| 7 8 1 |

   | -1 2 3 |

 

= 6(-1)2 * det | 8 1 |  + 3(-1)3 * det |  7 1  | + 4(-1)4 * det |  7 8 |

                      | 2 3 |                         | -1 3 |                        |-1 2 |

 

= 6(-1)2 * [8(-1)2(3) + 1(-1)3(2)] + 3(-1)3 * [7(-1)2(3) + (1)(-1)3(-1)] +

4(-1)4[7(-1)2(2)+8(-1)3(-1)]

 

                                                = 6(24-2) + (-3)(21+1) + 4(14+8) = 154

 

 

 

 

 

 

 

3)      3x + 4y +  z  = 2

2)                    3y  + 2z = 1

1)                                      5x = 10

 

from equation 1   

z = 10/5 = 2

 

subsition into equation 2 

3y + 2(2) = 1

3y  = -3

y = -1

 

                        substitution into equation 3

                                    3x + 4(-1) + 2 = 2

                                    3x = 4

                                    x = 4/3

 

 

2(x+y=3)

2x + 2y = 6

·        Replacements

·        A linear equation can be replaced by the sum of itself and a non-zero multiple of another equation in the system

·        Gaussian Elimination

·        Convert a system of linear equations to upper triangular while using the transformations above

·        Solve with back substitution

·        Example

 

1x + 3y + 4z = 19

8x + 9y + 3z = 35

  x +  y  +  z = 6

 

§         Switch to augmented matrix (including B vector)

 

| 1 3 4 19 |

| 8 9 3 35 |

| 1 1 1   6 |

 

§         Choose a pivot row and pivot element in that row

§         Divide entire row by pivot element

 

| 1 ίPivot Element 3 4 19 |  ί Pivot Row

| 8                           9 3 35 |

| 1                           1 1   6 |

 

§         Apply transformations to make the upper triangular

 

First row multiplied by -1 and added to the third row

First row multiplied by -8 and added to second row

 

| 1    3     4    19 |

| 0 -15 -29 -117 |  ί New pivot row and pivot element in second column

| 0   -2   -3   -13 |

 

Divide pivot row by pivot element

 

| 1  3        4        19 |

| 0  1 29/15 117/15 |

| 0 -2      -3      -13 |

 

Multiple second row by 2 and add to third row

 

| 1  3        4        19 |

| 0  1 29/15 117/15 |

| 0  0 13/15   39/15 |  ί New pivot row and pivot element in third column

 

Divide pivot row by pivot column

 

| 1  3        4        19 |

| 0  1 29/15 117/15 |

| 0  0        1          3 |

 

§         Back Substitution

 

z = 3

 

y = -87/15 + 117/15

y = 2

 

x = 19 – 3(2) – 4(3)

x = 19 – 6 – 12

x = 1

 

 

File gauss.m

 

function x = gauss(A,B)  

% Input –   A is a NxN matrix

%               B is a Nx1 matrix

% Output – x is a Nx1 matrix with the solution Ax=B

 

% Get the dimensions of A

[N N] = size(A)

% Initialize the x vector with 0

x = zero(N,1)

% Construct the augmented Matrix

Aug = [A B]

%Gaussian Elimination

% Pivot all rows

for p = 1:N

      % get pivot to simplify doesn’t include code where pivot is 0 you will have to swap rows

      piv = Aug[p,p]

      % Divide pivot row by pivot

      for k = p:N+1

                  Aug[p,k] = Aug[p,k]/ piv

      End

% short notation

% Aug[p,p:N+1] = Aug[p,p:N+1]/piv

%Put 0’s in other elements of pivot columns for all remaining rows

for k = P+1:N 

            m = Aug[k,p];

            for i = p:N+1

                        Aug[k,i] = Aug[k,i] – m * Aug[p,i]

            End

            % short notation

            % Aug[k,p:N+1] = Aug[k,p:N+1] – m * Aug[p,p:N+1]

% Back Substitution

for k = N:1

            % Accumulate all elements remaining in that row times x

            sum = 0

            for i=k+1:N

                        sum = sum + Aug[k,i] * x[I,1]

            end

            x[k,1] = Aug[k,N+1]-sum

end

end

 

o       If the pivot is 0 then switch rows

o       To reduce arithmetic errors choose the maximum element in the remaining elements in the pivot column as the pivot

 

 

o       Good for cases when you want to solve the same system of linear equations with different B vectors

Ax1=B1

Ax2=B2

Ax3=B3

 

o       How does it work

§         A matrix has a triangular factorization if it can be expressed as the product of a lower triangular and a upper triangular matrix

 

A=LU

L = Lower triangular

U = Upper triangular

o                                           Assume A can be factored to A=LU

§         Ax = B

§         LUx = B

§         L(Ux) = B

§         Y = UX

§         LY = B

o       Now we have 2 systems of linear equations

o       Once you have a LU factorization of A the you can solve Ly=B using forward substitution

o       Once you have Y you can solve Ux=Y using backwards substitution to find x

o       Three steps for solving a system of linear equations using LU factoring

§         Factor A into 2 matrices L and U

§         Solve LY=B using forward substitution

§         Solve UX=Y using backwards substitution

o       Example

 

6x1 + x2– 4x3 = -1

5x1 + 3x2 + 2x3 = 21

x1 – 4x2 + 3x3 = 10

 

 

A=       |  6  1 -4 |

            |  5  3  2 |

            |  1 -4  3 |

 

A=       | 1 0 0 | |  6  1 -4 |

            | 0 1 0 | |  5  3  2 |

            | 0 0 1 | |  1 -4  3 |

 

Multiple first row by 1/6

 

| 1/6 0 0 | |  1  1/6 -4/6 |

            | 0    1 0 | |  5     3     2 |

            | 0    0 1 | |  1    -4     3 |

 

Multiply first row by -5 and add to second row

Multiply first row by -1 and add to third row

 

| 1/6   0 0 | |  1    1/6      -4/6 |

            | -5/6 1 0 | |  0   13/6     32/6 |

            | -1/6 0 1 | |  0  -25/6     22/6 |

 

Multiple second row by 6/13

 

|    1/6       0 0 | |  1    1/6        -4/6 |

            | -5/13 6/13 0 | |  0        1     32/13 |

            |   -1/6      0 1 | |  0  -25/6      22/6 |

 

Multiple second row by 25/6 and add to third row

 

|    1/6              0  0 | |  1    1/6      -4/6 |

            | -5/13         6/13  0 | |  0     1     32/13 |

            |   -150/78  25/13 1 | |  0     0   827/78 |

 

Third row multiplied by 78/827

 

|          1/6             0           0 | |  1    1/6   -4/6 |

            |       -5/13        6/13           0 | |  0     1  32/13 |

            |  -150/822  150/822 78/822 | |  0     0         1 |

 

L =       |          1/6             0           0 |

            |       -5/13        6/13           0 |

            |  -150/822  150/822 78/822 |

 

U =      |  1    1/6      -4/6 |

            |  0     1     32/13 |

            |  0     0   827/78 |

 

§         Solve LY = B using forward substitution

y1 = -18

y2 = 61/2

y3 = 135/4

 

§         Solve UX = Y using backwards substitution

x1 = 2069/156

x2 = -1367/26

x3 = 135/4

 

o       Complexity of Gaussian Elimination and LU factorization

§         Factor A into LU-> O(N3)

§         Gaussian Elimination (No Backwards Substitution) ->   O(N3)

§         Forward and Backwards Substitution -> O(N2)

§         If you want to solve Ax=B for a simple B then use Gaussian Elimination because it is faster the LU factoring (Even though both are O(N3) Gaussian elimination has a smaller constant (The cost will be M * O(N3))

§         If you want to solve multiple systems Ax=B for i=1..m you will use LU factoring (The cost will be O(N3) + @M O(N2))

 

o                                           Iterative Methods to solve Systems of Linear Equations

§         These methods are useful when you have a lot of variables (e.g. 100000) and A is sparse (a large percentage of coefficients are 0’s)

§         This situation happens when solving a partial differential equation numerically

§         Jacobi Method

·        Assume system

3x+y=5

x+3y=7

 

·        We can write the equations as

x=(5-y)/3

y=(7-y)/3

 

·        This suggests the following iterative method

xk+1 = (5-yk)/3

yk+1 = (7-xk)/3

 

·        Assume x0 = 0 y0 = 0

 

x1 = (5-0)/3 = 1.667      y1 = (7-0)/3 = 2.333

x2 = (5-2.333)/3 = .889      y2 = (7-1.667)/3 = 1.77

x3 = (5-1.77)/3 = 1.074      y3 = (7-.889)/3 = 2.037

x4 = (5-2.037)/3 = .987      y4 = (7-1.074)/3 = 1.975

 

Continues to xn =1 and yn =2

 

·        Suggested Criteria of convergence when abs(xK – xK+1)+abs(yK – yK+1) < epsilon

§         Gauss Seidel Iteration

·        We can speed up the convergence by using the most recent computed values instead of the ones from the previous iteration

 

3x+y=5

x+3y=7

 

      xk+1 = (5-yk)/3

yk+1 = (7-xk)/3

 

·        Example

 

x0 = 0                                       y0 = 0

      x1 = (5-0)/3 = 1.667                 y1 = (7-1.667)/3 = 1.778

      x2 = (5-1.778)/3 = 1.074          y2 = (7-1.074)/3 = 1.975

      x3 = (5-1.975)/3 = 1.008          y3 = (7-1.008)/3 = 1.99

 

·        Convergence of gauss seidel is faster most of the time

·        The Jacobi and Gauss Seidel methods may not converge in some cases

o       Such as if you rearranged the above equations to

xk+1 = 7-3yk

yk+1 = 5-3xk

·        How can convergence be assured

o       Strictly diagonal matrix

§         A matrix that

 

 

are greater then the sum of all the elements in the same row

o       Jacobi Iteration if A is a strictly diagonal matrix

o       This criteria can be used in most of the cases