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Abstract. Consider two-party secure function evaluation against an
honest-but-curious adversary in the information-theoretic plain model.
We study the round complexity of securely realizing a given secure func-
tion evaluation functionality.
Chor-Kushilevitz-Beaver (1989) proved that the round complexity of se-
curely evaluating a deterministic function depends solely on the cardi-
nality of its domain and range. A folklore conjecture asserts that this
phenomenon extends to functions with randomized output.
Our work falsifies this folklore conjecture – revealing intricate subtleties
even for this elementary security notion. For every r, we construct a
function fr with binary inputs and five output alphabets that has round
complexity r. Previously, such a construction was known using (r + 1)
output symbols. Our counter-example is optimal – we prove that any
securely realizable function with binary inputs and four output alphabets
has round complexity at most four.
We work in the geometric framework Basu-Khorasgani-Maji-Nguyen (FOCS–
2022) introduced to investigate randomized functions’ round complexity.
Our work establishes a connection between secure computation and the
lamination hull (geometric object originally motivated by applications
in hydrodynamics). Our counterexample constructions are related to the
“tartan square” construction in the lamination hull literature.

Keywords: Two-party secure computation, information-theoretic security, semi-
honest adversary, round complexity, geometry of secure computation, generalized
convex hull, lamination hull, hydrodynamics

1 Introduction

Secure multi-party computation (MPC) [13,18] allows mutually distrusting par-
ties to compute securely over their private data. In general, MPC requires an
honest majority or oblivious transfer to compute tasks securely. Even if honest
parties are not in the majority, several tasks are securely computable in the
information-theoretic plain model without oblivious transfer or other hardness
of computation assumptions. For example, the Dutch auction mechanism [6] se-
curely performs auctions. These information-theoretic protocols, if they exist,
are highly desirable – they are perfectly secure, fast, and require no setup or
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preprocessing. With rapid increases in the computational power of parties, the
round complexity of these protocols becomes the primary bottleneck, signifi-
cantly impacting their adoption.

This work studies the round complexity of MPC in the two-party information-
theoretic plain model against honest-but-curious adversaries. Alice and Bob have
private inputs x ∈ X and y ∈ Y , respectively, and their objective is to securely
sample an output z from the distribution f(x, y) over the sample space Z. The
distribution f(x, y) is publicly known, and both parties must receive the identical
output z. Parties have unbounded computational power and honestly follow
the protocol; however, they are curious to obtain additional information about
the other party’s private input. An ideal communication channel connects the
parties, and they send messages in alternating rounds.1 The round complexity of
securely computing f is the (worst-case) minimum number of rounds required
to perform this sampling task securely.

We aim to investigate factors causing high round complexity for these secure
sampling tasks. Increasing the size of the input or output sets would certainly
lead to higher round complexity. However, even after fixing the input and output
sets, the complexity of representing the probability distributions could influence
the round complexity. There is a folklore conjecture in this context.

It is conjectured that only the sizes of the input and output sets determine the
round complexity. The complexity of representing the probability distributions
f(x, y) is absorbed within the private computation that parties perform, and it
does not impact the round complexity.

This (extremely strong) conjecture is known to hold for (a) classical commu-
nication complexity where correctness (not security) is considered, (b) the secure
computation tasks with deterministic output, and (c) randomized output tasks
with a small output set. In the sequel, Section 1.1, Section 1.2, and Section 1.4
present evidence supporting the credibility of this conjecture. Our work refutes
this conjecture. Section 2 presents our contributions and Section 3 highlights the
underlying technical approach.

1.1 Discussion: Interaction in a World without Security

Consider the classical communication complexity objective of correctly (possibly
insecurely) evaluating a randomized output function with minimum interaction.
In this context, the following canonical interactive protocol is natural. Alice
sends her input x to Bob. Bob samples z ∼ f(x, y) and sends the output z to
Alice.2 The round complexity of this (insecure) protocol is two. More gener-
ally, its communication complexity is log card (X)+ log card (Z), where card (S)
represents the cardinality of the set S. These upper bounds on the interaction
complexity hold irrespective of the complexity of representing the individual

1 Both parties know which party speaks in which round.
2 We assume that parties have access to randomness with arbitrary bias; more con-
cretely, consider the Blum-Schub-Smale model of computation [5]. For example, par-
ties can have a random bit that is 1 with probability 1/π.
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probabilities f(x, y)z, the probability to output z ∈ Z conditioned on the input
(x, y) ∈ X ×Y . The computational complexity of sampling their output did not
overflow into the interaction complexity because its impact was contained within
the respective parties’ private computation.

1.2 Round Complexity of Deterministic Functions

A particular class of functions widely studied in communication complexity and
cryptography is the class of deterministic functions. The function f is deter-
ministic if the support of the distribution f(x, y) is a singleton set for every
(x, y) ∈ X × Y – the output z is determined entirely by the parties’ private
inputs (x, y). For example, in an auction, the price is determined by all the bids.

Chor-Kushilevitz-Beaver [4, 8, 17] characterized all deterministic functions
that are securely computable in the two-party information-theoretic plain model
against honest-but-curious adversaries. The secure protocols for such functions
follow a general template – parties rule out specific outputs in each round. Ex-
cluding outputs, in turn, rules out private input pairs (because each input pair
produces one output). For example, the Dutch auction mechanism rules out the
price that receives no bids. Such functions are called decomposable functions be-
cause these secure protocols incrementally decompose the feasible input-output
space during their evolution. Decomposable functions are securely computable
with perfect security.

Let us reason about the round complexity of a deterministic function f : X×
Y → Z, represented by round (f). One has to exclude card (Z) − 1 outputs so
that only the output z = f(x, y) remains feasible. So, if f has a secure protocol
in this model, then

round (f) ⩽ card (Z)− 1.

Furthermore, the Markov property for interactive protocols holds in the
information-theoretic plain model. The joint distribution of inputs conditioned
on the protocol’s evolution is always a product distribution. Excluding output
also excludes private inputs of the parties. For example, if Alice sends a message
in a round, she rules out some of her private inputs. This observation leads to
the bound

round (f) ⩽ 2 · card (X)− 1.

Likewise, we also have

round (f) ⩽ 2 · card (Y )− 1.

Combining these observations, Chor-Kushilevitz-Beaver [4,8,17] concluded that

round (f) ⩽ min {card (Z) , 2 · card (X) , 2 · card (Y )} − 1. (1)

The cardinalities of the private input and output sets determine the upper bound
on the round complexity of f if it has a secure protocol. This phenomenon from
the classical communication complexity extends to the cryptographic context for
deterministic functions.
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1.3 Round Complexity of Randomized Functions with Small
Output Set

For functions with randomized output, the first conjecture already holds for small
values of card (Z). For example, card (Z) ⩽ 3 implies that round (f) ⩽ 2 [11].
In fact, this paper will prove that card (Z) ⩽ 4 implies round (f) ⩽ 4. It is
fascinating that the complexity of sampling from the distributions f(x, y) does
not impact the round complexity; its role is localized to the parties’ private
computation.

1.4 Round Complexity of Randomized Functions (General Case)

For three decades, there was essentially no progress in determining the round
complexity of securely computing general randomized functions – barring a few
highly specialized cases [11]. Last year, Basu, Khorasgani, Maji, and Nguyen
(FOCS 2022) [1] showed that determining “whether a randomized f has an r-
round protocol or not” is decidable. They reduced this question to a geometric
analog: “does a query point Q belong to a recursively-generated set S(r).” They
start with an initial set of points S(0), and recursively build S(i+1) from the set
S(i) using a geometric action, for i ∈ {0, 1, . . . }. The function f has an (at most)
r-round protocol if (and only if) a specific query point Q belongs to the set S(r);
otherwise not.

These set of points
{
S(i)

}
i⩾0

lie in the ambient space

Rcard(X)−1 × Rcard(Y )−1 × Rcard(Z).

Again, the dimension of the ambient space (of their embedding) is determined
entirely by the cardinalities of the inputs and output sets. This feature of their
embedding added additional support to the folklore.

Consider an analogy from geometry. Consider n initial points in Rd, where
n ≫ d. At the outset, any point inside the convex hull can be expressed as a
convex linear combination of the initial points that lie on the convex hull; their
number can be≫ d. However, Carathéodory’s theorem [7] states that every point
in its interior is expressible as a convex linear combination of (at most) (d+ 1)
initial points on the convex hull. At an abstract level: canonical representations
may have significantly lower complexity. It is similar to the Pumping lemma
for regular languages and (more generally) the Ogden lemma for context-free
languages.

Likewise, a fascinating possibility opens up in the context of Basu et al.’s
geometric problem. The canonical protocol for f could have round complexity
determined solely by the dimension of their ambient space, which (in turn) is
determined by the cardinality of the input and output sets. In fact, an optimistic

conjecture of O
(
card (Z)

2
)

upper bound on the round complexity appears in

the full version of their paper [2, Section 7, Conjecture 1].

We refute this folklore. The analogies break exactly at |Z| = 5. Represent a
randomized function with input set X × Y and output set Z as f : X × Y →
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RZ . For every r ∈ {1, 2, . . . }, we construct a function fr : {0, 1} × {0, 1} →
R{1,2,3,4,5} with round complexity r. Previously, Basu et al. constructed functions
gr : {0, 1} × {0, 1} → R{1,2,...,r+1} with round complexity r, i.e., their example
had card (Z) = (r + 1). In our example, card (Z) = 5, a constant. Moreover, we
prove the optimality of the counterexamples: Any f : {0, 1}× {0, 1} → R{1,2,3,4}

has round complexity ⩽ 4.

Looking ahead. Our results indicate that any upper bound on the round com-
plexity of f must involve the complexity of representing (the probabilities ap-
pearing in) the function f . For example, consider a randomized function whose
probabilities are integral multiples of 1/B. Then, the round complexity of f
should be upper bounded by some function of card (X), card (Y ), card (Z), and
B. The B-term represents (intuitively) “the condition number of the function f .”
If this dependence on B can, in fact, be a poly(log(B)) dependence, then it will
lead to efficient secure algorithms, ones with round complexity of poly(logB).

Our work considers the round complexity of perfectly secure protocols. The
case of statistically secure protocols remains an interesting open problem. In
fact, the decidability of the question: “Is there an r-round ε-secure protocol for
f?” remains unknown, which is a more fundamental problem. Basu et al. [1]
only considered the perfect security case. The technical machinery to handle
statistical security for general randomized output functions does not exist. This
work does not contribute to these two research directions.

1.5 Overview of the paper

We discuss our contributions in Section 2. In Section 3, we provide a technical
overview of our paper. In Section 4, we discuss the relation of our work with
lamination hull. Section 5 presents the BKMN geometric framework. Section 6
introduces notations and preliminaries. Section 7 contains all results pertaining
to constructing high-round complexity randomized functions. Section 8 shows
that our counterexamples are optimal.

2 Our Contributions

Theorem 1 (Functions with arbitrarily high round complexity). For
any r ∈ {1, 2, . . . , }, there is a function fr : {0, 1} × {0, 1} → R{1,2,3,4,5} such
that round (fr) = r.

The function fr has an r-round perfectly secure protocol (and r bits of commu-
nication) but no (r− 1)-round perfectly secure protocol. This result proves that
there are functions with arbitrary large round complexity with a constant input
and output set size. Previously, Basu et al. [1] constructed functions with high
round complexity with (r+1) output alphabets. This result is a counterexample
to the folklore conjecture. Section 7 presents the definition of the functions and
the proof.

Our counterexample is also optimal, which is a consequence of our following
result.
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Theorem 2 (Bounded Round Complexity for card (Z) ⩽ 4). Any function
f : {0, 1} × {0, 1} → RZ with card (Z) ⩽ 4 has round (f) ⩽ 4.

Section 8 proves this theorem.

3 Technical Overview of our Results

The presentation in this work is entirely geometric. No background in security
is necessary. We use the geometric embedding of BKMN [1] to translate round
complexity problems into geometric problems. Security is already folded inside
their geometric embedding.

3.1 High-level Summary of the BKMN Geometric Framework

Section 5 presents a detailed version of this section. Consider a randomized
output function f : {0, 1}×{0, 1} → RZ . BKMN approach considers the ambient
space Rd, where d = card (Z) + 2. They present the following maps

1. Function encoding. f 7→ (A,B, V ), where A ∈ R2×card(Z), B ∈ R2×card(Z),
and V ∈ Rcard(Z)

2. Query point. f 7→ Q(f) ∈ Rcard(Z)

3. Initial set. (A,B) 7→ S(0) ⊆ Rd satisfying card
(
S(0)

)
= card (Z).

They present the following recursive definition of S(i+1) ⊆ Rd from S(i) ⊆ Rd,
for all i ∈ {0, 1, . . . }.

S(i+1) =


t∑

k=1

λ(k) ·Q(k) :

t ∈ {1, 2, . . . },
λ(1), λ(2), . . . , λ(t) ⩾ 0,

λ(1) + λ(2) +· · ·+ λ(t) = 1,
Q(1), Q(2), . . . , Q(t) ∈ S(i), and(
Q

(1)
1 = Q

(2)
1 = · · · = Q

(t)
1 or

Q
(1)
2 = Q

(2)
2 = · · · = Q

(t)
2

)


.

Intuitively, this recursive definition ensures the following. Pick any t points
Q(1), Q(2), . . . , Q(t) ∈ S(i), where t ∈ {1, 2, . . . }. If the first coordinates of all
these t points are identical, or the second coordinates of all these t points are
identical, then add all possible convex linear combinations (i.e., the convex hull)
of

{
Q(1), Q(2), . . . , Q(t)

}
to the set S(i+1).

Remark 1 (Communication complexity). Restricting the recursive definition to
t = 2 corresponds to investigating the communication complexity of f . This
version of the recursion is closely connected to the lamination hull defined in
Section 4.

6



Observe that, in the recursive definition, the points need not be distinct.
Therefore, choosing Q(1) = Q(2) = · · · = Q(t) ensures that S(i) ⊆ S(i+1). Using
this recursive definition, we have the following sequence of sets in Rd:

S(0) ⊆ S(1) ⊆ S(2) ⊆· · ·

Connection to round complexity of secure computation. BKMN proved
that round (f) ⩽ r if Q(f) ∈ S(r), for all r ∈ {0, 1, . . . } [1]. Therefore, to prove
round (f) = r, it suffices to prove that Q(f) ∈ S(r) \ S(r−1).

3.2 The “Tartan Square” meets Secure Computation

Our objective is to prove that there is a function fr : {0, 1}×{0, 1} → RZ , where
Z = {1, 2, . . . , 5}, such that fr ∈ S(r) \ S(r−1), for every r ∈ {1, 2, . . . }. Recall
that S(0) is determined by fr and card

(
S(0)

)
= card (Z) = 5. Furthermore, all

the sets S(i) are in ambient space R7, for i ∈ {0, 1, . . . }.
A preliminary step towards designing such functions is to determine an initial

set of points S(0) such that we have

S(0) ⊊ S(1) ⊊ S(2) ⊊ · · ·

Otherwise, suppose S(i) = S(i+1), for some i ∈ {0, 1, . . . }. Then, S(j) = S(i),
for all j ⩾ i, and the round complexity cannot surpass i. So, our objective is
to construct an initial set S(0) of constant size in an ambient space of constant
dimension such that the evolution of the sequence S(0) → S(1) → S(2) → · · ·
does not stabilize. It is unclear whether such an initial set S(0) even exists.

Illustrative example. We present an initial set S(0) ⊆ R3 such that the evo-
lution of the recursively defined sets does not stabilize. We emphasize that this
illustrative example is for intuition purposes only. The actual constructions are
presented in Section 7, where the ambient space is R7.

We work in the ambient space R3 for the illustrative example. Consider an
initial set of points

R3 ⊇ S(0) :=

{
(2, 0, 0), (0, 1, 0), (1, 3, 0), (3, 2, 0), (2, 1, 1)

}
1. For example, consider the points (0, 1, 0) and (2, 1, 1) in the set S(0). The

recursive definition allows the addition of the line segment PQ to the set
S(1). In particular, this line segment’s midpoint (1, 1, 1/2) is in the set S(1).

2. Similarly, considering the points (1, 3, 0) and (1, 1, 1/2) in the set S(1), we
conclude that their midpoint (1, 2, 1/4) is in the set S(2).

3. Now, consider the points (3, 2, 0) and (1, 2, 1/4) in the set S(2). Their mid-
point (2, 2, 1/8) is in the set S(3).

4. Finally, the midpoint of the points (2, 0, 0) and (2, 2, 1/8) in the set S(3) is
(2, 1, 1/16), which is in the set S(4).
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Let us summarize what we have achieved thus far. Beginning with the point
(2, 1, 1) ∈ S(0), we identified the point (2, 1, 1/16) ∈ S(4). One can prove that
this point (2, 2, 1/16) ̸∈ S(3). Therefore, we conclude that the point (2, 1, 1/16) ∈
S(4) \ S(3).

Using analogous steps as above, starting instead with the point (2, 1, 1/16) ∈
S(4) \S(3) will lead to the point

(
2, 1, 1/(16)2

)
∈ S(8) \S(7) In general, using this

construction, we will have(
2, 1,

1

16k

)
∈ S(4k) \ S(4k−1).

This sequence of points, for k ∈ {0, 1, 2, . . . }, demonstrate that the sequence
S(0) → S(1) → S(2) →· · · does not stabilize. This example is the “tartan square”
from the lamination hull literature; refer to Remark 2 in Section 4.

This illustrative example leads to the following conclusion. In an ambient
space of constant dimension and starting with a suitable initial set S(0) of con-
stant size, the sequence S(0) → S(1) → S(2) →· · · may not stabilize.

3.3 Overview: Proof of Theorem 1

For r ∈ {1, 2, . . . }, we will appropriately choose the probabilities of the function
fr : {0, 1} × {0, 1} → RZ , such that card (Z) = 5. Using the BKMN geometric
framework (see Section 3.1), we will generate:

1. Function encoding (A,B, Vr). We emphasize that all our functions fr are
designed so that they map to the same (A,B); only Vr is different.

2. Query point Q(fr) ∈ R7.
3. Initial point set S(0) ⊆ R7, which is identical for all fr because (a) all

functions map to identical (A,B), and (b) (A,B) alone determine S(0).

Section 5.1 presents the definition of the function fr.
Next, the choice of the S(0) ensures that the evolution of the sets S(0) →

S(1) → S(2) → · · · does not stabilize. It essentially mimics the tartan square
construction of Section 3.2. However, we emphasize that in this section, the
ambient space is R7 (the ambient space for the tartan square example was R3).
Furthermore, we design our function fr such that the corresponding query point
Q(fr) ∈ S(r) \ S(r−1). Consequently, we have round (fr) = r.

3.4 Overview: Proof of Theorem 2

We aim to prove that round (f) ⩽ 4, for any function f : {0, 1} × {0, 1} → RZ

such that card (Z) ⩽ 4. Toward this objective, we begin with the following
observations.

1. Recall that in the BKMN framework card
(
S(0)

)
= card (Z).

2. Furthermore, if S(4) = S(5), then S(j) = S(4), for all j ⩾ 4. In this case,
round (f) ⩽ 4, because S(r) \ S(r−1) = ∅, for all r ∈ {5, 6, . . . }.
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To prove our theorem, it will suffice to prove that the evolution of the sets
S(0) → S(1) → S(2) →· · · stabilizes by i = 4 when card

(
S(0)

)
⩽ 4.3 We prove

this result using an exhaustive case analysis (see Section 8).

4 Lamination Hull

Recently, at the Oberwolach workshop “New Directions in Real Algebraic Ge-
ometry” organized by Saugata Basu, Mario Kummer, Tim Netzer, and Cynthia
Vinzant (from 19 March to 24 March 2023), a fascinating connection between
secure computation and hydrodynamics emerged.

Consider an ambient space Rd. The lamination hull is parameterized by a
set of points Λ ⊆ Rd. Given a set of initial point S(0,Λ) ⊆ Rd, recursively define
S(i+1,Λ) from S(i) as follows

S(i+1,Λ) :=

λ ·Q(1) + (1− λ) ·Q(2) :
Q(1), Q(2) ∈ S(i,Λ),
λ ∈ [0, 1], and
Q(1) −Q(2) ∈ Λ

 .

Intuitively, one can add the line segment Q(1)Q(2) to the set S(i+1,Λ) for any
Q(1), Q(2) ∈ S(i,Λ) if Q(1) − Q(2) ∈ Λ. The lamination hull is the limit of the
sequence S(0,Λ) → S(1,Λ) → S(2,Λ) → · · ·. This hull is tied to computing the
stationary solutions to the following differential equations underlying incom-
pressible porous media [9, 10,12,14].

Incompressible Porous Media (IPM) Equations

Conservation of Mass, Incompressibility, and Darcy’s Law

∂tρ+∇ · (ρv) = 0, ∇ · v = 0,
µ

κ
v⃗ = −∇p− ρg, (2)

where ρ is the fluid density, v is the fluid velocity, and g is the gravity.

When Λ = (0,R, . . . ,R) ∪ (R, 0,R, . . . ,R) ⊆ Rd, the sequence S(0,Λ) →
S(1,Λ) → S(2,Λ) →· · · is identical to the sequence defined by Basu et al. [1] for the
communication complexity case (see Remark 1). Basu et al. [1] proved that the
points in the recursively defined sets are related to secure computation protocols.
As a consequence of this connection, secure computation protocols manifest in
physical processes in nature. This connection is mentioned in [3, Page 20].

Remark 2 (Independent discovery of the “tartan square” construction). Our work
independently discovered the “tartan square” construction in the lamination
hull literature [16, Figure 2, Page 3]. Consider ambient dimension R3 and Λ =

3 We highlight a subtlety. We only need to prove that S(4) = S(5). It is inconsequential
if they have stabilized even earlier. For example, it may be the case that S(j) = S(j+1)

for some j ∈ {0, 1, 2, 3}.
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(0,R,R) ∪ (R, 0,R) ⊆ Rd. The “tartan square” is a set of 5 points in R3 such
that the sequence S(0,Λ) → S(1,Λ) → S(2,Λ) →· · · does not stabilize. Section 3
uses this example to provide the intuition underlying our counterexample con-
structions. This is a famous example in the lamination hull literature, which the
authors came to know on 19 March 2023. The first version of our work was made
public on 16 February 2023.

5 BKMN Geometric Framework: A Formal Introduction

Basu-Khorasgani-Maji-Nguyen [1] presents a new approach for studying the
round complexity of any (symmetric) functionality f : X × Y → RZ . In the
following discussion, we shall recall this approach for the particular case where
the input domain satisfies X = Y = {0, 1}.

From the given functionality f , BKMN22 defines the following maps.

1. Function encoding: f 7→ (A,B, V )

2. Query point: f 7→ Q(f)

3. Initial set: (A,B) 7→ S(0)

4. Recursive construction: S(i) 7→ S(i+1) for any i ∈ {0, 1, 2, . . . }.

Function Encoding

There are matrices A ∈ R2 × Rcard(Z), B ∈ R2 × Rcard(Z), V ∈ Rcard(Z)

such that

f(x, y)z = Ax,z ·By,z · Vz for all x ∈ X, y ∈ Y, z ∈ Z, and∑
x∈X

Ax,z = 1,
∑
y∈Y

By,z = 1 for all z ∈ Z.a

a If such an encoding does not exist, there is no secure protocol for f [15].

The query point Q(f) is constructed as follows.

Query Point Construction

Q(f) :=

(
1/2, 1/2,

1

4
· V

)
∈ R× R× Rcard(Z)

The initial set S(0) is constructed from (A,B) as follows.
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Constructing the initial set S(0) from (A,B)

S(0) := {(A0,z, B0,z, e(z)) : z ∈ Z} ⊆ Rd,

where d := card (Z) + 2, and e(z) is the standard unit vector whose
coordinates are all zeros except that the z-th coordinate is one.

They consider the sequence S(0),S(1), . . . ,S(i), . . . where for any i ∈ {0, 1, . . . },
the geometric action that recursively generates S(i+1) from S(i) is defined as fol-
lows:

Geometric Action: Constructing S(i+1) from S(i)

For any t ∈ {1, 2, . . . } and points Q(1), Q(2), . . . , Q(t) ∈ S(i), add all
convex linear combinations of the points {Q(1), Q(2), . . . , Q(t)} to the set
S(i+1) if (and only if)

1. Q
(1)
1 = Q

(2)
1 = · · · = Q

(t)
1 , or

2. Q
(1)
2 = Q

(2)
2 = · · · = Q

(t)
2 .

For a point Q ∈ Rd, Q1 represents the first coordinate of Q, and Q2

represents the second coordinate of Q.

Some clarifications.

1. A convex linear combination of the points Q(1), . . . , Q(t), is a point of the

form λ(1) ·Q(1)+· · ·+λ(t) ·Q(t), where λ(1), . . . , λ(t) ⩾ 0 and
t∑

i=1

λ(i) = 1. All

possible convex linear combinations consider all possible such λ(1), . . . λ(t)

values.

2. The points Q(1), . . . , Q(t) in the definition need not be distinct

3. Considering t = 1 in the definition above ensures that S(i) ⊆ S(i+1).

4. Since efficiency is not a consideration in the current context, we consider t ∈
{1, 2, . . . }. Otherwise, by Carathéodory’s theorem [7], it suffices to consider
only t = (d+ 1).

BKMN’s Reduction. Given the initial set S(0), one constructs the sequence
S(0) → S(1) → S(2) → . . . recursively based on the geometric action. Basu
et al. reduce the problem of the round complexity of secure computation of ran-
domized functions to the problem of testing whether a point belongs to a set in
a high dimensional space.
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BKMN’s Reduction

For any r ∈ {1, 2, . . . },

1. round (f) ⩽ r if and only if Q(f) ∈ S(r).
2. round (f) = r if and only if Q(f) ∈ S(r) \ S(r−1).

5.1 An Example

In this section, we consider an example and find the corresponding encoding,
query point, and sets S(0),S(1), . . . based on BKMN’s approach. For any r =
4k + 1 where k ∈ {0, 1, . . . }, we construct a functionality fr : {0, 1} × {0, 1} →
R{1,2,3,4,5} and then show in Section 7 that round (fr) = r. We emphasize that
it is also possible to construct such a functionality for the cases that r = 4k or
r = 4k + 2 or r = 4k + 3 where k ∈ {0, 1, 2, . . . }.

Consider the following functionality

f4k+1(0, 0) =

(
3

16
· σk,

1

4
· σk+1,

1

8
· σk,

3

8
· σk,

3

24k+2

)
,

f4k+1(0, 1) =

(
9

16
· σk,

1

4
· σk+1, 0 · σk,

1

8
· σk,

3

24k+2

)
,

f4k+1(1, 0) =

(
1

16
· σk,

3

4
· σk+1,

1

8
· σk, 0 · σk,

1

24k+2

)
,

f4k+1(1, 1) =

(
3

16
· σk,

3

4
· σk+1, 0 · σk, 0 · σk,

1

24k+2

)
,

where σk := 1−(1/16)k

1−1/16 for k ∈ {0, 1, 2, . . . }. Following BKMN’s approach (refer

to Section 5), the encoding of f4k+1 is the triplet (A,B, V4k+1), where

A =

(
3/4, 1/4, 1/2, 1, 3/4
1/4, 3/4, 1/2, 0, 1/4

)
∈ R2 × R5,

B =

(
1/4, 1/2, 1, 3/4, 1/2
3/4, 1/2, 0, 1/4, 1/2

)
∈ R2 × R5,

V4k+1 =

(
σk, 2σk+1,

σk

4
,
σk

2
,

1

24k−1

)
∈ R5.

Note that the first row of matrix A corresponds to input X = 0, and its second
row corresponds to X = 1. Similarly, the first row of B corresponds to input
Y = 0, and the other row corresponds to Y = 1. The initial set S(0) is derived
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from (A,B, V4k+1) as follows.

S(0) = {P (z) : z ∈ {1, 2, 3, 4, 5}}, where

P (1) = (3/4, 1/4, 1, 0, 0, 0, 0),

P (2) = (1/4, 1/2, 0, 1, 0, 0, 0),

P (3) = (1/2, 1 , 0, 0, 1, 0, 0),

P (4) = ( 1 , 3/4, 0, 0, 0, 1, 0),

P (5) = (3/4, 1/2, 0, 0, 0, 0, 1).

Note that S(i) ⊆ R7 for all i ∈ {0, 1, . . . }. The query point is defined as

Q(f4k+1) =

(
1

2
,
1

2
,
1

4
· σk

4
,
σk+1

2
,
σk

16
,
σk

8
,

1

24k+1

)
∈ R7.

To prove that round(f4k+1) = 4k + 1, it suffices to prove the following result.

Lemma 1. It holds that Q(f4k+1) ∈ S(4k+1) \ S(4k).

We provide a proof for Lemma 1 in Section 7 (refer to the proof of Theorem 3).

6 Preliminaries

This section introduces some notations and definitions to facilitate our presen-
tation.

6.1 Notations

We will use the following notations for a point p ∈ Rd, a scalar c ∈ R, and a set
S ⊆ Rd.

p+ S := {p+ q : q ∈ S}, c · S := {c · q : q ∈ S}.

We use the standard notations \,∪,∩ to denote the minus, union, and intersec-
tion operators on sets, respectively.

6.2 Convex Geometry

For any two points x, y ∈ Rd, the line segment between x and y, denoted as xy,
is the set of all points t ·x+(1− t) ·y for t ∈ [0, 1]. A subset of Rd is a convex set
if, given any two points in the subset, the subset contains the whole line segment
joining them. A convex combination is a linear combination of points in which
all coefficients are non-negative and sum up to 1. An extreme point of a convex
set S ⊆ Rd is a point that does not lie on any open line segment joining two
distinct points of S.
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Definition 1 (Convex Hull). For any set S ⊆ Rd, the convex hull of S, de-
noted as conv(S), is the set of all convex combinations of points in S.

For example, every line segment is the convex hull of the two endpoints. The
following facts follow directly from the definition of the convex hull.

Fact 1 For any subset S ⊆ Rd, it holds that conv(conv(S)) = conv(S).

Fact 2 For any S ⊆ T ⊆ Rd, it holds that conv(S) ⊆ conv(T ).

7 Functions with High Round Complexity

This section provides a formal proof for Theorem 1. We restate Theorem 1 in
the following.

Theorem 3. For every r ∈ N, there exists a function fr : {0, 1} × {0, 1} → RZ

such that card (Z) = 5 and fr has r-round perfectly secure protocol but no r− 1-
round secure protocol.

We provie the proof of Theorem 3 at the end of this section. To prove Theorem 3,
we state and prove Theorem 4 in the following.

Before stating Theorem 4, we need to introduce some notations. Let P =
(P1, P2, P3, P4, P5, P6, P7) denote a point in R2 × R5. We define the following
projections

π : R2 × R5 → R2, π(P ) := (P1, P2)

π1 : R2 × R5 → R, π1(P ) := P1

π2 : R2 × R5 → R, π2(P ) := P2

ρ : R2 × R5 → R5, ρ(P ) := (P3, P4, P5, P6, P7)

We use ei ∈ R5, where i ∈ {1, . . . , 5}, to represent the ith vector of the
standard basis for R5. All coordinates of ei are 0 except the ith coordinate which
is equal to 1. For example, if P = (1/4, 1/2, 0, 1, 0, 0, 0), then

π(P ) = (1/4, 1/2), π1(P ) = 1/4, π2(P ) = 1/2, ρ(P ) = (0, 1, 0, 0, 0) = e2.

Theorem 4. Define the following points in R2

a1 = (3/4, 1/4), a2 = (1/4, 1/2), a3 = (1/2, 1), a4 = (1, 3/4), a5 = (3/4, 1/2).

We define the initial set S(0) as follows.

S(0) := {P ∈ R2 × R5 : ∃ i ∈ {1, 2, 3, 4, 5}, π(P ) = ai and ρ(P ) = ei}.

For i ∈ {1, 2, . . . }, let S(i) ⊆ R2 × R5 be the set defined recursively from S(i−1)

according to Figure 1. Then, for all i ∈ {1, 2, . . . },

S(i−1) ⊊ S(i).
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For t ∈ {1, 2, . . . } and any points Q(1), Q(2), . . . , Q(t) ∈ S(i−1) satisfying

π1(Q
(1)) = π1(Q

(2)) = · · · = π1(Q
(t)), or

π2(Q
(1)) = π2(Q

(2)) = · · · = π2(Q
(t))

add all possible convex linear combinations of Q(1), Q(2), . . . , Q(t) to the set S(i).

Fig. 1: Recursive procedure to construct S(i) from S(i−1) for i ∈ {1, 2, . . . }.

We begin the proof of Theorem 4 by introducing some notations (refer to
Figure 2). We define the following additional points for our analysis.

a6 = (1/2, 1/2), a7 = (1/2, 3/4), a8 = (3/4, 3/4)

Let a1a8 denote the set of points on the line segment that connects the point

axis-2

axis-1

a6

a1

a2

a3

a4

a5

a7 a8

Fig. 2: An example showing that the sequence {S(i)}∞i=0 does not stabilize.

a1 to the point a5. The segments a2a5, a3a6, a4a7 are defined similarly. For any

set Ω ⊆ R2, we define the set S(i)
Ω as follows.

S(i)
Ω := {Q ∈ S(i) : π(Q) ∈ Ω}

Whenever Ω is a singleton set, we omit the brackets. For example,

S(0)
a1

= {(3/4, 1/4, 1, 0, 0, 0, 0)}, S(0)
a2

= {(1/4, 1/2, 0, 1, 0, 0, 0)},
S(0)
a3

= {(1/2, 1, 0, 0, 1, 0, 0)}, S(0)
a4

= {(1, 3/4, 0, 0, 0, 1, 0)},
S(0)
a5

= {(3/4, 1/2, 0, 0, 0, 0, 1)}, S(0)
a6

= S(0)
a7

= S(0)
a8

= ∅.

Moreover, for any set Ω ⊆ R2 × R5, we define

ρ (Ω) := {ρ(P ) : P ∈ Ω}.
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For example, ρ(S(0)
a4 ) = {(0, 0, 0, 1, 0)} = {e4}. The lemma below follows directly

from the definition of the sequence {Si}∞i=0.

Proposition 1. For any set Ω and any i ∈ {0, 1, . . . }, the following property
holds.

S(i)
Ω ⊆ S(i+1)

Ω .

The following result says that for any i ∈ {0, 1, . . . }, all the points in the line
segment a1a8 at round (i+1) except the new ones at the point a8 are constructed
solely from the points at a1, a8, a5 at round i.

For i ∈ {0, 1, 2, . . . }, define

σi :=

i−1∑
k=0

1

16k
=

1− (1/16)i

1− 1/16
,

αi := σi ·
e1
2

+ σi ·
e4
4

+ σi ·
e3
8

+ σi ·
e2
16

+
e5
16i

,

βi := σi+1 ·
e2
2

+ σi ·
e1
4

+ σi ·
e4
8

+ σi ·
e3
16

+
e5

24i+1
,

γi := σi+1 ·
e3
2

+ σi+1 ·
e2
4

+ σi ·
e1
8

+ σi ·
e4
16

+
e5

24i+2
,

δi := σi+1 ·
e4
2

+ σi+1 ·
e3
4

+ σi+1 ·
e2
8

+ σi ·
e1
16

+
e5

24i+3
.

Moreover, we define α∗, β∗, γ∗, δ∗ as the limit of sequences αi, βi, γi, δi respec-
tively (refer to Prop. 3). We prove some properties of αi, βi, γi, δi in the Sec-
tion 7.1.

The following result follows directly from Lemma 6 and Prop. 4 that we will
mention later.

Lemma 2. For any i ∈ {0, 1, 2, . . . }, it holds that

αi+1 /∈ ρ(S(4i)
a5

), βi+1 /∈ ρ(S(4i+1)
a6

), γi+1 /∈ ρ(S(4i+2)
a7

), δi+1 /∈ ρ(S(4i+3)
a8

).

Now, Theorem 4 follows directly from Lemma 2 and Lemma 6. In the rest of
this section, we will state and prove all required lemmas.

Lemma 3. For every i ∈ {0, 1, . . . },

S(i+1)
a1a8

\
(
S(i+1)
a8

\ S(i)
a8

)
= conv

(
S(i)
a1

∪ S(i)
a8

∪ S(i)
a5

)
,

S(i+1)
a2a5

\
(
S(i+1)
a5

\ S(i)
a5

)
= conv

(
S(i)
a2

∪ S(i)
a5

∪ S(i)
a6

)
,

S(i+1)
a3a6

\
(
S(i+1)
a6

\ S(i)
a6

)
= conv

(
S(i)
a3

∪ S(i)
a6

∪ S(i)
a7

)
,

S(i+1)
a4a7

\
(
S(i+1)
a7

\ S(i)
a7

)
= conv

(
S(i)
a4

∪ S(i)
a7

∪ S(i)
a8

)
.
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Proof. We prove by induction on i.

Base case. For i = 0, we have

S(0)
a1

= {(3/4, 1/4, 1, 0, 0, 0, 0, 0)}, S(0)
a5

= {(3/4, 1/2, 0, 0, 0, 0, 1)}, S(0)
a8

= ∅.

It implies that

conv
(
S(0)
a1

∪ S(0)
a8

∪ S(0)
a5

)
= conv

(
S(0)
a1

∪ S(0)
a5

)
.

Observe that π1(P ) = 3/4, for any point P ∈ S(0)
a1 ∪S(0)

a5 . Therefore, any convex

combination of a point in S(0)
a1 and a point in S(0)

a5 is in the set S(1)
a1a8

. Notice that

S(0)
a8 = S(1)

a8 = ∅. This shows that

conv
(
S(0)
a1

∪ S(0)
a8

∪ S(0)
a5

)
⊆ S(1)

a1a8
= S(1)

a1a8
\
(
S(1)
a8

\ S(0)
a8

)
.

To prove the other direction, observe that any point in S(1)
a1a8

except for the points

in S(1)
a8 \ S(0)

a8 is a convex combination of a set of points in S(0)
a1a8

= S(0)
a1 ∪S(0)

a5 by
definition. Thus, it follows that

S(1)
a1a8

\
(
S(1)
a8

\ S(0)
a8

)
= S(1)

a1a8
⊆ conv

(
S(0)
a1

∪ S(0)
a5

)
= conv

(
S(0)
a1

∪ S(0)
a8

∪ S(0)
a5

)
.

Induction Hypothesis. We assume that

S(i)
a1a8

\
(
S(i)
a8

\ S(i−1)
a8

)
= conv

(
S(i−1)
a1

∪ S(i−1)
a8

∪ S(i−1)
a5

)
,

and similarly for other equations.

Induction Step. Note that for any point P in the set S(i)
a1 ∪S(i)

a8 ∪S(i)
a5 , we have

π1(P ) = 3/4. Therefore,

conv
(
S(i)
a1

∪ S(i)
a8

∪ S(i)
a5

)
⊆ S(i+1)

a1a8

Since a4a7 is the only line segment that contains a8 such that a8 is not an end
point of it, we have:(

S(i+1)
a8

\ S(i)
a8

)
∩ conv

(
S(i)
a1

∪ S(i)
a8

∪ S(i)
a5

)
=

(
S(i+1)
a8

\ S(i)
a8

)
∩ conv

(
S(i)
a8

)
= ∅.

Therefore, we conclude that

conv
(
S(i)
a1

∪ S(i)
a8

∪ S(i)
a5

)
⊆ S(i+1)

a1a8
\
(
S(i+1)
a8

\ S(i)
a8

)
.
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To prove the other direction, note that any point in S(i+1)
a1a8

\S(i+1)
a8 is constructed

from a convex combination of the points in S(i)
a1a8

\ S(i)
a8 . Thus, we have

S(i+1)
a1a8

\ S(i+1)
a8

⊆ conv
(
S(i)
a1a8

\ S(i)
a8

)
⊆ conv

(
S(i)
a1a8

\
(
S(i)
a8

\ S(i−1)
a8

))
(Fact 2)

= conv
(
conv

(
S(i−1)
a1

∪ S(i−1)
a8

∪ S(i−1)
a5

))
(Induction hypothesis)

= conv
(
S(i−1)
a1

∪ S(i−1)
a8

∪ S(i−1)
a5

)
(Fact 1)

⊆ conv
(
S(i)
a1

∪ S(i)
a8

∪ S(i)
a5

)
, (Prop. 1 and Fact 2)

Since S(i)
a8 ⊆ conv

(
S(i)
a1 ∪ S(i)

a8 ∪ S(i)
a5

)
, it follows that

S(i+1)
a1a8

\
(
S(i+1)
a8

\ S(i)
a8

)
=

(
S(i+1)
a1a8

\ S(i+1)
a8

)
∪ S(i)

a8
⊆ conv

(
S(i)
a1

∪ S(i)
a8

∪ S(i)
a5

)
.

We have shown that

S(i+1)
a1a8

\
(
S(i+1)
a8

\ S(i)
a8

)
= conv

(
S(i)
a1

∪ S(i)
a8

∪ S(i)
a5

)
.

We prove other equations in a similar manner, which completes the proof.

Next, using Lemma 3, we prove a recursive construction of the projection ρ
at the points ai for 1 ⩽ i ⩽ 8.

Lemma 4. For all i ∈ {0, 1, . . . },

ρ(S(i)
a1

) = {e1}, ρ(S(i)
a2

) = {e2}, ρ(S(i)
a3

) = {e3}, ρ(S(i)
a4

) = {e4}.

Furthermore, for all i ∈ {1, 2, . . . , },

ρ(S(0)
a5

) = {e5}, ρ(S(i+1)
a5

) = conv

(
ρ(S(i)

a5
) ∪ 1

2
·
(
e1 + ρ(S(i)

a8
)
))

,

ρ(S(0)
a6

) = ∅, ρ(S(i+1)
a6

) = conv

(
ρ(S(i)

a6
) ∪ 1

2
·
(
e2 + ρ(S(i)

a5
)
))

,

ρ(S(0)
a7

) = ∅, ρ(S(i+1)
a7

) = conv

(
ρ(S(i)

a7
) ∪ 1

2
·
(
e3 + ρ(S(i)

a6
)
))

,

ρ(S(0)
a8

) = ∅, ρ(S(i+1)
a8

) = conv

(
ρ(S(i)

a8
) ∪ 1

2
·
(
e4 + ρ(S(i)

a7
)
))

.

Proof. Initially, ρ(S(0)
a1 ) = {e1}. At any round i ∈ {1, 2 . . . }, there is no new

point constructed at a1, since a1 is an extreme point of conv(a1, a2, a3, a4, a5).

Therefore, ρ(S(i)
a1 ) = {e1}. Similarly, we have

ρ(S(i)
a2

) = {e2}, ρ(S(i)
a3

) = {e3}, ρ(S(i)
a4

) = {e4}, for every i ∈ {0, 1, . . . }.
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Let P ∈ S(i+1)
a5 . It follows from Lemma 3 that there are points Pa1

∈ S(i)
a1 ,

Pa8
∈ S(i)

a8 , Pa5
∈ S(i)

a5 , and λ1, λ8, λ5 ⩾ 0 such that

P = λ1 · Pa1
+ λ8 · Pa8

+ λ5 · Pa5
, and λ1 + λ8 + λ5 = 1.

Projecting these points into the second coordinate, we have

π2(P ) = λ1 · π2(Pa1) + λ8 · π2(Pa8) + λ5 · π2(Pa5).

This together with π2(P ) = π2(Pa5
) = 1

2 (π2(Pa1
) + π2(Pa8

)) implies that λ1 =

λ8. Thus, the point P is in the set conv
(
S(i)
a5 ∪ 1

2 ·
(
S(i)
a1 + S(i)

a8

))
. This implies

that

S(i+1)
a5

⊆ conv

(
S(i)
a5

∪ 1

2
·
(
S(i)
a1

+ S(i)
a8

))
.

Projecting this fact into coordinates {3, 4, 5, 6, 7} yields

ρ(S(i+1)
a5

) ⊆ conv

(
ρ(S(i)

a5
) ∪ 1

2
·
(
ρ(S(i)

a1
) ∪ ρ(S(i)

a8
)
))

= conv

(
ρ(S(i)

a5
) ∪ 1

2
·
(
e1 + ρ(S(i)

a8
)
))

(since ρ(S(i)
a1

) = {e1}).

Conversely, it suffices to show that

conv

(
S(i)
a5

∪ 1

2
·
(
S(i)
a1

+ S(i)
a8

))
⊆ S(i+1)

a5
.

This follows directly from the fact that a5 is the midpoint of the segment a1a8.
We have proved that

ρ(S(i+1)
a5

) = conv

(
ρ(S(i)

a5
) ∪ 1

2
·
(
e1 + ρ(S(i)

a8
)
))

.

Similarly, the other three equations for a6, a7, a8 also hold.

Lemma 5. For every i ∈ {0, 1, 2, . . . }, the following identities hold.

ρ(S(4i)
a5

) = ρ(S(4i+1)
a5

) = ρ(S(4i+2)
a5

) = ρ(S(4i+3)
a5

),

ρ(S(4i+1)
a6

) = ρ(S(4i+2)
a6

) = ρ(S(4i+3)
a6

) = ρ(S(4i+4)
a6

),

ρ(S(4i+2)
a7

) = ρ(S(4i+3)
a7

) = ρ(S(4i+4)
a7

) = ρ(S(4i+5)
a5

),

ρ(S(4i+3)
a8

) = ρ(S(4i+4)
a8

) = ρ(S(4i+5)
a8

) = ρ(S(4i+6)
a8

).

Proof. We prove by induction on i.
Base case. From the recursion in Lemma 4, one can verify that

ρ(S(0)
a5

) = ρ(S(1)
a5

) = ρ(S(2)
a5

) = ρ(S(3)
a5

) = {e5},

ρ(S(1)
a6

) = ρ(S(2)
a6

) = ρ(S(3)
a6

) = ρ(S(4)
a6

) =
e2 + e5

2
,

ρ(S(2)
a7

) = ρ(S(3)
a7

) = ρ(S(4)
a7

) = ρ(S(5)
a7

) =
e3
2

+
e2 + e5

4
,

ρ(S(3)
a8

) = ρ(S(4)
a8

) = ρ(S(5)
a8

) = ρ(S(6)
a8

) =
e4
2

+
e3
4

+
e2 + e5

8
.
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Induction Step. Suppose the induction hypothesis holds for (i− 1). It follows
from Lemma 4 that

ρ(S(4i+3)
a5

) = conv

(
ρ(S(4i+2)

a5
) ∪ 1

2
·
(
e1 + ρ(S(4i+2)

a8
)
))

= conv

(
conv

(
ρ(S(4i+1)

a5
) ∪ 1

2
·
(
e1 + ρ(S(4i+1)

a8
)
))

∪ 1

2
·
(
e1 + ρ(S(4i+2)

a8
)
))

By the induction hypothesis, ρ(S(4i+2)
a8 ) = ρ(S(4i+1)

a8 ). Therefore, we have

1

2
·
(
e1 + ρ(S(4i+1)

a8
)
)
=

1

2
·
(
e1 + ρ(S(4i+2)

a8
)
)

This, together with Fact 1 and Lemma 4, implies that

ρ(S(4i+3)
a5

) = conv

(
ρ(S(4i+1)

a5
) ∪ 1

2
·
(
e1 + ρ(S(4i+1)

a8
)
))

= ρ(S(4i+2)
a5

).

Likewise, one can show that ρ(S(4i+2)
a5 ) = ρ(S(4i+1)

a5 ) and ρ(S(4i+1)
a5 ) = ρ(S(4i)

a5 ).
These imply that

ρ(S(4i)
a5

) = ρ(S(4i+1)
a5

) = ρ(S(4i+2)
a5

) = ρ(S(4i+3)
a5

).

The proof of other equalities is similar.

Lemma 6. For all i ∈ {0, 1. . . . },

ρ(S(4i)
a5

) = conv({α0, αi)}), ρ(S(4i+1)
a6

) = conv({β0, βi}),
ρ(S(4i+2)

a7
) = conv({γ0, γi}), ρ(S(4i+3)

a8
) = conv({δ0, δi}).

Proof. We prove by induction on i (refer to Figure 3).

Base case. For i = 0,

ρ(S(0)
a5

) = {α0} = {e5},

ρ(S(1)
a6

) = {β0} =

{
e2 + e5

2

}
,

ρ(S(2)
a7

) = {γ0} =

{
e3
2

+
e2 + e5

4

}
,

ρ(S(3)
a8

) = {δ0} =

{
e4
2

+
e3
4

+
e2 + e5

8

}
.

20



axis-2

axis-1

⊗

S(0)

e1

e2

e3

e4

α0 = e5

axis-2

axis-1

⊗

S(1)

e1e1

e2

e3

e4

α0 = e5
β0 = e2+α0

2

axis-2

axis-1

S(2)

⊗

e1

e2

e3

e4

α0

β0 = e2+e5
2

γ0 = e3+β0
2

axis-2

axis-1

S(3)

⊗

e1

e2

e3

e4

α0
β0

γ0

δ0 = e4+γ0
2

axis-2

axis-1

S(4)

⊗

e1

e2

e3

e4

conv(α0,
δ0 + e1

2︸ ︷︷ ︸
α1

)

β0

γ0
δ0

axis-2

axis-1

S(5)

⊗

e1

e2

e3

e4

conv(α0, α1)

γ0
δ0

conv(β0,
e2 + α1

2︸ ︷︷ ︸
β1

)

axis-2

axis-1

S(6)

⊗

e1

e2

e3

e4

conv(α0, α1)

δ0

conv(γ0,

γ1︷ ︸︸ ︷
e3 + β1

2
)

conv(β0, β1)

axis-2

axis-1

S(7)

⊗

e1

e2

e3

e4

conv(α0, α1)

conv(δ0,

δ1︷ ︸︸ ︷
e4 + γ1

2
)

conv(γ0, γ1)

conv(β0, β1)

Fig. 3: The evolution of ρ(S(i)
a5 ), ρ(S

(i)
a6 ), ρ(S

(i)
a7 ), ρ(S

(i)
a8 ) up to step eight.
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Induction Step. Suppose the lemma is true for i. We shall show that it is true
for i+ 1.

ρ(S(4i+4))
a5

) = conv

(
ρ(S(4i+3)

a5
) ∪ 1

2

(
e1 + ρ(S(4i+3)

a8
)
))

(Lemma 4)

= conv

(
ρ(S(4i)

a5
) ∪ 1

2

(
e1 + ρ(S(4i+3)

a8
)
))

(Lemma 5)

= conv

(
conv({α0, αi}) ∪

1

2
(e1 + conv({δ0, δi}))

)
(Induction hypothesis)

= conv

(
{α0, αi} ∪

{
e1 + δ0

2
,
e1 + δi

2

})
(Fact 1)

= conv ({α0, αi} ∪ {α1, αi+1}) Prop. 5

= conv({α0, αi+1}) (Prop. 4 and Fact 2)

Similarly, it holds that

ρ(S(4i+5)
a6

) = conv({β0, βi+1}),
ρ(S(4i+6))

a7
= conv({γ0, γi+1}),

ρ(S(4i+7)
a8

) = conv({δ0, δi+1}),

which completes the proof.

Proof of Theorem 3: Suppose r = 4k + 1, where k ∈ {0, 1, 2, . . . }. Recall
the functionality f4k+1 defined in Section 5.1

f4k+1(0, 0) =

(
3

16
· σk,

1

4
· σk+1,

1

8
· σk,

3

8
· σk,

3

24k+2

)
f4k+1(0, 1) =

(
9

16
· σk,

1

4
· σk+1, 0 · σk,

1

8
· σk,

3

24k+2

)
f4k+1(1, 0) =

(
1

16
· σk,

3

4
· σk+1,

1

8
· σk, 0 · σk,

1

24k+2

)
f4k+1(1, 1) =

(
3

16
· σk,

3

4
· σk+1, 0 · σk, 0 · σk,

1

24k+2

)

where σk := 1−(1/16)k

1−1/16 for k ∈ {0, 1, 2, . . . }. As we discussed in Section 5.1, the

encoding of f4k+1 is the triplet (A,B, V4k+1), where

A =

(
3/4, 1/4, 1/2, 1, 3/4
1/4, 3/4, 1/2, 0, 1/4

)
∈ R2 × R5,

B =

(
1/4, 1/2, 1, 3/4, 1/2
3/4, 1/2, 0, 1/4, 1/2

)
∈ R2 × R5,

V4k+1 =

(
σk, 2σk+1,

σk

4
,
σk

2
,

1

24k−1

)
∈ R5.

22



and the query point is the following:

Q(f4k+1) =

(
1

2
,
1

2
,
1

4
· σk

4
,
σk+1

2
,
σk

16
,
σk

8
,

1

24k+1

)
∈ R7.

Now, remember that:

βk = σk+1 ·
e2
2

+ σk · e1
4

+ σk · e4
8

+ σk · e3
16

+
e5

24k+1

This implies that ρ (Q(f4k+1)) = βk. Thus, it follows from Lemma 6 and Lemma 2

that ρ(Q(f4k+1)) ∈ S(4k+1)
a6 but ρ(Q(f4k+1)) ̸∈ S(4(k−1)+1)

a6 . Moreover, Lemma 5

implies that S(4(k−1)+1)
a6 = S(4k)

a6 . Thus, we conclude that

Q(f4k+1) ∈ S(4k+1) \ S(4k)

which is what we promised to prove in Lemma 1. This implies that fr has r
round secure protocol but no r − 1 secure protocol.

We can extend the proof to the case that r ̸= 4k + 1 for any k. The idea is
similar. We can find 3 different family of functions corresponding to r = 4k, r =
4k + 2, r = 4k + 3. We only need to choose a different query point in Figure 2,
a5, a7, or a8 and scale that figure and transfer it appropriately such that query
points (1/2, 1/2) is on a5, a7, or a8 depending on the remainder of division of r
by 4. Then, we can find appropriate functionalities. This completes the proof of
the theorem.

7.1 Properties of sequences αi, βi, γi, δi

For i ∈ {0, 1, 2, . . . }, define

σi :=

i−1∑
k=0

1

16k
=

1− (1/16)i

1− 1/16
,

αi := σi ·
e1
2

+ σi ·
e4
4

+ σi ·
e3
8

+ σi ·
e2
16

+
e5
16i

,

βi := σi+1 ·
e2
2

+ σi ·
e1
4

+ σi ·
e4
8

+ σi ·
e3
16

+
e5

24i+1
,

γi := σi+1 ·
e3
2

+ σi+1 ·
e2
4

+ σi ·
e1
8

+ σi ·
e4
16

+
e5

24i+2
,

δi := σi+1 ·
e4
2

+ σi+1 ·
e3
4

+ σi+1 ·
e2
8

+ σi ·
e1
16

+
e5

24i+3
.

The following proposition follows from the definition of σi.

Proposition 2. For all i ∈ {1, 2, . . . },

σi = 1 +
1

16
σi−1.
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Proposition 3. The following statements hold.

lim
i→∞

αi =
8

15
e1 +

4

15
e4 +

2

15
e3 +

1

15
e2 =: α∗,

lim
i→∞

βi =
8

15
e2 +

4

15
e1 +

2

15
e4 +

1

15
e3 =: β∗,

lim
i→∞

γi =
8

15
e3 +

4

15
e2 +

2

15
e1 +

1

15
e4 =: γ∗,

lim
i→∞

δi =
8

15
e4 +

4

15
e3 +

2

15
e2 +

1

15
e1 =: δ∗.

Proof. First, note that

lim
i→∞

σi−1 = lim
i→∞

σi = lim
i→∞

1− (1/16)i

1− 1/16
= 16/15.

Now, we have

lim
i→∞

αi = lim
i→∞

σi ·
(e1
2

+
e4
4

+
e3
8

+
e2
16

)
+

e5
16i

=
16

15
·
(e1
2

+
e4
4

+
e3
8

+
e2
16

)
=

8

15
e1 +

4

15
e4 +

2

15
e3 +

1

15
e2 = α∗.

Similarly, we can find the limi→∞ βi = β∗, limi→∞ γi = γ∗, and limi→∞ δi = δ∗.

Proposition 4. For all i ∈ {0, 1, . . . },

αi+1 =
15

16
· α∗ +

1

16
· αi, βi+1 =

15

16
· β∗ +

1

16
· βi,

γi+1 =
15

16
· γ∗ +

1

16
· γi, δi+1 =

15

16
· δ∗ + 1

16
· δi.

Consequently, αi is on the line segment between α0 = e5 and αi+1; and αi+1 is
on the line segment between αi and α∗. More formally,

αi ∈ conv(α0, αi+1), αi+1 ∈ conv(αi, α
∗),

βi ∈ conv(β0, βi+1), βi+1 ∈ conv(βi, β
∗),

γi ∈ conv(γ0, γi+1), γi+1 ∈ conv(γi, γ
∗),

δi ∈ conv(δ0, δi+1), δi+1 ∈ conv(δi, δ
∗).

Proof. By definition,

αi = σi ·
(e1
2

+
e4
4

+
e3
8

+
e2
16

)
+

e5
16i

.
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0

β0 βi βi+1 β∗

Fig. 4: Visualization of sequence {βi}∞i=1 (refer to Prop. 4)

So, we have

αi+1 = σi+1 ·
(e1
2

+
e4
4

+
e3
8

+
e2
16

)
+

e5
16i+1

=
(
1 +

σi

16

)
·
(e1
2

+
e4
4

+
e3
8

+
e2
16

)
+

e5
16i+1

(Prop. 2)

=
(e1
2

+
e4
4

+
e3
8

+
e2
16

)
+

1

16
·
(
σi ·

(e1
2

+
e4
4

+
e3
8

+
e2
16

)
+

e5
16i

)
=

15

16
· α∗ +

1

16
· αi

The proofs of the three other equations are similar.

Proposition 5. For all i ∈ {0, 1, . . . },

αi+1 =
e1 + δi

2
, βi =

e2 + αi

2
, γi =

e3 + βi

2
, δi =

e4 + γi
2

.

Proof. By definition,

e2 + αi

2
=

e2
2

+
σi

2
· (e1

2
+

e4
4

+
e3
8

+
e2
16

) +
e5

2 · 16i

=
e2
2

+
σi

2
· (e1

2
+

e4
4

+
e3
8

+
e2
16

) +
e5

2 · 16i

=
(
1 +

σi

16

)
· e2
2

+ σi · (
e1
4

+
e4
8

+
e3
16

) +
e5

2 · 16i

= σi+1 ·
e2
2

+ σi · (
e1
4

+
e4
8

+
e3
16

) +
e5

2 · 16i
Prop. 2

= βi

The proofs of the other equations are similar.

8 On the Optimality of Our Constructions

In this section, we will provide a proof for Theorem 2 mentioned in Section 2.
To prove Theorem 2, we will state Theorem 5 in the following and then prove
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it in Section 8.1. Note that Theorem 5 implies Theorem 2. According to this
theorem, if the initial set S(0) is a subset of R6 of size 4, the sequence S(0) →
S(1) → S(2) → . . . stabilizes after at most 4 rounds.

Theorem 5. Let S(0) be a subset of R6 of size 4. Then, there exists an i∗ ∈
{0, 1, 2, 3, 4} such that S(i∗) = S(i∗+1).

The following result is a consequence of the above theorem and [1,11].

Corollary 1. Let f : {0, 1} × {0, 1} → RZ such that card (Z) ⩽ 4. If f has a
perfectly secure protocol, then there is a perfectly secure protocol for f with at
most 4 rounds.

8.1 Proof of Theorem 5

To prove Theorem 5, We will enumerate over all possible cases for S(0) and show
that in each case the sequence S(0),S(1), . . . stabilizes in at most four rounds
i.e. S(4) = S(5). It was already shown in [11] that there is an at most two round
secure protocol for a secure function with card (Z) ⩽ 3. Therefore, without loss
of generality, we only need to enumerate over the cases that the final result in
S(∞) is connected. Moreover, we only need to consider one case among a set
of cases that are similar. For example, in case 1, we consider 4 points that are
aligned horizontally. The case that 4 points are aligned vertically is similar to
case 1 and we do not need to consider it. We complete the proof by stating and
proving the following lemma (Lemma 7).

Lemma 7. In the following table, we state i∗ (defined in Theorem 5) for each
of the following cases.

Case Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

i∗ 1 1 2 1 2 2 1 2 2 1 2 2 4 2 3 3 2

Table 1: The table of stabilization rounds for all distinct possible cases when
card (Z) = 4

Proof. In all cases except case 6, one can easily verify that S(i∗) = S(i∗+1) for
the i∗ mentioned in the table. The reason is that in all those cases, when the
final shape in the projected space (projection under π) stabilizes, then the whole
shape stabilizes. More formally, in all cases except case 6, one can verify that
π(S(i∗)) = π(S(i∗+1)) implies that S(i∗) = S(i∗+1). For all cases except case 6,
we show in the following that π(S(i∗)) = π(S(i∗+1)).

Now, we discuss case 6 in the following figure. At time 0, there are four points.

Suppose ρ(S(0)
ai ) = ei where ei ∈ R4 represents the i-th standard basis vector in

R4. The points a1 and a2 are axis aligned, so ρ(S(1)
a1a2

) = conv(e1, e2). Similarly,
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ρ(S(1)
a3a4

) = conv(e3, e4). Now, notice that at the end of time 1, there are two

objects at point p. One of them is (p, e1+e2
2 ) and the other one is (p, e3+e4

2 ).

They are both axis aligned. So, we have ρ(S(2)
p ) = conv( e1+e2

2 , e3+e4
2 ) and the

shape stabilizes at step 2.

a1 a2

a3

a4

a1 a2

a3

a4

p
a1 a2

a3

a4

p

In the following, we enumerate over all possible cases and study the evolution
of the sequence S(0),S(1), . . . .

If there are 3 collinear points. There will be 4 cases as follows.

1.

2.

3.

4.

There are no 3 coolinear points.

Subcase 1: Two points are horizontally collinear and the other two points
are vertically collinear. There are 2 cases as follows.

5.
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6.

Subcase 2: Two points are horizontally collinear and the other two points
are also horizontally collinear.

7.

8.

9.

10.

11.

Subcase 3: Two points are horizontally collinear, the other two points are
not collinear

12.
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13.

14.

15.

16.

17.
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Poincaré C, Analyse non linéaire, volume 20, pages 391–403. Elsevier, 2003. 9
17. Eyal Kushilevitz. Privacy and communication complexity. In 30th FOCS, pages

416–421. IEEE Computer Society Press, October / November 1989. doi:10.1109/
SFCS.1989.63512. 3

18. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986. doi:
10.1109/SFCS.1986.25. 1

31

https://doi.org/10.1145/335305.335342
https://doi.org/10.1145/335305.335342
https://doi.org/10.1109/SFCS.1989.63512
https://doi.org/10.1109/SFCS.1989.63512
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

	Randomized Functions with High Round Complexity

