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Abstract

Characterizing the optimal round and communication complexity of secure computation is
essential to minimize the overhead of security when computing over distributed data. In this con-
text, the seminal results of Chor-Kushilevitz-Beaver (STOC–1989, FOCS–1989, DIMACS–1989)
characterize all two-party computations with deterministic output that admit secure protocols,
namely, the decomposable functions. However, the precise round and communication complex-
ity have essentially remained unexplored for secure protocols of computations with randomized
output. The space of all candidate private-coin secure protocols has an intricate structure that
confounds intuition and has been challenging to reason.

Our work resolves this problem for two-party secure function evaluation functionalities with
randomized output. We introduce an innovative geometric encoding of all candidate secure
protocols for a given computation as points in a high-dimensional space. Next, we analyze
the properties of these geometric sets of points using a real algebraic geometry toolkit and
demonstrate their tameness. Consequently, the following decidability, search, and optimization
results follow.

1. Determining whether a given computation admits a secure protocol within round or com-
munication constraints is decidable.

2. If there is such a protocol, we can construct one such protocol.

3. Otherwise, we present a geometric obstruction to achieving security.

Tight new information complexity bounds for secure computation follow as corollaries of our
technical contributions. We demonstrate the expressive power of our results by unifying the
current state-of-the-art. The geometric sets that we study are new and natural generalizations
of the convex hull of points, motivating exciting new foundational research in real algebraic
geometry and topology.



1 Introduction

Consider the privacy-preserving mechanism design for (a variant of) the facility location problem:
Determine a facility’s location distributed according to a (discrete) Gaussian at the centroid of
parties’ private locations. Among various privacy metrics, secure multi-party computation (MPC),
introduced by Yao [Yao86] and Goldreich-Micali-Wigderson [GMW87], facilitates the formalization
of meaningful security where parties can interactively achieve this objective without revealing non-
essential information, even a posteriori [NPS99].

Motivated by such applications, it is natural to study an abstraction where Alice and Bob
have private inputs x ∈ X and y ∈ Y . Their objective is to interactively compute their output
sampled from the distribution f(x, y) (over some sample space Z) without revealing additional
information about their private inputs. The computation f , represented by the output distributions{
f(x, y) ∈ RZ : x ∈ X, y ∈ Y

}
, is public knowledge. Both parties have an unbounded computational

power and are honest-but-curious, i.e., they follow the prescribed protocol; however, they are curious
to find additional information.

Question. Is there a secure protocol for a given computation?
What is its round and communication complexity?

Investigating this fundamental research problem is primarily restricted to computations with
deterministic output or where at most one party’s input influences the output. For example, among
computations with deterministic output, the seminal works of Chor, Kushilevitz, and Beaver [CK89,
Kus89, Bea89] characterized decomposable functions as ones admitting secure protocols. The case
of functions with randomized output has remained unresolved ever since, barring highly specialized
computations [MPR13, DP18] (c.f., the discussions in [MPR13, Bra21, Wei15]).

In particular, even the decidability of this problem is unknown, let alone resolving the search
and optimization analogs. Systematically exploring the space of all candidate private-coin protocols
to address such computability, search, or optimization problems has been a challenging hurdle to
overcome.

Our contributions. We investigate the round and communication complexity of two-party secure
function evaluation. Given a computation, we determine whether there is a secure protocol for the
computation within specified round or communication constraints. We generate one such secure
computation protocol if the feasibility test is affirmative. Otherwise, we demonstrate a (geometric)
obstruction to secure realizability within these constraints. The following technical innovations
underlie our results.

1. An innovative geometric encoding of candidate secure (private-coin) protocols for a given com-
putation, and

2. Introducing (new and) natural generalizations of the convex hull of points to study the properties
of appropriate sets of points (refer to Appendix I for details).

The round and communication studies generate (the encoding of) increasingly complex candi-
date (private-coin) protocols using an appropriate recursive geometric action, starting from initial
points that encode the base case protocols. Our feasibility test translates into a membership test
for a specific query point in these recursively-generated sets of points. The generative story of this
membership yields a secure protocol for the computation. If the query point is outside these sets,
then (a succinct description of) these sets represent a geometric obstruction to secure realizability.
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We study the sets of points that this geometric action recursively generates through the lens
of real algebraic geometry. We show that these sets are tame and support the features indicated
above. Consequently, we obtain the following general feasibility, search, and optimization results.

Theorem 1 (Determining Round Complexity). There is a procedure that takes as input (a) the
function f : X × Y → RZ , and (b) the interaction constraint r ∈ {1, 2, . . . , }. This procedure says
yes if (and only if) there is a secure protocol for f with (at most) r rounds.

If such a protocol exists, this procedure outputs one such secure protocol. If no such protocol
exists, this procedure outputs a (geometric) certificate attesting to this fact.

Theorem 2 (Determining Communication Complexity). There is a procedure that takes as input
(a) the function f : X × Y → RZ , and (b) the communication constraint c ∈ {1, 2, . . . , }. This
procedure says yes if (and only if) there is a secure protocol for f with (at most) c-bit communication.

If such a protocol exists, this procedure outputs one such secure protocol. If no such protocol
exists, this procedure outputs a (geometric) certificate attesting to this fact.

Furthermore, our proof techniques establish the following consequences.

1. Appendix E and Appendix F: Our results subsume and unify the current state-of-the-art.
For example, the characterization of Chor-Kushilevitz-Beaver [CK89, Kus89, Bea89] and Data-
Prabhakaran [DP18] are particular cases of our general results.

2. Lemma 7: Even for X = Y = {0, 1}, for any r ∈ {1, 2, . . . }, there are functions f : X × Y → RZ

requiring r rounds of interaction, and, in turn, r bits of communication, for secure computation.

3. Corollary 1: If a function f : X × Y → RZ has a secure r-round protocol, then there is an
r-round secure protocol where Alice communicates ⌈lg(|X|+ |Z|)⌉ bits, and Bob communicates
⌈lg(|Y |+ |Z|)⌉ bits per round.

Overview of the paper. Section 2 introduces some minimal definitions and Section 3 presents
our technical approach and illustrates it using an example. Section 4 summarizes the reduction of
the cryptographic problem to a geometric problem. Section 5 and Section 6 demonstrate that the
geometric problem is computable.

2 Preliminaries

This section defines our model and introduces basic definitions to facilitate our discussions.

System model. We consider the standard two-party full information model – Alice and Bob have
unbounded computation power, and a synchronous communication channel connects them. Parties
have access to an unbounded number of independent private random bits with arbitrary biases. For
example, a party can have a private random bit that is 1 with a probability of 1/π. In an interactive
protocol, a round corresponds to one party sending a message to the other party.

Secure function evaluation functionalities. Alice and Bob have private inputs x ∈ X and
y ∈ Y , respectively. A secure function evaluation functionality samples (zA, zB) according to a
distribution f(x, y), and outputs zA to Alice and zB to Bob.

Among these functionalities, a symmetric secure function evaluation (SSFE) samples z ac-
cording to a distribution f(x, y) and outputs z to both Alice and Bob. Appendix H argues that
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restricting our investigation to symmetric functions is sufficient. Therefore, the sequel investigates
a randomized two-party function f : X × Y → RZ , where f(x, y)z represents the probability of the
output being z ∈ Z conditioned on the inputs (x, y) ∈ X × Y . Furthermore, f(x, y) represents the
output distribution over Z for inputs (x, y) ∈ X × Y .

Security model. We denote two identical distributionsD andD′ byD ≡ D′. Our work considers
perfect security against honest-but-curious (semi-honest) adversaries, i.e., adversaries who follow the
protocol honestly but are curious to find additional information about the honest party’s input.

Definition 1 (Semi-honest Security). Π is a perfectly semi-honest secure protocol for a function
f : X × Y → RZ if the following conditions hold.

1. Correctness. Every complete transcript τ of the protocol Π is associated with an output
out(τ) ∈ Z. Let T (x, y) represent the random variable corresponding to the complete tran-
script of the protocol Π when parties have private inputs x and y. Then, the following identity
holds for every (x, y) ∈ X × Y .

out (T (x, y)) ≡ f(x, y).

2. Security against corrupt Alice. The protocol transcript provides Alice with no additional
information about Bob’s private input beyond their output. That is, there is a simulator SimA

such that the following identity holds for all (x, y) ∈ X × Y .

SimA(x, f(x, y)) ≡ T (x, y).

Intuitively, the Markov chain Y − (X, f(X,Y ))− T (X,Y ) holds.

3. Security against corrupt Bob. There is a simulator SimB such that the following identity
holds for all (x, y) ∈ X × Y .

SimB(y, f(x, y)) ≡ T (x, y).

This definition coincides with Canetti’s universally composable security definition [Can00].

Round and communication complexity. Our work considers standard worst-case notions of
round and communication complexity for interactive protocols. A protocol has round complexity
(at most) r, if for all Alice input x and her private randomness, and Bob input y and his private
randomness, the protocol Π exchanges (at most) r messages. Similarly, a protocol has communi-
cation complexity (at most) c, if for all Alice input x and her private randomness, and Bob input
y and his private randomness, the protocol Π communicates (at most) c bits.

3 Overview: Our Technical Approach

This section presents a high-level summary of our technical ideas underlying our proof strategy to
determine whether a given two-party SSFE has an r-round secure protocol or not. An illustrative
worked-out representative example accompanies this presentation, showing that the example func-
tion of Figure 1 has a 4-round secure protocol and no 3-round secure protocol. The presentation
below follows the actual proof closely, except for a definition where “division by 0 concerns” may
arise, which the full proof in Appendix B subsequently addresses.

3



f(0, 0) = 1
216 · (52, 80, 48, 36) f(0, 1) = 1

216 · (26, 100, 36, 54)

f(1, 0) = 1
216 · (26, 40, 96, 54) f(1, 1) = 1

216 · (13, 50, 72, 81)

Figure 1: Definition of the representative example function f : {0, 1} × {0, 1} → R{1,2,3,4}.

Step 0: Standardization. Prior results [MPR13, DP18] show that one needs to consider only
symmetric secure function evaluation (SSFE) f : X × Y → RZ of a specific standardized form.
Among all SSFE, one needs to consider only those where there are A ∈ RX×Z , B ∈ RY×Z , and
V ∈ RZ such that the following identities hold (see Lemma 1 in Appendix B).

f(x, y)z = Ax,z ·By,z · Vz (for all x ∈ X, y ∈ Y, z ∈ Z)∑
x∈X

Ax,z = 1 and
∑
y∈Y

By,z = 1 (for all z ∈ Z)

Consider our example SSFE f : X × Y → RZ in Figure 1, where X = Y = {0, 1} and Z =
{1, 2, 3, 4}. This function satisfies the standardization constraints as evidenced by A ∈ RX×Z ,
B ∈ RY×Z , and V ∈ RZ below.

A =

{
A1 = (1/3, 1/3, 2/3, 3/5) ∈ RZ

A0 = (2/3, 2/3, 1/3, 2/5) ∈ RZ
B =

{
B1 = (1/3, 5/9, 3/7, 3/5) ∈ RZ

B0 = (2/3, 4/9, 4/7, 2/5) ∈ RZ
(1)

V = (13/24, 5/4, 7/6, 25/24) ∈ RZ (2)

Step 1: Security experiment. Suppose Π is a perfectly secure protocol for f . Let Π(τ) represent
the residual protocol of Π continuing from the partial transcript τ .1 For example, when τ = ∅ (the
empty transcript), then Π(τ) = Π, and when τ is a complete transcript, then Π(τ) is a 0-round
protocol where the output is out(τ), irrespective of the parties’ inputs.

Let f (τ) : X×Y → RZ represent the randomized function such that f (τ)(x, y) is identical to the
output distribution of the protocol Π(τ)(x, y), for all (x, y) ∈ X × Y . For example, f (∅) = f and,
for a complete transcript τ , the function f (τ) = e(z), a function that outputs z with probability 1
(irrespective of the inputs), where z = out(τ) and e(z) ∈ {0, 1}Z is a vector indicating the output
z ∈ Z.

Consider an environment that samples x uniformly at random fromX, samples y uniformly (and
independently) at random from Y , sends x to Alice and sends y to Bob. For a partial transcript τ
of the protocol, let π(τ) ∈ RX represent the conditional distribution of Alice’s input conditioned on
Π generating the partial transcript τ . Likewise, let ρ(τ) ∈ RY represent the conditional distribution
of Bob input conditioned on Π generating τ .

We define the pertinent information corresponding to the partial transcript τ as
(
π(τ), ρ(τ), f (τ)

)
.

Our objective is to characterize all candidate pertinent information systematically.

1The formal description of the protocol Π(τ)(x, y) is as follows. Alice reverse-samples a random local private
randomness consistent with her private input x and the public transcript τ . Bob reverse-samples a random local
private randomness consistent with his private input y and the public transcript τ . Starting with these private views,
Alice and Bob follow the protocol Π to generate the next messages and extend the protocol transcript τ .
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Step 2: Structure for inductive geometric characterization. We inductively prove a func-
tion structure result showing that the following identity holds for some appropriate V (τ) ∈ RZ .

f (τ)(x, y)z =

(
Ax,z

π
(τ)
x

)
·

(
By,z

ρ
(τ)
y

)
· V (τ)

z , for all x ∈ X, y ∈ Y, z ∈ Z (3)

That is,
(
π(τ), ρ(τ), V (τ)

)
∈ RX × RY × RZ determines the function f (τ), represented by f (τ) ∼=(

π(τ), ρ(τ), V (τ)
)
. Consequently, henceforth,

(
π(τ), ρ(τ), V (τ)

)
∈ RX × RY × RZ represents the per-

tinent information of τ .
Simultaneously, we inductively prove a geometric embedding. Let Ω(τ) represent the set of all

partial transcripts that are one-round extensions of τ . Then, the following geometric embedding
holds (

π(τ), ρ(τ), V (τ)
)
=

∑
τ ′∈Ω(τ)

p(τ
′) ·
(
π(τ

′), ρ(τ
′), V (τ ′)

)
,

where
{
p(τ

′)
}
τ ′∈Ω(τ)

is a probability distribution over Ω(τ).

If Alice extends the partial transcript τ , then ρ(τ) = ρ(τ
′), for all τ ′ ∈ Ω(τ), because she cannot

reveal additional information about Bob’s input beyond what the partial transcript τ already
reveals. Similarly, if Bob extends the partial transcript τ , then π(τ) = π(τ

′), for all τ ′ ∈ Ω(τ).
We prove the function structure and the geometric embedding results simultaneously using

induction on the height of the partial transcript τ , which is naturally defined. A complete transcript
has height 0, and the height of any partial transcript is one more than the maximum height of the
partial transcripts in Ω(τ).

Step 3: Base cases. Fix a complete transcript τ such that out(τ) = z ∈ Z. By the security of

the protocol, observe that π
(τ)
x = Ax,z, for all x ∈ X, and ρ

(τ)
y = By,z, for all y ∈ Y . Furthermore,

the function f (τ) = e(z), therefore V (τ) = e(z) ensures that f (τ) ∼=
(
π(τ), ρ(τ), V (τ)

)
. Observe that

the pertinent information of the complete transcript τ depends solely on f and is independent of
the transcript itself.

For all output z ∈ Z, define the point

P (z) = ( (Ax,z : x ∈ X) , (By,z : y ∈ Y ) , e(z) ) ∈ RX × RY × RZ . (4)

For our example, we have (refer to Equation 1 for values of A and B)

P (1) = ((2/3, 1/3), (2/3, 1/3), e(1)) , P (2) = ((2/3, 1/3), (4/9, 5/9), e(2)) ,

P (3) = ((1/3, 2/3), (4/7, 3/7), e(3)) , P (4) = ((2/5, 3/5), (2/5, 3/5), e(4)) .

Therefore, the pertinent information of all transcripts of height 0 (i.e., the complete transcripts)
lie in the set

S(0) :=
{
P (z) : z ∈ Z

}
⊆ RX × RY × RZ .

Step 4: Recursive generation of complex protocols. For i ∈ {0, 1, . . . }, let S(i) ⊆ RX ×
RY × RZ represent the set of all candidate pertinent information of partial transcripts at height
⩽ i. Assume that we already have computed the set S(i). Our objective is to define the set S(i+1)

recursively.

5



For t ∈ {1, 2, . . . }, consider arbitrary t points Q(1), Q(2), . . . , Q(t) ∈ S(i), such that Q(k) =(
π(k), ρ(k), V (k)

)
, for k ∈ {1, 2, . . . , t}. Let Q = (π, ρ, V ′) =

∑t
k=1 p

(k) · Q(k) be a convex linear

combination of the points Q(1), Q(2), . . . , Q(t).
Suppose Alice extended the partial transcript corresponding to Q into the partial transcripts

corresponding to Q(1), Q(2), . . . , Q(t). Then, it must be the case that ρ = ρ(1) = ρ(2) = · · · = ρ(t). We
prove that the converse is also true. That is, if ρ(1) = ρ(2) = · · · = ρ(t), then Alice can extend the
partial transcript corresponding to Q into the partial transcripts Q(1), Q(2), . . . , Q(t). For brevity,
we say Alice fuses the points Q(1), Q(2), . . . , Q(t). Likewise, if π(1) = π(2) = . . . = π(t), then Bob
fuses the points Q(1), Q(2), . . . , Q(t).

Define linear maps φ1 : RX × RY × RZ → RX and φ2 : RX × RY × RZ → RY as follows.

φ1(π, ρ, V
′) := π φ2(π, ρ, V

′) := ρ. (5)

Therefore, the set S(i+1) is recursively defined below.

For t ∈ {1, 2, . . . } and any points Q(1), Q(2), . . . , Q(t) ∈ S(i) satisfying

φ1(Q
(1)) = φ1(Q

(2)) = · · · = φ1(Q
(t)), or

φ2(Q
(1)) = φ2(Q

(2)) = · · · = φ2(Q
(t))

add all possible convex linear combinations of Q(1), Q(2), . . . , Q(t) to the set S(i+1).

Figure 2 assists in visualizing the evolution of the sets S(0) → S(1) →· · · for our example. In
our case, these sets are subsets of R2+2+4, which is challenging to visualize. Consider the projection
of a point (π, ρ, V ′) ∈ R{0,1} × R{0,1} × R{1,2,3,4} to (π1, ρ1). Figure 2 demonstrates the evolution
of the set S(0) → S(1) → · · · → S(4) under this projection. Observe that fusing Q(1), . . . , Q(t) is
permissible if and only if π(1) = · · · = π(t) or ρ(1) = · · · = ρ(t). When, X = Y = {0, 1}, this

constraint (equivalently) becomes: fusing Q(1), . . . , Q(t) is permissible if and only if π
(1)
1 = · · · = π

(t)
1

or ρ
(1)
1 = · · · = ρ

(t)
1 .

⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

proj
(
S(0)

)

⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

proj
(
S(1)

)

⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

proj
(
S(2)

)

⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

proj
(
S(3)

)

⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

proj
(
S(4)

)
Figure 2: Plot of the projection of the points in S(i)(f) for 0 ⩽ i ⩽ 4. The ⊗ mark represents the projection
of the query point Q(f) (defined in Equation 6), where f is defined in Figure 1. The geometric action allows
joining the line segment between any two points with identical first or second coordinates.

Step 5: Protocol reconstruction. Recall that our objective is to determine whether f has an
(at most) r-round protocol. The pertinent information of the empty transcript is represented by

Q(f) :=

(
UX , UY ,

1

|X × Y |
· V
)

∈ RX × RY × RZ , (6)

where UX is the uniform distribution over X, UY is the uniform distribution over Y , and V is the
vector determined in Equation 2 of the standardization step.
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In our example function, we have (refer to Equation 2 for the value of V )

Q(f) = ( (1/2, 1/2) , (1/2, 1/2) , (13/96, 5/16, 7/24, 25/96) ) ∈ RX × RY × RZ .

Therefore, f has an (at most) r-round protocol if and only if Q(f) ∈ S(r). If Q(f) ̸∈ S(r), then the
descriptions of the query point Q(f) and the set S(r) are a novel geometric certificate that f does
not have an r-round secure protocol. For our example, Q(f) ∈ S(4); however, Q(f) ̸∈ S(3) (clear
from Figure 2) – proving that our function has a 4 round protocol and 3 rounds are insufficient.

We show that every step of the inductive construction of a pointQ ∈ S(i+1) by fusingQ(1), . . . , Q(t) ∈
S(i) translates into a protocol that extends a partial transcript corresponding to Q into par-
tial transcripts corresponding to Q(1), . . . , Q(t). These transition probabilities are determined by{
p(k)
}
k∈{1,2,...,t} and

{
π(k)

}
k∈{1,2,...,t} (refer to Appendix C for the reconstruction algorithm). Using

this step recursively, one recovers the protocol for f using a witness explaining the membership of
the point Q(f) ∈ S(r).

⊗

1/3 1/2 2/3

1/3

1/2

2/3

Axis-2

Axis-1

e(1)

e(2)

e(3)

e(4)

4
7
e(1) + 3

7
e(2)

4
35

e(1) + 3
35

e(2) + 4
5
e(3)

1
4
e(1) + 3

4
e(2)

1
15

e(1) + 1
20

e(2) + 7
15

e(3) + 5
12

e(4)

13
96

e(1) + 5
16

e(2) + 7
24

e(3) + 25
96

e(4)

Alice Fusing
13
96

e(1) + 5
16

e(2) + 7
24

e(3) + 25
96

e(4)

Bob Fusing
1
15

e(1) + 1
20

e(2) + 7
15

e(3) + 5
12

e(4)

Alice Fusing
4
35

e(1) + 3
35

e(2) + 4
5
e(3)

e(3)
Bob Fusing

4
7
e(1) + 3

7
e(2)

e(1) e(2)

e(4)

Bob Fusing
1
4
e(1) + 3

4
e(2)

e(2)e(1)

Figure 3: For the function f in Figure 1, this figure displays the payload of “critical points” in proj
(
S(4)

)
.

Recall that e(1) = (1, 0, 0, 0), e(2) = (0, 1, 0, 0), e(3) = (0, 0, 1, 0), and e(4) = (0, 0, 0, 1), the payloads of
the points in the base case. Furthermore, note that f(0, 0) = 13

96e(1) +
5
16e(2) +

7
24e(3) +

25
96e(4). The tree

presents the (shallowest tree) producing the payload from e(1), e(2), e(3), and e(4), generating the (unique)
most efficient secure protocol for f .

For our example, let us visualize how Q(f) ∈ S(4). For points (π, ρ, V ′) ∈ R{0,1} × R{0,1} ×
R{1,2,3,4} we continue to represent the projected point (π1, ρ1). For some critical points, we also
mention the corresponding payload V ′ ∈ R{1,2,3,4}. Figure 3 demonstrates the witness of Q(f) ∈ S(4).

Challenges in Generalization. The presentation above relies on all probabilities f(x, y)z be-
ing positive. Generalizing to arbitrary f requires some modifications to definitions of pertinent
information (specifically, refer to Equation 3, which risks “division by 0 concerns”). Appendix B
presents the full proof of our result.

Functions with an arbitrarily high round complexity. Fix any r ∈ {1, 2, . . . }. We show
that there are functions f : {0, 1} × {0, 1} → RZ such that a secure protocol for f must have r
rounds. In our example |Z| = (r + 1). The idea is to construct S(0) such that the query point
Q(f) = (1/2, 1/2, ·) ̸∈ S(r−1), proving Lemma 7. Appendix D presents this function construction.

Modification: Addressing communication complexity. In the geometric problem, bounding
t ⩽ 2 in the recursive definition ensures that Q(f) ∈ S(c) if and only if f has an (at most) c-bit
secure protocol.
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Remark: our novel perspective on security. Existing approaches analyze the (forwards)
evolution of secure protocol over time – characterizing what safe information they can potentially
reveal at any point in time. In contrast, we begin from a fully evolved state of a secure protocol
and look back in time, characterizing all possible states that can lead the protocol to these final
states. This difference in perspective is highlighted by comparing (1) Figure 7: Evolution of the
secure protocol for Dutch auction as proposed by Kushilevitz [Kus89] and (2) Figure 8: Searching
for the secure protocol for the Dutch auction using our perspective.

4 Cryptographic Reduction

Suppose we are investigating the round/communication complexity of a general (two-party) se-
cure function evaluation. If this function has Kilian’s obstruction [Kil91, Kil00], there is no se-
cure protocol. However, avoiding Kilian’s obstruction does not imply the existence of a secure
protocol (for example, the famous Kushilevitz function of Figure 9 and the recent binary-input
randomized function of Figure 13). If the function avoids Kilian’s obstruction, then studying its
round/communication complexity is equivalent to studying the round/communication complexity
of a related standardized SSFE. Appendix H (following [MPR13, DP18]) provides additional details
on this argument.

Consequently, without loss of generality, consider a standardized function f : X × Y → RZ

defined in step 0 of Section 3. Let A ∈ RX×Z , B ∈ RY×Z , V ∈ RZ be the appropriate vectors.
Define Q(f) as in Equation 6. For every z ∈ Z, define P (z) as in Equation 4. Define the linear maps
φ1, φ2 as in Equation 5.

Round Complexity. Initialize the set S(0) :=
{
P (z) : z ∈ Z

}
. For every i ∈ {0, 1, . . . }, recur-

sively define

S(i+1) :=


t∑

k=1

p(k) ·Q(k) :

t ∈ {1, 2, . . . }, Q(1), Q(2), . . . , Q(t) ∈ S(i)

p(1), p(2), . . . , p(t) ⩾ 0,
∑t

k=1 p
(k) = 1

φ1(Q
(1)) = · · · = φ1(Q

(t)) or φ2(Q
(1)) = · · · = φ2(Q

(t))

 (7)

The following statements hold.

1. An r-round semi-honest secure protocol for f exists if and only if Q(f) ∈ S(r).

2. Given a witness for Q(f) ∈ S(r) one can construct an (at most) r-round secure protocol for f .

3. The descriptions of Q(f) and the set S(r) ∈ RX × RY × RZ are a geometric obstruction for
r-round secure protocols for f when Q(f) ̸∈ S(r).

Communication Complexity. Initialize the set T (0) :=
{
P (z) : z ∈ Z

}
. For every i ∈ {0, 1, . . . },

recursively define

T (i+1) :=

p(1) ·Q(1) + p(2) ·Q(2) :

Q(1), Q(2) ∈ T (i)

p(1), p(2) ⩾ 0, p(1) + p(2) = 1

φ1(Q
(1)) = φ1(Q

(2)) or φ2(Q
(1)) = φ2(Q

(2))

 (8)

The following statements hold.

1. An c-bit semi-honest secure protocol for f exists if and only if Q(f) ∈ T (c).
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2. Given a witness for Q(f) ∈ T (c) one can construct an (at most) c-bit secure protocol for f .

3. The descriptions of Q(f) and the set T (c) ∈ RX ×RY ×RZ are a geometric obstruction for c-bit
secure protocols for f when Q(f) ̸∈ T (c).

What remains? Since t is unbounded in the recursive definition of the set S(i+1), it is un-
clear whether one can test Q(f) ∈ S(r). Section 5 upper bounds t in the recursive definition of
S(i+1). Subsequently, Section 6 demonstrates that membership testing, witness extraction, and the
descriptions of the sets S(i) and T (i) are finite.

Proof overview of Theorem 1 and Theorem 2. Theorem 1 follows as a consequence of (a)
the reduction of the round complexity problem to the geometric problem in this section, (b) the
upper bound on t in the recursive definition of S(i+1) in Section 5, and (c) Theorem 3 proving
the tameness of the S(i) sets. Theorem 2 follows as a consequence of (a) the reduction of the
communication complexity problem to the geometric problem in this section and (b) Theorem 3
proving the tameness of the T (i) sets.

5 Interlude: Bounding Complexity

Consider Equation 7. Define d := |X| + |Y | + |Z|. Let Q be a convex linear combination of{
Q(k)

}
k∈{1,2,...,t}, where t ⩾ d + 1, such that φb(Q

(1)) = · · · = φb(Q
(t)), for some b ∈ {1, 2}.

Carathéodory’s theorem [Car11] states that there are 1 ⩽ i1 < i2 < · · · < iℓ ⩽ t, where 1 ⩽ ℓ ⩽ d+1,
such that Q is a convex linear combination of Q(i1), Q(i2), . . . , Q(iℓ). Furthermore, φb

(
Q(i1)

)
= · · · =

φb

(
Q(iℓ)

)
. Consequently, it suffices to consider t ∈ {1, 2, . . . , d+ 1} in Equation 7.

For the specific φ1 and φ2 being considered in Section 4 we can obtain a slightly better upper
bound on t, whence the following corollary. Appendix J proves this corollary.

Corollary 1. If the function f : X × Y → RZ has an r-round semi-honest secure protocol then
there is an r-round protocol where every message sent by Alice requires (at most) ⌈lg (|X|+ |Z|)⌉
bits, and every message sent by Bob requires (at most) ⌈lg (|Y |+ |Z|)⌉ bits.

6 Real Algebraic Geometry Problem: Generalized Convex Hulls

In this section we consider only recursively generated sets
{
S(i)

}
i∈{0,1,... }, which suffice to prove

the bounds on
{
T (i)

}
i∈{0,1,... }. Let φ : Ω → Ω′ be an arbitrary function. The fibre product

Ω×φ Ω×φ · · · ×φ Ω︸ ︷︷ ︸
ℓ-times

:= {(ω1, ω2, . . . , ωℓ) : ω1, . . . , ωℓ ∈ Ω, φ(ω1) = · · · = φ(ωℓ)} .

Our ambient space is Rd, where d ∈ {2, 3, . . . }. Let φ1, φ2 : Rd → Rd′ be two linear maps, where
d′ ∈ {1, 2, . . . }. Let S(0) ⊆ Rd be an arbitrary initial set of points. Define

Λ(d) =
{(
p(1), p(2), . . . , p(d+1)

)
: p(1), p(2), . . . , p(d+1) ⩾ 0, and p(1) + p(2) + . . .+ p(d+1) = 1

}
.

Define the bilinear map ⟨·, ·⟩ :
(
Rd
)d+1 × Rd+1 → Rd as follows.

〈(
Q(1), Q(2), . . . , Q(d+1)

)
,
(
p(1), p(2), . . . , p(d+1)

)〉
:=

d+1∑
k=1

p(k) ·Q(k).

9



For i ∈ {0, 1, . . . }, inductively define

S(i+1) =

〈
S(i) ×φ1 S(i) ×φ1 · · · ×φ1 S(i)︸ ︷︷ ︸

(d+1)-times

,Λ(d)

〉⋃〈
S(i) ×φ2 S(i) ×φ2 · · · ×φ2 S(i)︸ ︷︷ ︸

(d+1)-times

,Λ(d)

〉
.

Before we proceed, we remark that, if φ1, φ2 are relaxed to be arbitrary functions, then one can
construct “ill-behaved” functions to ensure testing membership in S(i) is undecidable. Therefore,
the result below crucially relies on the fact that φ1, φ2 are “well-behaved”, and also that the initial
set S(i) is tame (at least semi-algebraic). We recall here that a semi-algebraic (resp. semi-linear)
subset of Rd is any subset that be defined by a Boolean formula with atoms of the form P > 0, P = 0,
where P ∈ R[X1, . . . , Xk] (resp. with deg(P ) ⩽ 1).

Theorem 3. Let d ∈ {2, 3, . . . }, d′ ∈ {1, 2, . . . }, φ1, φ2 : Rd → Rd′ be linear maps, S(0) ⊆ Rd a
semi-algebraic subset, and r ∈ {0, 1, . . . }. Given a query point Q ∈ Rd, the problem of determining
whether Q ∈ S(r) or not is decidable. Moreover, if Q ∈ S(r), there exists an algorithm which outputs
a witness tree, whose nodes are labelled by points in Rd, and edges labelled by real numbers in [0, 1]
satisfying the following property:

1. The root node is labelled by Q;

2. each leaf node is labelled by a point in S(0);

3. a node at height i is labelled by a point x ∈ S(i), and it has (d+1) children each of which is labelled
by points y(1), . . . ,y(d+1) ∈ S(i−1), with the corresponding edges labelled by p1, . . . , pd+1 ∈ [0, 1],
such that

p1 + · · ·+ pd+1 = 1,

x = p1y
(1) + · · ·+ pd+1y

(d+1).

Moreover, the complexities of the decision problem and of the algorithm producing the witness tree
are bounded by (Nd)d

O(r)
, where N is the size of a quantifier-free formula describing the semi-

algebraic set S(0) measured by the product of the number of polynomials appearing in it and the
maximum degree of these polynomials.

Proof. We will use the fact that the first order theory of the reals is decidable. Let Φ0(X), where
X = (X1, . . . , Xd) denote the formula in the language of the first order theory of reals whose
realization is the set S(0) ⊆ Rd. Now, for i > 0, we will inductively define a formula Φi(X) whose
realization is S(i) ⊆ Rd. Suppose, Φi−1(X) has already being defined. We define Φi(X) as follows.

Φi(X) := Φi,1(X) ∨ Φi,2(X),

where for j = 1, 2,

Φi,j(X) := (∃Z)(∃Y(1)) · · · (∃Y(d+1))Θ1 ∧ Θ2,j ∧ Θ3

where

Y(k) = (Y
(k)
1 , . . . , Y

(k)
d ), 1 ⩽ k ⩽ d+ 1,

Z = (Z1, . . . , Zd+1),
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and

Θ1 :=
d+1∧
k=1

Φi−1(Y
(k)),

Θ2,j :=
d∧

k=1

(
ϕj(Y

(k)) = ϕj(Y
(k+1))

)
,

Θ3 :=
d∧

ℓ=1

(
d+1∑
k=1

Zk · Y
(k)
ℓ = Xℓ

)
.

It is clear from the definition of Φi, that the realization of Φi in Rd equals S(i) ⊆ Rd.
Note that each Φi is an (existential) formula in the first order theory of the reals. Using

the Tarski-Seidenberg theorem there exists a quantifier-free formula Ψi(X) (i.e. a quantifier-free
Boolean formula whose atoms are polynomial equalities and inequalities) which is equivalent to Φi

(i.e. their realizations in Rd are equal). Moreover, there exists effective algorithms to compute Ψi

from Φi, which yields a procedure to check membership in S(i) ⊆ Rd since the truth of the formula
Ψi can be decided directly given a point in Rd as input since it has no quantifiers.

The number Nr of existentially quantified variables in the formula Φr satisfies the recurrence

Nr = r(d+ 1)2 + (d+ 1)Nr−1,

N0 = 0.

Hence,
Nr = r(d+ 1)2 + (r − 1)(d+ 1)3 + · · · = dO(r).

The degrees of the polynomials appearing in Φr is bounded by max(2, N), and the number of
polynomials is bounded by NdO(r). Using the effective version of quantifier-elimination in the
theory of real closed field (see for instance [BPRon, Algorithm 14.5]), the complexity of computing
Ψr, and also of deciding membership in S(r) is bounded by(

NdO(r)
)dO(r)

= (Nd)d
O(r)

.

In order to compute the witness tree, we observe that the formula Φr(Q) is an existential
sentence. Using the algorithm for computing sample points ([BPRon, Theorem 13.22]) which is
an intermediate step in the algorithm for deciding the existential theory of reals, it is possible
to obtain a tuple of witness points and the corresponding probabilities giving the edge weights
using the structure of the existential sentence Φr. These corresponds to the existentially quantified
variables Y(i)’s giving the labels of the nodes in the witness tree, and the variables Zi’s giving
the edge weights. Note that these are produced as real algebraic numbers whose descriptions are
output as Thom encodings (see [BPRon, page 42] and Remark 1 below).

Remark 1. If in Theorem 3, we assumed that the initial set S(0) is in fact a semi-linear set (for
example, a finite set of points), then it is possible to show that each S(i) remains a semi-linear set,
and the points appearing in the witness tree can be chosen to be have coordinates which are rational
in the coefficients of the at most linear polynomials defining S(0).

Starting from [CK89, Kus89], all works in this research area consider the functions to be
constant-size, i.e., the sets X,Y, Z have constant size. Consequently, all parameters in the proof
above are constants.
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7 Future Research Directions

Our technical approach arises from a significantly different perspective on how security manifests in
(private-coin) interactive protocols. The objective of this work is to introduce this new perspective
via its application to a foundational (and long-standing open) problem, and develop technical tools
to reason about the search space of all possible candidate (private-coin) protocols. Consequently,
our work focuses on perfect security against honest-but-curious adversaries in the two-party setting.
Our technical contribution identifies the new notion of generalized convex hulls, which is a fascinat-
ing new problem in mathematics (refer to Appendix I). We mention some additional representative
potential research directions building upon our technical contributions below.

1. Specific to our problem setting, we conjecture that if f : X × Y → RZ has a secure protocol,

then there is a canonical secure protocol with round complexity O
(
|Z|2

)
and communication

complexity O
(
log|X|+ log|Y |+ |Z|2

)
. We emphasize that this bound is independent of the

probabilities involved in defining the computation f . We foresee that resolving these conjectures
shall involve understanding Carathéodory/Helly-numbers of collections of appropriate sets. Fur-
thermore, we conjecture that if f does not have a perfectly secure protocol, then any protocol for
f must be constant-insecure.

2. In the two-party setting, the characterization of computations with randomized output that
are (standalone) securely realizable against a malicious adversary is another long-standing open
problem (refer to [MPR13]).

3. Extending our technical framework to the multi-party setting, where honest parties are not in
the majority, is another natural research direction. In this setting, incorporating the communi-
cation infrastructure presents unique challenges; for example, considering budgets on broadcast
channels, point-to-point communication channels, and the topology of the framework is non-
trivial.

4. Another fascinating research direction in the multi-party setting is determining the randomness
complexity of secure protocols [KOR96, KOP+19]. For example, can we determine the random-
ness complexity of securely computing AND and XOR of parties’ private bits? Our technical
approach demonstrates the possibility of obtaining the optimal protocol by exhaustive search
techniques.

5. There are several (practically and theoretically well-motivated) analytically-tractable secure
computations models like the private simultaneous message (PSM) [FKN94], randomizing poly-
nomial/randomized encoding [IK00, IK02, AIK04], conditional disclosure of secrets [GIKM98],
and OT-complexity [BM04]. Our techniques have the potential of providing new insights and
technical approaches to determine the efficiency of computations in these models.
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A Notation

We have some conventions in our notation throughout the paper. A functionality f with input
domain X × Y is deterministic if for all x ∈ X, y ∈ Y , the function f always outputs a unique
value. In this case, we represent the function with output space Z. So for a deterministic function
f : X × Y → Z, we denote f(x, y) as the output value on input (x, y).

A functionality f is randomized if on input (x, y) ∈ X×Y it outputs z ∈ Z with some probability.
We represent this function as f : X × Y → RZ . The notation f(x, y) ∈ RZ represents the output
distribution over Z on input (x, y), and f(x, y)z is the probability that the output is z conditioned
on input being (x, y). This representation is also well-defined for deterministic functions. Let us
give an example for the MAX function (a.k.a., the Dutch auction) with input domain {1, 3}×{2, 4}.
Using notation for deterministic, MAX: {1, 3} × {2, 4} → {2, 3, 4} satisfying

MAX(1, 2) = 2, MAX(1, 4) = 4, MAX(3, 2) = 3, MAX(3, 4) = 4.

Using notation for randomized, MAX: {1, 3} × {2, 4} → R4 satisfying

MAX(1, 2) = (0, 1, 0, 0), MAX(1, 4) = (0, 0, 0, 1), MAX(3, 2) = (0, 0, 1, 0), MAX(3, 4) = (0, 0, 0, 1).

The secure protocol for MAX is the Dutch auction mechanism. Bob announces whether he his
input is 4 or not. If not, then Alice announces whether she her input is 3 or not. If not, then Bob
announces whether his input is 2 or not.

B Proof of Cryptographic Reduction

Let Π be a two-party protocol with private inputs x ∈ X and y ∈ Y . For a partial transcript τ of
the protocol Π, let π(τ) ∈ RX represent the conditional distribution of Alice’s input conditioned on
Π generating the partial transcript τ when parties start with x drawn uniformly at random from X
and y drawn uniformly at random from Y . Similarly, define the conditional distribution ρ(τ) ∈ RY

of Bob’s input.

Lemma 1. Suppose a function f : X×Y → RZ is maximally renamed and avoids Kilian’s obstruc-
tion. Then, there are unique A ∈ RX × RZ , B ∈ RY × RZ , and V ∈ RZ such that the following
identities hold.

f(x, y) = Ax ∗By ∗ V for every x ∈ X, y ∈ Y ,∑
x∈X

Ax,z = 1 for every z ∈ Z, and∑
y∈Y

By,z = 1 for every z ∈ Z.

Proof. Since f is maximally renamed and avoids Kilian’s obstruction, it satisfies the strict cross
product rule. This implies that, for each fixed z ∈ Z, the matrix {f(x, y)z}x,y ∈ RX×Y is rank one.
By Proposition 1, there exist column vectors uz ∈ RX and vz ∈ RY such that {f(x, y)z}x,y = uz ·vTz ,
and uz, vz are non-zero vectors. For each x ∈ X and y ∈ Y , let Ax = ((uz)x : z ∈ Z) (or in other
words the zth column of matrix A is vector uz) and By = ((vz)y : z ∈ Z) (or in other words the zth

column of matrix B is vz). Then, it holds that

f(x, y)z = (uz)x · (vz)y = Ax,z ·By,z.
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Next, we normalize the matrix A and B so that the sum of elements in any column of A or B is 1,
that is,

Ax,z is updated to
Ax,z∑
xAx,z

, and By,z is updated to
By,z∑
xBy,z

.

Observe that if
∑

xAx,z = 0, then f(x, y)z = 0, which is impossible for non-redundant output
space. Therefore, the normalization step is always possible since

∑
xAx,z ̸= 0 and

∑
y By,z ̸= 0. It

is easy to see that there exists a unique V ∈ RZ , that is, each Vz is set to be 1 by the product of
the two corresponding normalizing factors, such that

f(x, y)z = Ax,z ·By,z · Vz for every x ∈ X, y ∈ Y, and z ∈ Z.

This implies that f(x, y) = Ax ∗By ∗ V as desired.

Proposition 1. Let A be a matrix of size m×n. Then, A is a rank one matrix if and only if there
exist vectors u of size m× 1 and v of size n× 1 such that A = u · vT .

Proposition 2. For random variables X,Y, Z defined respectively over X ,Y,Z, the Markov chain
X − Y − Z holds if and only if there exist functions r : X × Y → R and s : Y × Z → R such that
for each y that Pr[y] > 0, we have Pr[x, y, z] = r(x, y)× s(y, z).

Lemma 2. Suppose the environment chooses x ∈ X and y ∈ Y uniformly and independently at
random. Then, for any partial transcript τ , the following identity holds.

Pr[x, y|τ ] = π(τ)x · ρ(τ)y .

Proof. Let τ = (τ1, . . . , τr) denote the partial transcript such that τi denotes the message sent
in round i. Without loss of generality, we assume that r is even and Alice sends messages
τ1, τ3, . . . , τr−1 and Bob sends messages τ2, τ4, . . . , τr. In any round, the person who is going to
send a message, chooses their message as a function of their private randomness, and their input
and the partial transcript seen so far. This implies that Pr[τj |x, y, τ⩽j−1] = Pr[τj |x, τ⩽j−1] whenever
j ∈ {1, 3, . . . , r− 1} and Pr[τj |x, y, τ⩽j−1] = Pr[τj |y, τ⩽j−1] whenever j ∈ {2, 4, . . . , r}. Since X and
Y are independent, it follows from the chain rule that:

Pr[x, τ, y] = Pr[x, y] Pr[τ1|x, y] Pr[τ2|τ1, x, y] . . .Pr[τr−1|τ⩽r−2, x, y] Pr[τr|τ⩽r−1, x, y]

= Pr[x] Pr[y] Pr[τ1|x] Pr[τ2|τ1, y] . . .Pr[τr−1|τ⩽r−2, x] Pr[τr|τ⩽r−1, y]

= r(x, τ) · s(y, τ)

where

r(x, τ) := Pr[x] Pr[τ1|x] Pr[τ3|τ⩽2, x] . . . ,Pr[τr−1|τ⩽r−2, x]

s(x, τ) := Pr[y] Pr[τ2|τ1, y] Pr[τ4|τ⩽3, y] . . .Pr[τr|τ⩽r−1,y].

Therefore, it follows from Proposition 2 that the Markov chain X−T −Y holds which implies that

for any x, y, τ it holds that Pr[x, y|τ ] = Pr[x|τ ] · Pr[y|τ ] = π
(τ)
x · ρ(τ)y .

Lemma 3. For any partial transcript τ , let Ω represent the set of all one-round extension of τ .
For τ ′ ∈ Ω, let λτ ′ = Pr[τ ′|τ ] define a probability distribution over Ω. The following identities hold.

1. (
π(τ), ρ(τ)

)
=
∑
τ ′∈Ω

λτ ′ ·
(
π(τ

′), ρ(τ
′)
)
.
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2. If Bob extends the partial transcript τ , then π(τ) = π(τ
′), for all τ ′ ∈ Ω. Analogously, if Alice

extends the partial transcript τ , then ρ(τ) = ρ(τ
′), for all τ ′ ∈ Ω.

Proof. We shall first show that π(τ) =
∑

τ ′∈Ω λτ ′ · π(τ
′). By Bayes’ rule, for any x ∈ X, we have

π(τ)x = Pr[x|τ ] =
∑
τ ′∈Ω

Pr
[
x, τ ′|τ

]
=
∑
τ ′∈Ω

Pr
[
x|τ, τ ′

]
· Pr
[
τ ′|τ

]
=
∑
τ ′∈Ω

Pr
[
x|τ ′

]
· Pr
[
τ ′|τ

]
=
∑
τ ′∈Ω

λτ ′ · π(τ
′)

x .

This implies that π(τ) =
∑

τ ′∈Ω λτ ′ · π(τ
′). Similarly, it holds that ρ(τ) =

∑
τ ′∈Ω λτ ′ · ρ(τ

′).
Suppose Bob extends the partial transcript τ and sends a message m to Alice. Let τ ′ = (τ,m).

Observe that the message m is independent from x. Therefore, we have

π(τ
′)

x

(i)

= Pr
[
x|τ ′

] (ii)

= Pr[x|τ,m]
(iii)

=
Pr[x,m|τ ]
Pr[m|τ ]

(iv)

=
Pr[m|τ, x] · Pr[x|τ ]

Pr[m|τ ]
(v)

=
Pr[m|τ ] · Pr[x|τ ]

Pr[m|τ ]
(vi)

= π(τ)x .

In above, equality (i) is due to the definition of π
(τ ′)
x , equality (ii) is due to the definition of τ ′,

equality (iii) is due to the definition of conditional probability, equality (iv) is due to chain rule,
equality (v) is due to the fact that the conditional distribution of message sent by Bob condition
on the transcript seen so far is independent of Alice’s input, equality (vi) is due to the definition

of π
(τ)
x .
This implies that π(τ) = π(τ

′). With an analogous argument, one concludes that if Alice extends
the partial transcript τ , then ρ(τ) = ρ(τ

′), for all τ ′ ∈ Ω.

Lemma 4. In a secure protocol, for a complete transcript τ , with associated output z ∈ Z, the
following identities hold.

1. For any x ∈ X, we have π
(τ)
x = Ax,z.

2. For any y ∈ Y , we have ρ
(τ)
y = By,z.

Proof. We first introduce some notation. Let ZΠ,A, and ZΠ,B denote respectively the output of
Alice and Bob in the protocol Π. It follows from the definition of security that ZΠ,A = ZΠ,B, so we
use random variable ZΠ to denote both ZΠ,A, and ZΠ,B. Let Zf denote the output of functionality
f in the ideal world. Let SA(x, z) denote the output of Alice’s simulator. We define Bob’s simulator
SB(y, z) similarly. We also use T to denote the transcript. It follows from the security definition
that for any x ∈ X and y ∈ Y , the joint distribution (x, y,Zf ,SB(y, z)) is the same as the joint
distribution (x, y,ZΠ,A,T). This implies that for any y, z, τ that Pr[Y = y,ZA = z,T = τ ] > 0, we
have:

Pr[X = x|Y = y,Zf = z, SB(y, z) = τ ] = Pr[X = x|Y = y,ZΠ = z,T = τ ] (9)

Since Pr[Y = y,ZA = z,T = τ ] > 0, we have Pr[Y = y,Zf = z] > 0, and so By,z > 0. We can
rewrite the left hand side of Equation 9 as follows:

Pr[X = x|Y = y,Zf = z, SB(y, z) = τ ] = Pr[X = x|Y = y,Zf = z]

=
Ax,zBy,z∑
xAx,zBy,z

=
Ax,z∑
xAx,z
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Since ZΠ is a deterministic function of T, the Markov chain X − T − ZΠ holds and the Markov
property X−T−Y, mentioned in Lemma 2, implies that the Markov chain X− (T,ZΠ)−Y holds.
Now, we can simplify the right hand side of Equation 9 as follows:

Pr[X = x|Y = y,ZΠ = z,T = τ ] = Pr[X = x|ZΠ = z,T = τ ] = Pr[X = x|T = τ ] = π(τ)x

Therefore, we have π
(τ)
x = Ax,z/

∑
xAx,z = Ax,z since

∑
xAx,z = 1. Similarly, it holds that

ρ
(τ)
y = By,z.

Let us introduce some notation that is needed for our next lemma. The support of the pre-image
of a functionality f at output z is defined as

Supp
(
f−1(z)

)
:= {(x, y) ∈ X × Y : Pr[f(x, y) = z] > 0}.

The support of the product distribution π(τ) × ρ(τ) is defined as

Supp
(
π(τ) × ρ(τ)

)
= {(x, y) ∈ X × Y : π(τ)x > 0, ρ(τ)y > 0}.

Lemma 5. For any partial transcript τ , we define A(τ) ∈ RX×RZ , B(τ) ∈ RY ×RZ , and V (τ) ∈ RZ

as follows.

1. A
(τ)
x =

{
Ax/π

(τ)
x if π

(τ)
x > 0,

0 otherwise.

2. B
(τ)
y =

{
By/ρ

(τ)
y if ρ

(τ)
y > 0,

0 otherwise.

3. V (τ) =

{
e(z) if τ is a complete transcript,∑

τ ′∈Ω λτ ′ · V (τ ′) otherwise.

Then, the following statements hold.

1. f (τ) ≡
(
A(τ), B(τ), V (τ)

)
.

2. If V
(τ)
z > 0, then Supp

(
f−1(z)

)
⊆ Supp

(
π(τ) × ρ(τ)

)
.

Proof. We first note that the definitions of A(τ), B(τ), and V (τ) are well-defined. We proceed by
induction on the height of τ in a bottom-up fashion.

Base case. Let τ denote a complete transcript. Since τ is a complete transcript, the correctness
of the protocol requires that the outputs of Alice and Bob are equal and so the functionality
f (τ)(x, y) is a deterministic function of only τ . This implies that there exists a z∗ such that
f (τ)(x, y)z∗ = Pr[z∗|x, y, τ ] equals 1 for any (x, y) ∈ Supp

(
π(τ) × ρ(τ)

)
and f (τ)(x, y)z = 0 for

any other z. Now, notice that π
(τ)
x = Ax,z∗ and ρ

(τ)
y = By,z∗ according to Lemma 4 and so

A
(τ)
x,z∗ = B

(τ)
y,z∗ = 1 according to our definition. Then, it is obvious that f (τ)(x, y) = A

(τ)
x ∗B(τ)

y ∗V (τ)

where V (τ) = ez∗ and Supp
(
f−1(z∗)

)
= Supp

(
π(τ) × ρ(τ)

)
.
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Inductive step. Let σ(τ
′|y) := Pr[τ ′|y, τ ], that is, the probability the extended transcript is τ ′

conditioned on the Bob’s input being y and the partial transcript τ . Then, we have

f (τ)(x, y) =
∑
τ ′∈Ω

σ(τ
′|y) · f (τ ′)(x, y)

=
∑
τ ′∈Ω

σ(τ
′|y) ·A(τ ′)

x ∗B(τ ′)
y ∗ V (τ ′) (by the inductive hypothesis)

= A(τ)
x ∗

∑
τ ′∈Ω

σ(τ
′|y) ·B(τ ′)

y ∗ V (τ ′)

(For all τ ′ ∈ Ω, we have A(τ) = A(τ ′), because π(τ) = π(τ
′))

= A(τ)
x ∗

∑
τ ′∈Ω

ρ
(τ ′)
y ̸=0

σ(τ
′|y) ·B(τ ′)

y ∗ V (τ ′)

= A(τ)
x ∗

∑
τ ′∈Ω

ρ
(τ ′)
y ̸=0

σ(τ
′|y)

ρ
(τ ′)
y

·By ∗ V (τ ′)

= A(τ)
x ∗

∑
τ ′∈Ω

ρ
(τ ′)
y ̸=0

λτ ′

ρ
(τ)
y

·By ∗ V (τ ′) (by Claim 1)

= A(τ)
x ∗B(τ)

y ∗
∑
τ ′∈Ω

ρ
(τ ′)
y ̸=0

λτ ′ · V (τ ′)

So it remains to prove that for any x ∈ X, y ∈ Y, z ∈ Z,

A(τ)
x,z ·B(τ)

y,z ·
∑
τ ′∈Ω

ρ
(τ ′)
y ̸=0

λτ ′ · V (τ ′)
z = A(τ)

x,z ·B(τ)
y,z ·

∑
τ ′∈Ω

λτ ′ · V (τ ′)
z .

It suffices to show that for any partial transcript τ ′ ∈ Ω such that ρ
(τ ′)
y = 0, we have

A(τ)
x,z ·B(τ)

y,z · V (τ ′)
z = 0.

Since y ̸∈ Supp
(
ρ(τ

′)
)
, we have (x′, y) ̸∈ Supp

(
π(τ

′) × ρ(τ
′)
)

for any x′. Suppose V
(τ ′)
z > 0,

then Supp
(
f−1(z)

)
⊆ Supp

(
π(τ

′) × ρ(τ
′)
)

by induction hypothesis. This implies that (x′, y) ̸∈
Supp

(
f−1(z)

)
for any x′. It means that f(x′, y)z = 0 for any x′. This implies that By,z = 0 and

therefore B
(τ)
y,z = 0 and so A

(τ)
x,z ·B(τ)

y,z · V (τ ′)
z = 0.

Next, we prove the second statement. Without loss of generality, assume that Bob extends

the transcript. Since V
(τ)
z > 0 and V

(τ)
z =

∑
τ ′∈Ω λτ ′ · V (τ ′), there is a transcript τ ′ ∈ Ω such

that V
(τ ′)
z > 0. By induction hypothesis, Supp

(
f−1(z)

)
⊆ Supp

(
π(τ

′) × ρ(τ
′)
)
. By Lemma 3, the

following idetity holds.

ρ(τ) =
∑
τ ′∈Ω

λτ ′ · ρ(τ
′).
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This implies that Supp
(
ρ(τ)

)
=
⋃

τ ′∈Ω Supp
(
ρ(τ

′)
)
. Furthermore, Lemma 3 yields π(τ) = π(τ

′),

which implies that Supp
(
π(τ)

)
= Supp

(
π(τ

′)
)
. These facts imply that

Supp
(
π(τ

′) × ρ(τ
′)
)
⊆ Supp

(
π(τ) × ρ(τ)

)
.

Therefore, Supp
(
f−1(z)

)
⊆ Supp

(
π(τ) × ρ(τ)

)
as desired.

Claim 1. Let τ be a partial transcript and τ ′ be a one message extension of τ . Then, the following
identity holds

ρ(τ)y · σ(τ ′|y) = ρ(τ
′)

y · λτ ′ .

Proof. This follows from definitions and Bayes’ rule.

ρ(τ)y · σ(τ ′|y) = Pr[y|τ ] · Pr[τ ′|y, τ ] (definition)

= Pr[y|τ ′, τ ] · Pr[τ ′|τ ] (Bayes’ rule)

= Pr[y|τ ′] · Pr[τ ′|τ ] (τ ′ contains τ)

= ρ(τ
′)

y · λτ ′ (definition)

This completes the proof.

Lemma 6. Any point (π, ρ, V ′) ∈ S(i) has a perfectly secure (at most) i-round protocol, where
i ∈ {0, 1, 2, . . . }.

Proof. We proceed by induction on i ∈ {0, 1, . . . }.
Base case. If i = 0, then V = e(z). In this case, parties output z. It is trivial to see that the
protocol is perfectly secure.
Inductive step. Suppose

S(i) ∋ (π, ρ, V ′) =
t∑

k=1

λk · (π(k), ρ(k), V (k))︸ ︷︷ ︸
∈S(i−1)

,

and π = π(k), for all k ∈ {1, 2, . . . , t}. Then, Bob sends the message in the protocol. By induction
hypothesis, each point (π(k), ρ(k), V (k)) has a perfectly secure (at most) (i − 1)-round protocol,
says Π(k). We use these protocols to construct a protocol for the point (π, ρ, V ′) as follows. Bob
sends the first message to Alice so that then the sub-protocol that Alice and Bob execute after

the first message is Π(k) with probability σ(k|y) := λk · ρ(k)y /ρy conditioned on Bob’s input is y.
Clearly, this protocol has at most i-round. We will prove that this protocol is securely realizing
the functionality g by constructing simulators for corrupted parties. Simulator for the case that
Bob is corrupted is trivial since the simulator knows Bob’s input y, therefore, can simulate Bob’s
first message exactly as the same as the message in the real protocol. So all remain is to construct
a simulator for corrupted Alice. The simulator SimA(x, z) takes as input Alice’s input x and the

output z. And the simulator outputs symbol k with probability λkV
(k)
z /V ′

z . This simulator works
because the following expression is independent of y.

σ(k|y)f (k)(x, y)z
f(x, y)z

=
σ(k|y)V

(k)
z ρy

ρ
(k)
z V

(k)
z

=
λkV

(k)
z

V ′
z

. (using Claim 1)

This completes the proof.
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C Decidability and Witness to Protocol Recovery

This section presents the decidability results. The following IsRealizable(f, r) prodcedure takes
as input a function f : X × Y → RZ and a number r ∈ N. It outputs Yes if there is a secure
protocol for f with at most r rounds, and No otherwise. Furthermore, the procedure outputs a
secure protocol by calling the sub-procedure Witness in the Yes instance and a certificate in the
No instance. The certificate is the query point Q(f) and the description of the set S(r). Note that
the set S(r) always has a succinct description since it is tame. In the following discussion, refer to
Equation 4, Equation 5 for the definitions of P (z), φ1, and , φ2.

IsRealizable(f, r):

1. Ensure. The function f : X × Y → RZ and r ∈ {0, 1, . . . }

2. If the function f has Kilian’s obstruction: Return False

3. Update f to be its standardized SSFE form as prescribed in [MPR13]

4. Initialize Rd ⊇ S(0) := {P (z) : z ∈ Z} (see Equation 4)

5. Define linear maps φ1, φ2 as in Equation 5

6. For i ∈ {0, 1, . . . , r − 1}, recursively define

S(i+1) :=

{
d+1∑
m=1

pm ·Q(m) :
p1, . . . , pd+1 ⩾ 0,

∑d+1
m=1 pm = 1, Q(1), . . . , Q(d+1) ∈ S(i),

φ1(Q
(1)) = · · · = φ1(Q

(d+1)) or φ2(Q
(1)) = · · · = φ2(Q

(d+1))

}
.

7. If Q(f) ∈ S(r): Return Yes, Π := Witness(S(0), Q(f), r)

8. Return False, Certificate := Q(f),S(r)

The witness procedure is defined recursively as follows.
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Witness(S(0), Q, k):

1. If k = 0, it must hold that Q = (UX , UY , e(z)) for some z ∈ Z. On any input x ∈ X, y ∈ Y ,
both parties always output z.

2. Else: Apply Theorem 3 to get λ1, λ2, · · · , λd+1 ⩾ 0 and Q(1), Q(2), · · · , Q(d+1) ∈ S(k−1) such
that

λ1 + λ2 + · · ·+ λd+1 = 1, and Q = λ1 ·Q(1) + λ2 ·Q(2) + · · ·+ λd+1 ·Q(d+1)

Let Q = (π, ρ, V ′), Q(i) = (π(i), ρ(i), V (i)).

(a) If π(1) = π(2) = · · · = π(d+1), then recall that ρy = λ1 ·ρ(1)y +λ2 ·ρ(2)y + · · ·+λd+1 ·ρ
(d+1)
y .

For any y ∈ Supp(ρ), Bob sends message i to Alice with probability λi · ρ(i)y /ρy and
recursively calls Witness(S(0), Q(i), k − 1).

(b) If ρ(1) = ρ(2) = · · · = ρ(d+1), then recall that πx = λ1 ·π(1)x +λ2 ·π(2)x + · · ·+λd+1 ·π
(d+1)
x .

For any x ∈ Supp(π), Alice sends message i with probability λi · π(i)x /πx to Bob and
and recursively calls Witness(S(0), Q(i), k − 1).

We emphasize that in Step 2 above, one cannot use any linear λis and Q
(i)s. Although it may

generate a protocol, it may not be the optimal protocol one seeks. So, one needs to use Theorem 3
to get those values.

D Functions with Large Number of Rounds

This section shows that the round complexity of secure function evaluation could be arbitrarily
large.

Lemma 7. For any positive integer r, there is a function f : {0, 1} × {0, 1} → Rr+1 such that f
has a r-round secure protocol but not any (r − 1)-round secure protocol.

Intuition. We give an intuitive description of the function and an informal proof using Figure 4.
Fix any positive integer r. We construct an initial set S(0) = {q(0), q(1), . . . , q(r)}. Let q∗ be the
intersection of the vertical segment and the horizontal segment. For example, q∗ is the intersection
of the horizontal segment incident to q(7) and the vertical segment incident to q(8) when r = 7 or
the intersection of the vertical segment incident to q(8) and the horizontal segment incident to q(9)

when r = 8. Based on our cryptographic reduction, there is a function f : {0, 1} × {0, 1} → Rr+1

corresponding to the point q∗. We shall show that this function has a r-round secure protocol but
no (r − 1)-round secure protocol. One can prove this inductively using the observation that the
vertical segment incident to q(t) when t is even or the horizontal segment incident to q(t) when t is
odd is in S(t) but not in S(t−1) for any t ⩽ r.

However, the point q∗ is not located at (1/2, 1/2) which implies that the Alice’s input distri-
bution and Bob’s input distribution are not uniform. To fix it, thank to the linear property of our
geometric embedding, we can first scale Figure 4 to Figure 5 and then translate it to Figure 6 so
that the point q∗ is located at (1/2, 1/2). This geometric transformation preserves the security and
the number of rounds. That is, if the protocol constructed from Figure 4 is a secure protocol with
r-round, then so does the protocol constructed from Figure 6.

For completeness, we present a formal proof below.
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Figure 4: An illustrative example showing that for each r there exists a S(0) such that S(r−1) ⊊ S(r). This
implies that for each r there exists a function that has a r-round secure protocol but not any (r − 1)-round
secure protocol.
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Figure 5: Scaling Figure 4 by an appropriate constant
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Figure 6: Translating Figure 5 so that f is located at (1/2, 1/2).
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Proof. Fix r ∈ N. Let the output space be Z = {0, 1, . . . , r} and e(z) ∈ Rr be the indicator variable
of z. We define a sequence of points {q(i)}ri=0 in R2 (refer to Figure 4) as follows.

q
(2i+1)
1 =

q
(2i+2)
1 + q

(2i)
1

2
, q

(2i+1)
2 =

1− q
(2i+1)
1

2
,

q
(2i+2)
2 =

q
(2i+1)
2 + q

(2i−1)
2

2
, q

(2i+2)
1 = 1− q

(2i+2)
2 ,

q(0) = (0, 1), q(1) = (0, 1/2), q(2) = (1/4, 3/4).

Intuitively, these points correspond to the leaves in the tree protocol of f . We shall show
that the functionality f ∼= (A,B, V ) has r-round protocol but no (r − 1)-round protocol, where
A ∈ R2 × Rr+1, B ∈ R2 × Rr+1, V ∈ Rr+1 are defined as follows.

A1 = (q
(0)
1 , q

(1)
1 , . . . , q

(r+1)
1 ), A0 = 1−A1,

B1 = (q
(0)
2 , q

(1)
2 , . . . , q

(r+1)
2 ), B0 = 1−B1,

V (2i+1) =
q
(2i+2)
2 − q

(2i+1)
2

q
(2i)
2 − q

(2i+1)
2

· V (2i) +
q
(2i)
2 − q

(2i+2)
2

q
(2i)
2 − q

(2i+1)
2

· e(2i+ 1),

V (2i+2) =
q
(2i+2)
1 − q

(2i+3)
1

q
(2i+2)
1 − q

(2i+1)
1

· V (2i+1) +
q
(2i+3)
1 − q

(2i+1)
1

q
(2i+2)
1 − q

(2i+1)
1

· e(2i+ 2),

V (0) =
1

2
e(0) +

1

2
e(1), V (1) =

1

4
e(0) +

1

4
e(1) +

1

2
e(2),

V = V (r).

Define S(0) = {(q(i), e(i)) : i ∈ Z}. Let S(k) be the projection of S(k) on the first two coordinates
for k ∈ N. S(0) = {q(0), q(1), . . . , q(r)}.

Claim 2. Observe that

1. Both {q(2i+1)
1 }i=0 and {q(2i)1 }i=0 are strictly increasing sequences, while both {q(2i+1)

2 }i=0 and

{q(2i)2 }i=0 are strictly decreasing sequences.

2. q
(2i+1)
1 < q

(2i)
1 < q

(2i+3)
1 for any i ⩾ 1.

3. q
(2i−1)
2 < q

(2i)
2 < q

(2i−3)
2 for any i ⩾ 2.

For any k ⩾ 1, we define

I2k = {(x, q(2k)2 ) : q
(2k−1)
1 < x < q

(2k)
1 }, and

I2k+1 = {(q(2k+1)
1 , y) : q

(2k+1)
2 < y < q

(2k)
2 }.

Note that Ir contains the query point q∗. We shall prove by induction on r stronger statements
that

1. Ir ∈ S
(r)
r and Ir ̸∈ S

(r−1)
r .

2. Furthermore, it holds that (a) q
(r−1)
2 ⩽ q2, and q

(r)
1 ⩾ q1 if r is even, and (b) q

(r−1)
1 ⩾

q1, and q
(r)
2 ⩽ q2 if r is odd for any point q ∈ S

(r−1)
r \ {q(r)}. In particular, q

(r+1)
1 > q1 and

q
(r+1)
2 < q2 for any point q ∈ S

(r−1)
r \ {q(r)}.
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For r = 2, 3, it is easy to see that the statement is true. Suppose it holds for r, we will prove it is

true for r + 1. First, observe that S
(0)
r+1 = S

(0)
r ∪ {q(r+1)}. By the induction hypothesis, we have

q
(r+1)
1 > q1 and q

(r+1)
2 < q2 for any q ∈ S

(r−1)
r \ {q(r)}. This implies that even when including the

point q(r+1) in the set S
(r−1)
r , it does not add any new point to the set S

(r−1)
r except the point

q(r+1) itself, in other words, S
(r−1)
r+1 = S

(r−1)
r ∪{q(r+1)}. It also implies that the segment Ir+1 is not

in S
(r)
r+1. By the other induction hypothesis, Ir ∈ S

(r)
r and Ir ̸∈ S

(r−1)
r . Therefore, Ir ∈ S

(r)
r+1 and

Ir ̸∈ S
(r−1)
r+1 . Observe that

1. q
(r+1)
2 < q

(r)
2 and q

(r+1)
1 < q

(r)
1 if r is even,

2. q
(r+1)
2 > q

(r)
2 and q

(r+1)
1 > q

(r)
1 if r is odd.

In either of the two cases, we can perform the geometric action from q(r+1) so that the segment

Ir+1 is added to S
(r+1)
r+1 .

The second statement follows from the induction hypothesis and Claim 2.

E Subsuming Kushilevitz and Beaver’s Results

This section illustrates that our framework implies the decomposable theorem for deterministic
function as in [CK89, Kus89, Bea89]. So, we shall consider only deterministic functions f : X×Y →
Z in this section. First, we state the definition of a decomposable function:

Definition 2 (Decomposability [Kus89]). A deterministic function f : X × Y → Z is decom-
posable if one of the following constraints holds:

• Constant: f is a constant function.

• Row Decomposable: We have X =
⋃s

i=1Xi, where the sets {Xi}si=1 are non empty, and
Xi ∩Xj = ∅ for any i, j, such that the two following occur:

– For any i, j and any x ∈ Xi, x
′ ∈ Xj and any y ∈ Y , we have f(x, y) ̸= f(x′, y).

– For any i, the restriction of f into Xi×Y is a constant function or column decomposable.

• Column Decomposble: We have Y =
⋃s

i=1 Yi, where the sets {Yi}si=1 are non empty, and
Yi ∩ Yj = ∅ for any i, j, such that the two following occur:

– For any i, j and any y ∈ Yi, y
′ ∈ Yj and any x ∈ X, we have f(x, y) ̸= f(x, y′).

– For any i, the restriction of f into X × Yi is a constant function or row decomposable.

Decomposable implies existence of a secure protocol. Figure 7 shows a secure protocol for
the MAX function (Dutch auction) using Kushilevitz’s decomposition strategy. This is a top-down
approach. Using our bottom-up strategy, Figure 8 presents a secure protocol for that function.

Existence of a secure protocol implies decomposable. We show that if a deterministic
function f : X × Y → Z has a secure protocol, then it is decomposable using our techniques.

It follows from Lemma 2 that Supp
(
π(τ) × ρ(τ)

)
is a combinatorial rectangle for any partial

transcript τ . Observe that f (τ)(x, y) is a constant for all (x, y) ∈ Supp
(
π(τ) × ρ(τ)

)
if τ is a

complete transcript. Let τ be a partial transcript of the protocol. Let Ω represent the set of all
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Figure 7: A secure protocol for Dutch auction (MAX) using Kushilevitz’s decomposition strategy. Alice’s
input (rows) belongs to {1, 3} and Bob’s input (columns) belongs to {2, 4}. Each table represents a determin-
istic function. In each table, the area that is not shaded represents the range of the function corresponding
to that table.
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Figure 8: A secure protocol for the Dutch auction (MAX) function using our framework. Alice’s input
(rows) belongs to {1, 3} and Bob’s input (columns) belongs to {2, 4}. Each table represents a deterministic
function. The column next to each table represents Alice’s input distribution and the row below each table
represents Bob’s input distribution. The area in each table that is not shaded represents the range of the
function corresponding to that table. Alice fuses two of leaves securely because the marginal distribution of
Bob’s input for those leaves are the same (equal to (1, 0)). Then Bob can fuse the other leaf with the internal
node to realize the main function securely because the marginal distribution of Alice’s input for those two
nodes are the same (equal to (1/2, 1/2)).
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Figure 9: Illustration of the Kushilevitz function that is not decomposable. There is no way to partition the
rows or the columns of the output matrix so that resulting matrices are decomposable.
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Figure 10: Illustration of why there is no secure protocol for the Kushilevitz function [Kus89] using our
framework. The marginal distributions of the base cases are mentioned and no fusing is possible because no
pair of the base cases have either identical Alice’s input distribution or Bob’s input distribution. The columns
represent Alice’s input distribution and the row represents the corresponding Bob’s input distribution. Each
square matrix represents the output value of the corresponding (deterministic) function whose domain is
defined over the white color cells only.

one-round extension of τ . Suppose Alice extends the partial transcript τ . By Lemma 3, for all
τ ′ ∈ Ω, ρ(τ) = ρ(τ

′) and

π(τ) =
∑
τ ′∈Ω

λτ ′ · π(τ
′).

This implies that all combinatorial rectangles Supp
(
π(τ

′) × ρ(τ
′)
)
have the same width and

Supp
(
π(τ) × ρ(τ)

)
=
⋃
τ ′∈Ω

Supp
(
π(τ

′) × ρ(τ
′)
)
.

We note that it is possible that these rectangles are not disjoint. However, based on the equation
above, it is always possible to partition the rectangle Supp

(
π(τ) × ρ(τ)

)
into disjoint rectangles

with the same width Supp
(
ρ(τ)

)
, in other words, it is row-decomposalbe. We make a convention

that if a rectangle is an intersection of some of these rectangles, then keep that intersection in the
rectangle of the left most partial transcript. Note that this partition will preserve the decomposable
property. Similarly, if Bob extends the partial transcript, the rectangle Supp

(
π(τ) × ρ(τ)

)
is column-

decomposable. Applying this argument top-down, one concludes that f is decomposable.

No secure protocol for the spiral function. Figure 9 shows that the Kushilevitz function
is not row decomposable and column decomposable as well. In Figure 10, we illustrate that the
Kushilevitz function does not have any secure protocol using our framework.

F Subsuming Data-Prabhakaran’s results [DP18]

This section illustrates that our results subsume the results in [DP18].
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Characterizing ternary output symmetric functions. [DP18] gave the following character-
ization for ternary output functionality.

Theorem 4. A ternary output functionality f : X × Y → RZ has a secure protocol if and only if
f does not have Kilian’s obstruction and there are some ordering of output space Z as (z1, z2, z3)
and two functions ϕ : X → [0, 1] and ψ : Y → [0, 1] such that

1. f(x, y)z1 = ϕ(x), f(x, y)z2 = (1− ϕ(x)) · ψ(y), and f(x, y)z3 = (1− ϕ(x)) · (1− ψ(y)), or

2. f(x, y)z1 = ψ(y), f(x, y)z2 = (1− ψ(y)) · ϕ(x), and f(x, y)z3 = (1− ψ(y)) · (1− ϕ(y)).
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Figure 11: Illustration of our geometric action for a ternary output function.

It follows from our cryptographic reduction that any secure protocol for ternary output sym-
metric function has exactly 3 points in the initial set S(0) which implies that S(2) = S(3) = · · ·. To
see that our framework also implies this result, it suffices to show that the query point Q(f) ∈ S(2)

if and only if the conditions in item 1 or item 2 (in the above theorem) hold. Figure 11 visualizes
this statement. If the conditions on the first item holds, then there is a secure protocol in which
Alice either sends z1 to Bob with probability ϕ(x) or asks Bob to pick the output with probabil-
ity (1 − ϕ(x)); if Bob is asked to pick the output, he sends z2 with probability ψ(y) and z3 with
probability (1 − ψ(y)) to Alice. This protocol is exactly the protocol corresponding to the right
figure (see our Witness procedure in Appendix C). Similarly, the second item corresponds to the
left figure. Therefore, our results also imply the theorem above. We have the following result as a
consequence.

Corollary 2. Any secure protocol for a ternary output function f : {0, 1} × {0, 1} → RZ has at
most 2 rounds.

Negative Result. [DP18] also showed that the following functionality ℓ : {0, 1}×{0, 1} → RZ is
not securely computable, where Z = {1, 2, 3}. We shall show this using our technique.

ℓ(1, 0) = (2/9, 4/9, 1/3) ℓ(1, 1) = (5/18, 2/9, 1/2)

ℓ(0, 0) = (1/3, 5/12, 1/4) ℓ(0, 1) = (5/12, 5/24, 3/8)

By Lemma 1, there exist A ∈ R2 × R3, B ∈ R2 × R3, and V ∈ R3 such that ℓ(x, y) = Ax ∗By ∗ V ,
where A,B, V are defined as

A =
A0 = (3/5, 15/31, 3/7)

A1 = (2/5, 16/31, 4/7)
, B =

B0 = (4/9, 2/3, 2/5)

B1 = (5/9, 1/3, 3/5)
, V = (5/4, 31/24, 35/24).

Figure 12 and Figure 13 illustrate that function ℓ is not securely computable using our geometric
technique. In fact, our technique implies that there are infinite many ternary output functions
that do not has a secure protocol by choosing any 3 points with coordinates in (0, 1) that are not
axis-aligned and their convex hull contains the query point.
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A1 = (2/5, 16/31, 4/7)

B1 = (5/9, 1/3, 3/5)

⊗
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Axis-2
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proj
(
S(0)(ℓ)

)
Figure 12: The figure on the right shows the projection of S(0)(ℓ) to its first two coordinates. Our geometric
action cannot add any further points to S0(ℓ) because no two points in the figure on the right is axis-aligned.
Therefore, S(0) = S(1) = S(2) = · · ·.
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Figure 13: Illustration of why there is no secure protocol for the function ℓ using our framework. The
marginal distributions of the base cases are mentioned and no fusing is possible because no pair of the
base cases have either identical Alice’s input distribution or Bob’s input distribution. The column next to
each square matrix represents the corresponding Alice’s input distribution and the row below represents
the corresponding Bob’s input distribution. Each square matrix represents the output distributions of the
corresponding function using the notation for randomized functions.
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Figure 14: Characterization of symmetric functions with 2-round secure protocols using our geometric tech-
nique assuming Alice sends the first message.

Characterizing functions with 2-round protocols. [DP18] gave the following characteriza-
tion for symmetric functions with 2-round secure protocols.

Theorem 5. A symmetric function f : X × Y → RZ that avoids Kilian’s obstruction has a two
round-protocol with Alice sending the first message if and only if there is a surjective map ϕ : Z →W
such that Pr[z|w, y] = 0 if w ̸= ϕ(z), and for all x ∈ X, y ∈ Y, z ∈ Z,

f(x, y)z := Pr[z|x, y] = Pr[ϕ(z)|x] · Pr[z|ϕ(z), y].

Futhermore, f has a unique-transcript secure protocol in which Alice sends w with probability
Pr[w|x], and Bob sends back z with probability Pr[z|w, y].

Figure 14 visualizes that Alice first sends a message w to Bob with probability based on the
convex combination of the query point (marked ⊗) using the 3 points that are intersection of the
vertical segment with the 3 horizontal segments, then Bob sends back z with probability based on
the intersection and the convex combination of this intersection. This protocol is basically identical
to the protocol in the theorem above and has unique-transcript.

G UC Semi-honest Security Definition

This section presents the security definition of secure symmetric function evaluation following the
universal composable framework [Can00]. Intuitively, a protocol securely realizes a (possibly ran-
domized) function if Alice or Bob does not learn any additional information beyond what she/he
can learn from her/his input and output at the end of the protocol. More formally, there are two
worlds named real world and ideal world in the definition.

Real World Experiment. There are three participants in real world: Alice, Bob, and an en-
vironment E . The environment E decides which party to corrupt and also the private input x of
Alice and the private input y of Bob. Alice and Bob run the protocol Π honestly and return their
outputs zA, zB to E . In addition, the corrupt party sends her complete view to E .

1. If the environment corrupts no party, the distribution of environment’s view is V(real)
E =

(x, ZA, y, ZB).

2. If the environment corrupts Alice, environment’s view is V(real)
E = (x, VA, y, ZB).

3. If the environment corrupts Bob, environment’s view is V(real)
E = (x, ZA, y, VB).
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Ideal World Experiment. There are four participants: Alice, Bob, the environment, and the
ideal functionality that takes as input x from Alice and y from Bob, and outputs the (random vari-
able) Z = f(x, y) to both parties. The environment remains identical to the one in the real world.
Honest parties send their output they received from the ideal functionality to the environment.

1. If the environment does not corrupt any party, then its view is V(ideal)
E = (x, Z, y, Z).

2. If the environment corrupts Alice, then we need to design a simulator SimA that takes over
the control of Alice in the ideal world. The simulator takes input x from the environment,
forwards x to the ideal functionality, and receives the output Z. Then, the simulator SimA

generates a view VA based on its view (x, Z). The distribution of environment’s view is

V(ideal)
E = (x,SimA(x, Z), y, Z).

3. Similarly, if the environment corrupts Bob, then we need to design a simulator SimB that takes
over the control of Bob in the ideal world. The simulator takes input y from the environment,
forwards y to the ideal functionality, and receives the output Z. Then, the simulator SimB

generates a view VB based on its view (y, Z). The distribution of environment’s view is

V(ideal)
E = (x, Z, y, SimB(y, Z)).

Security Definition. We say that a protocol realizes a functionality f with simulation error
ϵ, if there exist simulators SimA and SimB such that for any environment E , the distributions of
environment’s views in the real world and ideal world are indistinguishable, that is, the statistical

distance between V(real)
E and V(ideal)

E is at most ϵ. The protocol has perfect simulation error when
ϵ = 0.

H Maximally Renamed Symmetric Functions Without Kilian’s
Obstruction

A generalized function evaluation g : X ×Y → RZA,ZB obtains input x from Alice and y from Bob.
It samples (zA, zB) according to the probability distribution g(x, y). Then, it outputs zA to Alice
and zB to Bob.

Kilian’s obstruction [Kil91, Kil00]. Kilian [Kil91, Kil00] presented a combinatorial character-
ization of two-party secure function evaluations that suffice to perform oblivious transfer [EGL85],
which we shall refer to as Kilian’s obstruction. A function with Kilian’s obstruction has no se-
cure protocol in the full information model (otherwise, oblivious transfer will be possible, which is
impossible).

Although avoiding Kilian’s obstruction is necessary, it is not sufficient for a function to have a
secure protocol, for example, Kushilevitz function in Appendix E and Data-Prabhakaran function
in Appendix F. For functions avoiding Kilian’s obstruction, a standardization argument is possible.

Proposition 3 (Standardization [MPR13]). If a general function g avoids Kilian’s obstruction
then there is a symmetric function f : X × Y → RZ such that

1. For every x, x′ ∈ X, y, y′ ∈ Y , and z ∈ Z the following identity holds.

f(x, y)z · f(x′, y′)z = f(x, y′)z · f(x′, y)z.
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2. There is an r-round c-bit protocol for g if and only if there is an r-round c-bit protocol for the
function f .

Consequently, without loss of generality, the functions we investigate are symmetric functions in
this standardized form – referred to as (maximally renamed) symmetric functions avoiding Kilian’s
obstruction. Analytically, for every output z ∈ Z, the matrices M (z)(f) := {f(x, y)z}x,y∈X×Y ∈
RX×Y are rank-one, which yields the standardization result of Step 0 of Section 3.

I Generalized Convex Hull

We elaborate the rationale behind referring to our recursively defined sets S(0) → S(1) → · · ·
in Section 3 as generalized convex hulls. For simplicity, instead of linear maps, consider linear
functionals φ1, φ2 : RX × RY × RZ → R.

Case 1. φ1 = φ2 = 0. In this case S(1) is the convex hull of the initial set of points S(0).
Furthermore, S(1) = S(2) = · · ·.

Case 2. φ1 ̸= 0 and φ2 is a scalar multiple of φ1. Partition S(0) into sets S(0,1),S(0,2), . . . ,S(0,ℓ)

such that

1. φ1(X) = φ1(Y ), for all X,Y ∈ S(0,k) and k ∈ {1, 2, . . . , ℓ}, and

2. φ1(X) ̸= φ(Y ), for all X ∈ S(0,k), Y ∈ S(0,k′), and distinct k, k′ ∈ {1, 2, . . . , ℓ}.
Now, S(1) is the union of the convex hulls of the points in S(0,k), where k ∈ {1, 2, . . . , ℓ}. Further-
more, S(1) = S(2) = · · ·.

Case 3. The linear functionals φ1 and φ2 are linearly independent. The non-triviality
of our generalized convex hull problem arises only when φ1 and φ2 are linearly independent, which
is the case for our research problem. Our work motivates fascinating new research problems in
mathematics.

J Proof of Corollary 1

Suppose there is a secure r-round protocol for the function f . Then, it must hold that Q(f) ∈ S(r).
Let Π be a secure protocol constructed from the Witness procedure with (at most) r-round for f .
Suppose Alice extended τ to τ ′ and f (τ) ∼= (π(τ), ρ(τ), V (τ)) =: Q. Suppose thatQ is a convex linear
combination of {Q(k)}tk=1 ∈ S(r−1), where t ⩾ |X|+|Z|. Recall that when Alice extends τ to τ ′, then

the marginal distribution ρ
(τ ′)
y = ρ

(τ)
y for any τ ′. Let QA denote the projection of point Q on the first

|X| − 1 and last |Z| coordinates. Then, QA is also a convex linear combination of {Q(k)
A }k∈{1,2,...,t}.

According to Carathéodory’s theorem [Car11], there exist 1 ⩽ i1 < i2 < . . . < iℓ ⩽ t, where

1 ⩽ ℓ ⩽ |X| + |Z|, such that QA is a convex linear combination of Q
(i1)
A , . . . , Q

(iℓ)
A ∈ S(r−1). So,

it suffices to consider t ∈ {1, 2, . . . , |X| + |Z|} in Equation 7. Since corresponding to any point in
S(r−1), there exists a secure protocol of at most r− 1 rounds realizing the function defined by that
point, we can still recursively construct a secure protocol for function f . Similarly, it suffices to
consider t ∈ {1, 2, . . . , |Y | + |Z|} if Bob extends the transcript. Therefore, there exists a r-round
secure protocol for f such that in each round Alice needs to select a message among at most |X|+|Z|
messages, and so Alice needs to sends at most ⌈lg(|X|+ |Z|)⌉. Furthermore, every message sent by
Bob requires at most ⌈lg(|Y |+ |Z|)⌉. This completes the proof.
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K Examples

This section presents some additional figures visualizing our techniques. For binary input func-
tion f : {0, 1} × {0, 1} → RZ , we define the projection of a point f (τ) ∼= (π(τ), ρ(τ), V (τ)) as

proj
(
π(τ), ρ(τ), V (τ)

)
= (π

(τ)
1 , ρ

(τ)
1 ).

f (τ) ≡
(
π(τ), ρ(τ), V (τ)

)
∈ RX × RY × RZ

Payload
Bob’s input
distribution

Alice’s input
distribution

Figure 15: Pictorial encoding of the functionality given the partial transcript τ . The first component π(τ)

contains Alice’s input distribution, and the second component ρ(τ) contains Bob’s input distribution. The
last |Z| coordinates carry a payload V (τ) ∈ RZ .

π(τ)

ρ(τ)

Figure 16: Support of the product distribution π(τ) × ρ(τ) is a combinatorial rectangle.
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Figure 17: An example showing that there is no secure protocol for the function f defined in Figure 1 such
that there is a unique transcript associated with every output symbol z ∈ Z (a.k.a., the “unique transcript”
constraint) . Under this constraint, Si = S3, for any i ⩾ 4, because any further progress needs at least two
distinct transcripts associated with the output z = 2. Because the query point is outside S3, there is no
secure protocol for f under the “unique transcript” constraint.
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