
Conservative Garbage Collection for General Memory 
Allocators 

Gustavo Rodriguez-Rivera 
 
 
  
  
 

Mike Spertus 
Geodesic Systems 

414 N. Orleans St., Suite 410 

Chicago, IL 60610, USA 

 {grr, cef, mps}@geodesic.com 

 Charles Fiterman 
 
 

ABSTRACT 
This paper explains a technique that integrates conservative 
garbage collection on top of general memory allocators. This is 
possible by using two data structures named malloc-tables and 
jump-tables that are computed at garbage collection time to map 
pointers to beginning of objects and their sizes. This paper 
describes malloc-tables and jump-tables, an implementation of a 
malloc/jump-table based conservative garbage collector for Doug 
Lea’s memory allocator, and experimental results that compare 
this implementation with Boehm-Demers-Weiser GC, a state-of-
the-art conservative garbage collector. 

K eywords 
Conservative garbage collection, memory allocation, automatic 
memory management. 

1. INTRODUCTION 
Conservative garbage collection is a technique used for automatic 
memory management and leak detection for language 
implementations that do not have runtime pointer information 
such as most implementations of C and C++ [2]. Conservative 
garbage collection needs a mechanism to translate pointers to 
beginning of objects and their sizes. For this reason, conservative 
garbage collectors have been traditionally implemented on BiBoP 
(Big-Bag-of-Pages) and segregated free lists memory allocators 
[2,5,10], where all the objects in a memory segment have the 
same size and translating pointers to beginning of objects and 
their size is possible.  

However, there are cases when BiBoP allocators are not 
convenient. BiBoP and segregated free list allocators are not very 
space efficient compared to other allocators [4]. Also, there are 
times when a programmer wants to use an allocator with specific 
characteristics (cache locality etc.) that are not satisfied by 
BiBoP allocators. Additionally, some long-lived programs that 

use explicit deallocation use conservative garbage collection only 
as a litter collector to eliminate remaining memory leaks. For 
example, some customers of commercial garbage collection 
products use conservative garbage collection in long-lived servers 
to fix memory leaks in third party libraries while using explicit 
deallocation in the sources they can modify [3]. For litter-
collectors, it is better to use a memory allocator that is good for 
explicit deallocation, and pay the cost of garbage collection only 
at garbage collection time. Besides, when retrofitting garbage 
collection into an existing program that has a close dependency 
on its own memory allocator, it is important to continue using the 
same allocator or the program may break. 

This paper describes two data structures named malloc-tables 
and jump-tables that allow using conservative garbage collection 
in arbitrary allocators.  A malloc-table consists of an array 
created at garbage collection time with the addresses of all the 
allocated and freed objects in the heap. Using binary search on 
this table, the collector maps pointers to the beginning of objects 
and their sizes during the marking phase.  

The lookup in a malloc-table is speeded up by using first a jump-
table to map pointers to sub-ranges of entries in the malloc-table. 
By using a jump-table it is not necessary to do a binary search on 
the entire table every time a pointer is mapped to the beginning 
of an object. Mark bits are stored in the malloc-table for speed 
and to reduce the space overhead in each object. Malloc-tables 
also help to separate the implementation of the memory allocator 
from the implementation of the garbage collector.  

The creation of malloc-tables requires a function to iterate over 
all the allocated memory objects in the heap. We believe that this 
iterator function can be implemented in most memory allocators, 
since they already have data structures that keep track of the free 
memory segments, as well as object headers with the object size. 

Additionally, this paper explains an implementation of a 
malloc/jump-table based conservative garbage collector for Doug 
Lea’s memory allocator (dl-malloc) [7]. Dl-malloc is a widely 
used memory allocator that uses boundary tags, approximates 
best fits, and has a good balance between space and speed [4]. 
This allocator is being used in operating systems such as Linux, 
and Windows 2000, and in a large number of applications [7]. 

Finally, this paper compares the implementation of this malloc-
table-based conservative garbage collector with Boehm-Demers-
Weiser conservative garbage collector (BDWGC) [2]. BDWGC 
is a widely used public domain conservative garbage collector 
implementation. The programs used to compare both collectors 

 

 
 
 
 

 



are from Zorn’s benchmarks for memory allocation and garbage 
collection [12,13]. 

2. BACK GROUND 
Conservative garbage collection is a technique used in language 
implementations that lack run-time pointer information such as 
most implementations of C and C++ [2]. In the most basic form, 
a conservative garbage collector considers every quantity in 
memory that looks like it points to an object in the heap as a 
potential pointer. Conservative garbage collection is correct in 
the sense that during a garbage collection a superset of values 
that includes all the pointers in live objects is traced, and 
therefore no live object is prematurely collected1. 

Conservative garbage collection starts by tracing the memory in 
the global variables, stack, and registers looking for potential 
pointers. In RISC architectures, pointers start at word-
boundaries, and therefore, on these architectures only pointers at 
word boundaries are scanned.  Also, pointers to heap objects are 
numeric quantities greater or equal than the starting address of 
the heap, and less than the ending address of the heap.  

Once a pointer passes these tests, the pointer is mapped to the 
object information: the starting address, object size, and mark 

bit. If the object has not been marked, it is pushed on to the mark 
stack and marked2. The garbage collector proceeds recursively 

                                                             
1 We assume there are no operations or optimizations in the 

program that hide pointers from the garbage collector. 
2 We assume in the description that the conservative garbage 

collector is a mark-and-sweep garbage collector, but these 
techniques can be applied to mostly-copying garbage collectors 
as well. 

tracing those objects in the mark stack until the mark stack is 
empty. Finally, the sweep phase deallocates the objects in the 
heap that remain unmarked. 

To translate pointers to object information, conservative garbage 
collectors such as BDWGC implement a BiBoP allocator3, where 
all the objects that are in a single memory segment, called 
hblock, share the same hblock-header. An hblock-header, among 
other things, contains the size of the objects in the hblock, and 
the mark-bits.  

BDWGC has a two level hblock header index table to map in 
constant time pointers to hblock headers (Figure 1). For example, 
in a 32-bit architecture the 10 top bits of a pointer are used to 
lookup in the 1st level index table a pointer to a 2nd level index 
table. The second 10 top bits of the address are used to index in 
the 2nd level index table a pointer to a hblock-header that has the 
size and the mark-bits of the objects stored in that hblock. If the 
object size is smaller than an hblock, the starting address of the 
object is obtained by dividing the number in the last 12 bits of 
the pointer by the object size. Objects larger or equal than an 
hblock always start at hblock boundaries. In 64-bit architectures 
this index table is combined with a hash table to reduce the 
number of intermediate tables. 

The memory allocator in BDWGC’s uses different data 
structures for small and large objects. For objects smaller than an 
hblock BDWGC uses segregated free-lists. For objects larger 
than an hblock it uses multiple free lists ordered by memory 
address that allow coalescing of adjacent objects. Objects smaller 

                                                             
3 Although most conservative garbage collectors use BIBOP 

allocators, other memory allocation data structures may be used 
as well. 

-Object Size 

-Mark-bits 
Pointer : 

Hblock-header : 

1st Level 
0 12 22 31 

2nd Level 

Bits: 

Figure 1. Mapping from pointer  to object information in BDWGC (hblk-size=4096). 

Hblock 

bits(0-12)/object size Object Start 



or equal than 32 hblocks have their own free list. Objects larger 
than 32 hblocks share the same free list. 

Although the memory allocator in BDWGC works well for most 
garbage collected programs, some experimental results in this 
paper show that when used for explicitly deallocated programs 
BDWGC’s allocator is not as memory efficient as other memory 
allocators. Experimental studies in [4] also suggest that first fit 
and segregated free list memory allocators suffer more 
fragmentation than best-fit memory allocators do4. 

Doug Lea’s memory allocator (dl-malloc) is a good balance 
between speed and space efficiency [4,7]. Dl-malloc uses 
boundary-tags [6] that allow coalescing consecutive free blocks 
in constant time. To approximate best fit, dl-malloc uses bins of 
blocks of specific sizes. For block sizes less than 512, the bins 
are spaced 8 bytes apart. Larger bins are logarithmically spaced. 

Free objects in bins are double-linked, so removing or adding an 
object to a bin takes constant time. Large bins have objects 
sorted by size. 

When an object is allocated, the allocator searches the bin closest 
to the requested size. If no chunk of the exact size is found, then 
the last split chunk is used. This improves locality, and in the 
long run can reduce fragmentation [7]. If the last split chunk is 
not large enough, then the bins are scanned in increasing size 
order using a binblock bit array that speeds up the best-fit search 
by searching multiple bins at once. If no bin has chunks large 
enough to satisfy the requested size, then the chunk at the end of 
the heap, called top, is used. If the top chunk is not large enough, 
then the heap is extended using sbrk. Dl-malloc uses mmap() 
when the requested size is larger than a specified threshold.  

In the experiments shown in [4], dl-malloc ranks among the best 
allocators in both space efficiency and speed. Dl-malloc is 
currently used in multiple applications and operating systems 

                                                             
4 The techniques described in [8] reduce memory fragmentation 

in BiBoP allocators, but are not analyzed in this paper. 

including Linux and Windows 2000 [7]. The following section 
explains how to implement conservative garbage collection on 
top of memory allocators such as dl-malloc. 

3. M ALLOC-TABLES AND JUM P-TABLES 
It was explained previously that BDWGC translates pointers to 
object information by having all the objects in an hblock share 
the same header information. Then, using a two level index table 
indexed by bit components of the pointer, BDWGC maps 
pointers to hblock headers that contain object information. Even 
though this approach is efficient, it is difficult to apply to non-
BiBoP memory allocators. 

Malloc-tables make conservative garbage collection possible for 
non-BiBoP allocators. A malloc-table consists of an array of 

entries, where each entry has the starting address of all the 
collectible and uncollectible objects in the heap. Each entry also 
has two bits: the uncollectible-bit and the mark-bit. An 
uncollectible-bit set means that the corresponding object cannot 
be collected. Free objects and holes in the heap (sections of the 
heap that are external to the allocator) have their uncollectible-
bits set. Objects in use that can be collected have the 
uncollectible-bit cleared.  

Malloc-tables are created at every garbage collection before the 
mark-phase starts. The allocator needs to provide a function that 
iterates over all the used and unused objects in the heap and their 
sizes to create the malloc-table. Also, the entries in the malloc-
table are sorted by the starting address of the objects. 

During a mark-phase, pointers to objects are mapped to their 
object information by a binary search in the malloc-table. Pointer 
p points to the object that corresponds to entry i in the malloc-
table if and only if the object address in entry i is less than or 
equal to p and the object address in entry i+1 is greater than p.  
Once that i is found, the size of the object is obtained by 
subtracting the object address in entry i+1 and the object address 
in entry i.  If the object is collectible and unmarked, then the 

Figure 2. Mapping from pointer  to object information using a malloc-table. 

Pointer : 

Binary Search 

Malloc-Table 

Object-Address 
Mark/ 

Uncollectible  

Heap 

Used 

Free 

 

Used 

Used 

Used 

Free 

X 

X 



mark-bit in entry i is set and the memory range of the object is 
pushed on to the mark-stack. Figure 2 illustrates how to translate 
pointers to object information, using malloc-tables. 

Translating one pointer to the corresponding object information 
involves a binary search in all the entries in the malloc-table, and 
therefore, the number of executed instructions is O(logN), where 
N is the number of used objects, free objects, and holes in the 
heap. The total time cost for pointer mapping during one 
collection is O(MlogN), where M is the total number of pointers 
that are traced during a collection. In comparison, the pointer 
mapping time cost for a single pointer in BDWGC is O(1), and, 
therefore the total pointer mapping time cost for one collection is 
O(M). 

Jump-tables speed-up the lookup in the malloc-table, by using a 
hybrid approach between BDWGC and pure malloc-tables. A 
jump-table translates bit prefixes in the pointer to a range of 

entries in the malloc-table. In this way, the binary search is 
performed in a sub-range of the malloc-table and not in the entire 
malloc-table.  

A jump-table divides the heap in fixed-size sections called jump-
table-pages, where the size of a jump-table-page is a power of 
two. There is a jump-table entry for each jump-table-page in the 
heap. A jump-table entry contains an integer that represents the 
index of the malloc-table entry that corresponds to the beginning 
address of that jump-table-page. To translate a pointer to a sub-
range in the malloc-table, the collector first subtracts the heap 
base address to the pointer, and then it right-shifts the result the 
number of bits that correspond to the log (jump-table-page-size).  
The resulting number j gives the jump-table-page number that 
this pointer points to. This number j is used in the jump-table to 
find out the index of the malloc-table where the binary search 
will start, and the entry (j+1) is used to find out where the binary 
search will end. Figure 3 shows how to translate a pointer to 
object information using a jump-table and a malloc-table. 

By using a jump-table, the number of operations involved in the 
translation from a pointer to the object information is O(logQ), 
where Q is the maximum number of objects that a malloc-table-
page stores. The smaller the jump-table-page-size, the faster the 
translation, but the larger the space needed to store the jump-
table. For example, for a jump-table-size of 256, and a minimum 
object size of 16 bytes, the value of Q is 16, and the binary 
search will take at most four iterations. In the best case, if the 
object is greater or equal to 256, the binary search will take no 
iterations. 

4. M ALLOC-TABLES AND 
BLACK LISTING 
One of the problems of conservative garbage collection is the 
existence of false-pointers. False-pointers are numeric quantities 
in memory that are not real pointers but look like they point to 

objects in the heap and may cause retention of garbage. 

One technique that reduces the impact of false-pointers is 
blacklisting [1]. Blacklisting consists of detecting which sections 
of the heap are being pointed by false-pointers and preventing 
the memory allocator from allocating memory from these 
sections. Although blacklisted memory is wasted, pointers stored 
in blacklisted memory will retain no other memory, and, 
therefore, it will diminish the impact of false-pointers. Once 
false-pointers disappear blacklisted memory is released. 

Blacklisting is implemented with malloc-tables by adding extra 
malloc-table entries at the end of the table to represent future 
growth beyond the end of the heap. Each extra entry represents a 
fixed-size section of the future heap (Figure 4). If one of these 
entries is marked during the mark-phase, it means that there is a 
false-pointer pointing to it and allocation of memory in this 
section of the heap is avoided.  

When the heap is extended, the malloc-table from the last 
collection is used to pre-allocate those blacklisted sections that 

Mark/ 

Uncollectible  

Pointer : 

Figure 3. Mapping from pointer  to object information using a jump-table and a malloc-table. 

Binary  

Search 

Malloc-Table 

Object-Address 

Heap 

Used 

 

Free 

Used 

Used 

Used 

Free 

X Jump-Table 
(p – heapBase) >>  

log-jump-table-size 

 

p 

Used 

X 



are pointed by false-pointers. In this way, the program does not 
allocate this blacklisted memory and no pointers are stored in 
them. These pre-allocated sections of the heap will be collected 
if the false-pointers that point to them go away. 

It is important to notice that blacklisting requires cooperation 
from the memory allocator to pre-allocate objects at specified 
memory addresses. Such cooperation requires some knowledge of 
the underlying memory allocator. 

Although blacklisting is not required for the correctness of 

conservative garbage collection, it decreases the impact of 
memory retention due to false-pointers [1]. 

5. IM PLEM ENTATION 
The malloc/jump-table-based conservative garbage collector 
explained in this paper is implemented on top of Doug Lea’s 
memory allocator. Two modifications are required in this 
allocator to implement malloc/jump-table-based conservative 
garbage collection: 1) the addition of a function that iterates over 
all the used/unused objects and holes in the heap to build the 
allocation-table; 2) a function that allows allocating memory 
blocks at specified locations in the top of the heap when the heap 
is extended used for blacklisting. 

In order to implement 1) it is necessary to distinguish holes in 
the heap from used objects. A hole in the heap is formed when a 
library other than the memory allocator, or the program calls 
sbrk() directly. By setting the used-bit in the boundary tags of 
holes in the heap, Dl-malloc labels these holes as used to prevent 
coalescing with free blocks. Our implementation uses one bit left 
unused in the boundary tags to make the distinction between 
holes and used objects. This external-bit, is set when a hole is 
found in the heap whenever the heap is extended. 

The malloc-table is implemented as an array of words, where 
each word is the address of a used/unused chunk, or hole in the 
heap. Taking advantage of the fact that chunks and holes are 4-
byte aligned, the two least significant bits of the object address in 
the malloc-table entry are used to store the uncollectible-bit and 

the mark-bit. Therefore, the overhead for malloc-table storage is 
one word (four bytes) for each used/unused chunk, or hole in the 
heap. 

The jump-table is also implemented as an array of words. The 
smaller the jump-table-page-size is, the faster the mapping from 
pointers to object information, but the larger the jump-table. The 
current size of a jump-table-page is 256 bytes. This size was 
obtained by empirically changing this number and looking at the 
performance of the collector. Since the size of the entry of the 
jump-table is one word or four bytes for each jump-table-page, 

the space overhead due to the jump-table is about 4/256 or 1.5% 
the size of the heap. 

The sweep phase of the malloc/jump-table-based garbage 
collector consists in scanning the malloc-table for consecutive 
entries with the uncollectible-bit and mark-bit cleared. Then all 
the objects that belong to these consecutive entries are zeroed, to 
reduce memory retention, and then deallocated in one single free 
call. 

Garbage collections are triggered when the memory allocator 
runs out of space, and, the heap minus the estimated live memory 
from last collection exceeds a certain percentage of the total 
heap. If that is not true, the heap is extended and the heap 
extension is blacklisted according to the last malloc-table. If the 
space left after the extension and blacklisting is still not enough 
to satisfy the allocation that triggered the extension, then the 
heap is extended without blacklisting. This prevents excessive 
heap growth due to blacklisting. 

6. EXPERIM ENTAL RESULTS 
The following experimental results compare the malloc/jump-
table based GC (MJGC) vs. BDWGC. A comparison with Solaris 
libc’s malloc has been added as a baseline. The programs used in 
the comparison are from Zorn’s popular set of benchmarks for 
memory allocation and garbage collection [13]. The version of 
BDWGC used in the comparison is gc5.0alpha4. 

The experimental results are obtained using a Pentium II at 
450Mhz with 512MB of system memory. The operating system 

Figure 4. Blacklisting by inser ting extra malloc-table entr ies to represent future heap growth. 

Heap 

Mark/ 

Uncollectible  

Malloc-Table 

Object-Address 
Used 

Free 

Used 

Free 

X 

X 
 

 

Heap Base 

Heap Top 

Future Heap Top 

X 

False Pointer 

Entries that represent 
current heap. 

 

Entries that represent 
future heap growth. 



used is Solaris. Most of the computation in the benchmarks takes 
place in user-mode, and therefore, the results may be 
extrapolated to other operating systems that run on this 
architecture. 

The set of programs used in the comparison is limited to only 
three and the results should not be taken conclusively but as a 
proof of concept of the malloc/jump table based GC (MJGC).  A 
more extensive comparison is part of the future work. 

The programs used in the experiments are Espresso, a logic 
optimization program, Perl, a scripting language interpreter, and 
Ghost View, a popular PostScript viewer. The experiments use 
the largest input files found in Zorn’s benchmarks. A copy of the 
programs as well as the input files can be found in [12].  

Both garbage collectors are compared in both explicit memory 
management mode (explicit deallocation) and in automatic 
memory management mode (implicit deallocation). This gives a 
better perspective of the allocation performance in both BDWGC 
and MJGC collectors.  

There are two graphs for each program. One graph shows the 
total execution time vs. the virtual memory size or memory 
footprint at the end of the execution of the program. The other 
graph shows the total execution time vs. the resident memory or 
physical memory at the end of the execution of the program. 

The virtual and physical memory sizes are obtained from the OS 
using the /proc System V interface. These two coarse measures 
of space cost are used instead of the heap size to also take into 
account the cost of heap data-structures in both MJGC and 
BDWGC.  

In explicit memory management mode, the three single points in 
each graph represent BDWGC, MJGC, and Solaris libc’s malloc. 
Each point represent a different run of the program with the 

garbage collector disabled and free calls enabled.  

In automatic memory management mode, the two curves in each 
graph represent how each collector trades space vs. speed. Each 
point in the curve represents a run of the program with a 
different garbage collection threshold and the free calls disabled. 
A curve is used instead of a single point like in explicit memory 
management mode because each collector has a different way of 
trading space vs. speed, and comparing both collectors using only 
one run does not show this tradeoff. 

Figures 5 to 7 show the execution time vs. space behavior of the 
different memory allocators and garbage collectors running on 
espresso, Perl, and Ghost View. 

The work by Zorn in [13] compares BDWGC with other memory 
allocators, but it does not compare BDWGC with and without 
explicit deallocation. By running BDWGC and MJGC in both 
garbage collected and explicitly managed mode, we are able to 

Figure 5. Memory Footpr int vs. Execution Time in Espresso. 

Figure 6. Resident Memory vs. Execution Time in Espresso. 

0

2

4

6

8

10

1000 1500 2000 2500 3000
Memory Footprint (Kb)

E
xe

cu
ti

on
 T

im
e 

(s
ec

s)
BDWGC (gc only)

M JGC (gc only)

Solaris libc (free only)

BDWGC (free only)

M JGC (free only)

BDWGC
551 GC's

M JGC
449 GC's BDWGC 

191 GC's

M JGC
163 GC's

0

2

4

6

8

10

900 1400 1900 2400 2900
Resident Memory (Kb)

E
xe

cu
ti

on
 T

im
e 

(s
ec

s)

BDWGC (gc only)

M JGC (gc only)

Solaris libc (free only)

BDWGC (free only)

M JGC (free only)

M JGC

449 GC's

BDWGC

551 GC's
M JGC

163 GC's

BDWGC 
191 GC's



isolate the cost of garbage collection compared to explicit 
memory management.  

The first observation that we obtain from these graphs is that 
these programs run faster and use less memory with explicit 
deallocation than with automatic memory management. This 
shows that at least for these programs, automatic garbage 
collection comes with a price in both space and speed. 

The second observation is that in explicit allocation mode 
(collections disabled and free enabled), the memory allocator 
used by MJGC (dl-malloc) is a good compromise between space 
and speed. This allocator is close in speed to BDWGC and it is 
as space efficient as Solaris libc’s malloc. The memory allocator 
in BDWGC runs faster than their counterparts but uses more 
memory. Libc’s malloc is the most space efficient most of the 
time but it is also the slowest.  

In automatic memory management mode (free disabled and 
collections enabled), MJGC is faster than BDWGC when the GC 
threshold allows only for small memory footprints. However, 
when the GC threshold allows for large memory footprints 
BDWGC is faster than MJGC. 

This can be explained by the fact that the external fragmentation 
of a BiBoP allocator decreases when more objects of the same 
size are used. By allowing a large footprint, more garbage objects 
of the same size will be in the heap and the external 

fragmentation of BDWGC decreases. The opposite happens with 
GC thresholds that allow smaller memory-footprints.  

MJGC has the advantage of being more memory efficient for 
small memory footprints than BDWGC, but it has the 
disadvantage of a higher garbage collection overhead. This 
explains why MJGC is faster for thresholds that allow smaller 
memory footprints but slower for thresholds that allow larger 
memory footprints. For small memory footprints, the tests run at 

most 10% faster with MJGC than BDWGC, and for large 
footprints the tests run at most about 10% faster with BDWGC 
than MJGC. 

7. CONCLUSIONS AND FUTURE WORK  
This paper has presented a mechanism for using conservative 
garbage collection in arbitrary allocators.  

The main advantage of Malloc/jump-table based conservative 
garbage collector is the decoupling between the allocator and the 
collector. The allocator can use any algorithm as long as it 
supplies the functions necessary to build the malloc/jump-table 
and blacklist the heap. 

Malloc/jump-table based conservative garbage collectors can be 
suitable for applications that may suffer large memory 
fragmentation when BiBoP memory allocators are used or in 
programs that need their own specialized memory allocator. 

Figure 7. Memory Footpr int vs. Execution Time in Per l. 

Figure 8. Resident Memory vs. Execution Time in Per l. 

0

5

10

15

1500 2000 2500 3000 3500 4000 4500 5000
Memory Footprint (Kb)

E
xe

cu
ti

on
 T

im
e 

(s
ec

s)
BDWGC (gc only)

M JGC (gc only)

Solaris libc (free only)

BDWGC (free only)

M JGC (free only)

BDWGC
204 GC's

M JGC

176 GC's

BDWGC 

47 GC's

M JGC
47 GC's

0

5

10

15

900 1900 2900 3900 4900
Resident Memory (Kb)

E
xe

cu
ti

on
 T

im
e 

(s
ec

s)

BDWGC (gc only)

M JGC (gc only)

Solaris libc (free only)

BDWGC (free only)

M JGC (free only)

M JGC
176 GC's

BDWGC

204 GC's

M JGC

47 GC's

BDWGC 
47 GC's



The experimental results have shown that malloc/jump table 
based collectors can be comparable in speed to state-of-the-art 
conservative garbage collectors such as BDWGC. 

As part of future work, we are studying ways to reduce the cost 
of creating the malloc/jump table in every collection, and how 
MJGC performs as a litter garbage collector. 

7. ACK NOWLEDGEM ENTS 
We would like to thank Hans Boehm, Alan J. Demers, and Mark 
Weiser for making available their conservative garbage collector. 
In addition, thanks to Benjamin Zorn for the benchmarks used in 
this paper and the reviewers for his helpful comments. Finally, 
and most importantly, thanks to Doug Lea for providing his great 
memory allocator. 

8. REFERENCES 
[1] Hans-Juergen Boehm, “Space-efficient conservative garbage 

collection.”  In Proceedings of the 1993 SIGPLAN 
Conference on Programming Language Design and 
Implementation, pages 197-206. 

[2] Hans-Juergen Boehm and Mark Weiser. “Garbage collection 
in an uncooperative environment.”  Software Practice and 

Experience, 18(9):807-820, September 1988. 

[3] Geodesic Systems. “Customer Success Stories.”  Available 
at http://www.geodesic.com. 

[4] Mark S. Johnstone and Paul R. Wilson. “The Memory 
Fragmentation Problem: Solved?”  In ISMM’98 Proceedings 
of the ACM SIGPLAN International Symposium on Memory 
Management, Pages 26-36. 

[5] Richard E. Jones and R. Lins. “Garbage Collection: 
Algorithms for Automatic Dynamic Memory Management.”  
1996. Wiley. 

[6] Donald E. Knuth. “The Art of Computer Programming, 
volume 1: Fundamental Algorithms” . Addison-Wesley, 
Reading, Massachusetts, 1973. First edition published in 
1968. 

[7] Doug Lea. Implementation of malloc. See also the short 
paper on the implementation of the allocator. Available at 
http://g.oswego.edu. 

[8] Gustavo Rodriguez-Rivera, Michael Spertus, Charles 
Fiterman. “A non-fragmenting non-moving, garbage 
collector” , in ISMM’98 Proceedings of the ACM SIGPLAN 

Figure 10. Resident Memory vs. Execution Time in Ghost View. 

Figure 9. Memory Footpr int vs. Execution Time in Ghost View. 

0

2

4

6

8

10

12

3000 5000 7000 9000 11000 13000 15000 17000
Resident Memory (Kb)

E
xe

cu
ti

on
 T

im
e 

(s
ec

s)

BDWGC (gc only)

M JGC (gc only)

Solaris libc (free only)

BDWGC (free only)

M JGC (free only)

M JGC
129 GC's

BDWGC
171 GC's M JGC

43 GC's

BDWGC 
40 GC's

0

2

4

6

8

10

12

3000 8000 13000 18000
Memory Footprint (Kb)

E
xe

cu
ti

on
 T

im
e 

(s
ec

s)

BDWGC (gc only)

M JGC (gc only)

Solaris libc (free only)

BDWGC (free only)

M JGC (free only)

BDWGC

171 GC's

M JGC
90 GC's

BDWGC 40 GC's

M JGC

36 GC's



International Symposium on Memory Management, Pages 
79-85. 

[9] Paul R. Wilson. “Uniprocessor garbage collection 
techniques” . In Yves Bekkers and Jacques Cohen, editors. 
International Workshop on Memory Management, number 
637 in Lecture Notes in Computer Science, St. Malo, 
France, September 1992. Springer-Verlag. pages 1-42. 

[10] Paul R. Wilson. “Garbage Collection” . Computing Surveys, 
1995. Expanded version of [9]. Draft available from 
ftp://ftp.cs.utexas.edu /pub/garbage/bigsurv.ps. 

[11] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and 
David Boles. “Dynamic Storage Allocation: A survey and 
Critical Review.”  In 1995 International Workshop on 
Memory Management, Kinross, Scotland, UK, 1995. 
Springer Verlag LNCS. 

[12] Benjamin Zorn and Dirk Grunwald. “Empirical 
measurements of six allocation-intensive C programs.”  
Technical Report CU-CS-604-92, University of Colorado at 
Boulder, Dept of Computer Science, Boulder Colorado, July 
1992. 

[13] Benjamin Zorn. “The measured cost of conservative garbage 
collection.”  Software-Practice and Experience, 23(7): 733-
756, July 1993. 

 


