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Abstract

The additive secret sharing over a characteristic 2 field is vulnerable to the Hamming weight
leakage attack – the sum of the Hamming weights of all the shares and the secret has even
parity. This work constructs variants of this secret sharing that protect their secret from the
Hamming weight leakage.

We consider generalized additive and Shamir secret sharing (over any characteristic 2 field),
where all n parties are required for secret reconstruction. These schemes are parameterized by
a vector

#»

β ∈ (F ∗)n such that the dot product of the shares with it reconstructs the secret. Our
contributions are the following:

1. Given
#»

β , compute the corresponding secret sharing’s security against Hamming weight leak-
age.

2. Construct secure secret sharing schemes against Hamming weight leakage.

3. Prove that the additive secret sharing is essentially the only scheme vulnerable to Hamming
weight leakage.

4. Prove that Shamir’s secret sharing with random evaluation places is secure with high prob-
ability.

5. Determine the security of Shamir’s scheme with specific evaluation places.

The security against Hamming weight leakage translates into security against arbitrary sym-
metric function leakage from the shares.

Our analysis proceeds via Fourier analysis and makes two key contributions. (1) We use a
rearrangement inequality in the analysis, a first in this line of work. (2) We identify a score

function that determines the security of the secret sharing corresponding to
#»

β .

1 Introduction

Traditionally, a (threshold) secret sharing protects its secret against an adversary who cannot
recover a quorum of shares. However, side channel attacks can partially compromise every share to
reveal secret information. Local leakage-resilience is a security metric introduced by Benhamouda et
al. [BDIR18, BDIR21] that insists on the independence of this leakage from the secret. This work
considers the local leakage resilience of secret sharing schemes where all shares are needed to
reconstruct the secret.

We consider generalized additive secret sharing and Shamir secret sharing with reconstruction
threshold n, the number of parties. The secret sharing is over a finite field F of size 2λ, where λ
represents the security parameter. Such schemes are parameterized by a sequence of reconstruc-
tion multipliers

#»

β = (β1, β2, . . . , βn) ∈ (F ∗)n and the corresponding secret sharing is denoted by
GenAdd(

#»

β ). The shares (s1, s2, . . . , sn) ∈ Fn of a secret s ∈ F are random elements satisfying the
constraint β1 · s1 + β2 · s2 +· · ·βn · sn = s.
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Elements of F are represented as F2-polynomials of degree < λ using the isomorphism F ≡
F2[Z]/Π(Z), where Π(Z) is a monic irreducible polynomial of degree λ. In this representation,
for x ∈ F , wt(x) denotes the number of non-zero coefficients of the polynomial – the Hamming
weight of x. This work will characterize the security of GenAdd(

#»

β ) against the Hamming weight
leakage from every share. Recently, Faust et al. [FMM+24] presented a fascinating expository work
connecting practical side-channel attacks and local leakage resilience against the Hamming weight
attack; we refer interested readers to this work for broader motivation.

To develop an understanding of security/insecurity landscape of such secret sharing schemes, it
is instructive to illustrate a vulnerability of such schemes explicitly. Consider GenAdd(

#»

β ), where
#»

β = (1, 1, . . . , 1); here 1 represents the multiplicative identity of F . It is the classical additive
secret sharing scheme; its shares of a secret s will satisfy the identity s1 + s2 + · · · + sn = s.
Note that the Hamming weight function wt: F → {0, 1, . . . , λ} satisfies the “linearity” identity:
wt(x+y) = wt(x)+wt(y) mod 2.[1] Consequently, we have: wt(s1)+wt(s2)+· · ·+wt(sn) = wt(s)
mod 2. So, the Hamming weight of the shares reveals wt(s) mod 2; thus GenAdd( (1, 1, . . . , 1) ) is
insecure against the Hamming weight leakage from each share. In general, when β1 = β2 = · · · = βn,
the Hamming weight of the shares reveals wt(s · β−11 ) mod 2.

With this background and in light of the ongoing NIST efforts in standardizing secret sharing
schemes [BP23], a natural question arises:

Is GenAdd(
#»

β ) is secure against the Hamming weight leakage?

Summary of our results. For n ⩾ 3 parties, we present an efficiently computable score for
#»

β
– the larger the score, the smaller is GenAdd(

#»

β )’s insecurity. We identify
#»

β such that GenAdd(
#»

β )
is secure against the Hamming weight leakage, for n ⩾ 3. This characterization depends on the
representation used; in our case, it is the choice of the irreducible polynomial Π(Z). Next, we
prove that the generalized additive secret sharing is vulnerable if (and only if) all elements in
#»

β are identical; i.e., the schemes above are the only vulnerable ones. Finally, we characterize
the evaluation places (α1, α2, . . . , αn) ∈ (F ∗)n for Shamir secret sharing that protects it against
Hamming weight leakage. In particular, choosing evaluation places randomly yields a secure secret
sharing with high probability.

Our analysis proceeds via Fourier analysis, and our key technical and conceptual contributions
include: (1) the use of rearrangement inequality in the analysis and (2) identification of the efficiently
computable score function capturing the insecurity of GenAdd(

#»

β ). These security results extend
to arbitrary symmetric function leakage per share because any symmetric function is computable
from the Hamming weight.

Comparison with bit probing attacks. Local leakage resilience of secret sharing over char-
acteristic 2 fields have been investigated in [MNPY24]. It considers an adversary who probes the
shares’ representation to learn whether specific bits are set or not. Note that wt(x) can be ap-
proximated by the average of the number of set bits when randomly probing O(log λ) bits of x’s
representation (using Chernoff bound). However, security against O(log λ) physical bits per share
does not suffice to imply security against the Hamming weight itself. For instance, whether wt(x) is
even or odd cannot be simulated accurately by random bit probing. Roughly speaking, “high sensi-
tivity” functions of wt(x) cannot be simulated by random physical proving, in general. Thus, local
leakage resilience characterization against the Hamming weight leakage needs a separate analysis.

[1]We clarify that the + in the expression “x+ y” is the addition operator of F . On the other hand, the + in the
expression “wt(x) + wt(y)” is the integer addition operator.
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Furthermore, efficiently computable score function for
#»

β against physical bit probes is unknown; a
preliminary inefficient scoring function appears in [Ngu25].

1.1 Our Technical Results

Basic notation. Let F be the finite field of order 2λ. Elements of F are represented as F2[Z]
elements using the isomorphism F ≡ F2[Z]/Π(Z), for some monic irreducible polynomial Π(Z) of
degree λ. For x ∈ F , its Hamming weight, denoted by wt(x), is the number of non-zero coefficients
in this (F2-polynomial) representation of x.

Secret sharing scheme and security. For n ∈ {1, 2, . . . } parties and
#»

β = (β1, β2, . . . , βn) ∈
(F ∗)n, let GenAdd(

#»

β ) represent the generalized additive secret sharing scheme that samples uni-
formly random shares #»s = (s1, s2, . . . , sn) ∈ Fn satisfying β1 · s1 + β2 · s2 +· · ·+ βn · sn = s, where
s ∈ F is the secret. For a secret s ∈ F , the Hamming weight leakage is the joint distribution
of (wt(s1),wt(s2), . . . ,wt(sn)) over the sample space {0, 1, . . . , λ}n. For succinctness, we represent
this leakage joint distribution by

# »
wt(s). Likewise,

# »
wt(UF ) represents the leakage joint distribution

for a uniformly random secret s ∈ F .

Leakage resilience. We say that GenAdd(
#»

β ) secret sharing has ε insecurity against the Hamming
weight leakage attack if, for every secret s ∈ F , we have:

2 · SD
( # »
wt(s) ,

# »
wt(UF )

)
⩽ ε. (1)

Roughly speaking, if a secret sharing has small insecurity against the Hamming weight leakage,
then the leakage joint distribution is statistically independent of the secret s.

Notation for our results. Define σ : {0, 1, . . . , λ} → R as follows

σ(w) :=

{
0, if w ∈ {0, λ}
1
2 log

(
λ
w

)
− log λ

4 , otherwise
.

Remark 1 (Behavior of σ). Recall that
(
λ
w

)
⩾ (λ/w)w. Therefore, we have σ(w) ⩾ (w∗/2) ·

log(λ/w∗)− (1/4) · log λ, where w∗ = min{w, λ−w} and w ∈ {1, 2, . . . , λ−1}. Consequently, either
σ(w) = 0 or σ(w) ⩾ (1/4) · log λ. Asymptotically, by the central limit theorem, we know that

( λ
λ
2
±x
)

behaves like 2λ√
πλ/2

exp
(
−2x2

λ

)
. So, σ(λ/2±x) behaves like log 2

2 λ− 1
2 log λ−

2x2

λ . When w is drawn

according to the binomial distribution, the expected value of σ(w) is roughly log 2
2 λ, a consequence

of the entropy of the binomial distribution.

For
#»

β ∈ (F ∗)n and ζ ∈ F , we define Score : F × (F ∗)n → R as follows.

Score(ζ;
#»

β ) :=

n∑
i=1

σ
(
wt(βi · ζ)

)
. (2)

Let ζ∗ ∈ F be the (unique) element satisfying wt(ζ∗) = λ. For a tuple
#»

β = (β1, β2, . . . , βn) ∈ (F ∗)n,
define

S #»
β :=

{
ζ∗ · β−11 , ζ∗ · β−12 , . . . , ζ∗ · β−1n

}
⊆ F ∗. (3)

Looking ahead, our security characterization will depend on the minimum Score(ζ;
#»

β ) over ζ ∈ S #»
β

– insecurity will be small when
#»

β has a large minimum score.
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Our results. We aim to characterize
#»

β ∈ (F ∗)n such that GenAdd(
#»

β ) is secure. This character-
ization will build on the following technical result that we prove.

Informal technical result. For n ∈ {3, 4, . . . }, we prove that GenAdd(
#»

β ) is λ−cn insecure, where
c ∈ (0, 1/2] such that

min
ζ∈S #»

β

Score
(
ζ;

#»

β
)
⩾ cn · log λ. (4)

For clarity of presentation, we ignore additive log log λ terms in the right-hand side of the expression
above. Note that, given

#»

β , one can efficiently compute and test whether the minimum score is
⩾ cn log λ. For example, if all elements of

#»

β are identical, we know that the GenAdd(
#»

β ) is highly
insecure. In this case, the minimum score is 0 and our technical result cannot upper bound the
insecurity by a small quantity.

Following corollaries are immediate:

1. If every element in
#»

β occurs at most m times, then GenAdd(
#»

β ) satisfies Equation 4 with c =
(n −m)/4n. This is because βiζ, for ζ ∈ S #»

β , is either ζ∗ or has weight ∈ {1, 2, . . . , λ}. Since,

every element in
#»

β occurs at most m times, at least (n −m) elements in {ζβ1, . . . , ζβn} have
weight ∈ {1, 2, . . . , λ− 1}. Therefore, the score is ⩾ (n−m) · (1/4) log λ; whence, the result.

In particular, if all elements of
#»

β are distinct, then m = 1 and c = (n− 1)/4n. Moreover, when
#»

β is picked uniformly randomly from Fn, it has all distinct F ∗ elements with exponentially high
probability.

2. Suppose
#»

β is such that 4cn ⩽ wt(β2ζ
∗β−11 ) ⩽ λ − 4cn and 4cn ⩽ wt(β1ζ

∗β−12 ) ⩽ λ − 4cn.
So, σ(wt(β1ζ

∗β−12 )) and σ(wt(β2ζ
∗β−11 )) are both ⩾ cn log λ for all λ ⩾ (4cn)2. As a result,

Score(ζ;
#»

β ) ⩾ cn · log λ for any ζ ∈ S #»
β . Then, Equation 4 is satisfied for all λ ⩾ (4cn)2.

For independent and random β1, β2 ∈ F , by the Chernoff bound, with exponentially-close-to-1
probability, these two weight constraints above are satisfied. Based on this observation, the
leakage-resilient result extends to the security of Shamir’s secret-sharing scheme with random
evaluation points as follows. Recall that Shamir’s secret-sharing with reconstruction threshold
n picks a random polynomial P (X) ∈ F [X] with degP < n such that P (0) = s, the secret.
The shares of the parties are si = P (αi), for i ∈ {1, 2, . . . , n} and αi ∈ F ∗ are the evaluation
places. We will consider the scenario where α1, . . . , αn are picked independently and uniformly
at random from F . This secret sharing is equivalent to GenAdd(

#»

β ), where
#»

β is the sequence of
corresponding Lagrange multipliers. [HMNY25] proved that β1 and β2 are (exponentially close
to being) independent and uniform over F . Consequently, the resulting secret sharing scheme is
secure against Hamming weight leakage.

Furthermore, given evaluation places #»α , we can efficiently compute the sequence of Lagrange
multipliers

#»

β and its score to determine the security of this specific Shamir’s scheme.

3. A symmetric f : F → Ω function satisfies the constraint “wt(x) = wt(y) implies f(x) = f(y)”
for x, y ∈ F . Let F denote the set of all symmetric functions. A symmetric local leakage leaks
f1, . . . , fn from the shares s1, . . . , sn, where f1, . . . , fn ∈ F .
Note that given only the wt(x), one can compute f(x) for a symmetric function; i.e., x →
wt(x)→ f(x) is a Markov chain. Therefore, by the data processing inequality ([CT99, Chapter
2]), any secret sharing scheme that has ε insecurity against the Hamming weight leakage has ε
insecurity against every symmetric local leakage.
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4. Finally, we prove that if not all elements of
#»

β are identical, then GenAdd(
#»

β ) is (at most) λ−1/4

insecure. That is, the only vulnerable generalized additive secret sharing schemes are those
illustrated in the example in the introduction, albeit their insecurity may not decay sufficiently
quickly. Choosing

#»

β with a large minimum score is the recipe to ensure small insecurity, as
indicated by our results above.

1.2 Technical Overview

Our results are best interpreted by considering the number of parties n ∈ {3, 4, . . . } to be a constant
and determining the asymptotics of insecurity as a function of the security parameter λ. Consider
the GenAdd(

#»

β ) secret sharing, for arbitrary
#»

β ∈ (F ∗)n. We illustrate our analysis strategy against
the Hamming weight leakage. Our key technical contributions are (1) the use of rearrangement
inequality when analyzing security of secret-sharing schemes and (2) identifying the score function
that determines the security of the GenAdd(

#»

β ) secret sharing. We will prove the following technical
result.

Theorem 1. For
#»

β ∈ (F ∗)n, the GenAdd(
#»

β ) secret sharing scheme is ε insecure against the
Hamming weight leakage, where

ε = O(n log λ)n/2 · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
+O(n log λ)n/2 · λ−n/2+1.

In particular, if
#»

β ∈ (F ∗)n satisfies

min
ζ∈S #»

β

Score(ζ;
#»

β ) ⩾ O(n log log λ) + cn log λ (5)

for 1
2 −

1
n > c > 0, then GenAdd(

#»

β ) is O(λ−cn) insecure against the Hamming weight leakage.

Proof outline. Recall that
# »
wt(s), represents the Hamming weight leakage distribution over the

sample space {0, 1, . . . , λ}n corresponding to a secret s ∈ F . Similarly,
# »
wt(UF ) represents the

Hamming weight distribution when the secret is randomly picked from F . We aim to upper-bound
the statistical distance between these two probability distributions.

2 · SD
( # »
wt(s) ,

# »
wt(UF )

)
=

∑
#»w∈{0,1,...,λ}n

∣∣∣∣∣ Pr
#»s←GenAdd(s;

#»
β )
[

# »
wt( #»s ) = #»w]− Pr

#»s←GenAdd(UF ;
#»
β )
[

# »
wt( #»s ) = #»w]

∣∣∣∣∣
(6)

Here, GenAdd(
#»

β , s) represents the distribution of shares over Fn for the secret s ∈ F . Likewise,
GenAdd(

#»

β , UF ) denotes the distribution of shares for a uniformly random secret in F . Note that
each share is uniformly random over F , irrespective of the secret. Therefore, the (marginal) distri-
bution of the Hamming weight of any share is the binomial distribution B(λ, 1/2). By the Chernoff
bound Lemma 1, it is unlikely that the Hamming weight of any share is significantly far from λ/2.
In particular, for a parameter τ ∈ (0, 1/2], the Hamming weight of a share being ⩾ λ1/2+τ far from
λ/2, is at most 2 · exp(−2λ2τ ). For example, we can control this probability of “atypical weights”

by setting τ =
log(n

4
·log λ)

2 log λ and driving the probability below λ−n/2.
So, we define the set of all typical leakage Typical(n, τ) ⊆ {0, 1, . . . , λ}n parameterized by τ :

Typical(n, τ) :=
{

#»w : |wi − λ/2| ⩽ λ1/2+τ , for all i ∈ {1, 2, . . . , n}
}
. (7)
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The probability that the Hamming weight leakage of any share for secret s or random secret UF is
outside this Typical(n, τ) set is (at most) 4n exp

(
−2λ2τ

)
by the union bound. So, we conclude that

2 · SD
( # »
wt(s) ,

# »
wt(UF )

)
=

∑
#»w∈Typical(n,τ)

∣∣∣∣∣ Pr
#»s←GenAdd(

#»
β ,s)

[
# »
wt( #»s ) = #»w]− Pr

#»s←GenAdd(
#»
β ,UF )

[
# »
wt( #»s ) = #»w]

∣∣∣∣∣
± 4n · λ−n/2. (8)

Therefore, it suffices to estimate the leakage probability restricted to typical leakages #»w ∈ Typical(n, τ).
To this end, we will use Fourier analysis. Using the Poisson summation formula Lemma 2 for

the generalized additive secret sharing, we can rewrite the right-hand side expression using the
Fourier coefficients.

2·SD
( # »
wt(s) ,

# »
wt(UF )

)
=

∑
#»w∈Typical(n,τ)

∣∣∣∣∣∣
∑
ζ∈F ∗

(
n∏

i=1

1̂wi(βiζ)

)
· χ1

(
s · ζ ·

〈
#»
1 , #»v

〉)∣∣∣∣∣∣ ±4n·λ−n/2. (9)

Here, 1w : F → {0, 1} is the characteristic function of the set all elements in F with Hamming
weight w ∈ {0, 1, . . . , λ}. The shares #»v ∈ Fn is an arbitrary share of the secret 1 ∈ F and
#»
1 = (1, 1, . . . , 1) ∈ Fn. Moreover, χ1 : F → C is defined as

χ1(x) := exp

(
2πı

p
· TrF/F2

(x)

)
. (10)

To upper-bound the right-hand side expression, we apply the triangle inequality and conclude:

2 · SD
( # »
wt(s) ,

# »
wt(UF )

)
⩽

∑
#»w∈Typical(n,τ)

∑
ζ∈F ∗

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣ + 4n · λ−n/2. (11)

Now, we need to upper-bound the magnitude of 1̂w(·), for typical w ∈ {0, 1, . . . , λ}. We remind
the reader that the right-hand side expression is not small for every

#»

β ∈ Fn. For instance, when
#»

β =
#»
1 we know an attack on the corresponding secret sharing scheme. Thus, the resulting secret

sharing scheme must be insecure and the right-hand side expression corresponding to that insecure
scheme must be large. So, the right-hand side estimate will be small depending on

#»

β ; our analysis
cannot be transparent to this fact.

To approach this estimation problem, and appreciate our key technical components, let us
build some elementary intuition of the magnitude of the Fourier coefficients 1̂w(·). We remark that
1̂w(x) = 2−λKw(wt(x)) where Kw(·) is Krawtchouk polynomial, as defined in [Kra01]. Krawtchouk
polynomials find extensive applications in many subfields in theoretical computer science and cryp-
tography; see, for example, [VL98].

1. First, by symmetry 1̂w(x) = 1̂w(y), for all x, y ∈ F satisfying wt(x) = wt(y).

2. Next, 1̂w(x) = (−1)λ · 1̂w(y), for all x, y ∈ F satisfying wt(x) + wt(y) = λ; because 1w is a
real-valued function.

As we will see, the contributions of 1̂w(x), where wt(x) ∈ {1, 2, . . . , λ− 1}, is relatively small; this
fact is non-trivial to prove and is one of our technical contributions. The contributions of 1̂w(0)
and 1̂w(ζ

∗), where ζ∗ ∈ F is the unique element with wt(ζ∗) = λ, is large; it is the density of
the subset of those elements of F whose Hamming weight is w. However, note that 1̂w(0) never
occurs on the right-hand side expression, because the right-hand side expression only considers

6



ζ ∈ F ∗ and all βi are also non-zero. The potential “troublemakers” are those terms where 1̂w(ζ
∗)

appears. To account for them, we identify the set of candidate ζ ∈ F such that ζ ·βi = ζ∗ for some
i ∈ {1, 2, . . . , n}.

S #»
β :=

{
ζ∗ · β−11 , ζ∗ · β−12 , . . . , ζ∗ · β−1n

}
. (12)

Note that the cardinality of S #»
β is the number of distinct elements in

#»

β , which is at most n. We
split the right-hand side expression depending on whether ζ ∈ S #»

β or not.

2 · SD
( # »
wt(s) ,

# »
wt(UF )

)
⩽

∑
#»w∈Typical(n,τ)

∑
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣

︸ ︷︷ ︸
first summand

+
∑

#»w∈Typical(n,τ)

∑
ζ∈F ∗\S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣

︸ ︷︷ ︸
second summand

+ 4n · λ−n/2. (13)

Now, we will estimate these two summands separately.

Second summand estimation. We will prove an upper bound on the magnitude
∣∣∣1̂wi(x)

∣∣∣ ⩽
B(x) in Lemma 4, for all x ∈ F \ {0, ζ∗}. Using this bound, we have:

second summand ⩽
∑

#»w∈Typical(n,τ)

∑
ζ∈F ∗\S #»

β

n∏
i=1

B(βiζ) (14)

=
(
2λ1/2+τ

)n
·

 ∑
ζ∈F ∗\S #»

β

n∏
i=1

B(βiζ)

. (15)

The last equality substitutes the cardinality of the Typical(n, τ) set.
Note that the ζ 7→ βiζ is a permutation over F ∗. So, we have n permutations ζ 7→ βiζ, for

i ∈ {1, 2, . . . , n}, and the monomial
∏n

i=1 B(βiζ) is a product n permuted elements. Finally,(∑
ζ∈F ∗\S #»

β

∏n
i=1 B(βiζ)

)
is the sum of all permuted monomials, such that B(ζ∗) never appears.

Lemma 3 presents our rearrangement lemma that upper bounds this sum as follows:

second summand ⩽
(
2λ1/2+τ

)n
·

 ∑
ζ∈F\{0,ζ∗}

B(ζ)n

 (16)

We show that this n-th norm, for n ⩾ 3, is small. Roughly speaking, Lemma 4 upper bounds the
right-hand side expression as follows:

second summand ⩽
(
2λ1/2+τ

)n
· λ−n+1 = (2λτ )n · λ−n/2+1. (17)

which is 1/poly(λ) for n ⩾ 3; here, the exponent of the polynomial depends on n. This result
requires a tight estimate of B(x) such that wt(x) = 1, a technical contribution of our work.

Substituting τ =
log(n

4
log λ)

2 log λ , we get that 2λτ = (n log λ)1/2. Henceforth, we will carry this

upper bound as (n log λ)n/2 · λ−n/2+1.
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Remark 2 (A world without the rearrangement lemma). Suppose we upper bound the second
summation using prior techniques as used in [BDIR18, BDIR21, MPSW21, MNPW22, FMM+24];
they did not use the rearrangement lemma. They upper bound the second summand using the ℓ∞
norm and the ℓ2 norm of the Fourier coefficients. Using our tight estimate of B(x) = λ−1, when
wt(x) = 1, the old strategy will yield an upper bound of poly(log λ) ·λ−(n−2)−(1/2)+n/2, which will be
o(1) only for n ⩾ 4. Our rearrangement lemma-based upper bound is tighter; it is o(1) for n ⩾ 3.

First summand estimation. To summarize our derivation so far, for n ⩾ 3 parties, we have

2 · SD
( # »
wt(s) ,

# »
wt(UF )

)
⩽

∑
#»w∈Typical(n,τ)

∑
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣

︸ ︷︷ ︸
first summand

+
(
(n log λ)n/2 + 4n/λ

)
· λ−n/2+1︸ ︷︷ ︸

small

. (18)

Our expression above indicates that the first summand solely determines the security of the gen-
eralized additive secret sharing. We will characterize

#»

β for which the first summand is small; in
particular,

#»

β =
#»
1 ∈ Fn should not be secure.

To begin, we upper bound the first summand as follows:

first summand ⩽
(
2λ1/2+τ

)n
· n · max

#»w∈Typical(n,τ)
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣ (19)

The key to upper bounding the first summand is to understand how the monomial
∏n

i=1

∣∣∣1̂wi(βiζ)
∣∣∣

can become large. Recall that 1̂wi(ζ
∗) has a large magnitude. If

#»

β is such that every ζβi in the
monomial simultaneously becomes ζ∗ then the monomial has large magnitude, and we cannot prove
the security of the secret-sharing scheme. This is exactly what happens when

#»

β =
#»
1 ; or, more

generally, when all elements in
#»

β are identical.
For ζ ∈ S #»

β , we will assign a score Score(ζ;
#»

β ) such that

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣ ⩽ λ−n/2 · exp

(
−Score(ζ;

#»

β )
)

(20)

Equation 2 presents the definition of our score function and Lemma 5 proves that it satisfies the
equation above. This definition does not depend on wi, only on the Hamming weights of ζβi ∈ F ∗,
where i ∈ {1, 2, . . . n}. As a consequence, we get the following upper bound for the first summand:

first summand ⩽
(
2λ1/2+τ

)n
· n · max

ζ∈S #»
β

λ−n/2 · exp
(
−Score(ζ;

#»

β )
)

= (2λτ )n · n · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)

= (n log λ)n/2n · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
. (21)

In the last equality above, we substitute our value of τ . If the minimum score for ζ ∈ S #»
β is

⩾ c · n log λ, for some 1/2 ⩾ c > 0, then the scheme will have insecurity ⩽ λ−cn. When the
elements of

#»

β are all identical, then its minimum score is 0; in which case, the first summand is
not small.

8



Putting things together and concluding remarks. Substituting these estimates of the two
summands, we get

2·SD
( # »
wt(s) ,

# »
wt(UF )

)
⩽ (n log λ)n/2n·exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
+
(
(n log λ)n/2 + 4n/λ

)
· λ−n/2+1︸ ︷︷ ︸

small

.

(22)
The “small” quantity in the insecurity upper-bound is (roughly) λ−n/2+1, which is o(1), for n ⩾ 3.

Remark 3. 1. Determining the estimates B(x) is equivalent to estimating the evaluations of
Krawtchouk polynomials. We require concrete estimates, not asymptotics [Dom08]. Elemen-
tary estimates suffice for our applications; tighter estimates, for example, those in [Kra01,
Section 3], do not yield any qualitative improvement of our results.

2. Lemma 4 also needs concrete estimates of Krawtchouk polynomial evaluations. We present
upper bounds on such estimates in Appendix E.

Which schemes are vulnerable? Recall from the example in the introduction that if
#»

β =
(β1, . . . , βn) such that β1 = · · · = βn ∈ F ∗, then the Hamming weight leakage correlates with the
secret. Are these the only insecure choices?

Which GenAdd(
#»

β ) scheme is vulnerable to Hamming weight leakage?

We present a different strategy to upper bound the insecurity in Section 3.3 and demonstrate that
if all elements in

#»

β are not identical, then GenAdd(
#»

β ) has insecurity at most λ−1/4. We prove the
following result.

Theorem 2. For
#»

β ∈ (F ∗)n and ζ ∈ S #»
β , let H(ζ;

#»

β ) := {i : βiζ ̸= ζ∗} and h̃ = min
ζ∈S #»

β

(
card(H(ζ;

#»

β ))
)
.

Then, ∑
#»w∈Typical(n,τ)

∑
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣ ⩽ (h̃+ 1) ·

(
π4

λ

) h̃
4

Choosing
#»

β more carefully, with a large minimum score, would ensure quicker reduction in
insecurity. We present a quick overview of this theorem’s proof.

Note that it suffices to show that the following quantity is small for every ζ ∈ S #»
β :

∑
#»w∈{0,1,...,λ}n

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣.

Because, if the above quantity is small, then so is the summation restricted to #»w ∈ Typical(n, τ).
And, in turn, the expression in the theorem is small too, with an additional multiplicative factor
of at most n (since card(S #»

β ) ⩽ n).
To begin, for any ζ ∈ S #»

β , rewrite

∑
#»w∈{0,1,...,λ}n

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣ = n∏

i=1

 ∑
wi∈{0,1,...,λ}

∣∣∣1̂wi(βiζ)
∣∣∣
 (23)

9



Consider an index i ̸∈ H(ζ;
#»

β ). For such an i, we have βiζ = ζ∗ and, consequently,
∣∣∣1̂wi(βiζ)

∣∣∣ =∣∣∣1̂wi(ζ
∗)
∣∣∣ = ∣∣∣1̂wi(0)

∣∣∣ = ( λ
wi

)
· 2−λ. Therefore,

∑
wi

∣∣∣1̂wi(βiζ)
∣∣∣ =∑wi

(
λ
wi

)
· 2−λ = 1.

As a result, the expression in Equation 23 is

=
∏

i∈H(ζ;
#»
β )

 ∑
wi∈{0,1,...,λ}

∣∣∣1̂wi(βiζ)
∣∣∣
 (24)

If all elements in
#»

β are identical, then, observe that S #»
β is a singleton set and H(ζ;

#»

β ) = ∅ – a lost

case for us; the expression above is 1. On the other hand, if its not the case that all elements in
#»

β
are identical, then H(ζ;

#»

β ) ̸= ∅ for every ζ ∈ S #»
β . For any i ∈ H(ζ;

#»

β ), it will suffice to prove that∑
wi∈{0,1,...,λ}

∣∣∣1̂wi(βiζ)
∣∣∣ = O(λ)−1/4. (25)

Define ζ ′ := βiζ. Observe that ζ ′ ∈ F \ {0, ζ∗}. A standard application of the Parseval’s identity
yields the estimate: ∣∣∣1̂wi(ζ

′)
∣∣∣ ⩽

√(
λ

wi

)
· 2−λ ·

(
λ

w′

)−1
, (26)

where w′ = wt(ζ ′) and w′ ∈ {1, 2, . . . , λ− 1}. Therefore, using the fact
(
λ
w′

)
⩾
(
λ
1

)
= λ, we have∣∣∣1̂wi(ζ

′)
∣∣∣ ⩽√( λ

wi

)
· 2−λ · λ−1, (27)

Using this upper bound on the Fourier coefficient, we have∑
wi∈{0,1,...,λ}

∣∣∣1̂wi(ζ
′)
∣∣∣ ⩽ 2−λ/2λ−1/2

∑
wi∈{0,1,...,λ}

(
λ

wi

)1/2

< 2−λ/2λ−1/2 · π2λ/2λ1/4 (we prove this concrete upper bound in Claim 5)

= πλ−1/4,

which is what we set out to prove.

Remark 4 (Perspective). Suppose
#»

β has k ⩾ 2 distinct elements β1, β2, . . . , βk and they occur
n1, n2, . . . , nk times in

#»

β , respectively. Without loss of generality, assume that 1 ⩽ n1 ⩽ n2 ⩽
· · · ⩽ nk. Note that n1 + n2 + · · · + nk = n and S #»

β =
{
ζ∗β−11 , . . . , ζ∗β−1k

}
, a set of k elements.

Furthermore, the set H(ζ∗β−1i ;
#»

β ) has cardinality (n − ni), for i ∈ {1, 2, . . . , k}. Therefore, our
upper bound calculated above will be

k∑
i=1

(
π · λ−1/4

)n−ni

.

And, this upper bound is largest (a.k.a., the weakest) when n1 = · · · = nk−1 = 1 and nk = (n−k+1).
For this case, the upper bound becomes(

π · λ−1/4
)(k−1)

︸ ︷︷ ︸
dominant term

+(k − 1)
(
π · λ−1/4

)n−1
Overall, the worst upper bound happens where

#»

β has k = 2 distinct elements, one of them occurring
once, and the other occurring (n− 1) times. Even in this worst case, the upper bound is O

(
λ−1/4

)
.
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2 Preliminaries

Notations Let λ represents the security parameter. We use F = F2λ to denote a finite field of
order 2λ and F ∗ := F \ {0} its multiplicative group. When sampling an element x ∈ F uniformly
randomly from F , we write x← UF ; here, UF stands for uniform distribution over F .

We denote by 1S the indicator function for a set S, defined as 1S(x) = 1 if x ∈ S and 1S(x) = 0
otherwise. For any function f : D → R, we let f−1(y) be the set of the preimage of y, that is
f−1(y) := {x ∈ D : f(x) = y}. For instance, if x ∈ F has wt(x) = w, then 1wt−1(w)(x) = 1 but
1wt−1(w′)(x) = 0 for all w′ ̸= w. We shall denote 1wt−1(w) =: 1w throughout the paper for the sake
of simplicity, in other words

1w(x) =

{
1, if wt(x) = w

0, otherwise

Additionally, we write x = a± c to denote x ∈ [a− c, a+ c] for all real x and a, and c > 0. We use
card(S) to denote the cardinality of the set S (i.e. the number of elements in S).

2.1 Secret Sharing Scheme

Definition 1 (Generalized Additive Secret Sharing). Let F be a finite field and n be a positive
integer. Given the multipliers

#»

β = (β1, β2, . . . , βn) ∈ (F ∗)n and secret s ∈ F , GenAdd(
#»

β , s) shares
the secret s via:

• Share(s): Samples s1, s2, . . . , sn−1 ← UF and sets sn = s− β−1n (β1s1 + · · ·+ βn−1sn−1).

• Reconstruct({s1, . . . , sn}): Computes β1s1 + β2s2 + · · ·+ βnsn.

Definition 2 ((n, k,
#»

X)-Shamir Secret Sharing). Let F be a finite field and n, k be a positive
integer such that k ⩽ n. Given the evaluation places

#»

X = (X1, . . . , Xn) ∈ (F ∗)n, and secret s ∈ F ,
Shamir(n, k,

#»

X) shares the secret s by

• Share(s): Samples a polynomial P (X) ∈ F [X]deg⩽k−1 such that P (0) = s uniformly randomly,

then evaluates it at
#»

X, i.e. si := P (Xi) for i = 1, . . . , n.

• Reconstruct({si1 , . . . , sik}): Obtain a unique polynomial P̃ (X) ∈ F [X]deg⩽k−1 by conducting

polynomial interpolation over (Xi1 , si1), . . . , (Xik , sik). Compute s′ := P̃ (0).

Additive secret sharing is then an instance of generalized additive secret sharing where all
multipliers are 1 (or the same). Moreover,

Proposition 1. Shamir(n, n,
#»

X) is an instance of generalized additive secret sharing.

Therefore, proving security of GenAdd automatically translates to the security of Shamir for k = n.

Proof of Proposition 1. Given n pairs of evaluation points and shares (X1, s1), . . . , (Xn, sn), one
can recover the polynomial P (X) ∈ F [X]deg⩽n−1 that was used to compute the shares si’s via
Lagrange interpolation, and hence the secret as well:

P (X) :=
n∑

i=1

 ∏
j∈{1,2,...,n}\{i}

X −Xj

Xi −Xj


︸ ︷︷ ︸

=:Li(X)

·si =
n∑

i=1

Li(X) · si =⇒ s = P (0) =
n∑

i=1

Li(0) · si

Therefore, Shamir(n, n,
#»

X, s) is GenAdd(
#»

β , s) where βi = Li(0) =
∏

j∈{1,2,...,n}\{i}

Xj

Xj−Xi
for all i.
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2.2 Hamming weight Leakage and Leakage-resilient Secret Sharing

We measure the variation between two distributions P and Q using statistical distance.

Definition 3 (Statistical Distance). The statistical distance between two distributions P and Q
over a finite space Ω is defined as

SD(P , Q) :=
1

2

∑
x∈Ω

∣∣∣Pr[P = x]− Pr[Q = x]
∣∣∣.

Definition 4 (Hamming weight leakage). Hamming weight leakage
# »
wt = (wt,wt, . . . ,wt) is a

collection of n Hamming weight function wt: F → {0, 1, . . . , λ}. For any secret s ∈ F, the leakage
distribution

# »
wt(s⃗) over secret shares of s is defined by the following experiment. (a) Sample shares

s⃗ = (s1, s2, . . . , sn). (b) Output (wt(s1),wt(s2), . . . ,wt(sn)). Furthermore,
# »
wt(s⃗) denotes the joint

Hamming weight leakage distribution over all shares.

Definition 5 (ε-insecurity). A secret sharing scheme is ε-insecure against Hamming weight leakage
if, for Hamming weight leakage

# »
wt and a pair of secret (s(0), s(1)), the statistical distance between

the joint Hamming weight leakage distribution
# »
wt(Share(s(0))) and

# »
wt(Share(s(1))) is at most ε.

Definition 6. We say a weight w ∈ {0, 1, . . . , λ} is typical if |w − λ/2| ⩽ λ1/2+τ for some τ > 0,
and a vector of weights #»w = (w1, w2, . . . , wn) ∈ {0, 1, . . . , λ}n is in a typical set if every wi is typical:

Typical(n, τ) :=
{

#»w : |wi − λ/2| ⩽ λ1/2+τ ∀i ∈ {1, 2, . . . , n}
}
.

2.3 Rearrangement Inequality

Consider two finite sequences {xi}ni=1 and {yi}ni=1 of positive real numbers. The sum of product
of pair of numbers xiyj achieves maximal when they have similar ordering. Specifically, when
x1 ⩽ x2 ⩽ . . . ⩽ xn and y1 ⩽ y2 ⩽ . . . ⩽ yn, for any permutation σ belongs to the permutation
group Sn of {1, 2, . . . , n}, xny1+ . . .+x1yn ⩽ xσ(1)y1+ . . .+xσ(n)yn ⩽ x1y1+ . . . xnyn. The following
theorem [Rud52] generalizes the result to multiple sequences of numbers.

Imported Theorem 1 (Rearrangement Inequality [Rud52]). Consider the set of nonnegative
numbers {aij} for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. Let a′i1, a

′
i2, . . . , a

′
in denote the array

obtained by rearranging ai1, ai2, . . . , ain in non-increasing order such that a′i1 ⩾ a′i2 ⩾ . . . ⩾ a′in.
Then,

n∑
j=1

k∏
i=1

aij ⩽
n∑

j=1

k∏
i=1

a′ij and

n∏
j=1

k∑
i=1

aij ⩽
n∏

j=1

k∑
i=1

a′ij .

2.4 Fourier Analysis over Finite Field

We shall use Fourier analysis over the additive group (F,+) of a finite field F = Fpd for some prime
p ⩾ 2 and degree of extension d ∈ {1, 2, . . . }.

Definition 7. The trace of an extension field F = Fpd over the base field Fp, denoted by TrF/Fp
: F →

Fp, is defined as TrF/Fp
(y) :=

∑d−1
i=0 yp

i
.

12



Let ωp := exp(2πı/p). Define the Fourier transformation of f : F → F over F , denoted f̂ : F →
C, as follows:

f̂(α) :=
1

q

∑
x∈F

f(x) · ω
−TrF/Fp (αx)
p ∀α ∈ F

We call χα(x) = ω
TrF/Fp (αx)
p the character and f̂(α) the Fourier coefficient of f at α. For example,

if F = F2d , then ω := ω2 = exp(πı) = −1 and the Fourier coefficients and characters become

f̂(α) :=
1

q

∑
x∈F

2d

f(x) · (−1)⟨x,α⟩

where ⟨x, α⟩ ∈ F2 denotes the inner product of x and α viewed as vectors. This is possible because
the extension field Fpd is isomorphic to (Fp)

d, the vector space of dimension d with base field Fp.

Fact 1 (Parseval’s Identity).
1

card(F )

∑
x∈F
|f(x)|2 =

∑
α∈F

∣∣∣f̂(α)∣∣∣2.
Fact 2 (Character Sum). For all α ∈ F ,

∑
x∈F

χα(x) =

{
card(F ) if α = 0

0 otherwise

Note also that the modulus of character |χα(x)| = 1 for any α and x in F .

3 Insecurity Analysis

This section presents the full proof of main result (Theorem 1) that was outlined in the technical
overview (Section 1.2).

3.1 Results Needed for Proof of Theorem 1

Lemma 1 (Chernoff Bound [McD98, Theorem 2.1]). Let X1, X2, . . . , Xλ be independent Bernoulli
random variables with E(Xi) = p for each i. Then for any t ⩾ 0,

Pr

(∣∣∣∣∣
λ∑

i=1

Xi − λp

∣∣∣∣∣ ⩾ λt

)
⩽ 2 exp(−2λt2).

In particular, for t = λ−
1
2
+τ , the upper bound is 2 exp(−2λ2τ ).

Lemma 2 (Poisson Summation Formula [O’D21, Chapter 3.3]). Let C ⊆ Fn denote the set of
all shares of the secret 0 ∈ F = Fpλ. Let #»v ∈ Fn denote an arbitrary secret share of the secret
1 ∈ F . Consider an arbitrary local leakage #»τ : Fn → Ωn. For any secret s ∈ F , let #»τ (s) denote the
distribution of the leakage #»τ ( #»x ), where #»x is sampled uniformly at random from the set s · #»v + C.
The following identity holds for any leakage value

#»

ℓ ∈ Ωn.

Pr
[

#»τ (s) =
#»

ℓ
]
=
∑

#»z ∈C⊥

(
n∏

i=1

1̂τ−1
i (ℓi)

(zi)

)
· χ1(s · ⟨ #»z , #»v ⟩). (28)

where χ1(x) = ω
TrF/Fp (x)
p , whose modulus is |χ1(x)| = 1 for any x ∈ F .
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We will need a slight variation of the rearrangement inequality introduced in [Wu20].

Lemma 3 (Rearrangement Inequality). Consider non-negative reals a0, a1, . . . , aT and n permu-
tations π(1), . . . , π(n) over the set {0, 1, . . . , T}. Consider an n× (T + 1) matrix A defined by

Ai,j = aπ(i)(j),

where i ∈ {1, 2, . . . , n} and j ∈ {0, 1, . . . , T}. Let S be defined

S :=
{
j : ∃i ∈ {1, . . . , n} such that π(i)(j) = 0

}
⊆ {0, 1, . . . , T}.

Then the following inequality holds:

∑
0⩽j⩽T : j ̸∈S

n∏
i=1

aπ(i)(j) =
∑

0⩽j⩽T : j ̸∈S

n∏
i=1

Ai,j ⩽
T∑

j=1

anj . (29)

Lemma 4. For λ ∈ {1, 2, . . . }, w ∈ {1, . . . , λ}, and ζ ∈ F , we have
∣∣∣1̂w(ζ)∣∣∣ ⩽ B(ζ) where

B(ζ) :=


λ−1/2, if wt(ζ) ∈ {0, λ}
λ−1, if wt(ζ) ∈ {1, λ− 1}
4 · λ−3/2, if wt(ζ) ∈ {2, λ− 2}

λ−
1
4

(
λ

wt(ζ)

)− 1
2 , otherwise.

And hence,
λ−1∑

wt(ζ)=1

(B(ζ))n ⩽ 3 · 5
5n
2
−4 · λ−n+1

Lemma 5. For any
#»

β = (β1, β2, . . . , βn) ∈ (F ∗)n and #»w = (w1, w2, . . . , wn) ∈ {1, 2, . . . , λ}n,
n∏

i=1

∣∣∣1̂wi(βiζ)
∣∣∣ ⩽ λ−

n
2 · exp

(
−Score(ζ;

#»

β )
)

Proof of Lemma 3, Lemma 4, and Lemma 5 can be found in Appendix A.

3.2 Proof of Theorem 1

Theorem 1. For
#»

β ∈ (F ∗)n, the GenAdd(
#»

β ) secret sharing scheme is ε insecure against the
Hamming weight leakage, where

ε = O(n log λ)n/2 · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
+O(n log λ)n/2 · λ−n/2+1.

In particular, if
#»

β ∈ (F ∗)n satisfies

min
ζ∈S #»

β

Score(ζ;
#»

β ) ⩾ O(n log log λ) + cn log λ (5)

for 1
2 −

1
n > c > 0, then GenAdd(

#»

β ) is O(λ−cn) insecure against the Hamming weight leakage.
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Proof of Theorem 1. By definition, it suffices to prove that the following quantity is upper bounded
by ε.

2 · SD
( # »
wt(s) ,

# »
wt(UF )

)
=

∑
#»w∈{0,1,...,λ}n

∣∣∣∣∣ Pr
#»s←GenAdd(

#»
β ,s)

[
# »
wt( #»s ) = #»w]− Pr

#»s←GenAdd(β⃗,UF )
[

# »
wt( #»s ) = #»w]

∣∣∣∣∣ (30)

Recall from Definition 6 that a weight w ∈ {0, 1, . . . , λ} is said to be typical if it is only up to
λ1/2+τ away from the average λ/2 for some τ > 0. Let us write #»w /∈ Typical(n, τ) to denote that
#»w ∈ {0, 1, . . . , λ}n \Typical(n, τ). Chernoff bound (Lemma 1) implies that the probability mass on
atypical weights contribute only negligibly to the statistical distance.

∑
#»w /∈Typical(n,τ)

∣∣∣∣∣ Pr
#»s←GenAdd(

#»
β ,s)

[
# »
wt( #»s ) = #»w]− Pr

#»s←GenAdd(β⃗,UF )
[

# »
wt( #»s ) = #»w]

∣∣∣∣∣
⩽

∑
#»w /∈Typical(n,τ)

Pr
#»s←GenAdd(

#»
β ,s)

[
# »
wt( #»s ) = #»w] +

∑
#»w /∈Typical(n,τ)

Pr
#»s←GenAdd(β⃗,UF )

[
# »
wt( #»s ) = #»w]

(by triangle inequality)

⩽ 2 ·max
s∈F

 ∑
#»w /∈Typical(n,τ)

Pr
#»s←GenAdd(

#»
β ,s)

[
# »
wt( #»s ) = #»w]


= 2 ·

∑
#»w /∈Typical(n,τ)

Pr
#»s←GenAdd(

#»
β ,s̃)

[
# »
wt( #»s ) = #»w] (let s̃ be the argmax)

= 2 · Pr
#»s←GenAdd(

#»
β ,s̃)

[
# »
wt( #»s ) /∈ Typical(n, τ)]

= 2 · Pr
#»s←GenAdd(

#»
β ,s̃)

[wt(s1), . . . , or wt(sn) is not typical] (definition of Typical(n, τ))

⩽ 2 ·
n∑

j=1

Pr
#»s←GenAdd(

#»
β ,s̃)

[wt(si) is not typical] (by union bound)

⩽ 2n · 2 exp(−2λt2) (by Chernoff bound (Lemma 1))

Hence, the expression for the statistical distance in Equation 30 becomes a summation over a typical
set Typical(n, τ) plus a negligible quantity.

(Equation 30)

=
∑

#»w∈{0,1,...,λ}n

∣∣∣∣∣ Pr
#»s←GenAdd(

#»
β ,s)

[
# »
wt( #»s ) = #»w]− Pr

#»s←GenAdd(β⃗,UF )
[

# »
wt( #»s ) = #»w]

∣∣∣∣∣
=

∑
#»w∈Typical(n,τ)

∣∣∣∣∣ Pr
#»s←GenAdd(

#»
β ,s)

[
# »
wt( #»s ) = #»w]− Pr

#»s←GenAdd(β⃗,UF )
[

# »
wt( #»s ) = #»w]

∣∣∣∣∣
±

∑
#»w /∈Typical(n,τ)

∣∣∣∣∣ Pr
#»s←GenAdd(

#»
β ,s)

[
# »
wt( #»s ) = #»w]− Pr

#»s←GenAdd(β⃗,UF )
[

# »
wt( #»s ) = #»w]

∣∣∣∣∣
=

∑
#»w∈Typical(n,τ)

∣∣∣∣∣ Pr
#»s←GenAdd(

#»
β ,s)

[ # »
wt( #»s ) = #»w

]
− Pr

#»s←GenAdd(β⃗,UF )

[ # »
wt( #»s ) = #»w

]∣∣∣∣∣
15



± 2 · 2n · exp(−2λ2τ ) (31)

If #»s ∈ Fn is a share of secret 0, i.e. #»s ∈ C := GenAdd(
#»

β , 0), then β1s1+ · · ·+βnsn = 0, and for
any ζ ∈ F , we have ζβ1s1 + · · ·+ ζβnsn = ζ · 0 = 0. From this, we can deduce C⊥ = {ζ #»

β | ζ ∈ F},
then by Poisson summation formula (Lemma 2), for any #»v ∈ GenAdd(

#»

β , 1) we have

Pr
#»s←GenAdd(

#»
β ,s)

[ # »
wt( #»s ) = #»w

]
=
∑

#»z ∈C⊥

(
n∏

i=1

1̂wi(zi)

)
· χ1(s · ⟨ #»z , #»v ⟩)

=
∑
ζ∈F

(
n∏

i=1

1̂wi(βiζ)

)
· χ1

(
s · ζ ·

〈
#»

β , #»v
〉)

=
∑
ζ∈F

(
n∏

i=1

1̂wi(βiζ)

)
· χ1(s · ζ) (because #»v ∈ GenAdd(

#»

β , 1))

=
∑
ζ∈F

(
n∏

i=1

1̂wi(βiζ)

)
· χζ(s) (32)

Moreover,

Pr
#»s←GenAdd(

#»
β ,UF )

[ # »
wt( #»s ) = #»w

]
=

1

card(F )

∑
s∈F

Pr
#»s←GenAdd(

#»
β ,s)

[ # »
wt( #»s ) = #»w

]
=

1

card(F )

∑
s∈F

∑
ζ∈F

(
n∏

i=1

1̂wi(βiζ)

)
· χζ(s) (by Equation 32)

=
1

card(F )

∑
ζ∈F

(
n∏

i=1

1̂wi(βiζ)

)
·
∑
s∈F

χζ(s)

=
1

card(F )

∑
ζ∈{0}

(
n∏

i=1

1̂wi(βiζ)

)
· card(F ) (by Fact 2)

=
∑
ζ∈{0}

(
n∏

i=1

1̂wi(βiζ)

)
(33)

Plugging these into the summand in Equation 31, we get

∑
#»w∈Typical(n,τ)

∣∣∣∣∣ Pr
#»s←GenAdd(

#»
β ,s)

[ # »
wt( #»s ) = #»w

]
− Pr

#»s←GenAdd(β⃗,UF )

[ # »
wt( #»s ) = #»w

]∣∣∣∣∣
=

∑
#»w∈Typical(n,τ)

∣∣∣∣∣∣
∑
ζ∈F

(
n∏

i=1

1̂wi(βiζ)

)
· χζ(s)−

∑
ζ∈{0}

(
n∏

i=1

1̂wi(βiζ)

)∣∣∣∣∣∣ (by Equation 32 and 33)

=
∑

#»w∈Typical(n,τ)

∣∣∣∣∣∣
∑
ζ∈F ∗

(
n∏

i=1

1̂wi(βiζ)

)
· χζ(s)

∣∣∣∣∣∣ (because χ0(s) = 1 for all s ∈ F )

⩽
∑

#»w∈Typical(n,τ)

∑
ζ∈F ∗

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣ (by triangle inequality) (34)
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Let ζ∗ ∈ F be the element such that wt(ζ∗) = λ and consider the set

S #»
β :=

{
ζ∗ · β−11 , ζ∗ · β−12 , . . . , ζ∗ · β−1n

}
.

Then for any ζ ∈ S #»
β , at least one of βi’s should give βiζ = ζ∗. Consider the following separation

of the summation.

(Equation 34) =
∑

#»w∈Typical(n,τ)

∑
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣+ ∑

#»w∈Typical(n,τ)

∑
ζ∈F ∗\S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣ (35)

Let us upper bound the second summand (the summation over F ∗\S #»
β ). As stated in Lemma 4,

we denote B(ζ) to be a function that upper bounds |1̂w(ζ)|. Then,∑
#»w∈Typical(n,τ)

∑
ζ∈F ∗\S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣

⩽
∑

#»w∈Typical(n,τ)

∑
ζ∈F ∗\S #»

β

n∏
i=1

B(βiζ)

=
(
2λ1/2+τ

)n ∑
ζ∈F ∗\S #»

β

n∏
i=1

B(βiζ) (because card(Typical(n, τ)) = (2λ1/2+τ )n)

⩽
(
2λ1/2+τ

)n ∑
ζ∈F\{0,ζ∗}

B(ζ)n (by rearrangement lemma (Lemma 3))

⩽ 2n+1 · 5
5n
2
−4 · λnτ · λ−

n
2
+1 (by Lemma 4) (36)

The first summand (the summation over S #»
β ) can be rewritten as follows

∑
#»w∈Typical(n,τ)

∑
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣

⩽ 2n · λ( 1
2
+τ)·n · n · max

#»w∈Typical(n,τ)
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣

⩽ 2n · λ( 1
2
+τ)·n · n · λ−

n
2 · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
(by Lemma 5)

= (2λτ )n · n · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
(37)

because the maximum of a sequence is at least as large as its average. Hence, Equation 35 becomes

as follows, upon choosing τ =
log(n

4
log λ)

2 log λ (so that 2λτ = (n log λ)1/2):

(Equation 35)

⩽ (2λτ )n · n · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
+ 2 · 5

5n
2
−4 · (2λτ )n · λ−

n
2
+1

(by Equation 36 and 37)
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⩽ (n log λ)n/2 · n · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
+ 2 · 5

5n
2
−4 · (n log λ)n/2 · λ−

n
2
+1 (38)

Therefore, in summary, we have the following chain of expressions:

2 · SD
( # »
wt(s) ,

# »
wt(UF )

)
=

∑
#»w∈{0,1,...,λ}n

∣∣∣∣∣ Pr
#»s←GenAdd(

#»
β ,s)

[
# »
wt( #»s ) = #»w]− Pr

#»s←GenAdd(β⃗,UF )
[

# »
wt( #»s ) = #»w]

∣∣∣∣∣ (from Equation 30)

=
∑

#»w∈Typical(n,τ)

∣∣∣∣∣ Pr
#»s←GenAdd(

#»
β ,s)

[ # »
wt( #»s ) = #»w

]
− Pr

#»s←GenAdd(β⃗,UF )

[ # »
wt( #»s ) = #»w

]∣∣∣∣∣± 2 · 2n · exp(−2λ2τ )

(from Equation 31)

⩽
∑

#»w∈Typical(n,τ)

∑
ζ∈F ∗

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣+ 2 · 2n · exp(−2λ2τ ) (from Equation 34)

=
∑

#»w∈Typical(n,τ)

∑
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣+ ∑

#»w∈Typical(n,τ)

∑
ζ∈F ∗\S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣+ 2 · 2n · exp(−2λ2τ )

(from Equation 35)

⩽ (n log λ)
n
2 · n · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
+ 2 · 5

5n
2
−4 · (n log λ)

n
2 · λ−

n
2
+1 + 2 · 2n · λ−

n
2

(from Equation 38 and τ =
log(n

4
log λ)

2 log λ )

⩽ (n log λ)
n
2 · n · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
+

(
5

5n
2
−3 · (n log λ)

n
2 +

4n

λ

)
· λ−

n
2
+1

⩽ O(n log λ)
n
2 · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
+O(n log λ)

n
2 · λ−

n
2
+1 (for sufficiently large λ)

Now, suppose that
#»

β gives

min
ζ∈S #»

β

Score(ζ;
#»

β ) ⩾
(n
2
+ 1
)
log(n log λ) + cn log λ

for some constant c. Then, from the above expression,

2·SD
( # »
wt(s) ,

# »
wt(UF )

)
⩽ (n log λ)

n
2 · n · exp

(
− min

ζ∈S #»
β

Score(ζ;
#»

β )

)
+

(
5

5n
2
−3 · (n log λ)

n
2 +

4n

λ

)
· λ−

n
2
+1

⩽ (n log λ)
n
2 · n · (n log λ)−

n
2
−1 · λ−cn +

(
5

5n
2
−3 · (n log λ)

n
2 +

4n

λ

)
· λ−

n
2
+1

⩽ λ−cn +O
(
λ−c

′n
)
= O

(
λ−cn

)
( log λλ ⩽ λ−c

′
holds for all c′ ∈ (0, 1/2))

and this concludes the proof of Theorem 1.
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3.3 Worst-case Analysis

Recall from the statement and proof of Theorem 1 that the first summand (Equation 37) translates
to the term containing the score function Score(ζ;

#»

β ) that quantifies the security of multipliers
#»

β . However, one can bound the sum of Fourier coefficients (instead of taking the maximum and
applying union bound) and prove that the scheme GenAdd(

#»

β , s) has o(1) insecurity when not all
elements in

#»

β are identical.

Theorem 2. For
#»

β ∈ (F ∗)n and ζ ∈ S #»
β , let H(ζ;

#»

β ) := {i : βiζ ̸= ζ∗} and h̃ = min
ζ∈S #»

β

(
card(H(ζ;

#»

β ))
)
.

Then, ∑
#»w∈Typical(n,τ)

∑
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣ ⩽ (h̃+ 1) ·

(
π4

λ

) h̃
4

Proof of Theorem 2. We first upper bound the summand as follows.∑
#»w∈Typical(n,τ)

∑
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣

⩽
∑

#»w∈{0,1,...,λ}n

∑
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣ (as Typical(n, τ) ⊆ {0, 1, . . . , λ}n and |1̂wi(βiζ)| ⩾ 0)

=
∑
ζ∈S #»

β

∑
#»w∈{0,1,...,λ}n

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣

=
∑
ζ∈S #»

β

∏
i∈{1,2,...,n}

λ∑
wi=0

∣∣∣1̂wi(βiζ)
∣∣∣

=
∑
ζ∈S #»

β

 ∏
i∈H(ζ;

#»
β )

λ∑
wi=0

∣∣∣1̂wi(βiζ)
∣∣∣
 ·

 ∏
i/∈H(ζ;

#»
β )

λ∑
wi=0

∣∣∣1̂wi(βiζ)
∣∣∣
 (39)

Next, we separate bound the ℓ1-norms on the right-hand side for those indices i ∈ H(ζ;
#»

β ) and
i ̸∈ H(ζ;

#»

β ).

Case 1. Consider i ∈ H(ζ;
#»

β ). This is the non-trivial case, we want a non-trivial upper bound.

λ∑
wi=0

∣∣∣1̂wi(βiζ)
∣∣∣ ⩽ λ∑

wi=0

(
λ

i

)1/2

· 2−λ/2 ·
(

λ

wt(βiζ)

)−1/2
(by Claim 2)

=

(
λ

wt(βiζ)

)−1/2 λ∑
wi=0

(
λ

i

)1/2

· 2−λ/2

<

(
λ

wt(βiζ)

)−1/2
· π · λ1/4 (by Claim 5)

Case 2. Consider i ̸∈ H(ζ;
#»

β ). In this case, we have the trivial estimate.

λ∑
wi=0

∣∣∣1̂wi(βiζ)
∣∣∣ = λ∑

wi=0

∣∣∣1̂wi(ζ
∗)
∣∣∣ = λ∑

wi=0

1̂wi(0) =

λ∑
wi=0

(
λ

wi

)
· 2−λ = 1 (follows from Claim 2)

19



Substituting these values into Equation 39 and continuing the upper bound, we have:

(Equation 39) <
∑
ζ∈S #»

β

∏
i∈H(ζ;

#»
β )

(
λ

wt(βiζ)

)−1/2
· π · λ1/4 (40)

Note that, for any i ∈ H(ζ;
#»

β ), wt(βiζ) ∈ {1, 2, . . . , λ−1}. Therefore, using the fact that
(

λ
wt(βiζ)

)
⩾(

λ
1

)
= λ for any i ∈ H(ζ;

#»

β ), we obtain the following bound for the above quantity.

(Equation 40) ⩽
∑
ζ∈S #»

β

λ−
card(H(ζ;

#»
β ))

2 · πcard(H(ζ;
#»
β )) · λ

card(H(ζ;
#»
β ))

4

⩽ (h̃+ 1) ·
(
π4

λ

) h̃
4

(since card(S #»
β ) ⩽ h̃+ 1 [2])

Therefore, for a sufficiently large λ, the above sum is small as long as card(H(ζ;
#»

β )) ⩾ 1. That
is, for sufficiently large λ, unless β1 = β2 = · · · = βn (as in the additive secret sharing), the above
sum would be at most λ−1/4.

Corollary 1. For any
#»

β ∈ (F ∗)n such that
#»

β ̸= (b, b, . . . , b) for some b ∈ F ∗, GenAdd(
#»

β ) is

O(λ)−1/4 insecure.

Proof of Corollary 1. We follow the same direction as in the proof of Theorem 1. First, recall from
Equation 31 and Equation 35 in the proof of Theorem 1 that

2 · SD
( # »
wt(s) ,

# »
wt(UF )

)
⩽

∑
#»w∈Typical(n,τ)

∑
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣+ ∑

#»w∈Typical(n,τ)

∑
ζ∈F ∗\S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣+ 2 · 2n · exp(−2λ2τ ) (41)

We bound the second summand as we did in the proof of Theorem 1 (Equation 36), but bound the
first summand using Theorem 2.

(Equation 41) ⩽ (h̃+ 1) ·
(
π4

λ

) h̃
4

+ 2n+1 · 5
5n
2
−4 · λnτ · λ−

n
2
+1 + 2 · 2n · exp(−2λ2τ )

(recall that h̃ := min
ζ∈S #»

β

card(H(ζ;
#»

β )))

⩽ 2π · c

λ1/4
+ 2n+1 · 5

5n
2
−4 · λnτ · λ−

n
2
+1 + 2 · 2n · exp(−2λ2τ )

(because
#»

β cannot be of the form (b, b, . . . , b) ∈ (F ∗)n)

which is O(λ)−1/4, for sufficiently large λ.

[2]If ζ ∈ S #»
β , then there should exist j ∈ {1, 2, . . . , n} such that ζ = β−1

j ζ∗, and so i ∈ H(ζ,
#»

β ) iff βi ̸= βj . Hence,

for any ζ ∈ S #»
β , card(H(ζ;

#»

β )) ⩾ card(S #»
β )− 1, making h̃ := min

ζ∈S #»
β

card(H(ζ;
#»

β )) ⩾ card(S #»
β )− 1 as well.
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4 Open Problems

Following are the immediate open problem in light of our work.

1. n = 2 parties. Our recipe of using the Fourier proxy and upper bound it using the rearrangement
inequality hits a natural bottleneck when n = 2. Even using the most optimistic estimates of
Krawtchouk polynomial evaluations, Appendix C demonstrates that our approach cannot prove
the security for n = 2 case. New technical machinery is required for this case.

2. Attacks. We proved that if our minimum score of
#»

β is large then it is sufficient to prove the
security of the scheme. Is high minimum score also necessary? More concretely, given a vector
of multipliers

#»

β , does the insecurity of GenAdd(
#»

β ) surpass a specific insecurity budget ε?

3. Prime modulus. The case of Hamming weight leakage for Mersenne prime modulus was explored
by Faust et al. [FMM+24] when n ⩾ 5. The cases of general primes and, even for Mersenne
primes, n ∈ {2, 3, 4} remains open.
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A Proof of Lemmas used in Theorem 1

A.1 Proof of Our Rearrangement Inequality (Lemma 3)

Lemma 3 (Rearrangement Inequality). Consider non-negative reals a0, a1, . . . , aT and n permu-
tations π(1), . . . , π(n) over the set {0, 1, . . . , T}. Consider an n× (T + 1) matrix A defined by

Ai,j = aπ(i)(j),

where i ∈ {1, 2, . . . , n} and j ∈ {0, 1, . . . , T}. Let S be defined

S :=
{
j : ∃i ∈ {1, . . . , n} such that π(i)(j) = 0

}
⊆ {0, 1, . . . , T}.

Then the following inequality holds:

∑
0⩽j⩽T : j ̸∈S

n∏
i=1

aπ(i)(j) =
∑

0⩽j⩽T : j ̸∈S

n∏
i=1

Ai,j ⩽
T∑

j=1

anj . (29)

Proof of Lemma 3. Consider a new n× (T + 1) matrix B defined by

Bi,j :=

{
0, if π(i)(j) = 0

Ai,j , otherwise.

We remark that for every row i, there is exactly one j where the first condition of the assignment
is satisfied because π(i) is a permutation. So, the i-th row of B has a permutation of a1, . . . , aT
and an extra 0 (corresponding to where the first case in the definition was used in the assignment).
Note that ∑

0⩽j⩽T : j ̸∈S

n∏
i=1

Ai,j =

T∑
j=0

n∏
i=1

Bi,j . (42)

Therefore, it suffices to upper-bound the expression involving Bi,js instead.
Next, we will use the rearrangement lemma presented in [Wu20, Lemma 1]. Let B′ be the

n × (T + 1) matrix where each row of B is sorted in increasing order. By this rearrangement
lemma, we get

T∑
j=0

n∏
i=1

Bi,j ⩽
T∑

j=0

n∏
i=1

B′i,j . (43)

Note that
T∑

j=0

n∏
i=1

B′i,j =

T∑
j=1

n∏
i=1

B′i,j =

T∑
j=1

anj , (44)

because every row has a 0, and, therefore, the first column of B′ is all 0s. Finally, the entries
B′i,1, . . . , B

′
i,T are sorting of the sequence a1, . . . , aT .

Putting these together, using Equation 42, Equation 43, and Equation 44 sequentially, we get
our bound as follows: ∑

0⩽j⩽T : j ̸∈S

n∏
i=1

Ai,j =

T∑
j=0

n∏
i=1

Bi,j ⩽
T∑

j=0

n∏
i=1

B′i,j =

T∑
j=1

anj .

This completes our proof.
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A.2 Proof of Upper Bounds of Fourier Coefficients (Lemma 4 and Lemma 5)

Claim 1. For all λ ∈ {1, 2, . . . }, w ∈ {1, 2, . . . , λ}, and ζ ∈ F ,

1̂w(ζ) =
1

2λ

wt(ζ)∑
k=0

(−1)k
(
wt(ζ)

k

)(
λ− wt(ζ)

w − k

)
Proof of Claim 1. By definition of Fourier transformation,

1̂w(ζ) :=
1

2λ

∑
x∈F

1w(x) · (−1)⟨ζ,x⟩ =
1

2λ

∑
x∈F

wt(x)=w

(−1)⟨ζ,x⟩ = 1

2λ

wt(ζ)∑
k=0

(−1)k ·#{x : ⟨ζ, x⟩ = k}

Let us count the number of x ∈ wt−1(w) ⊆ F that satisfies ⟨ζ, x⟩ = k, given k ∈ [0,wt(ζ)]. ζ has
wt(ζ)-many 1’s in its binary representation. In order for x ∈ F to give ⟨ζ, x⟩ = k, it should have
k-many overlapping 1’s with ζ. Its remaining (w− k)-many 1’s can lie anywhere outside the digits
where ζ has a 1 in it (because otherwise it will induce more overlapping 1’s, making ⟨ζ, x⟩ greater
than k). Hence,

#{x : ⟨ζ, x⟩ = k} =
(
wt(ζ)

k

)(
λ− wt(ζ)

w − k

)
and therefore,

1̂w(ζ) =
1

2λ

wt(ζ)∑
k=0

(−1)k ·#{x : ⟨ζ, x⟩ = k} = 1

2λ

wt(ζ)∑
k=0

(−1)k
(
wt(ζ)

k

)(
λ− wt(ζ)

w − k

)
as desired.

Remark 5. Observe from Claim 1 above that the value of 1̂w(ζ) depends only on w and wt(ζ).
In other words, 1̂w(ζ) is a symmetric function in the sense that it is invariant to the permutation
of digits of ζ. This is not an unexpected outcome because 1̂w(x) is a symmetric Boolean function
itself, and Fourier transform of symmetric Boolean function over Boolean hypercube should also be
symmetric (see [KLM+09, ST11, OWZ11], for more details).

Claim 2. For all λ ∈ {1, 2, . . . }, w ∈ {1, 2, . . . , λ}, and ζ ∈ F ,

∣∣∣1̂w(ζ)∣∣∣ ⩽ 1

2λ/2

(
λ

w

)1/2( λ

wt(ζ)

)−1/2
⩽

1

λ1/4

(
λ

wt(ζ)

)− 1
2

when ζ ∈ F \ {0, ζ∗}∣∣∣1̂w(ζ)∣∣∣ = 1

2λ

(
λ

w

)
⩽

1√
λ

otherwise

Proof of Claim 2. Binomial coefficients are upper bounded by the central binomial coefficient,
which can be then upper bounded as follows: for all w ∈ {1, 2, . . . , λ},(

λ

w

)
⩽

(
λ

⌊λ/2⌋

)
⩽

2λ√
πλ/2

⩽
2λ√
λ

(45)

This immediately implies the required upper bound for ζ = 0:

1̂w(ζ) =
1

2λ

(
λ

w

)
⩽

1√
λ
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Similarly for ζ = ζ∗, we obtain the required upper bound using the following idetity.∣∣∣1̂w(ζ∗)∣∣∣ = 1

card(F )

∣∣∣∣∣∑
x∈F

1w(x) · (−1)wt(x)

∣∣∣∣∣ = 1

card(F )

∑
x∈F

1w(x) = 1̂w(0)

Now consider an arbitrary ζ ∈ F ∗. Note that Parseval’s identity (Fact 1) states∑
α∈F

1̂w(α)
2 =

1

card(F )

∑
x∈F

1w(x)
2 (46)

Simplifying the left-hand side of Equation 46, we get

1

card(F )

∑
x∈F

1w(x)
2 =

1

card(F )

∑
x∈F

1w(x) =
1

2λ

(
λ

w

)
For the right-hand side of Equation 46, note that, for any ζ ∈ F ∗,∑

α∈F
1̂w(α)

2 =
∑
α∈F

∣∣∣1̂w(α)∣∣∣2 ⩾ ∑
α∈F s.t.

wt(α)=wt(ζ)

∣∣∣1̂w(α)∣∣∣2 = ∑
α∈F s.t.

wt(α)=wt(ζ)

∣∣∣1̂w(ζ)∣∣∣2 = ( λ

wt(ζ)

)∣∣∣1̂w(ζ)∣∣∣2
where the last equality comes from the observation made in Remark 5. Putting these into Equa-
tion 46 then gives us the following:∑

α∈F
1̂w(α)

2 =
1

card(F )

∑
x∈F

1w(x)
2 =⇒ 1

2λ

(
λ

w

)
⩾

(
λ

wt(ζ)

)∣∣∣1̂w(ζ)∣∣∣2
=⇒

∣∣∣1̂w(ζ)∣∣∣ ⩽ 1

2λ/2

(
λ

w

)1/2( λ

wt(ζ)

)−1/2
=⇒

∣∣∣1̂w(ζ)∣∣∣ ⩽ 1

λ1/4

(
λ

wt(ζ)

)−1/2
(∵ Equation 45)

as desired.

Lemma 4. For λ ∈ {1, 2, . . . }, w ∈ {1, . . . , λ}, and ζ ∈ F , we have
∣∣∣1̂w(ζ)∣∣∣ ⩽ B(ζ) where

B(ζ) :=


λ−1/2, if wt(ζ) ∈ {0, λ}
λ−1, if wt(ζ) ∈ {1, λ− 1}
4 · λ−3/2, if wt(ζ) ∈ {2, λ− 2}

λ−
1
4

(
λ

wt(ζ)

)− 1
2 , otherwise.

And hence,
λ−1∑

wt(ζ)=1

(B(ζ))n ⩽ 3 · 5
5n
2
−4 · λ−n+1

Proof of Lemma 4. For brevity let us denote wt∗(ζ) := min{wt(ζ), λ − wt(ζ)}. The cases where
wt∗(ζ) = 0 and wt∗(ζ) ⩾ 2 follow from Claim 2. Let us prove for the case wt∗(ζ) = 1. Recall from
Claim 1 that if wt(ζ) = 1,

2λ · 1̂w(ζ) =
1∑

k=0

(−1)k
(
1

k

)(
λ− 1

w − k

)
=

(
λ− 1

w

)
−
(
λ− 1

w − 1

)
=

(
λ

w

)(
λ− 2w

λ

)
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=⇒
∣∣∣1̂w(ζ)∣∣∣ ⩽√ 2

πλ
· exp

(
−2 · (λ/2− w)2

λ+ 1

)
· |λ− 2w|

λ
(by Corollary 2)

⩽

√
4

πe
· 1
λ
⩽

1

λ
(by Corollary 3)

Then, we have ∑
wt∗(ζ)=1

(B(ζ))n = 2 ·
(
λ

1

)
·
(
1

λ

)n

⩽ 2 · λ−n+1

Similarly, for wt∗(ζ) = 2 case,

2λ · 1̂w(ζ) =
(
λ

w

)
(λ− 2w)2 − λ

λ(λ− 1)

=⇒
∣∣∣1̂w(ζ)∣∣∣ ⩽√ 2

πλ
· exp

(
−2 · (λ/2− w)2

λ+ 1

)
·
∣∣(λ− 2w)2 − λ

∣∣
λ(λ− 1)

(by Corollary 2)

⩽

√
2

π
·
(
6

e
+ 2

)
· 1

λ3/2
⩽ 4 · λ−3/2 (by Corollary 3)

and we get ∑
wt∗(ζ)=2

(B(ζ))n = 2 ·
(
λ

2

)
·
(
4 · λ−3/2

)n
⩽ 4n · λ−

3n
2
+2

For the remaining parts of the sum of (B(ζ))n, consider the following.

λ−2∑
wt(ζ)=3

(B(ζ))n = 2 ·
∑

wt∗(ζ)⩾3

(B(ζ))n

= 2 · λ−
n
4 ·
(
λ

3

)−n
2
+1

+ 2 · λ−
n
4 ·
(
λ

4

)−n
2
+1

+ 2 ·
λ/2∑
k=5

λ−
n
4 ·
(
λ

k

)−n
2
+1

⩽ 2 · λ−
n
4 ·
(
λ

3

)−n
2
+1

+ 2 · λ−
n
4 ·
(
λ

4

)−n
2
+1

+ 2 · λ
2
· λ−

n
4 ·
(
λ

5

)−n
2
+1

⩽ 3
3n
2
−2 · λ−n/4 · λ−

3n
2
+3 + 42n−3 · λ−n/4 · λ−2n+4 + 5

5n
2
−5 · λ−n/4+1 · λ−

5n
2
+5

= 3
3n
2
−2 · λ−

7n
4
+3 + 42n−2 · λ−

9n
4
+4 + 5

5n
2
−5 · λ−

11n
4

+6

⩽ 3 · 5
5n
2
−5 · λ−

7n
4
+3 (because for n ⩾ 3, 7n

4 − 3 < 9n
4 − 4 and 7n

4 − 3 ⩽ 11n
4 − 6)

⩽ 5
5n
2
−4 · λ−

7n
4
+3

Therefore, comparing it with the previous expression, we obtain:

λ−1∑
wt(ζ)=1

(B(ζ))n ⩽ 2 · λ−n+1︸ ︷︷ ︸
Signal

+ 4n · λ−
3n
2
+2︸ ︷︷ ︸

Median

+ 5
5n
2
−4 · λ−

7n
4
+3︸ ︷︷ ︸

Noise

⩽ 3 · 5
5n
2
−4 · λ−n+1 (because for n ⩾ 3, n− 1 < 3n

2 − 2 and n− 1 < 7n
4 − 3)

as desired.
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From Lemma 4, note that

(
2λ1/2+τ

)n ∑
ζ∈F\{0,ζ∗}

B(ζ)n = 2n · λn/2+nτ ·
λ−1∑

wt(ζ)=1

(B(ζ))n

⩽ 3 · 5
5n
2
−4 · (2λτ )n · λ−

n
2
+1

⩽ 2n · 5
5n
2
−3 · λτn · λ−

n
2
+1

which is small for sufficiently large λ when n ⩾ 3.

Lemma 5. For any
#»

β = (β1, β2, . . . , βn) ∈ (F ∗)n and #»w = (w1, w2, . . . , wn) ∈ {1, 2, . . . , λ}n,

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣ ⩽ λ−

n
2 · exp

(
−Score(ζ;

#»

β )
)

Proof of Lemma 5. If wt(βiζ) /∈ {0, λ}, by Lemma 4,

∣∣∣1̂wi(βiζ)
∣∣∣ ⩽ 1

λ1/4

(
λ

wt(βiζ)

)−1/2
=

1

λ1/2
· 1

λ−1/4

(
λ

wt(βiζ)

)−1/2
= λ−1/2 · exp

(
−1

2
log

(
λ

wt(βiζ)

)
+

log λ

4

)
Otherwise (if wt(βiζ) ∈ {0, λ}), we have

∣∣∣1̂wi(βiζ)
∣∣∣ ⩽ λ−1/2, and therefore

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣ =

 ∏
i : wt(βiζ)∈{0,λ}

∣∣∣1̂wi(βiζ)
∣∣∣
 ·

 ∏
i : wt(βiζ)/∈{0,λ}

∣∣∣1̂wi(βiζ)
∣∣∣


⩽ λ−
h∗
2 ·

 ∏
i : wt(βiζ)/∈{0,λ}

λ−
1
2 · exp

(
−1

2
log

(
λ

wt(βiζ)

)
+

log λ

4

)
(Set h∗ := #{i : wt(βiζ) ∈ {0, λ}})

= λ−
h∗
2 · λ−

(n−h∗)
2 · exp

− ∑
i : wt(βiζ)/∈{0,λ}

(
1

2
log

(
λ

wt(βiζ)

)
− log λ

4

)
= λ−

n
2 · exp

(
−

n∑
i=1

σ(wt(βiζ))

)
= λ−

n
2 · exp

(
−Score(ζ;

#»

β )
)

which proves the lemma.
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B Binomial Coefficients Estimations

We aim to prove a de Moivre-Laplace form (a.k.a., Gaussian-looking) upper bound on the binomial
coefficients similar to Agievich [Agi22] and Pain [Pai24], which will simplify our analysis later.

Corollary 2 (Binomial Coefficient Estimation). For any a ∈ {1, 2, . . . } and b ∈ {0, 1, . . . , a}, the
following bound holds. (

a

b

)
⩽

2a√
π · (a/2)

· exp
(
−2 · (b− a/2)2

a+ 1

)
This result will follow straightforwardly from Lemma 6 and Lemma 7 that prove the result

for even and odd a, respectively.[3] Chernoff bound immediately yields the bound
(
a
b

)
⩽ 2a ·

exp
(
−2 · (b−a/2)

2

a

)
; our upper bound is tighter by a multiplicative factor of O

(
a−1/2

)
.

Lemma 6. For n ∈ {1, 2, . . . } and x ∈ {0, 1, . . . , n} the following bounds hold(
2n

n− x

)
⩽

(
2n

n

)
· exp

(
− x2

n+ 1/2

)
⩽

22n√
πn
· exp

(
− x2

n+ 1/2

)
By the Central Limit Theorem, we expect

(
2n
n−x
)
→
(
2n
n

)
· exp

(
−x2/n

)
, for fixed x/n as n →

∞. Berry-Esseen [Tao12, Chapter 2.2] and Camp-Paulson [JKK05, Chapter 3.6], for example,
additively bound the gap between these two distributions. This lemma will prove a de Moivre-
Laplace form upper bound instead.

Proof of Lemma 6. We will use the following fact for the proof of our lemma:

Claim 3. For x ∈ (0, 1], we have x ⩽ exp
(
−2 · 1−x1+x

)
.

Proof. Substituting t = 1− x, the inequality is equivalent to

ln(1− t) ⩽ − t

1− t/2
=
∑
i⩾1

− ti

2i−1
,

which is true by inspection.

[Top07] presents tighter bounds. Our upper bound is equivalent to lower bounding ln(1 + x),
for x ∈ [0,∞). The bound above corresponds to the lower bound ϕ1 in [Top07, Table 1]. In general,
such bounds are a consequence of the identity [Top07, Equation 28].

Now, for the proof of our lemma, consider the following manipulation:(
2n

n− x

)
=

(
2n

n

)
· (n− x+ 1)· · ·n
(n+ 1)· · · (n+ x)

=

(
2n

n

)
·

x∏
i=1

n− x+ i

n+ x− i+ 1
(rearranging)

⩽

(
2n

n

)
·

x∏
i=1

exp

(
−2 · 2x− 2i+ 1

2n+ 1

)
(using Claim 3)

=

(
2n

n

)
· exp

(
−2 · 2x

2 − x(x+ 1) + x

2n+ 1

)
=

(
2n

n

)
· exp

(
− x2

n+ 1/2

)
.

The final part of the result follows from Fact 3 below.

[3]This result also translates into a lower bound for Euler’s Beta function, c.f. [GM15], improving the lower bound
when the two input parameters to Euler’s Beta function are close.
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Fact 3. For n ∈ {1, 2, . . . },
(
2n

n

)
⩽

22n√
πn

.

Tighter estimates are possible (for example, [Sas99, Corollary 1]); however, for our application,
this elementary estimate suffices.

Lemma 7. For n ∈ {1, 2, . . . } and x ∈ {0, 1, . . . , n} the following bounds hold(
2n+ 1

n− x

)
⩽

(
2n+ 1

n

)
· exp

(
−x(x+ 1)

n+ 1

)
⩽

22n+1√
π(n+ 1/2)

· exp
(
−(x+ 1/2)2

n+ 1

)
Proof of Lemma 7. By similar reasoning as in the proof of Lemma 6,(

2n+ 1

n− x

)
=

(
2n+ 1

n

)
(n− x+ 1) · · ·n
(n+ 2) · · · (n+ x)

=

(
2n+ 1

n

) x∏
i=1

n− x+ i

n+ x+ 2− i

⩽

(
2n+ 1

n

) x∏
i=1

exp

(
−2 · 2(x+ 1− i)

2n+ 2

)
(by Claim 3)

=

(
2n+ 1

n

)
exp

(
−

x∑
i=1

2(x+ 1− i)

n+ 1

)

=

(
2n+ 1

n

)
exp

(
−x(x+ 1)

n+ 1

)
(proves the first part of the lemma)

=
1

2
·
(
2n+ 2

n+ 1

)
· exp

(
−x(x+ 1)

n+ 1

)
⩽

22n+1√
π(n+ 1)

· exp
(
−x(x+ 1)

n+ 1

)
(by Fact 3)

=
22n+1√
π(n+ 1)

· exp
(
−(x+ 1/2)2

n+ 1

)
· exp

(
1

4(n+ 1)

)
(completing the square)

=
22n+1√

π(n+ 1/2)
· exp

(
−(x+ 1/2)2

n+ 1

)
·

√
n+ 1/2

n+ 1
· exp

(
1

2(n+ 1)

)

=
22n+1√

π(n+ 1/2)
· exp

(
−(x+ 1/2)2

n+ 1

)
·

√(
1− 1

2(n+ 1)

)
· exp

(
1

2(n+ 1)

)
⩽

22n+1√
π(n+ 1/2)

· exp
(
−(x+ 1/2)2

n+ 1

)
. (because 1− θ ⩽ exp(−θ))

This completes the proof of the second inequality.

C Optimistic Analysis

In this appendix, we argue that, while retaining the technical framework of our analysis, using the
most optimistic estimates of Krawtchouk evaluations, one can optimistically only hope to prove
security of schemes for n ⩾ 3 parties. Given this observation, our presentation introduces only
the minimum technical machinery to prove our security result for n ⩾ 3 parties. For n = 2, new
analysis techniques need to be developed.
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We begin with the observation that the insecurity is upper-bounded by

∑
#»w∈{0,1,...,λ}n

∑
ζ∈F ∗

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣

In preparation for using the rearrangement lemma, we separate the quantity as:

∑
#»w∈{0,1,...,λ}n

∑
ζ∈S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣

︸ ︷︷ ︸
first summand

+
∑

#»w∈{0,1,...,λ}n

∑
ζ∈F ∗\S #»

β

n∏
i=1

∣∣∣1̂wi(βiζ)
∣∣∣

︸ ︷︷ ︸
second summand

Upper bounding just the second summand non-trivially will be a challenge. Let B(z;w) denote an

upper bound on
∣∣∣1̂w(ζ)∣∣∣, where z = wt(ζ). Using this upper bound, we get the following upper

bound on the second summand above.∑
#»w∈{0,1,...,λ}n

∑
ζ∈F ∗\S #»

β

n∏
i=1

B( wt(βiζ) ;wi)

B(z;w) will have the property that it will decrease as z gets closer to λ/2. When satisfying
this property, we can use the rearrangement lemma to upper-bound the expression above and we
rearrange this expression.

∑
#»w∈{0,1,...,λ}n

∑
ζ∈F\{0,ζ∗}

n∏
i=1

B( wt(ζ) ;wi)

=
∑

#»w∈{0,1,...,λ}n

∑
1⩽z⩽λ−1

(
λ

z

) n∏
i=1

B(z;wi)

=
∑

1⩽z⩽λ−1

(
λ

z

)
·

 ∑
w∈{0,1,...,λ}

B(z;w)

n

(47)

So, we need an estimate for
∑

w B(z;w). B(n;w) is an upper bound on the evaluation of the
Krawtchouk polynomial. The most optimistic estimates from [Kra01, Theorem 10] put it as
(roughly)[4]

B(z;w)2 = λ−1 ·
(
λ

w

)
2−λ ·

(
λ

z

)−1
We highlight that the multiplicative λ−1 factor is the non-trivial part; without that factor, the
upper bound is straightforward. In light of this optimistic estimate, we have

∑
w

B(z;w) = λ−1/22−λ/2
(
λ

z

)−1/2∑
w

(
λ

w

)1/2

= λ−1/22−λ/2
(
λ

z

)−1/2
· 2λ/2λ1/4.

[4]The result of [Kra01, Theorem 10] is more nuanced. For back-of-the-envelope calculations, ignoring a small

correction term, it implies
(
λ
z

)
B(z;w)2 has order (z(λ− z))−1/2 ·

(
λ
w

)
2−λ. When z = Θ(λ), which is a constant

fraction of all possible z ∈ {0, 1, . . . , λ}, this quantity is λ−1 ·
(
λ
w

)
2−λ.
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= λ−1/4
(
λ

z

)−1/2
.

The last equality uses the asymptotic estimate from [GKP94, Answer to Problem 9.18 on page
593].[5] We substitute this estimate back in Equation 47 to get our overall upper bound on the
second summand. ∑

1⩽z⩽λ−1

(
λ

z

)1−n/2
· λ−n/4.

For n = 2, the upper bound on the second summand is
√
λ, which is meaningless. Only for n ⩾ 3,

the upper bound on the second summand can be meaningful. In fact, it suffices to (1) use an
accurate estimate for B(1;w) and (2) elsewhere use the trivial Parseval-based estimate

B(z;w)2 =

(
λ

w

)
2−λ

(
λ

z

)−1
.

D Some Estimates: Sum of Powers of Binomial Coefficients

Claim 4. For arbitrary θ ∈ R and m ∈ R>0, the following bound holds.∑
∆∈θ+Z

exp
(
−∆2/m

)
⩽
√
πm+ 1.

This upper bound admits an elementary proof for all m, which we present below. For large
m, significantly tighter bounds could be derived by connecting this sum to the third Jacobi theta
function. For example, [Zhu18, Theorem 2.2] proved the following estimate.∣∣∣∣∣ 1√

πm

∑
∆∈θ+Z

exp(−∆2/m)− 1

∣∣∣∣∣ ⩽ csch(π2m).

Proof of Claim 4. We will use the property that exp(−x2/m) is decreasing for x ⩾ 0 and the fact
that

∫∞
−∞ exp(−t2/m)dt =

√
πm.

Because exp(−x2/m) is even and the LHS is periodic in θ (with period 1), it suffices to consider
θ ∈ [0, 1/2]. For brevity, denote f(∆) = exp

(
−∆2/m

)
and θ = (1− θ). Then,∑

∆∈θ+Z

exp
(
−∆2/m

)
=

θf(θ) +
∑

∆∈{1+θ,2+θ,... }

f(∆)

+

θf(−θ) +
∑

∆∈{−θ−1,−θ−2,... }

f(∆)

+ θf(θ) + θf(−θ)

⩽
∫ ∞
0

f(t)dt+

∫ 0

−∞
f(t)dt+ θ · f(0) + θ · f(0)

⩽
√
πm+ 1.

This completes the proof of the claim.

[5]An upper bound of 2λ/2(λ + 1)1/2 is straightforward using Cauchy-Schwartz. The tighter O
(
λ1/4

)
asymptotic

term requires additional effort.
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Remark 6. We can prove the tighter bound∑
∆∈θ+Z

exp
(
−∆2/m

)
⩽
√
πm+ exp

(
−θ̂2/m

)
,

where θ̂ ∈ [0, 1/2] is the distance of θ from Z, i.e., min
i∈Z
|θ − i|.

Claim 5. For m ∈ {1, 2, . . . }, the following bound holds.

m∑
i=0

(
m

i

)1/2

< π ·m1/4 · 2m/2.

Proof of Claim 5. Consider the following manipulation.

m∑
i=0

(
m

i

)1/2

⩽
2m/2

(πm/2)1/4

m∑
i=0

exp

(
−(i−m/2)2

m+ 1

)
(using Corollary 2)

⩽
2m/2

(πm/2)1/4
·
(
1 +

√
π(m+ 1)

)
(using Claim 4)

⩽ 2m/2 ·

(
max
t⩾1

1 +
√

π(t+ 1)

(πt/2)1/4
· 1

t1/4

)
·m1/4

The maximum is achieved at t = 1 and the maximum value is (2/π)1/4+2 ·(π/2)1/4 < 3.14 < π.

Remark 7. In general, for p ∈ (0, 1], we can prove that

m∑
i=0

(
m

i

)p

⩽
2pm

(πm/2)p/2
·
(
1 +

√
π(m+ 1)/2p

)
⩽
√
2 · (1 + π−1/2) · 1

√
p
· 2pm ·m(1−p)/2.

E Concrete Upper Bound on Krawtchouk Polynomials

Claim 6. For a ∈ R>0 and x, k ∈ R⩾0, the following bound holds

exp(−x2/a) · xk ⩽

{
1, if k = 0.

(ka/2e)k/2, otherwise.
(48)

Proof. We first maximize −x2

a +k · lnx. It is maximized at x2 = ka/2. Therefore, exp(−x2/a) ·xk ⩽
exp(−k/2) · (ka/2)k/2.

The following estimates follow immediately from Claim 6.

Corollary 3. For x ∈ R⩾0 and m ∈ Z, the following bounds hold.

1. For m ⩾ 1:

exp

(
− 2x2

m+ 1

)
· 2x
m

⩽
21/2

e1/2
· 1

m1/2
.

2. For m ⩾ 2:

exp

(
− 2x2

m+ 1

)
·
∣∣(2x)2 −m

∣∣
m(m− 1)

⩽

(
6

e
+ 2

)
· 1
m
.
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Proof. In this proof we will repeatedly use the bound

exp

(
− 2x2

m+ 1

)
· (2x)k ⩽

(
k · m+ 1

e

)k/2

, (49)

which follows from Claim 6 by setting a = (m+ 1)/2.

1. For m ⩾ 1,

exp

(
− 2x2

m+ 1

)
· 2x
m

⩽

(
m+ 1

e

)1/2

· 1
m

(using Equation 49 with k = 1)

=

(
m+ 1

em

)1/2

· 1

m1/2

⩽ (2/e)1/2 · 1

m1/2
. (bound holds for m ⩾ 1)

2. For m ⩾ 2,

exp

(
− 2x2

m+ 1

)
·
∣∣(2x)2 −m

∣∣
m(m− 1)

⩽ exp

(
− 2x2

m+ 1

)
· (2x)

2 +m

m(m− 1)

= exp

(
− 2x2

m+ 1

)
· (2x)2

m(m− 1)
+ exp

(
− 2x2

m+ 1

)
· 1

(m− 1)

⩽

(
2 · m+ 1

e

)
· 1

m(m− 1)
+

1

m− 1
(using Equation 49 with k ∈ {2, 0})

=

[
2(m+ 1)

e(m− 1)
+

m

m− 1

]
· 1
m

⩽ (6/e + 2) · 1
m

(bound holds for m ⩾ 2.)
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