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Abstract

It 1s well accepted that Garbage Collection simplifies programming, promotes modularity, and reduces develop-
ment effort. However it is commonly believed that these advantages do not counteract the price that has to be paid:
ercesive overheads, possible long pause times, and the need of modifying existing code. Even though there exist
publically available garbage collectors that can be used in existing programs, they do not guarantee short pauses,
and some modification of the application using them is still required. In this paper we describe a snapshot-at-
beginning concurrent garbage collector algorithm and its implementation. This algorithm is less intrusive than
other garbage collecting algorithms, guarantees short pauses, and can be easily implemented in stock uniz like op-
erating systems. QOur results show that our collector is faster than other implementations that use user-level dirty
bits, and is very competitive with explicit deallocation. These advantages are especially true on multiprocessor
machines where collector and mutator can run on different processors. Qur collector has the added advantage of
being nonitrusive. Using a dynamic linking technique, we have been able to run our garbage collector with success
even in commercial programs where source code s not available. In this paper we describe the algorithm, the
implementation, and provide a comparison with other incremental garbage collectors.

1 Introduction

Garbage collection is the automatic deallocation of dynamically allocated memory that is no longer in use by
a running program [Knu73]. The alternative, explicit deallocation, is error prone and requires the programmer
to keep track of the liveness of the memory allocated. This is a frequent source of bugs that are difficult to track.
If the programmer deallocates memory too soon, the allocator may return the same memory again later in the
program. This could result in two different logical data items being stored in the same memory area causing
unpredictable behavior in the program. On the other hand if memory is never deallocated, the computer could
run out of memory swap space and crash in the case of a virtual memory system, or slow down the system for
excesive paging.

There exist programs that help find memory errors such as the ones we have described [HJ92]. However,
these programs only diagnose the problem not solve it. The programmer still has to find out when and where to
correctly deallocate memory. Garbage collection solves both problems automatically.

Besides reducing development effort, garbage collection also promotes modularity [Wil95]. For example, assume
that two modules use explicit deallocation. Module 1 allocates an object and passes its reference to module 2.
The following questions arise: Which module is going to deallocate the object? How the module encharged for the
deallocation will know that the other module not longer needs the object? The programmers of both modules will

1A expanded version of this draft has been submitted for publication to “Software Practice and Experience”



have to agree on the answers to these questions. This agreement adds extra dependencies between the modules.
Garbage collection solves this problem by deallocating the object automatically when no module needs it.

There are several algorithms for automatic garbage collection: mark and sweep collection[McC60], mark-
compact collection[CN83], copying garbage collection[F'Y69, Che70], and non-copying implicit collection [Wan89,
Bak91]. We choose to use mark and sweep garbage collection in our implementation since it can be implemented
conservatively.

Mark and sweep collection[McC60] consists of two phases: the mark phase and a sweep phase. The mark phase
identifies the blocks that are garbage, and the sweep phase deallocates these blocks. As in any garbage collection,
there are assumed to be a set of memory blocks that are never garbage called the root set. This root set typically
consists of the global variables and the execution stack. For every block in memory there is a bit called mark bit,
that is set when the block is found to be reachable from the root set. The goal of mark and sweep collection is
to recursively mark all the blocks reachable from the root set. The mark phase starts by clearing all the mark
bits. Then all the blocks in the root set are marked and pushed on to a mark stack. As long as the mark stack
is not empty, one block is poped from the mark stack, and it is scaned for pointers to other unmarked blocks.
The unmarked block is marked and pushed to the stack. When the mark stack is empty, all the blocks reachable
from the root set are marked, and the unmarked blocks are garbage. Since the unmarked objects can not longer
be reached by the program, they can be safely deallocated. This is done during the sweep phase.

Simple implementations of mark and sweep collection stop the execution of the program (mutator) completely
when doing a collection. This prevents possible races due to changes in the heap during collection and, therefore,
prevents memory from being erroneously garbage collected. These “stop-the-world” collectors are impractical in
time critical and interactive applications where the implied pauses in execution are unacceptable.

There is a class of garbage collection algorithms called incremental collectors that reduce or eliminate pause time
by marking live memory concurrently with the mutator’s execution [DLM*78, Ste75, BDS91]. These techniques
use read/write-barriers to keep track of pointer reads/writes and make sure that the mutator does not cause the
collector to erroneously garbage collect accessible memory.

Read/Write-barriers are implemented in two basic ways: compiler generated [Bro84], and virtual memory
supported [AEL88, AL91]. Compiler generated read/write-barriers insert extra code at every pointer read/write
operation in the program. Besides the overhead implied by the execution of the extra code (proportional to the
number of pointer reads/writes), compiler generated read/write-barriers are not possible in language implemen-
tations where no cooperation exists, e.g., standard C and C++ compilersfBW88, BDS91] 2

On the other hand, read/write-barriers that use virtual memory support can be used more widely (as long as
the OS provides the necessary support). Many systems allow read/write-barriers to be implemented directly by
programs using virtual memory page protection mechanisms. In such implementations, pages are read-protected
(or write-protected), and an application provided handler executes special code when the program tries to read
(or write) any of the protected pages [AEL88, BDS91, AL91].

Virtual memory read/write-barriers implemented in user space tend to be inefficient and intrusive. The cost of
a page trap, crossing the kernel-user boundary, and calling a signal handler for every page is expensive [HMS92].
Also when a page trap signal is produced inside a system call, the system call is unexpectedly interrupted. To
prevent this, the trap has to be manually generated before the program makes a system call that potentially
can cause a page trap. This limits their use since programmers need to write a stub for every system call that
potentially causes page traps. Since only one handler exists in the program for this signal, a conflict will exist if
another library is already using this handler.

Kernel virtual memory implementations of read/write barriers do not have these problems. However, not all
modern operating systems explicitly support read/write barriers inside the kernel. In this paper we introduce a
way to circumvent this problem and show a way to implement an efficient write-barrier for an incremental garbage
collector using existing kernel primitives available on many stock operating systems.

The basic algorithm proceeds as follows: when it is time to do a garbage collection, the mutator creates a
perfect copy of itself (clone) that has its own copy of the address space. This clone runs the mark phase in
parallel with the mutator. Since mutator and clone have their own copy of the address space, modifications
performed by the mutator, do not conflict with the mark phase performed by the clone. When the collection is

2We are not taking into consideration modifying an already compiled program and inserting new code to keep
track of pointer reads/writes [HJ92]. This approach is not trivial, and it still may introduce a significant overhead.



done, the clone passes the mark bits to the mutator and exits. The mutator uses the unmarked blocks in future
allocations.

This algorithm can be easily implemented in stock UNIX or any other POSIX compliant operating system
using the fork() call. Fork() creates a exact copy of the caller process. Historically the fork() system call has
been criticized as an ugly way to create a new process®. However, for the sake of our algorithm, fork() is the
perfect system call to implement cloning garbage collection. Alternatively an implementation could use explicit
copy-on-write memory if it is provided by the operating system.

Since UNIX uses fork() every time a new process is created, implementations of UNIX have optimized it
extensively. The duplication of address spaces inside fork() is now commonly done by means of virtual memory
copy-on-write techniques. Also since page traps caused by copy-on-write pages are handled efficiently inside the
kernel, the write-barrier overhead is smaller than write-barriers implemented in user space.

We have implemented a conservative version of this algorithm for SPARC machines running Solaris 2.4 with
excellent results (the implementation is not SPARC specific). The collector not only has insignificant pauses but
it is also efficient and nonintrusive (it is not necessary to modify the programs that use the garbage collector).
We have been able to run the garbage collector in commercial programs where source code is not available.

Even though our implementation of the algorithm is conservative, we believe that the algorithm can be applied
also to languages that give the precise position of pointers.

The reminder of this paper gives some background of incremental garbage collection, a description of the basic
algorithm, the implementation details, a comparison with other garbage collectors, the conclusion of our research,
and future work.

2 Incremental Garbage Collection

If an unmodified mark and sweep garbage collector ran concurrently with the mutator, it would erroneously
collect a reachable object in the following situation: during a collection, the mutator stores a pointer to an
unmarked object into an already scanned object and then it removes all other paths that reach the unmarked
object. Since the collector will not rescan already scanned objects, this unmarked object will never be marked
and it will be collected, even though it is reachable.

It is easier to understand this problem using Dijkstra’s three-color abstraction [DLM*78]. During a mark
phase objects that are marked and that have been scanned completely are considered black. Objects that are
marked but not yet scanned are considered grey. Objects that are unmarked are white.

The process of marking can also be described as the process of turning white objects into black objects. At
the beginning of the mark phase the objects in the root set are grey and all the other objects are white. The
mark phase transforms white objects that are reachable from grey objects into more grey objects. When a grey
object has been scanned completely, it turns bdlack. At the end of a mark phase all objects that are still white are
considered unreachable (garbage).

The collector will miss a reachable object when both the following two conditions happen [Wil95]:

1. The mutator stores in a black object a pointer to some white object.
2. All the paths from grey objects to this white object are deleted.

Incremental collectors must provide a mechanism to prevent either of the previous conditions from happening
in order to avoid collecting reachable objects.

3Most of the fork() calls are followed by an exec() call which destroys the newly created process’ address space.
One of the reasons why there are two different calls instead of a more efficient fork-exec() call is because it was
easier to implement in this way. In early versions of UNIX, fork() was implemented in only 27 lines of assembly
code by creating an extra copy of the current process in the swap area [Rit84]. An added advantage for having
two calls instead of one is that the child process can setup input, output, and some other process context before
calling exec() in a more elegant way [Bac86].



One way to prevent the first condition from happening is by using a read-barrier to make sure the mutator
always sees only black or grey objects so no pointers to white objects will ever be written to black objects. When
the mutator tries to load a pointer to a white object, the read-barrier turns the white object either to grey by
pushing it to the mark stack, or to black by immediately scanning the block for pointers. An example of such a
collector is given in [Bak78].

Incremental update garbage collection algorithms prevent the first condition from happening by using a write-
barrier to detect when a pointer to a white object is being written into a black object. In this case the write-barrier
either turns the black object to grey by pushing it back on to the mark stack, or turns the white object grey by
marking it and pushing it to the stack. Optionally the white object could be turned to black by scanning it for
pointers. Examples of garbage collectors that use incremental update are [DLM*78], [Ste75], and [BDS91].

Instead of preventing the first condition, snapshot-at-beginning garbage collection algorithms prevent the
second condition from happening by making sure that there always remains a path from the root set to the
objects that were reachable when the collection started. The approach is to use copy-on-write-barrier that takes a
snapshot of the mutator’s memory when the collection starts. The mark phase is then performed on this snapshot
while the mutator continues in the original copy.

Our cloning garbage collector belongs to this class of algorithms. The snapshot is automatically done inside
the kernel through virtual memory copy-on-write techniques when cloning the process. The snapshot can also be
obtained by pushing old pointer values to a mark stack every time they are overwritten by the mutator [Yua90],
by using special memory processors to create a copy-on-write of the mutator’s memory [AP87], or by building a
snapshot in user space by protecting the memory and catching page faults with a special signal handler. In the
latter case the handler takes a snapshot of the page, unprotects the page, and then the collector uses the snapshot
page for tracing[DWH*90].

Incremental collectors that prevent the first condition for happening are different in their real-time response
than those that prevent the second condition. Collectors that prevent the first condition may have to iterate
one or more times the mark phase until no grey objects exist [BDS91]. Also the collector may need to pause
continuously for every read/write operation, or completely at the end of the mark phase to catch up with the
mutator. All of the above cases make it difficult to predict one or more of the following: how long the garbage
collection will take, how frequent the interruptions will happen, how long the interruptions will take, how long
the final pause will last, or how much progress the mutator will be allowed to make.

Snapshot-at-beginning algorithms are more predictable. The amount of work done for every pointer write is
bounded (in the worst case it can cause a kernel page fault in our implementation). Also there is no need to
iterate the mark phase until the collector catches up. Therefore the time it takes to do a garbage collection is
bounded and pause time at the end of the collection can be predetermined. Snapshot-at-beginning algorithms
are thus more useful when (soft) real-time response is necessary.

3 Cloning Garbage Collection Algorithm

Snapshot-at-beginning algorithms work because any unused memory that is collected in the snapshot is still
garbage in the mutator when the collection ends. Such a collection is conservative since not all the current garbage
is collected (new garbage may be generated after the collection starts in the clone). The algorithm is formally
described as follows:

1. Stop all threads but the one that triggered the collection.
2. Clone process (memory and threads)

3. If parent process, then restart all threads and proceed execution

IS

. If clone process, then perform a mark phase

5. When mark phase ends, the clone process passes mark bits to parent process and exits



6. The parent process uses unmarked blocks in future allocations (lazy sweep)

Note that the execution of all the threads but the current one have to be stopped before cloning. The reason
is to have only the thread doing the mark phase running in the clone. Otherwise, other threads can potentially
modify the reachability graph and interfere with the mark phase. Also in multiprocessor machines it is necessary
to stop the other threads to take an atomic snapshot of all the processors’ registers.

Also note that the pause in this algorithm will be equal to the time it takes to clone a process. This time is
small in modern operating systems that duplicate address spaces using VM copy-on-write techniques. Since only
kernel tables are modified in this call, this time slowly grows with the process memory size.

Another issue is how mark bits are passed from clone to mutator process. This can be done by using an
inter-process communication mechanism such as pipes, files, or shared memory. Our implementation uses shared
memory to avoid copying overhead.

When the mark phase is over, the mutator process runs a lazy sweep during allocation. This means that when
the mutator runs out of blocks in some free list, it will get unmarked blocks from the next unsweeped page for
this size. In this way, pages are swept on demand during allocation. This lazy sweep is similar to the one used in

[BDS91].

4 Implementation
4.1 The Allocator

The memory allocator uses simple segregated free lists [Com64, WINB95]. There are multiple free lists where
each list contains blocks of a particular size. Each heap page contains objects of the same size and there is no
splitting or coalescing of blocks. Once a page is committed to have blocks of an specific size, it will continue
storing blocks of that size until the page is unmapped.

Also for each heap page there is a corresponding entry in a two level table of page-information entries that is
indexed by the page address. A page-information entry contains: a pointer to the free list this page belongs to, a
pointer to the next page used for the same size, a pointer to the start address of this block if this a multiple-page
block, and some other information. Given a memory address (addr) it is possible to find the corresponding page-
information entry (pagelnfo) in constant time from the two level table of page-information entries (page Table) by
shifting and indexing.

pagelnfo(addr) = pageTableladdr >> SHIFT1][(addr << SHIFT2) >> SHIFT3] = 0(1) (1)

Traditionally the heap is stored in a single memory mapping. When the allocator needs more memory from
the system, it calls the sbrk(increment) system call to enlarge this mapping by increment number of bytes. Data
and allocator data structures are intermixed in this single mapping. To make things worse, some user programs
also call sbrk() directly creating holes in the heap that the collector has to treat in a special way during pointer
finding.

In modern OS, there is a primitive called mmap(). Mmap()} creates independent memory mappings in the
virtual address space. Our allocator uses this call to create independent mappings for data and allocator data
structures. This allows a better logical separation between them. Also a side effect of having a memory mapped
heap is that the heap is allocated high in memory. This reduces the probability of false pointers (sequences of
bits that look like pointers) since most of the false pointers are caused by low integer values [BW88].

Large blocks (blocks larger than a page) are also memory mapped. This allows the allocator to shrink the
heap by unmapping large blocks that are not being used by the program. In this way no memory or swap space
is committed to these blocks anymore. To prevent calling mmap() every time a large block is allocated, a large
chunk of memory pages are premapped and used during allocation of several large blocks. If a large block is freed
and stays in the free list for a prespecified number of garbage collections, then the allocator unmaps this block
automatically. This feature allows the program to adapt its memory size to the current work-load.

Allocators that call sbrk(increment) can not shrink the heap in the same way. If the block we would like to
remove is at the end of the heap we could use sbrk(increment) with a negative increment to reduce the end of the



heap by increment bytes. However, if the unused large block is not at the end of the heap, we will not be able to
shrink the heap and swap space will still be committed to this unused large block. This problem can cause long
leaved programs to use more swap space and physical memory than they really need, specially in servers that
experience different kinds of memory requirements.

4.2 The Collector

A primary goal of our garbage collector is to use it with languages that do not have language cooperation such
as C and C++4. This is the reason our garbage collector is conservative. In our collector any sequence of bytes
that is aligned to a word and that points to the heap is considered a pointer [BW8§].

Our garbage collector also supports internal pointers. Any pointer that points to any address inside an object
is considered to point to the object. The following algorithm is used to determine the starting address of an
object: Given a memory address that points to the heap the page-information entry is obtained. If the size of the
object is less than a page, an integer division by that size is used to determine the starting address. Otherwise
for multi-page objects, the page-information entry has a pointer to the starting address of the object.

We also would like to use our garbage collector in any program, even when no information about the root set
is given. This is a complicated problem because programs and libraries can arbitrarily create memory mappings
and store pointers in them. For example, user-level thread packages create new memory mappings to allocate
stacks. Also shared libraries use different memory mappings to store bss and data. Keeping track of all the
different areas in memory that can be used to store pointers is difficult.

Since no complete information about the root set exists, we decided to choose a conservative root set. In our
collector all memory mappings different than the heap and allocator data structures are considered part of the
root set. A heuristic we used to reduce the size of the root set is to limit the root set to only the mappings that
do not have the executable permission set. This excludes the text part of the program. In systems where dirty
bits are available, it is possible also to reduce the root set to only the pages in the root set that have been dirty
since the time the program started. If a page in the root set is found not to have pointers, then the page can be
cleaned. This heuristic has not been implemented yet.

Process cloning is done in Solaris using the fork() primitive. fork() creates a new process that is a copy of
the parent process and that has its own copy of the address space. Internally the copy of the address space is
done using VM copy-on-write techniques. The child and parent share the same memory page as long it is not
modified. Since only kernel tables are modified in this call, the cost of calling fork() grows only slowly with the
process memory size.

There are two bitmaps in our allocator: mark-bits and allocation-bits. Every object has a corresponding
mark-bit and allocation-bit in these bitmaps. The mark-bits are used during the mark-phase to mark reachable
objects.

Allocation-bits allow running the mark and sweep phases in parallel. An allocation-bit that is cleared means
that the corresponding block is available. An allocation-bit that is set means that the block is currently allocated
and potentially it is garbage. When the allocator runs out of blocks in a free list, it sweeps one page (or one block
if it is a multiple page block) and puts the blocks with the allocation-bit cleared back to the corresponding free
list.

When a mark phase starts, the clone marks all blocks that have the allocation-bit cleared to avoid scanning
of free objects, that is: markBits = allocationBits'. Since the bitmaps are stored as arrays of words, this step
is done efficiently using bitwise word operations.

When a mark phase is over, the clone passes the mark-bits to the mutator. Mark-bits are allocated in memory
that is shared by both clone and mutator. The clone simply sets a flag in shared memory to tell the mutator
that the mark-phase has ended. The mutator checks this flag every time the allocator runs out of pages to
sweep. When the mutator realizes that the mark-phase is over, for every block that has its mark-bit cleared the
corresponding allocation-bit is cleared: that is allocationBits = allocationBits ® markBits. This step is also
done efficiently using bitwise word operations.

This form of lazy sweep is more less similar to the one used by [BDS91]. However the difference is that since
they do not have allocation-bits, mark and sweep phases can not go in parallel. Just before starting a new
collection and clearing the mark-bits, all the unswept pages have to be sweeped to put back in the free list all



the unmarked objects from the previous collection. This may cause long pauses if there are a lot of unsweeped
objects.

4.3 Nonintrusive Garbage Collection

Another goal we had in mind when designing the garbage collector is to be able to run our garbage collector
on any program even when the sources are not available. To be able to achieve this goal, we make use of the
run-time linker. By default programs in Solaris are dynamically linked to the system shared libraries. One of
the system libraries (libc) provides memory management routines that most of the programs use. The run-time
linker automatically links these libraries when the program starts execution.

Our garbage collector is implemented as a shared library that provides its own memory allocation calls: mal-
loc(), realloc(), new(), free(), and delete(). In order to make a program use these calls, we tell the run-time linker
to link our library before any other system library*. In this way, we have been able to run garbage collection even
in commercial programs where source code is not available. Even though this form of substitution is limited to
dynamically linked programs, most of the programs in modern operating systems are dynamically linked.

Next we show the nonintrusiveness of our collector by running garbage collection in two commercial applica-
tions. The applications are netscape-2.0 and matlab-4.2a. Netscape is a popular web browser that is currently
used by thousands of people. Matlab is also a widely used numerical problem solver environment. In both cases
no sources are available, and therefore no modification is possible. The GC library makes little assumptions about
the programs that use the library.

The following shell session incorporates GC in netscape. During the netscape session we browsed several
hyperlinks for a duration of 20 minutes. By setting the environment variable EXPLICIT_FREE_OFF we tell the
GC library to ignore the calls to free(). Therefore the only way to deallocate objects is through garbage collection.
The machine used for all the tests in this section was a multiprocessor SPARC-10.

csh> ( setenv LD_PRELOAD /usr/1lib/1ibGC.so; setenv EXPLICIT_FREE_OFF; netscape &)
[1] 154186

csh> Heapinfo 15416
Heap Alive Root Total Max Total
Collector Size Memory Size Garbag Pause Pause #GCs
(kb) (Kb) (Kb) (Kb) (ms) (ms)

CloningGC 4896 1828 723 14168 31 1179 49

We see here that the heap size is about 2.5 times the alive memory. This gives us an estimate of the price in
space that has to be paid for using our collector instead of explicit deallocation. One reason for having the heap
this large is the memory fragmentation: internal and external. Remember that our allocator uses blocks of fixed
sizes without splitting and coalescing. In the other side, once a page is used for blocks of an specific size, it will
never be used for other sizes. Another reason is that sometimes the collector allows the heap to grow to run more
efficiently. Also notice that the maximum pause is very acceptable: 31ms.

Next, we show the result of running the program matlab with the cloning garbage collector. The output shown
was taken after running one of the demo programs. The demo program animates the natural bending modes of
a two-dimensional truss. The program computes at real time all the calculations. The animation runs smoothly
in the presence of garbage collection. We show next the result of running this program for 10 minutes.

Heap Alive Root Total Max Total
Collector Size Memory Size  Garbag Pause Pause #GCs
(kb)  (Kb)  (Kb) (Kb) (ms) (ms)

CloningGC 11032 6713 2531 1000076 53 25416 606

4The LD_PRELOAD environment variable specifies the libraries that the run-time linker has to link first before
the execution of a program



This application generates lots of garbage. During the ten minutes we ran the application it generated about
1 GByte of garbage. The maximum pause is still unnoticeable. The cost in space is less than twice the amount
of live memory. The maximum pause is still acceptable.

However we have found some problems in applications like matlab that store arbitrary sequences of bytes that
look like pointers (false pointers). False pointers are specially found in pictures and bitmaps stored in memory. In
cases like this, applications that are programmed with garbage collection in mind could pass some information to
the garbage collector to tell in these case which objects do not have pointers. In our GC library there is a special
malloc call that allocates pointer free objects. We expect that this could reduce to almost none the problem of
false pointers. A similar approach is used by [BW88].

5 Performance Comparison

In this section we compare our implementation of cloning garbage collector with the publically available Boehm-
Demers-Weiser conservative garbage collector (BDWGC) [BDS91]°. This garbage collector has been ported to a
broad number of operating systems and architectures and currently is used by several language implementations
and applications.

We use as a benchmark the ghostscript program. Ghostcript is a publically available version of a postscript
previewer. The version of Ghostscript and the input files that are used in this comparison were obtained from
the Zorn garbage collection test suite [Zor93]®. We choose ghostscript because it is one of the most problematic
programs in the test suite: It has a large heap and it makes extensive use of dynamic memory.

BDWGC can be configured to be either stop-the-world or incremental. The write-barrier of the incremental
collector can also be configured to be implemented either by user level dirty-bits or by kernel dirty-bits. When
implemented by user-level dirty bits, it write protects all memory pages and catches the faults. When the write-
barrier is implemented by the kernel, a special system call gets the read/modified bits of all the memory pages of
a specified process. This call is only available in certain operating systems 7.

BDWGC is preemptive. This means that the collection algorithm is executed inside the allocation calls them-
selves. This has the advantage of automatically slowing down allocations when the collector is falling behind
by just spending more time in the collection algorithm. A positive side effect is that by spending more time
in the collection algorithm it also prevents the mutator to dirty too many pages when the collection is taking
place. Also there is no overhead in context switching between the mutator and the collector thread. However, the
disadvantage is that in multiprocessor machines mutator and collector are not able to run in different processors.

The incremental mode of BDWGC works as follows. When it is time to do a collection, the collector clears the
mark bits and the dirty bits of all memory pages. Then it runs the mark phase in parallel with the mutator. When
the mark-phase is over, it stops the world, reads which pages were dirtied during the marking phase, and then it
traces from marked objects in these dirty pages. This is because marked objects in dirty pages can potentially
have pointers to reachable objects that have not been marked yet. Once all reachable objects have been marked,
the mutator is restarted again.

This basic algorithm has the disadvantage that if the mutator dirties too many pages during the collection,
the final pause can be very long. To prevent this problem, BDWGC restarts the world when it detects that the
pause is getting too long and continues tracing in parallel with the mutator. Finally it stops the world again and
traces from the current dirty pages. It iterates this step as many times as needed.

The complete algorithm used in BDWGC incremental mode is given next:

1. Clear mark bits and dirty bits

2. Mark objects reachable from roots

>The Boehm-Demers-Weiser Conservative Garbage Collector and other GC related material can be obtained
from ftp://parcftp.xerox.com/pub/ge/ge html.
6Zorn’s garbage collection test suite can be obtained from ftp://cs.colorado.edu/pub/cs/misc/malloc-

benchmarks/.
"Solaris implements kernel dirty bits through special ioctl() calls to the procfs file system.



3. Stop the world
4. Read dirty bits
5. While there are objects to be marked

(a) Mark a few objects reachable from marked objects in dirty pages from last read
(b) If pause is getting too long and there are still objects to mark
1. Start the world

ii. End marking objects reachable from marked objects in dirty pages from last read
iii. Stop the world
iv. Read dirty bits

6. Start the world

The previous algorithm has two problems. First, it reduces the pause time but it increases the frequency of
pauses. In fact when two or more pauses are produced, they are very likely to be almost back to back. Second,
multiple iterations of the final marking phase will be needed if the mutator dirties lots of pages per unit of
allocation. This will increase the total time the collection takes. If reading dirty bits is an expensive operation,
this time will be even longer.

We next compare BDWGC and our collector. Notice that by comparing both collectors we are not only compar-
ing the algorithms but also their implementation. Both collectors use different data structures and mechanisms.
However we claim that the critical parts of the algorithm like conservative pointer detection are still equivalent.
We show in the next graph that the execution times of running ghostscript and stop-the-world garbage collection

are comparable®
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Using as a baseline the fact that the execution time of stop-the-world garbage collection is comparable in both
implementations, we compare next ghostscript using different collectors. The different collectors used are: our

8The benchmarks shown in this section were obtained by running the experiment five times and taking the
smallest real time. The time was obtained by using the time unix command. The CPU usage of the test program
in every case was above 96%.



collector doing: 1. Cloning Collection, and 2. Simple Stop-The-World. BDWGC doing 3. Incremental collection
using kernel dirty bits, 4. Incremental collection using page protection, and finally 5. Simple Stop-the-World
collection.

There are two sets of graphs. The first set shows the execution of the garbage collector in a uniprocessor
machine (1-cpu SPARC-10). The second set shows the execution of the collectors in a multiprocessor machine
(4-cpu SPARC-10). For each set three graphs are shown: 1. Execution Time, 2. Maximum Pause, and 3. The
Total Time Spent In Pauses. This was done for different heap sizes.

The results of running our cloning garbage collection in a uniprocessor machine are not as good as the results
of a multiprocessor machine. However, we can see that the execution time of our cloning garbage collector is
smaller for large heaps than BDWGC with user-level dirty bits. We account the difference to the overhead of
catching the page faults in user space rather than catching them in the kernel. Also as we expected, the kernel
dirty bits version of BDWGC is faster than both user-level BDWGC and our cloning garbage collector. The
reason is that in BDWGC with kernel dirty-bits there is no overhead associated to catching page faults. Also in
cloning garbage collection, both the garbage collector and ghostscript have to compete for cpu time.

The minimum maximum pause unexpectedly does not belong to cloning garbage collection, but to BDWGC
using user-level dirty bits. The reason is that in this case the time it takes to fork a process is equal to ~250ms
independently of the heap size. We show later that this pause time is much smaller in multiprocessor machines

where most of the fork system call is executed by a second processor.
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The results look much better for cloning garbage collection in a multiprocessor machine. In a multiprocessor
machine the execution time of the cloning garbage collector is much smaller than BDWGC using user level dirty
bits. It is also comparable to BDWGC using kernel dirty bits because this time cloning garbage collection uses
two processors, one to run ghostscript and the other one to run garbage collection. In the same way, cloning
garbage collection has the best total pause, and the smallest maximum pause for small heaps.
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We can learn from these results that running cloning garbage collection in a multiprocessor machine gives
us not only good execution times but also very small pause times. Even in uniprocessors machines the results
are better than using user-level dirty bits. Even though using kernel dirty bits has smaller execution time than
cloning garbage collection in uniprocessor machines, not all OS implementations have kernel dirty bits but most
support some form of cloning.

Experience has shown us that it is worthwile running cloning garbage collection in programs that have large
heaps and a large number of live objects. In programs with small heaps it may be enough to run stop-the-world
garbage collection.

6 Conclusion

We have presented a snapshot-at-beginning garbage collection algorithm called cloning garbage collection and
its implementation. This algorithm happens to have good real-time characteristics and a very simple and effective
implementation. We showed how our implementation is nonintrusive by running our collector in two commercial
applications.

We also compared our implementation with an existing incremental garbage collector. The results show that
the execution times are comparable, and that the pause times of the cloning garbage collector are better in
multiprocessor machines where collector and mutator run in different processors.

7 Future Work

We are now exploring other problems where cloning can be offered as a solution. Cloning could be used to
checkpoint persistent heaps or in distributed garbage collection.

Even though some performance numbers were shown in this paper, we think that more work has to be done
to find out the costs of cloning garbage collection.

The implementation of the cloning garbage collector shown in this paper uses conservative pointer finding.
However there is nothing that can prevent using cloning garbage collection in environments were accurate infor-
mation of pointers exists.

13



References

[AELSS]

[AL91]

[AP87]

[Bac86]

[Bak78]

[Bak91]

[BDS91]

[Bro84]

[BWSS]
[Che70]

[CN83]
[Com64]

[DLM*78]

[DWH+90]

[FY69]

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent garbage collection on stock
multiprocessors. In Proceedings of the 1988 SIGPLAN Conference on Programming Language Design
and Implementation, pages 11-20, Atlanta, Georgia, June 1988. ACM Press.

Andrew W. Appel and Kai Li. Virtual memory primitives for user programs. In Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS
IV), pages 96-107, Santa Clara, California, April 1991.

S. Abraham and J. Patel. Parallel garbage collection on a virtual memory system. In E. Chiricozzi
and A. D’Amato, editors, International Conference on Parallel Processing and Applications, pages
243-246, L’Aquila, Italy, September 1987. Elsevier North-Holland.

Maurice J. Bach. The Design of the Uniz Operating System. Prentice-Hall, Englewood Cliffs, New
Jersey, 1986.

Henry G. Baker, Jr. List processing in real time on a serial computer. Communications of the ACM,

21(4):280-294, April 1978.

Henry G. Baker, Jr. The Treadmill: Real-time garbage collection without motion sickness. In
OOPSLA ’91 Workshop on Garbage Collection in Object-Oriented Systems, October 1991. Position
paper. Also appears as SIGPLAN Notices 27(3):66-70, March 1992.

Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage collection. In Proceedings
of the 1991 SIGPLAN Conference on Programming Language Design and Implementation, pages 157—
164, Toronto, Ontario, June 1991. ACM Press.

Rodney A. Brooks. Trading data space for reduced time and code space in real-time collection on stock
hardware. In Conference Record of the 1984 ACM Symposium on LISP and Functional Programming,
pages 108-113, Austin, Texas, August 1984. ACM Press.

Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative environment. Soft-
ware Practice and Erperience, 18(9):807-820, September 1988.

C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the ACM, 13(11):677-
678, November 1970.

Jacques Cohen and Alexandru Nicolau. Comparison of compacting algorithms for garbage collection.
ACM Transactions on Programming Languages and Systems, 5(4):532-553, October 1983.

W. T. Comfort. Multiword list items. Communications of the ACM, 7(6), June 1964.

Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. On-the-
fly garbage collection: An exercise in cooperation. Communications of the ACM, 21(11):966-975,
November 1978.

Alan Demers, Mark Weiser, Barry Hayes, Daniel Bobrow, and Scott Shenker. Combining generational
and conservative garbage collection: Framework and implementations. In Conference Record of the
Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages 261-269, San
Francisco, California, January 1990. ACM Press.

Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage-collector for virtual-memory computer
systems. Communications of the ACM, 12(11):611-612, November 1969.

14



[HJ92]

[HMS92]

[Knu73]

[McC60]

[Rit84]

[SteT5]

[Wan89]

[Wil92]

[Wil95]

[WINBYS5]

[Yua90]

[Zor93]

Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and access errors. In USENIX
Winter 1992 Technical Conference, pages 125-136, San Francisco, California, January 1992. USENIX
Association.

Antony L. Hosking, J. Eliot B. Moss, and Darko Stefanovi¢. A comparative performance evaluation
of write barrier implementations. In Andreas Paepcke, editor, Conference on Object Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA ’92), pages 92-109, Vancouver, British
Columbia, October 1992. ACM Press. Published as SIGPLAN Notices 27(10), October 1992.

Donald E. Knuth. The Art of Computer Programming, volume 1: Fundamental Algorithms. Addison-
Wesley, Reading, Massachusetts, 1973. First edition published in 1968.

John McCarthy. Recursive functions of symbolic expressions and their computation by machine.

Commaunications of the ACM, 3(4):184-195, April 1960.

D.M. Ritchie. The evolution of the unix time-sharing system. Bell Laboratories Technical Journal,
63(8):1577-1594, October 1984.

Guy L. Steele Jr. Multiprocessing compactifying garbage collection. Communications of the ACM,
18(9):495-508, September 1975.

Thomas Wang. MM garbage collector for C++4. Master’s thesis, California Polytechnic State Uni-
versity, San Luis Obispo, California, October 1989.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves Bekkers and Jacques Cohen,
editors, International Workshop on Memory Management, number 637 in Lecture Notes in Computer
Science, pages 1-42, St. Malo, France, September 1992. Springer-Verlag.

Paul R. Wilson. Garbage collection. Computing Surveys, 1995. Expanded version of [Wil92]. Draft
available via anonymous internet FTP from cs.utexas.edu as pub/garbage/bigsurv.ps. In revi-
sion, to appear.

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic storage allocation:
A survey and critical review. In 1995 International Workshop on Memory Management, Kinross,

Scotland, UK, 1995. Springer Verlag LNCS.

Taichi Yuasa. Real-time garbage collection on general-purpose machines. Journal of Systems and

Software, 11:181-198, 1990.

Benjamin Zorn. The measured cost of conservative garbage collection. Software—Practice and Ez-

perience, 23(7):733-756, July 1993.

15



