
 1

This information was taken from Documentation for MathWorks Products
(Release 13).

MATLAB® is a high-performance language for technical computing. The MATLAB
system consists of five main parts:

Development Environment. This is the set of tools and facilities that help you
use MATLAB functions and files. Many of these tools are graphical user
interfaces. It includes the MATLAB desktop and Command Window, a command
history, an editor and debugger, and browsers for viewing help, the workspace,
files, and the search path.

The MATLAB Mathematical Function Library. This is a vast collection of
computational algorithms such as sum, sine, cosine, matrix inverse, and matrix
eigenvalues.

The MATLAB Language. This is a high-level matrix/array language with control
flow statements, functions, data structures, input/output, and object-oriented
programming features.

Graphics. MATLAB has extensive facilities for displaying vectors and matrices
as graphs, as well as annotating and printing these graphs.

The MATLAB Application Program Interface (API). This is a library that
allows you to write C and Fortran programs that interact with MATLAB.

Starting MATLAB

On Windows platforms, to start MATLAB, double-click the MATLAB shortcut icon on your
Windows desktop.

On UNIX platforms, to start MATLAB, type matlab at the operating system prompt.

After starting MATLAB, the MATLAB desktop (see below) opens.

Quitting MATLAB

To end your MATLAB session, select Exit MATLAB from the File menu in the desktop, or type
quit in the Command Window. To execute specified functions each time MATLAB quits, such as
saving the workspace, you can create and run a finish.m script.

 2

MATLAB Desktop

When you start MATLAB, the MATLAB desktop appears, containing tools (graphical user
interfaces) for managing files, variables, and applications associated with MATLAB.

The first time MATLAB starts, the desktop appears as shown in the following illustration.

You can change the way your desktop looks by opening, closing, moving, and resizing the tools
in it. Use the View menu to open or close the tools. You can also move tools outside the desktop
or move them back into the desktop (docking). All the desktop tools provide common features
such as context menus and keyboard shortcuts.

 3

Command Window

Use the Command Window to enter variables and run functions and M-files.

Matrices

In MATLAB, a matrix is a rectangular array of numbers. Special meaning is sometimes attached
to 1-by-1 matrices, which are scalars, and to matrices with only one row or column, which are
vectors.

Entering Matrices

The best way for you to get started with MATLAB is to learn how to handle matrices. Start
MATLAB and follow along with each example.

You can enter matrices into MATLAB in several different ways:

• Enter an explicit list of elements.
• Load matrices from external data files.
• Create matrices with your own functions in M-files.

Start by entering Dürer's matrix as a list of its elements. You only have to follow a few basic
conventions:

• Separate the elements of a row with blanks or commas.
• Use a semicolon, ; , to indicate the end of each row.
• Surround the entire list of elements with square brackets, [].

 4

To enter Dürer's matrix, simply type in the Command Window
• A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

MATLAB displays the matrix you just entered.
• A =
• 16 3 2 13
• 5 10 11 8
• 9 6 7 12
• 4 15 14 1

This exactly matches the numbers in the engraving. Once you have entered the matrix, it is
automatically remembered in the MATLAB workspace. You can refer to it simply as A. Now that
you have A in the workspace, take a look at what makes it so interesting. Why is it magic?

sum, transpose, and diag

You are probably already aware that the special properties of a magic square have to do with the
various ways of summing its elements. If you take the sum along any row or column, or along
either of the two main diagonals, you will always get the same number. The first statement to try
is

• sum(A)

MATLAB replies with
• ans =
• 34 34 34 34

When you do not specify an output variable, MATLAB uses the variable ans, short for answer, to
store the results of a calculation. You have computed a row vector containing the sums of the
columns of A. Sure enough, each of the columns has the same sum, the magic sum, 34.
How about the row sums? MATLAB has a preference for working with the columns of a matrix, so
the easiest way to get the row sums is to transpose the matrix, compute the column sums of the
transpose, and then transpose the result. The transpose operation is denoted by an apostrophe
or single quote, '. It flips a matrix about its main diagonal and it turns a row vector into a column
vector.
So

• A'

produces
• ans =
• 16 5 9 4
• 3 10 6 15
• 2 11 7 14
• 13 8 12 1

And
• sum(A')'

produces a column vector containing the row sums
• ans =
• 34
• 34

 5

• 34
• 34

Subscripts

The element in row i and column j of A is denoted by A(i,j). For example, A(4,2) is the
number in the fourth row and second column. For our magic square, A(4,2) is 15. So to
compute the sum of the elements in the fourth column of A, type

• A(1,4) + A(2,4) + A(3,4) + A(4,4)
•

This produces
• ans =
• 34

but is not the most elegant way of summing a single column.
It is also possible to refer to the elements of a matrix with a single subscript, A(k). This is the
usual way of referencing row and column vectors. But it can also apply to a fully two-dimensional
matrix, in which case the array is regarded as one long column vector formed from the columns of
the original matrix. So, for our magic square, A(8) is another way of referring to the value 15
stored in A(4,2).

The Colon Operator

The colon, :, is one of the most important MATLAB operators. It occurs in several different forms.
The expression

• 1:10

is a row vector containing the integers from 1 to 10
• 1 2 3 4 5 6 7 8 9 10

To obtain nonunit spacing, specify an increment. For example,
• 100:-7:50

is
• 100 93 86 79 72 65 58 51

and
• 0:pi/4:pi

is
• 0 0.7854 1.5708 2.3562 3.1416

Subscript expressions involving colons refer to portions of a matrix.
• A(1:k,j)

is the first k elements of the jth column of A. So
• sum(A(1:4,4))

 6

computes the sum of the fourth column. But there is a better way. The colon by itself refers to all
the elements in a row or column of a matrix and the keyword end refers to the last row or column.

 7

So
• sum(A(:,end))

computes the sum of the elements in the last column of A.
• ans =
• 34

Why is the magic sum for a 4-by-4 square equal to 34? If the integers from 1 to 16 are sorted into
four groups with equal sums, that sum must be

• sum(1:16)/4

which, of course, is
• ans =
• 34

Expressions

Like most other programming languages, MATLAB provides mathematical expressions, but unlike
most programming languages, these expressions involve entire matrices. The building blocks of
expressions are

• Variables
• Numbers
• Operators
• Functions

Variables
MATLAB does not require any type declarations or dimension statements. When MATLAB
encounters a new variable name, it automatically creates the variable and allocates the
appropriate amount of storage. If the variable already exists, MATLAB changes its contents and,
if necessary, allocates new storage. For example,

• num_students = 25

creates a 1-by-1 matrix named num_students and stores the value 25 in its single element.
Variable names consist of a letter, followed by any number of letters, digits, or underscores.
MATLAB uses only the first 31 characters of a variable name. MATLAB is case sensitive; it
distinguishes between uppercase and lowercase letters. A and a are not the same variable. To
view the matrix assigned to any variable, simply enter the variable name.

Numbers

MATLAB uses conventional decimal notation, with an optional decimal point and leading plus or
minus sign, for numbers. Scientific notation uses the letter e to specify a power-of-ten scale
factor. Imaginary numbers use either i or j as a suffix. Some examples of legal numbers are

• 3 -99 0.0001
• 9.6397238 1.60210e-20 6.02252e23
• 1i -3.14159j 3e5i

 8

Operators

Expressions use familiar arithmetic operators and precedence rules.

+

Addition

- Subtraction

* Multiplication

/ Division

\ Left division (described in "Matrices and Linear Algebra" in the
MATLAB documentation)

^ Power

' Complex conjugate transpose

() Specify evaluation order

Functions

• MATLAB provides a large number of standard elementary mathematical
functions, including abs, sqrt, exp, and sin. Taking the square root or
logarithm of a negative number is not an error; the appropriate complex result is
produced automatically.

Some of the functions, like sqrt and sin, are built in. They are part of the MATLAB core so they
are very efficient, but the computational details are not readily accessible. Other functions, like
gamma and sinh, are implemented in M-files.

Several special functions provide values of useful constants.

pi 3.14159265...

i Imaginary unit, -1

j Same as i

eps Floating-point relative precision, 2-52

realmin

Smallest floating-point number, 2-1022

realmax Largest floating-point number, (2-
)21023

Inf Infinity

NaN Not-a-number

 9

Infinity is generated by dividing a nonzero value by zero, or by evaluating well defined
mathematical expressions that overflow. Not-a-number is generated by trying to evaluate
expressions like 0/0 or Inf-Inf that do not have well defined mathematical values.
The function names are not reserved. It is possible to overwrite any of them with a new variable,
such as

• eps = 1.e-6

and then use that value in subsequent calculations. The original function can be restored with
• clear eps

Examples of Expressions

You have already seen several examples of MATLAB expressions. Here are a few more
examples, and the resulting values.

• rho = (1+sqrt(5))/2
• rho =
• 1.6180

• a = abs(3+4i)
• a =
• 5

• z = sqrt(besselk(4/3,rho-i))
• z =
• 0.3730+ 0.3214i

• huge = exp(log(realmax))
• huge =
• 1.7977e+308

• toobig = pi*huge
• toobig =
• Inf

M-Files

You can create your own matrices using M-files, which are text files containing MATLAB code.
Use the MATLAB Editor or another text editor to create a file containing the same statements you
would type at the MATLAB command line. Save the file under a name that ends in .m.

For example, create a file containing these five lines.

• A = [...
• 16.0 3.0 2.0 13.0
• 5.0 10.0 11.0 8.0
• 9.0 6.0 7.0 12.0
• 4.0 15.0 14.0 1.0];

Store the file under the name magik.m. Then the statement
• magik

 10

reads the file and creates a variable, A, containing our example matrix.

 11

Command Line Editing

Various arrow and control keys on your keyboard allow you to recall, edit, and reuse statements
you have typed earlier. For example, suppose you mistakenly enter

• rho = (1 + sqt(5))/2

You have misspelled sqrt. MATLAB responds with
• Undefined function or variable 'sqt'.

Instead of retyping the entire line, simply press the key. The statement you typed is
redisplayed. Use the key to move the cursor over and insert the missing r. Repeated use of

the key recalls earlier lines. Typing a few characters and then the key finds a previous line
that begins with those characters.
Following is the list of arrow and control keys you can use in the Command Window. If the
preference you select for Command line key bindings is Emacs (MATLAB standard), you can also
use the Ctrl+key combinations shown.

Key Control Key for Emacs
(MATLAB standard) Preference

Operation

Ctrl+P Recall previous line. Works only at command

line.

Ctrl+N Recall next line. Works only at command line if
you previously used the up arrow or Ctrl+P.

Ctrl+B Move back one character.

Ctrl+F Move forward one character.

Ctrl+
 Move right one word.

Ctrl+
 Move left one word.

Home Ctrl+A Move to beginning of command line.

End Ctrl+E Move to end of command line.

Ctrl+Home Move to top of Command Window.

Ctrl+End Move to end of Command Window.

Esc Ctrl+U Clear command line.

Delete Ctrl+D Delete character at cursor in command line.

Backspace Ctrl+H Delete character before cursor in command line.

 12

Creating a Plot

The plot function has different forms, depending on the input arguments. If y is a vector,
plot(y) produces a piecewise linear graph of the elements of y versus the index of the
elements of y. If you specify two vectors as arguments, plot(x,y) produces a graph of y
versus x.

For example, these statements use the colon operator to create a vector of x values ranging
from zero to 2 , compute the sine of these values, and plot the result.

• x = 0:pi/100:2*pi;
• y = sin(x);
• plot(x,y)

Now label the axes and add a title. The characters \pi create the symbol .
• xlabel('x = 0:2\pi')
• ylabel('Sine of x')
• title('Plot of the Sine Function','FontSize',12)

 13

Multiple Data Sets in One Graph

Multiple x-y pair arguments create multiple graphs with a single call to plot. MATLAB
automatically cycles through a predefined (but user settable) list of colors to allow discrimination
among sets of data. For example, these statements plot three related functions of x, each curve
in a separate distinguishing color.

• y2 = sin(x-.25);
• y3 = sin(x-.5);
• plot(x,y,x,y2,x,y3)

The legend command provides an easy way to identify the individual plots.
• legend('sin(x)','sin(x-.25)','sin(x-.5)')

 14

Controlling the Axes

The axis command supports a number of options for setting the scaling, orientation, and aspect
ratio of plots.

Setting Axis Limits

By default, MATLAB finds the maxima and minima of the data to choose the axis limits to span
this range. The axis command enables you to specify your own limits

• axis([xmin xmax ymin ymax])

or for three-dimensional graphs,
• axis([xmin xmax ymin ymax zmin zmax])

Use the command
• axis auto

to reenable MATLAB automatic limit selection.

Setting Axis Aspect Ratio
axis also enables you to specify a number of predefined modes. For example,

• axis square

makes the x-axes and y-axes the same length.
• axis equal

makes the individual tick mark increments on the x- and y-axes the same length. This means
• plot(exp(i*[0:pi/10:2*pi]))

followed by either axis square or axis equal turns the oval into a proper circle.

• axis auto normal

returns the axis scaling to its default, automatic mode.

Setting Axis Visibility
You can use the axis command to make the axis visible or invisible.

• axis on

makes the axis visible. This is the default.
• axis off

makes the axis invisible.

Setting Grid Lines
The grid command toggles grid lines on and off. The statement

• grid on

turns the grid lines on and
• grid off

turns them back off again.

 15

Axis Labels and Titles

The xlabel, ylabel, and zlabel commands add x-, y-, and z-axis labels. The title
command adds a title at the top of the figure and the text function inserts text anywhere in the
figure. A subset of TeX notation produces Greek letters.

• t = -pi:pi/100:pi;
• y = sin(t);
• plot(t,y)
• axis([-pi pi -1 1])
• xlabel('-\pi \leq {\itt} \leq \pi')
• ylabel('sin(t)')
• title('Graph of the sine function')
• text(1,-1/3,'{\itNote the odd symmetry.}')

Saving a Figure

To save a figure, select Save from the File menu. To save it using a graphics format, such as
TIFF, for use with other applications, select Export from the File menu. You can also save from
the command line--use the saveas command, including any options to save the figure in a
different format.

