = n. Since, A = v+ 27 < 1 (see parameter setting above), the
overall codeword has length ¢+ o(?).

Correctness. We first argue that our scheme has statistical correctness, and then
show how the scheme in Fig. 2 can be tweaked slightly to give perfect correctness.
It is easy to see that the correctness of our scheme in Fig. 2 is broken only when
Adv® does not have enough number of 1’s to store all of ¢~ in o or similarly,
when Adv’ does not have enough number of 1’s to store all of ¢® in off. If this
happens, the decoding algorithm would output L. Note that whether this event
happens or not depends on the choice of seeds s and s® only. We prove the
following lemma that states that probability of this event happening is negligible.

Lemma 5. With probability at least 1 — 2-2006* 1) oyer the random choice of
sp and sp, o and af will contain all the bits from c* and c®.

Proof. We will prove the lemma for (s” o) and same argument holds for
(sf,aft). We first show that the lemma holds when G is a random function.
Next, we argue that if lemma does not hold for a PRG G, then there exists a
distinguisher FSM @ with space xlog®n that breaks PRG security with non-
negligible probability in n.

452 D. Gupta et al.

Firstly, when G(s*) outputs uniform random string, the expected number
of 1’s in Adv” is n? - 2n=(4=F1) = 2pf1 Next, using Chernoff bound, with
probability at least 1 — exp(—@(n)), there are at least n°* many 1’s in Adv”
and hence, o’ will contain all the bits from c¢F.

Now suppose that the lemma does not hold when we use PRG G that
fools FSMs with space rlog®n. Consider the following FSM @ that takes
(Y1,Y2,---,Yna) as input and a state in @ stores ctr, which denotes number
of indices i for which p”(y;) output 1. The final output of Q is 1 when ctr > nft.
Clearly, by our argument above, on a true uniform string, ¢ will output 1 with
probability at least 1 — exp(—©(n”1)). If this lemma is incorrect for a PRG G,
Q will output 1 with probability at most 1 — 2~ (108 1) and hence Q@ will break
the underlying PRG with success probability greater than 9—2(logn) Finally,
note that @Q only needs Alogn < log®n space to record A. This completes the
proof. O

Getting perfect correctness. We can tweak our scheme slightly to give perfect
correctness as follows: If s© or s is bad, i.e., (o, af*) will not contain all bits in
(cl, eft), then we ignore Adv?, Adv® and store the codeword in default location.
More precisely, we store ¢ in first |c¥| locations in o and similarly for c*. Tt is
easy to see that this gives perfect correctness. In the proof of non-malleability,
our simulator can simply give up when this case happens. (Since s, s are
uniform seeds independent of the message, it is easy to check for this case.) This
would increase the simulation error by the probability of this event occurring.
But, above Lemma 5 proves that this happens with negligible probability. Hence,

this only increases the simulation error by negl(n).

5 Proof of Non-malleability of Our Compiler

Non-malleability. Recall that to prove non-malleability of the resulting scheme
against d-local tampering family Localé, we need to show that for any f € Local‘s,

there exists a simulator Sim; (f) such that, for all message m € {0, l}z, we have
the following

(c,s%, a”, 5T a®) ~ NMEnc; (m)
(’57 SL7 aL’ 8R7 aR) = f(c7 SL’ aL’ SR’ aR)
i = NMDec: (3, s&, ok, sB, aR)

Outputm

— Tamper ! ~. copy (Simy (f), m)

Our simulator is formally defined in Fig.3. In the simulator and the hybrids,
ne = |(st,al, s aft)|. A detailed proof using a sequence of indistinguishable
hybrids is presented in the next section. We shall use the following lemma in our
hybrid argument. We defer the proof of this lemma to the full version.

Explicit Rate-1 Non-malleable Codes for Local Tampering 453

e I o

11.
12.
13.

14.
15.
16.
17.
18.
19.

20.

21.
22.
23.
24.
25.

Let P = {ili € [n],|Outy(i) N [n]] = n°2}

Let @ = {ili € [n], Outy(i)\[n] # 0}

Let X = PUQ. Sample ax ~ Uy 1yix

Sample a random E; C X s.t. |E1| ~ (n, |X]|,n'~!)-hypergeometric distribution.
For all i € E1, sample e; ~ Uy 1.

For all ¢ € Ey, replace a; with e;, we get cx.

Sample seeds s, s™ uniformly from {0, 1}3/1logs "

Given s* (resp., s®), indices of ¢* (resp., &) in a® (resp., a®) are determined.
Let Bad”={Indices of c¢* with more than n'~7~7 output neighbors in ¢},
Leak”={Indices of c* with output neighbors in either sL or ;E},

Bad®={Indices in ¢ with more than n'~7~" output neighbors in ¢}, and
Leak™={Indices in ¢ with output neighbors in either sL or ;E}

Let £* = Bad” ULeak” and £ = Bad" U Leak".

Let fo be the following mapping from leakage at (£%, £%) to tampering function
g for NMEnco: First, use (s, s%), leakage at (Leak”, Leak?) and cg to compute
s and s”. These determine indices of c* and ¢ in o’ and a”. Then, define g to
be the tampering function from indices of (c¢%, c®) to indices of (ct, cft).

If (|£%] = A1) or (L] = An®2) or (fo does not satisfy Definition 6), output L
(Else) (ans, x,y) = Simo (LY, LE, fo).

Let ST, ST denote indices of s”, s. Define function h as a restriction of fi:

hi= (f1)(x,5L,87 2L £R)|(cx,sE 5B wy) (See Definition 2)

V := {i]i € [n],Inp, (¢) # 0}
W= {ili € [n],Inp;, (i)\[n] # 0}
Z :={i € [n]|3z € {0, 1}n+ne7Z(XT5LysR1[/L’LR> = (ex,s”, 5% 2, y), hi(z) # 2}
Sample a ~ ECSS.Enc(0%)|(ECSS. Enc(0°))x = ax
Sample a random E2 C [n]\X of size nl=e1 — |E1|, let E = E1 U E;
For all i € E2, sample e; ~ Ugg 1}
Qi,) ¢ E
e, 1€EFR
(E7 g) = COPY(SimO(LL7 £R7 fo)a (E7 6))
¢, ™) ~ NMEnco(E, e) s.t. NMDeco(g(c”, ¢®)) = (E, €) and chy =z, =y
a® = Embed® (s¥, cF), aft = Embed®(s%, cF)
If ans =

o L: Output L

o same*: If |Z\(W U X)| > n'~°2, output L

(Else) If ¢z = ¢z, output same*; (Else) Output L.
o (E*,e*): If [V\W| > n'~°2, output L
(Else) If ECSS. ECorr(¢)L, output L;
(Else) @ = ECSS. ECorr(c)

a, i¢FE
&, ickE
If ¢ # ¢, output L; (Else) Output m = ECSS. Dec(a)

Define c as ¢; = {

—

Define ¢’ as ¢ =

Fig. 3. Simulator Sim; (f)

454 D. Gupta et al.

Lemma 6. For any 6-local tampering function, with probability at least 1 —
27208’ ") gyer the random choice of s and sg, the following conditions hold.
(1) At most un®* bits from c& will have input locality higher than 46 /1 onto aft;
(2) Number of bits in c* and c® that have greater than n*~7Y~7T input locality
onto ¢ are bounded by 460”7 and 4602~ respectively.

And as a consequence, we have

(3) Number of bits in ¢ that are influenced by low input locality bits from c”
and c® are bounded by n® - n'=7"" = o(n'~7) and n”* - n'=7"" = o(n'™7),
respectively.

5.1 Detailed Hybrid Argument

In this section, we are going to use a series of statistically close hybrids to
prove that Tamper and copy (Siml(f)7m) are indistinguishable. Through-
out this subsection, we use the following color/highlight notation. In a current
hybrid, the text in red denotes the changes from the previous hybrid. The text
in shaded part represents the steps that will be replaced by red part of the

next hybrid. We call ¢ (resp., ¢) the main codeword and (s, ol s, af?) (resp.,

(st al, sk, aft)) the error codeword.

Hy(f,m) : Our first hybrid is the real world Tamper*, we simply open up the
definition of NMEnc; and NMDec; and write tampering function f as (f1, f2).
Both functions are given as input the entire codeword and f; is doing the tam-
pering on the main codeword, i.e., glt[/)gtsj:, while f5 is doing the tampering on
the error codeword, i.e., outputs (s, al, s% aft). This way of writing f would
be useful in later hybrids.

Hy(f,m) : In the next hybrid Hs, we change the way we sample ECSS codeword
of m. We define two subsets of indices P and Q. Intuitively, P is the popular
input bits of the main codeword, i.e., bits in ¢ that influence more than nc2
bits of ¢. And @ is the set of bits in main codeword ¢ that influence the error

codeword (sT, ol sf aft). Now, let X = P U Q. We first sample a uniform
string ax of length |X| and then sample a ~ ECSS. Enc(m) condition on that
ECSS.Enc(m)x = ax. We argue that this does not change the distribution of
a and hence it is identical to the previous hybrid.

To argue this we use the independence property of our ECSS scheme. In
particular, since t > n'~¢, the distribution of ax is indeed uniform as long as
|X| = o(n'=¢). Now, |P| can be bound as follows: The total number of input
neighbors of ¢ is dn and at most dn'~%2 many bits in ¢ can influence more than

n° bits from ¢. Hence |P| = o(n'~¢) as long as we pick . Next, the length
of the error codeword is [s”| + |a®| +|s®| + |a®| = O(n”') and hence, by output

locality &, the size of @ is at most § - O(n’) = o(n!~¢) as long as .

Explicit Rate-1 Non-malleable Codes for Local Tampering 455

Hl(f, m):

1. Sample a random E C [n] of size n'

2. For all i € E, sample e; ~ Uyo,1}
Sample a ~ ECSS. Enc(m)

Q;, 7 ¢ E

ei, 1€kl

Let (¢, cf) ~ NMEncO(E,e)

Sample seeds s”, ¥ uniformly from {0,1}

EmbedL(L M) and off = Embed®(s%, c®)

(’*f[(,s al, st af)

(,L,aL,sAﬁ,oF) jz(c st aL,sR,aR)

10. cL = Recover” (SL aL) and ¢ = Recover (;E, afz\ﬁ')

11. If NMDeco(ck, cR) = L, output L; (Else) (E,&) = NMDeco(cL, cR)

12. If ECSS. ECorr(c) = L, output L; (Else) a = ECSS. ECorr(c)

—e1

4. Define c as ¢; =

3A log3 n

5990.“'.@5'-“

13. Define ¢’ as ¢} = {Lii’ Z ¢ g
e, 1€k
14. If ¢ # ¢, output L; (Else) m = ECSS. Dec(a)
15. Output m
Hy(f, m):
1. Let P = {i|i € [n],|Outy (i) N [n]| = n"2}
2. Let Q = {i]i € [n],Outys(:)\[n] # 0}
3. Let X = PUQ. Sample ax ~ U{o,l}\x\
4. Sample a ~ ECSS. Enc(m)|(ECSS. Enc(m))x = ax
5. Sample a random E C [n] of size n'~¢!
6. For all © € E, sample e; ~ Uyo,1}

i 1¢F
7. Define c as ¢; = {a“ Z ¢
ei, 1€kl
8. Let (¢, c™) ~ NMEnco(E, e)

9. Sample seeds s”, s™ uniformly from {0, 1}3/‘ log® n

10. = Embed”(s¥, c*) and a® = Embed” (s, c)
11. ¢= fl(c7sL,aL7sR,aR)

12 (s%,aF, 5%, af) = fo(c,s*, a*, 5", ")

13. ok = RecoverL(;Z, o/;) and ¢k = RecoverR(;VR, c/x\é)

14. If NMDeco(cL, c) = L, output L; (Else) (E,&) = NMDeco(cL, cE)
15. If ECSS. ECorr(¢) = L, output L; (Else) @ = ECSS. ECorr(¢)

a, i¢FE

¢, i€k

17. If ¢ # ¢, output L; (Else) m = ECSS. Dec(a)

18. Output m

16. Define ¢’ as ¢} =

456 D. Gupta et al.

Hs(f,m):
1. Let P = {i|i € [n], |Out; (i) N [n]| > n°2}
2. Let @Q = {i]i € [n], Outys(¢)\[n] # 0}
3. Let X =PUQ. Sampleawa()l\x\
4. Sample a ~ ECSS. Enc(m)|(ECSS Enc())x =ax
5. Sample a random E C [n] of size n' ™!
6. For all ¢ € E, sample e; ~ Uyo,1}

ai, 1¢FE
7. Define c as ¢; =) ¢
ei, 1€F
3
8. Sample seeds s”, s™ uniformly from {0, 1}3/‘ log® n
9. Given s” (resp., sR)7 indices of ¢ (resp., CR) in o® (resp., a’') are determined.

Let Bad”={Indices of ¢* with more than n'~7~" output neighbors in c},

)

Leak”={Indices of ¢" with output neighbors in either sL or SR}
Badf*={Indices in ¢® with more than n' =Y~ output nelghbors in ¢}, and
Leak®={Indices in ¢ with output neighbors in either sL or GR}

10. Let £ = Bad” ULeak™ and £ = Bad® U Leak™.

11. Let fo be the following mapping from leakage at (£”, £™) to tampering function
g for NMEnco: First, use (s”, s™), leakage at (Leak”, Leak®™) and cq to compute
sL and s®. These determine indices of ¢ and c® in oL and oF. Then, define g
to be the tampering function from indices of (c¢%, ™) to indices of (cE, cR).

12. If (|£5] = A1) or (J£7] = MnP2) or (fo does not satisfy Definition 6), output L

13. (Else) (E,E.,;L',y) Tamper(;; 23 o

14. If (E,&) = L, output L

15. (CL, c) ~ NMEncy(E, e) s.t. NMDeco (g(c”, ¢™)) = (E, €) and cir =z, cfr=y
16. a* = Embed”(s”, "), a® = Embed® (s, ¢*)

17. ¢ = fi(e, sL,aL,sR,aR)

18. If ECSS. ECorr(c) = L, output L; (Else) a = ECSS. ECorr(¢)

i, i¢E
19. Define ¢’ as ¢} = {Li Z ¢ ~

e, 1€l
20. If ¢’ # ¢, output L; (Else) m = ECSS. Dec(a)
21. Output m

Hs(f,m) : In the next hybrid Hs, we rewrite the way how (EZE) is generated
from (E,e) given seeds s” and s”. Here, we would generate (E,¢) as output
of a tampering experiment on (F,e) with an appropriate tampering function
from the leaky input and output local tampering family. Note that (E, e) is first
encoded to (c”,cf?) and then is hidden aimong (o, a®?) using seeds s”, s%. We

note that if we are given the seed s” and s¥, the places where cL are cf are

stored among a” and o is known. Similarly, if 1f we know sL and SR the places
where ¢ and ¢ are stored among oL and oF are also known. Therefore, we

define Leak” and Leak™ as the input neighbors of both s and sE from ¢ and ¢
respectively. Now let fy be the mapping that given the leakage Leak® and LeakR,

Explicit Rate-1 Non-malleable Codes for Local Tampering 457

first computes® sL and sR and then outputs the tampering function g. Now that
we know indices of (c¥,c?) and (cL,cR)7 functlon g mapb (,cf) to (cL CR)
We note that leaking bits at Bad” and Bad from ¢l and ¢ would be used in
later hybrids. So the total leakage from ¢ and ¢® are £E = Leak” UBad” and
LB = Leak™ UBad®. Now we need to argue that the tampering fy and leakage
L L7 forms a valid tampering experiment onto our base NMC against leaky
input and output local tampering. It is easy to see that if it is valid, then the
two hybrids are identical. When they are not valid we output L in this hybrid
and we need to argue that probability of output L due this is negligible.

Hy(f,m):

Let P = {i]i € [n], |Out(¢) N [n]| > n®2}

Let Q = {ili € [n], Outy()\[n] # 0}

Let X = PUQ. Sample ax ~ U{Oyl}\X\

Sample a ~ ECSS. Enc(m)|(ECSS. Enc(m))x = ax

Sample a random E C [n] of size n'~*1

A T ol

For all ¢ € E, sample e; ~ Uyo 1y

7. Deﬁnecasciz{ai’ Z¢E
ei, 1€FE

3
8. Sample seeds s”, s™ uniformly from {0,1}34%&" "

9. Given sL, define: Bad”, Leak” as in H3(f, m)
Given s, define: Bad”, Leak® as in Hs(f, m)

10. Let £F = BadL U LeakL and £ = Bad® ULeak™.

11. Define mapping fo and its output g as in Hs(f, m)

12. Tf (|£%| = A1) or (|£%] > An2) or (fo does not satisfy Definition 6), output L
13. (Else) (ans, x,y) = Simo (L, L, fo)
14. If ans = L, output L; (Else) (E,) = copy(ans, (E, e))
15. (cL,cR) ~ NMEnco(F, €) s.t. NMDeco (g (cL,cR)) = (E,¢) and chL=m,clr=1y
16. o = Embed® (s, %), o = Embed®(s?, c®)
17. ¢= f1(c,sL,aL7sR,ozR)
18. If ECSS. ECorr(c) = L, output L; (Else) @ = ECSS. ECorr(¢)

@i, i¢E
19. Define ¢’ as ¢} = {(1 Z ¢ ~
e, 1€k
20. If ¢ #¢, output L; (Else) m = ECSS. Dec(a)

21. Output m

Firstly, fo might not satisfy Definition 6 if one of the following happens: (i)
Not all the bits from ¢, ¢® are contained in o’ and o, respectively and thus,
fo cannot produce function g; (ii) g has output locality higher than ¢, = d;
(iii) under g, more than yn® many bits from ¢’ have input locality higher than

8 Note that at this point, the original seed s

from main codeword c is already fixed.

and s® and their input neighbors cq

9 If L or i are not contained in ak or aR fo will simply set g to be a L function.

458 D. Gupta et al.

¢; = 46/p to cfi. Note that our tampering function f is d-local and therefore,
the output function g will also be d-local, thus (ii) will never happen. And the
probability of (i) or (iii) happening is negligible as guaranteed by Lemma 5 and
(1) from Lemma 6, respectively.

We bound the size of the leakage |£X| = |Leak” UBad” | by o(n”'). First,
we observe that our seeds s and s™ are of length O(log® n) and hence |Leak”|
is at most O(5log®n) = o(n'). And the size of Bad” is o(n”) is guaranteed by
(2) of Lemma 6. The argument for £ is analogous to £X. This proves that this
hybrid and the previous one are 2~ 2(log® n)_close.

Note that we still need the error codeword (s”,al, s a®) to do the tam-
pering f1 onto ¢. Hence, we sample ¢l and ¢ under the condition that the
tampering experiment outputs (F,€,x,y) and construct the error codeword as
defined by our compiler.

H5 (f, m):
1. Let P = {i|i € [n],|Out;(3) N [n]| > n"2}
2. Let @ = {i]i € [n], Outys(i)\[n] # 0}
3. Let X = PUQ. Sample ax ~ U{o,1}\X\
4. Sample a random E; C X s.t. |E1| ~ (n,|X|,n'~%!)-hypergeometric distribution
5. For all ¢ € E1, sample e; ~ Uyo,1y
6. For all i € F1, replace a; with e;, we get cx
7. Sample seeds s”, s™ uniformly from {0,1}** log? n.
8. Given s”, define: Bad”, Leak™ as in H3(f, m)

Given s%®, define: Bad®, Leak™ as in Hs(f,m)
9. Let £" = Bad" ULeak" and £" = Bad" ULeak".
10. Define mapping fo and its output g as in Hs(f, m)
11. If (|25 = M) or (|£F] = An2) or (fo does not satisfy Definition 6), output L
12. (Else) (ans,z,y) = Simo (LY, LR, fo).
13. If ans = 1, output L
14. Sample a ~ ECSS. Enc(m)|(ECSS. Enc(m))x = ax
15. Sample a random Fs C [n]\X of size n' ™' — |E4|, Let E = E1 U E»
16. For all ¢ € E2, sample e; ~ Uyp 1}
A, 7 ¢ E
ei, 1€kl
18. (E,¢) = copy(ans, (E, e))
19. (c*, ™) ~ NMEnco(E, €) s.t. NMDeco(g(c*, c)) = (E, &) and chiL=m,clr=1y
10. o = Embed® (s, %), o = Embed®(s?, c®)
21. €= fi(c, s, ar, 5% af)
22. If ECSS. ECorr(¢) = L, output L; (Else) @ = ECSS. ECorr(¢)
a, i¢FE
&, i€k
24. If ¢ #¢, output L; (Else) m = ECSS. Dec(a)
25. Output m

17. Define c as ¢; = {

23. Define ¢’ as ¢} = {

Explicit Rate-1 Non-malleable Codes for Local Tampering 459

Hy(f,m) : In the next hybrid Hy, we simply replace the tampering experiment
onto our base non-malleable codes with its corresponding simulator Simg and
incur a negligible error by Lemma 2.

Hs(f, m) : In this hybrid, we break the error indices E into two parts: B3 = E N
X and E, = E\E;. Next, we note that cg is needed to define the tampering on
the error codeword. Hence, we sample F; and the error bits from FE; early before
defining tampering on error codeword. However, rest of errors, i.e., F is not used
before we invoke simulator Simg. Based on these observations, we re-arrange
parts of the hybrids and this hybrid is identical to the previous one. Note that
the size of E; and F5 are distributed according to (n, |X|,n'=%1)-hypergemetric
distribution and (n,n — |X|,n'~%1)-hyper geometric distribution, respectively.
By Corollary 1, it is easy to see that with probability 1 — exp(—©O(n!=1)), the
size of Es is at least nl =1 /2.

Hg(f,m) : In this hybrid, we only introduce some new notation to be used in
later hybrids and hence, this hybrid is identical to the previous one.

We focus on the tampering of the main codeword using function f;. Note
that so far in the previous hybrid, we have already fixed certain bits in the input
main codeword ¢ (that is, cx), picked PRG seeds s, s and also leaked certain
parts of ¢, c®, ie., LT, £LR.10 Using this information, we define a restriction h
of function f; that fixes all the above bits in the input.

We next define three subsets of [n] corresponding to h, namely, V, W and Z
as follows. V' is the subset of bits i such that ¢; is not fixed given the fixing of
bits done so far. And W is the subset of bits that are influenced by some bits in
the error codeword (that have not been leaked and fixed so far). And Z is the
subset of bits 4, such that the output of h; is not always the i-th input bit (In
the definition of Z, recall that n. = |(s¥, %, s%, af?)|).

Intuitively, Z is the set of bits that are not-copied-bits under the tampering
function h, V is the set of non-constant-bits and W is the set of bits that are
influenced by the error codeword. As we explained in technical overview Sect. 1.3,
if ans = same* and the size of Z\W is large or if ans = (E*,e*) and the size
of VAW is large, then the tampered codeword will be invalid with probability
1 — negl(n). This intuition is formally proved in the next hybrid.

H;(f,m) : In the next hybrid H7, we add a sanity check right after we define
V,W,Z. (a) When ans = L, we will output L immediately. This is the same as
the previous hybrid. (b) When ans = same™*, we check the size of Z\(WUX). If it
is larger than n'~*2, we directly output L without any further computation. On
the other hand, if it is less than n'~%2, we only compare ¢ and ¢ at locations Z.
If they are the same, we output same*, otherwise, we output L. (c) When ans =
(E*,e*), we check the size of V\W. If [V\W| > n'~*2, we directly output L
without further computation. Below, we prove that the previous hybrid Hg(f, m)
and copy (H7(f, m), m) are statistically close. We break the proof into two parts:
ans = same* case and ans = (E*, e*) case.

L

10 Note that those places in o, af that are not used to store ¢ and ¢ are also fixed

(to be 0 by the compiler).

460 D. Gupta et al.

Ha(f, m):
1. Let P = {i|i € [n], |Out; (i) N [n]| > n°2}
2. Let @Q = {i]i € [n], Outys(¢)\[n] # 0}
3. Let X = PUQ. Sample ax ~ U{0,1}\X\
4. Sample a random E; C X s.t. |[E1] ~ (n,|X|,n'~°!)-hypergeometric distribution.
5. For all ¢ € E1, sample e; ~ Ujo,1y
6. For all i € Ey, replace a; with e;, we get cx
7. Sample seeds s, s™ uniformly from {0,1}** log?n
8. Given s, define: Bad”, Leak” as in Hs(f,m)

Given s, define: Bad®, Leak™ as in Hs(f,m)

9. Let £" = Bad" ULeak" and £" = Bad" ULeak".
10. Define mapping fo and its output g as in Hs(f, m)
11. Tf (|£5] = MnPr) or (|£%] = AnP?) or (fo does not satisfy Definition 6), output |
12. (Else) (ans,z,y) = Simo (LY, LE, fo).
13. Let S",S” denote indices of s",s”. Define function h as a restriction of fi

(Definition 2): h := ('fl)(x7sL15R‘LL)ER)KCX’SL"SRTJ’,_’:U)

14. V := {i € [n]|Inp, (i) # 0}.
15. W := {i € [n]|Inp, (2)\[n] # 0}.
16. Z :={i € [n]|3z € {0, l}n_H“:,Z(stL_ysRTﬁL‘LRW = (ex, s", s™ z,y), hi(z) # 2}
17. If ans = L, output L
18. Sample a ~ ECSS. Enc(m)|(ECSS. Enc(m))x = cx
19. Sample a random F» C [n]\X of size n' ™' — |E1|, let E = E1 U Es
20. For all ¢ € E>, sample e; ~ U{O,l}
Qi , 7 ¢ E
ei, 1€kl
22. (E7 €)= COPY(SimO(‘CLa LR? fo), (E,e))
23. (c¥,c™) ~ NMEnco(E, €) s.t. NMDeco(g(c*, ¢)) = (E, €) and cho=xz,clr=y
24. o = Embed®(s¥, cF), off = Embed®(s%, cf)
25. €= fi(c, s, o, s% af)
26. If ECSS. ECorr(c) = L, output L; (Else) a = ECSS. ECorr(c)

21. Define c as ¢; = {

G, i¢E
27. Define ¢’ as ¢} = {Ci Z ¢ =
e, 1€kl
28. If ¢’ # ¢, output L; (Else) m = ECSS. Dec(a)

29. Output m

Case ans = same*: Let us first look at that the case when |Z\(W U X)| <
n'=¢2. Note that by the definition of Z, all the bits of ¢ in [n]\Z are identical
to those in c. Recall ¢ is obtained by planting |E| = n!~¢! errors into a valid
ECSS codeword a. We have HD(¢,a) < HD(c,¢) + HD(c,a) = |Z| + |E| <
(Z\(W U X)| + |W|+ |X]|) + |E|. Using |W| = o(n'~7) from (3) of Lemma 6,
|X| = o(n'~¢) from hybrid 2, and |E| = n'~°!, we get HD(¢,a) < n'~%2 +
o(n'=7) + o(n'=C) + n'=%1 = o(n'~%) by setting ‘C <&y ‘, ‘ (<T ‘ and ‘ (<er ‘
Hence, using the fact that the distance of the ECSS scheme, d > n'~¢, we get

Explicit Rate-1 Non-malleable Codes for Local Tampering 461

ECSS. ECorr(¢) = a. Consequently, if we error-correct ¢ and plant in the original
errors (E, e), we get ¢. Hence, experiment would output L iff ¢ # ¢. This happens
only when ¢z # cz.

Now consider the case when |Z\(W U X)| > n'=%2. We begin by computing
a lower bound on number of error indices in Z\(W U X), i.e., size of set A =
(Z\(WUX))N E,. First, note that E; is a random subset of [n]\X of size at least
n'=%1 /2 with probability 1 — exp(—£2(n'=¢1)) by Corollary 1. Next, we observe
that sets Z, W, X are defined independent of F5 and hence, by Corollary 1, |A| >
1 -n!7F17¢2 with probability at least 1 — exp(—f£2(n!=c1722)),

Next, we pick a subset A C A such that bits in A’ have disjoint input
neighbors. That is, Vi,j € A’,Inp,(:) N Inp,(j) = 0. We use following two
properties to ensure that we can pick A’ of sufficiently large size. First, for every
bit i € A, Inp, (i) C [n] (because AN W = (). Second, all the bits in [n] with
more than n®2 output neighbors in [n] belong to subset P and have already
been fixed. This implies that for any bit ¢ € A, all bits in Inp,,(¢) have at most
n®2 output neighbours in [n]. Therefore, it is guaranteed that we can pick a set

A C Ast. |A| 2 5‘71145‘2 = %. (This can be done greedily by picking an
arbitrary index ¢ € A and discarding all the bits in A that are influenced by
Inp, (7). Since h has at output locality ¢ and each bit in Inp,(7) influences at
most n°2-many bits in A, we discard at most dn°2 indices from A for picking one

index in A’. Now, we recurse on the remaining indices in A.)

For the rest of the proof, we consider such a set A’ of size exactly %

We note that for all indices i € A’ following conditions are satisfied (1) ¢; is a
planted error e; (A" C E»); (2) h; does not always output e; (A" C Z); (3) the
input neighbors of 4 are all in [n] (A’NW = (). For the tampered main codeword
to be consistent with recorded errors, we need that for all 7 € A’, The i-th bit
after tampering, i.e. ¢; needs to be equal to e¢;. We show that this happens with
probability at most (1—1/2%)"" ™' *8 which is negligible for § = ¢ - lgn when
€1+ 20 <1 -¢ ‘ Hence, it suffices to output L always.

We first argue that all of A" input neighbors are independent uniform bits. We
use the fact that A’ is of size "1_5416_252 and its (at most 4 - %—many) input
neighbors are all from our ECSS codeword with planted errors. Since we have
only fixed X of size o(t) from ¢ so far and our ECSS has independence ¢ > n'~¢
and n'=f172¢2 = o(t), all the input neighbors of A’ are indeed independent
uniform bits. Given the uniformly random input, we examine the bits from A’

one by one. For any i € A’ there are following two possibilities

o If ¢; (i.e., e;) is the input neighbor of ¢;, then since h; does not always output
¢i, there exists a setting of the other (at most) 6 — 1 neighbors, such that ¢;
is either fixed 0, fixed 1, or flipped e;. Because of uniformity of value at input
neighbors, this setting happens with probability at least 26%1 and when it
happens, with probability at least 1/2, ¢; # e;. Hence, ¢; = e; with probability

at most 1 — 2% We remove i from A’ and recurse on remaining bits.

oIf ¢; (i.e., €;) is not the input neighbor of ¢;, then since all of the input neighbors
are independent of uniform bit e;, the probability ¢; = e; is at most 1/2.

462 D. Gupta et al.

However, we need to address a small subtlety here. Since e; is not the input
neighbor of itself, it can be in the input neighbor of another bit in A’. To
keep failure probabilities independent, if such a bit j exists (s.t. e; is an input
neighbor of ¢;), we only include ¢ in our witness set of failed indices but we
remove both indices ¢ and j before recursing to remaining bits in A’.

H7:
1. Let P = {i|i € [n],|Out;(¢) N [n]| = n°2}
2. Let @Q = {i]i € [n],Outys(i)\[n] # 0}
3. Let X = PUQ. Sample ax ~ U{o,l}\X\
4. Sample a random E; C X s.t. |Ei| ~ (n,|X|,n'~¢1)-hypergeometric distribution
5. For all ¢ € E1, sample e; ~ Uyo,1y
6. For all i € E1, replace a; with e;, we get cx
7. Sample seeds s”, s™ uniformly from {0, I}SAIOgS "
8. Given s, define: Bad”, Leak™ as in H3(f, m)

Given s, define: Bad®, Leak™ as in Hs(f,m)
9. Let £" = Bad" ULeak" and £" = Bad” ULeak".

10. Define mapping fo and its output g as in Hs(f,m)
11. If (|25 = MP) or (|£F] = An2) or (fo does not satisfy Definition 6), output L
12. (Else) (ans,z,y) = Simo (LY, LR, fo).
13. Let ST, ST denote indices of s*, s®. Then, h := (f1)(x,8L SR, £L £R)|(cx sk s z.y)
14. V := {ili € [n],Inp, (i) # 0}
15. W := {i|i € [n],Inp, (i)\[n] # 0}
16. Z :={i € [n]|3z € {0, 1}n+nc,Z(X,SL’SR7£L,£R) = (ex, 8%, s, 2,y),hi(z) # 2}
17. If ans = 1, output L

If ans = same* and |Z\(W U X)| = n'~°2, output L

If ans = (E*,¢*) and [V\W]| > n'~°2, output L
18. Sample a ~ ECSS.Enc(m) |(ECSS. Enc(m))x = cx
19. Sample a random E2 C [n]\X of size n' ™! — |E1|, let E = E1 U Es
20. For all ¢ € Ea2, sample e; ~ Uyo,13y
Q;, 7 ¢ E
e, t€k
22. (E,€) = copy(Simo(L", L7, fo), (E,)
23. (c¥,c™) ~ NMEnco(E, €) s.t. NMDeco(g(c*, c?)) = (E, €) and ek =z, =y
24. o = Embed® (s, c*), off = Embed?(s%, cf)
25. €= fi(c, s, at, s%, af)
26. If ans =

o same*: If ¢z = ¢z, output same*
(Else) Output L.
o (E*,e"): If ECSS. ECorr(c) = L, output L; (Else) a = ECSS. ECorr(c)

a, i¢FE
&, i€E
If ¢ # ¢, output L; (Else) m = ECSS. Dec(a)
Output m

21. Define c as ¢; =

Define ¢’ as ¢ =

Explicit Rate-1 Non-malleable Codes for Local Tampering 463

Now, we have shown that either a bit has probability at most 1 — 2% to be
consistent or two bits have probability at most 1/2 to be consistent at the same
time. And all of those events are independent, hence, the probability that all the
bits are consistent with errors (E,e) is at most (1 — 2—15)|A/|/2.

Case ans = (E*, e*): For the case when ans = (E*, e*), this hybrid is only dif-
ferent from previous one when |[V\W/| > n'~2. We show that if this happens,
the output of previous hybrid is not L with only negligible probability.

We first pick a B C (V\W) such that Vi, j € B, Inp, (¢)NInp,(5) = 0. Similar
to above, all the input neighbors of V\W are contained in [n] and have output
locality at most n°2 in [n]. Hence, it is guaranteed that we could pick B such that

|B| = ”1;252. (Similar to same* case, this can be done greedily by picking an
arbitrary index from V\W into B and removing all the bits its input neighbors
have influence on. We only discard at most dn®2 bits for picking one bit.)

Note that B C V implies that for all ¢ € B, Inp, (i) # 0 and since all the
bits in B has disjoint input neighbors, we have |Inp,,(B)| > |B|. Now, consider
a subset B’ C B such that each bit in B’ has an input neighbour in errors Ej.
That is,

B = {z‘z € B, Tnp, (i) N By # (D}

Again Ey is a random subset of size at least n'~°1/2 with probability 1 —
exp(—§2(n'=¢1)) and is independent of B. Thus, by Corollary 1, with probability
at least 1 — exp(—£2(n'~5174¢2)), |Inp, (B) N B3| > £n' 17252, Hence, |B'| >

% (Because of J-locality).
For the rest of proof, we consider such a set B’ of size exactly %. Next,

we argue that input neighbors of B’ (at most ¢ -n!~%172¢2 /(462) in number) are
independently uniformly distributed. This is because they are all from our ECSS
codeword with planted errors. Since we have only fixed X of size o(t) from ¢ so
far and our ECSS has independence t = n'~¢ with , all the input
neighbors of B’ are indeed independent uniform bits. So, bits in B’ satisfy the
following conditions: its input neighbors (1) are disjoint; (2) contain at least one
bit from Es; (3) are contained in [n]; (4) are independently uniform bits.

Next, we define M = Outy,(Inp, (B’)). This is the set of all indices that is
being influenced by the input neighbor of B’. Obviously B’ C M. And the size of
M is bounded by n®2 - §-nl=172¢2 /(452) = nl =172 /(4§). We first observe that
fix any cf‘n]\ a0 there is at most one ¢}, that is consistent with cfn]\ u and the

W .o
M =

their distance is bounded by n'=17¢2/(4§) which is smaller than the distance

d > n'"¢ as long as . Therefore, those two codewords will be error-

corrected to the same correct codeword and after being reconstructed from errors
(E*, e*), they will be the same. Therefore, for every fixing crn]\ 7> there is at most

fixed errors E*, e*. This is because if there exist two ¢, ¢(®) s.t. ¢

464 D. Gupta et al.

one codeword ¢* (equivalently, one c},), which is consistent with (E*,e*). Since
B’ C M, there is at most one choice for ¢}, as well.

Finally, we prove that the probability that c}, takes the fixed value needed
to be consistent is negligible. Now,for any i € B’, we know some bit Ej is the
input neighbors of i. Therefore, at least one out of at most 2°~! possible settings
of all the other input neighbors Inp,, (i)\[j], flipping the value of e; will flip the
output of h;. Note that by definition of M, E; cannot be the input neighbors of
any bits in [n]\M, hence e; is independent of cf‘n]\ - And thus, whenever this
setting happens, with probability 1/2, the output at ¢ will not be consistent with
(E*, e*). Therefore, since the input neighbors of ¢ are uniformly distributed, the
probability that ¢; is not consistent with fixed errors (E*, e*) is at least 2—15 Since
all the input neighbors of B’ are all independent uniform bits, the probability
that all the bits from B’ are consistent is at most (1 —)" 2/(49%) which

is negligible when 0 = ¢ - lgn with [&; + 225 < 1—¢]

Hs(f,m) : Our final hybrid is identical to our simulator Fig.3. In this final
hybrid, we simply switch message m with 0.

Note that the only bits from ECSS.Enc(m) that affect the output of the
hybrid is (1) the neighbors of Z and also ¢z when ans = same* and |Z\(W U
X)| < n'7%2; (2) the neighbors of V, when ans ¢ {same* L} and |[V\W| <
n'=#2.11 For (1), as shown in hybrid 7, the size of Z is o(t) when |Z\(W U X)| <
n'~¢2 and hence the neighbor of |Z| is of size at most ¢ - |Z| = o(t). For (2),
[V| < |[VA\W| + |W|. Both are o(t) as require in hybrid 7 and therefore so is |V|
and the size of the neighbors of V. Hence the number of bits in ¢ that influence
the hybrid output is at most o(t). Any o(t) bits from ECSS. Enc(m) condition
on cx is uniformly distributed. Hence, we can switch the encoding of m with
encoding of 0°.

This completes our hybrid argument.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393—417. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0_15

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: STOC (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC (2014)

4. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538-557. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_26

1 Note that, by the definition of V, all the output bits from [n]\V are fixed to some
values with no input neighbors. Hence, it suffices to have the neighbor of V' to finish
the hybrid completely.

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-662-47989-6_26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Explicit Rate-1 Non-malleable Codes for Local Tampering 465

Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
375-397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6-16

Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.-Y.: Non-malleable codes
for small-depth circuits. In: FOCS (2018)

Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881-908. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5_31

Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC®, decision trees, and streaming space-bounded tamper-
ing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
618-650. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_20
Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakley, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242-268. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-39568-7_20

Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: STOC (2016)

Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: STOC (2017)

Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: FOCS (2014)

Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ITCS (2014)
Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440-464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_19
Chvétal, V.: The tail of the hypergeometric distribution. Discret. Math. 25(3),
285-287 (1979)

Cramer, R., Dodis, Y., Fehr, S., Padrd, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471-488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3_27

Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239-257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1.14

Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS (2010)
Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465-488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_20

Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111-128. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5_7

Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: STOC (1992)

Goyal, V., Kumar, A.: Non-malleable secret sharing. In: STOC (2018)

https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-319-78372-7_20
https://doi.org/10.1007/3-540-39568-7_20
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-642-55220-5_7

466

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

D. Gupta et al.

Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 501—
530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_17
Gupta, D., Maji, H.K., Wang, M.: Non-malleable codes against lookahead tam-
pering. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol.
11356, pp. 307-328. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
05378-9_17

Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13-30 (1963)

Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451-480.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_-19
Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-State non-malleable codes with
explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 344-375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3_11

Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders
and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 589-617. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7_19

Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: STOC (2017)

Li, X.: Pseudorandom correlation breakers, independence preserving mergers and
their applications. In: ECCC 25 (2018)

Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517—
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_30
Nisan, N.: Pseudorandom generators for space-bounded computation. In: STOC
(1990)

Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable
codes in the split-state model from minimal assumptions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 608-639. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_21

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)
Viola, E.: Extractors for circuit sources. In: FOCS (2011)

https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/978-3-030-05378-9_17
https://doi.org/10.1007/978-3-030-05378-9_17
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-319-96878-0_21

	Explicit Rate-1 Non-malleable Codes for Local Tampering
	1 Introduction
	1.1 Prior Relevant Works
	1.2 Our Contribution
	1.3 Technical Overview

	2 Preliminaries
	2.1 Local Functions
	2.2 Non-malleable Codes
	2.3 Hypergeometric Distribution

	3 Building Blocks
	3.1 Non-malleable Codes Against Leaky Input and Output Local Tampering
	3.2 Error-Correcting Secret-Sharing Schemes
	3.3 Pseudorandom Generator for Finite State Machines

	4 Our Compiler
	4.1 Proof of Theorem 1

	5 Proof of Non-malleability of Our Compiler
	5.1 Detailed Hybrid Argument

	References

