
Gustavo Rodriguez-Rivera
Computer Science Department

Purdue University

CS250

Computer Architecture

General Information

 Web Page:
http://www.cs.purdue.edu/homes/cs250

 Office: LWSN1210

 E-mail: grr@cs.purdue.edu

 Textbook:
 Essentials of Computer Architecture

D. E. Comer
Prentice Hall
0-13-149179-2

Grading

 Grade allocation

 Midterm: 25%

 Final: 25%

 Labs and Homework: 40%

 Attendance 10%

 Exams also include questions about the

projects.

 Bring you i-clicker

Course Organization

1. Basics Fundamentals of

 Digital Logic

 Data Representation

2. Processors

 Types of Processors

 Instruction Sets

 Assembly Language

Course Organization

3. Memory

 Types of Memory

 Physical and Virtual Memory

 Caching

4.Input/Output

 Devices and Interfaces

 Buses

 Device Drivers

Course organization

5. Advanced Topics

 Parallelism

 Performance Measurement

 Architectural Hierarchy

Approach

 We will cover Computer Architecture

 From the programmers point of view.

 How it influences the programmers choices.

 We will not cover

 Low engineering details

 VLSI design

II. Fundamentals of Digital Logic

Voltage and Current

 Voltage

 Measure of potential Force

 It is measured in Volts

 Current

 Measure of electron flow across a wire

 It is measured in Ampers (Amps)

Voltage

 Voltage is measured with a voltmeter across

two points.

 Typical digital circuits work with 5 volts:

 Ground - 0 volts – represent a “0”

 Power – 5 volts – represent a “1”

Transistor

 Building block of digital circuits

 Acts like a switch

 A transistor has three connections:

 Emitter

 Base

 Collector

 The current between “Base” and “Emitter”
controls the current between “Collector” and
“Emitter”.

Emitter

Base

CollectorSmall Current

Large

Current

Boolean Logic

 It gives the formal basis for digital circuits

 It uses three basic functions

AND

A B A and B

0 0 0

0 1 0

1 0 0

1 1 1

OR

A B A or B

0 0 0

0 1 1

1 0 1

1 1 1

NOT

A not A

0 1

1 0

A

B A and B

A

B A or B

Boolean Logic

 You will find that Nand and Nor Gates are

very popular.

 By using them, there is no need of Not gate

NAND

A B A nand B

0 0 1

0 1 1

1 0 1

1 1 0

NOR

A B A nor B

0 0 1

0 1 0

1 0 0

1 1 0

A

B

A

B

Boolean Logic

 In digital circuits 0 and 1 are represented as

 0 = 0 volts

 1 = +5 volts

 You can interconnect digital circuits with each
other to create complex Boolean
expressions.

 (A and B) is represented as AB

 (A or B) is represented as A+B

 (not A) is represented as A’

Boolean Logic

 Example:

A

B

AB’

A’B +AB’

A’ B

A’

B’

B

A

Truth Table

A B A xor B

0 0 0

0 1 1

1 0 1

1 1 0

Truth Tables to Boolean

Expressions

 From a Truth table you can create a boolean

expression

 You can represent the boolean function as a

 Sum of products: Example z=x’y+xy’

 Product of sums: Example z=(x+y)(x’y’)

Sum of Products

 To create a sum of products from a truth table,
take the 1s in z (the output) and use the variables
for that row to create the product. If the variable is
x=1 then use x, otherwise if x=0 use x’.

Truth Table

x y z

0 0 0

0 1 1

1 0 1

1 1 0

z= x’y + xy’

Product of Sums

 To create a product of sums from a truth table,
take the 0s in z (the output) and use the variables
for that row to create the product. If the variable is
x=0 then use x, otherwise if x=1 use x’.

Truth Table

x y z

0 0 0

0 1 1

1 0 1

1 1 0

z= (x+y)(x’+y’)

Example: Implementing add

 Assume we want to add two numbers where each
number will be one bit long.

 The resulting number may be two bits long

 This can be represented as:
R0 = A’B+B’A

R1 = AB

A plus B

A B R1 R0 In decimal

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 0 2

Implementing Add

 To implement an adder for 8 bits or 32 bits,

many more gates are required.

Boolean Algebra

 You can manipulate the boolean expressions

like normal algebraic expressions.

 Properties

 Commutative:

 AB = BA

 A+B=B+A

 Associative:

 (A+B)+C = A+(B+C)

 Distributive

A(B+C) = AB+AC

De Morgan’s Law

 Negation of expressions

 (A+B)’ = A’B’

 (AB)’ = A’ + B’

Boolean Expression Reduction

 You can simplify Boolean expressions to use fewer
gates:

 Example:
z = a’b’c + a’b’+ ac’+ abc’

= a’b’(c+1) + ac’(1+b)

= a’b’+ac’

 Example:
m = x’yz + x’yz’ + x’y’ + xyz

= x’y(z+z’) + x’y’ + xyz

= x’y+ x’y’ + xyz

= x’(y+y’) + xyz

= x’ + xyz

Karnaugh Maps

 To make the simplification of boolean

expressions easier, we can use Karnaugh

maps.

 A Karnaugh map is a way of expressing truth

tables

 Adjacent columns or rows change only by

one digit.

 They show when refactoring can be done.

Karnaugh Table example 1

 Given an expression

r = x’yz’+xyz’+x’y’z+x’yz

 Build a 3 variable Karnaugh

map

 Find the groups of 2, 4 or 8

1’s that are adjacent.

 Make sure all 1s are

covered by the groups.

 Build expression from

groups.

r = yz’ + x’z

xy/z 00 01 11 10

0 0 1 1 0

1 1 1 0 0

Karnaugh Map for r

xy/z 00 01 11 10

0 0 1 1 0

1 1 1 0 0

r = yz’ + x’z

Karnaugh Table example 2

 Given an expression

r = x’yz’k’+x’yz’k+xyz’k’+xyz’k+
xyzk+xyzk’+x’y’zk’+xy’zk’

 Build a 4 variable Karnaugh
map

 Find the largest groups of 2,
4, 8 or 16 1’s that are
adjacent.

 Make sure all 1s are covered
by the groups.

 Build expression from groups.

r = yz’ + xy + y’zk’

xy/

zk

00 01 11 10

00 0 1 1 0

01 0 1 1 0

Karnaugh Map for r

11 0 0 1 0

10 1 0 1 1

r = yz’ + xy + y’zk’

Using only NAND Gates

 Very often you build the circuits using only NAND gates.

 To convert a sum of products to only NAND gates negate the
function twice and reduce

 Example:

z = x XOR y = xy'+x'y

Now if you negate twice the right side and applying De Morgans
law.

z = ((xy'+x'y)')' = ((xy')'(x'y)')' = (x NAND y') NAND (x' NAND y)

Also, since x'= (x x)' = x NAND x and y' = y NAND y then we have:

z = (x NAND (y NAND y)) NAND ((x NAND x) NAND y)

XOR Using only NAND gates

+5V +5V

xy

10K 10K

LED

+5V

10K

LEDLED

z

x XOR y = (x NAND (y NAND y)) NAND ((x NAND x) NAND y)

x’

y’

x

y

x XOR y

LED

Examples of Gates on 7400-

Series Chips

Flip Flops

 Basic unit of memory

S(set)

Q
R(reset)

Q’

Truth Table

S R Q Q’

0 0 Keep previous value

0 1 0 1

1 0 1 0

1 1 Not allowed

Flip Flops. Keep Current value

S(set)

Q
R(reset)

Q’

0

0

0

1

S(set)

Q
R(reset)

Q’

0

0

1

0

1

0

0

1

Flip Flops. Reset and Set

S(set)

Q
R(reset)

Q’

1

0

0

1

S(set)

Q
R(reset)

Q’

0

1

1

0

1

0

0

1

Set

Reset

The Input R=1

and S=1 is not

allowed.

Binary Counter

 Counts pulses (transitions from 0 to 1)

 Output is a binary number

 Contains a terminal to reset ouput to 0

Binary Counter (4 bits)

t0

5
A

B

C

Truth Table

In A B C

0 0 0 0

1 0 0 1

0 0 0 1

1 0 1 0

0 0 1 0

1 0 1 1

0 0 1 1

. . . .

In

Clock

 It is an electronic circuit that produces a

sequences of 0 1 0 1 0 1

 The frequency is measured in hertz (Hz).

 It is used to synchronize operations across

gates in active circuits.

0

5

Demultiplexor

 It is a circuit used to select one output

A=1

B=1

C=0

0 0 0

0 0 1

0 1 0

A B C

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

0

1

0

0

0

0

Example of Circuit to Execute

a Sequence of Steps

Position drill

Start drill

Drill hole

Remove drill

Position screw

Drive screw

Remove screw driver

Move piece

Clock Counter
Demulti-

plexer

Unused Gates

 Since a chip may contain multiple gates, it is

possible to use some of the spare gates to do

other operations instead of adding a new

chip.

 Example:

 1 nand x = not x

Classification of Technologies

 Small Scale Integration (SSI)

 Basic Boolean Gates

 Medium Scale Integration (MSI)

 Intermediate logic such as demultiplexers and
counters

 Large Scale Integration (LSI)

 Small embedded processors

 Very Large Integration (VLSI)

 Complex processors

III. Data and Program Representation

Memory of a Program

 A program sees memory as an array of bytes

that goes from address 0 to 232-1 (0 to 4GB-

1)

 That is assuming a 32-bit architecture.

0

(4GB-1) 232-1

Memory Sections

 The memory is organized into sections called

“memory mappings”.

Stack

Text

Data

Bss

Heap

Shared Libs

0

232-1

Memory Sections

 Each section has different permissions:
read/write/execute or a combination of them.

 Text- Instructions that the program runs

 Data – Initialized global variables.

 Bss – Uninitialized global variables. They are
initialized to zeroes.

 Heap – Memory returned when calling malloc/new. It
grows upwards.

 Stack – It stores local variables and return
addresses. It grows downwards.

Memory Sections

 Dynamic libraries – They are libraries shared with
other processes.

 Each dynamic library has its own text, data, and bss.

 Each program has its own view of the memory that
is independent of each other.

 This view is called the “Address Space” of the
program.

 If a process modifies a byte in its own address
space, it will not modify the address space of
another process.

Example

Program hello.c

int a = 5; // Stored in data section

int b[20]; // Stored in bss

int main() { // Stored in text

int x; // Stored in stack

int *p =(int*)

malloc(sizeof(int)); //In heap

}

Memory Gaps

 Between each memory section there may be gaps
that do not have any memory mapping.

 If the program tries to access a memory gap, the OS
will send a SEGV signal that by default kills the
program and dumps a core file.

 The core file contains the value of the variables
global and local at the time of the SEGV.

 The core file can be used for “post mortem”
debugging.
gdb program-name core

gdb> where

What is a program?

 A program is a file in a special format that contains
all the necessary information to load an application
into memory and make it run.

 A program file includes:
 machine instructions

 initialized data

 List of library dependencies

 List of memory sections that the program will use

 List of undefined values in the executable that will be
known until the program is loaded into memory.

Executable File Formats

 There are different executable file formats
 ELF – Executable Link File

It is used in most UNIX systems (Solaris, Linux)

 COFF – Common Object File Format

It is used in Windows systems

 a.out – Used in BSD (Berkeley Standard Distribution) and
early UNIX

It was very restrictive. It is not used anymore.

 Note: BSD UNIX and AT&T UNIX are the
predecessors of the modern UNIX flavors like
Solaris and Linux.

Building a Program

 The programmer writes a program hello.c

 The preprocessor expands #define, #include,
#ifdef etc preprocessor statements and generates a
hello.i file.

 The compiler compiles hello.i, optimizes it and
generates an assembly instruction listing hello.s

 The assembler (as) assembles hello.s and
generates an object file hello.o

 The compiler (cc or gcc) by default hides all these
intermediate steps. You can use compiler options to
run each step independently.

Building a program

 The linker puts together all object files as well as
the object files in static libraries.

 The linker also takes the definitions in shared
libraries and verifies that the symbols (functions
and variables) needed by the program are
completely satisfied.

 If there is symbol that is not defined in either the
executable or shared libraries, the linker will give
an error.

 Static libraries (.a files) are added to the
executable. shared libraries (.so files) are not
added to the executable file.

Building a Program

Programmer

C

Preprocessor Compiler

(cc)
Optimizer

Assembler

(as)

(static)

Linker (ld)

Editor

hello.c hello.i

hello.s

hello.o

Executable

File (hello)

Other .o files
Static libraries (.a files)

They add to the size of

the executable.

Shared Libraries

(.so files). Only

definitions. It does

not add to size of

executable.

Original file hello.c

#include <stdio.h>

main()

{

printf("Hello\n");

}

After preprocessor

gcc -E hello.c > hello.i

(-E stops compiler after running preprocessor)

hello.i:

/* Expanded /usr/include/stdio.h */

typedef void *__va_list;

typedef struct __FILE __FILE;

typedef int ssize_t;

struct FILE {…};

extern int fprintf(FILE *, const char *, ...);

extern int fscanf(FILE *, const char *, ...);

extern int printf(const char *, ...);

/* and more */

main()

{

printf("Hello\n");

}

After assembler

gcc -S hello.c (-S stops compiler after

assembling)

hello.s:

.align 8

.LLC0: .asciz "Hello\n"

.section ".text"

.align 4

.global main

.type main,#function

.proc 04

main: save %sp, -112, %sp

sethi %hi(.LLC0), %o1

or %o1, %lo(.LLC0), %o0

call printf, 0

nop

.LL2: ret

restore

.

After compiling

 “gcc -c hello.c” generates hello.o

 hello.o has undefined symbols, like the printf function
call that we don’t know where it is placed.

 The main function already has a value relative to the
object file hello.o

csh> nm -xv hello.o
hello.o:

[Index] Value Size Type Bind Other Shndx Name

[1] |0x00000000|0x00000000|FILE |LOCL |0 |ABS |hello.c

[2] |0x00000000|0x00000000|NOTY |LOCL |0 |2 |gcc2_compiled

[3] |0x00000000|0x00000000|SECT |LOCL |0 |2 |

[4] |0x00000000|0x00000000|SECT |LOCL |0 |3 |

[5] |0x00000000|0x00000000|NOTY |GLOB |0 |UNDEF |printf

[6] |0x00000000|0x0000001c|FUNC |GLOB |0 |2 |main

After linking

 “gcc –o hello hello.c” generates the hello
executable

 Printf does not have a value yet until the program is
loaded

csh> nm hello
[Index] Value Size Type Bind Other Shndx Name

[29] |0x00010000|0x00000000|OBJT |LOCL |0 |1 |_START_

[65] |0x0001042c|0x00000074|FUNC |GLOB |0 |9 |_start

[43] |0x00010564|0x00000000|FUNC |LOCL |0 |9 |fini_dummy

[60] |0x000105c4|0x0000001c|FUNC |GLOB |0 |9 |main

[71] |0x000206d8|0x00000000|FUNC |GLOB |0 |UNDEF |atexit

[72] |0x000206f0|0x00000000|FUNC |GLOB |0 |UNDEF |_exit

[67] |0x00020714|0x00000000|FUNC |GLOB |0 |UNDEF |printf

Loading a Program

 The loader is a program that is used to run an

executable file in a process.

 Before the program starts running, the loader

allocates space for all the sections of the

executable file (text, data, bss etc)

 It loads into memory the executable and

shared libraries (if not loaded yet)

Loading a Program

 It also writes (resolves) any values in the executable
to point to the functions/variables in the shared
libraries.(E.g. calls to printf in hello.c)

 Once memory image is ready, the loader jumps to
the _start entry point that calls init() of all libraries
and initializes static constructors. Then it calls
main() and the program begins.

 _start also calls exit() when main() returns.

 The loader is also called “runtime linker”.

Loading a Program

Loader

(runtime linker)

(/usr/lib/ld.so.1)

Executable

File

Executable

in memory

Shared libraries (.so, .dll)

Static and Shared Libraries

 Shared libraries are shared across different

processes.

 There is only one instance of each shared

library for the entire system.

 Static libraries are not shared.

 There is an instance of an static library for

each process.

Memory and Pointers

 A pointer is a variable that contains an

address in memory.

 In a 32 bit architectures, the size of a pointer

is 4 bytes independent on the type of the

pointer.

0

(4GB-1) 232-1

Address space

p:20: 12
Char c = ‘a’; //ascii 65

char * p = &c; c:12: 65

Ways to get a pointer value

1. Assign a numerical value into a pointer

Char * p = (char *) 0x1800;

*p = 5; // Store a 5 in location 0x1800;

Note: Assigning a numerical value to a pointer isn't

recommended and only left to programmers of

OS, kernels, or device drivers

Ways to get a pointer value

2. Get memory address from another variable:

int *p;

int buff[30];

p = &buff[1];

*p =78; buff[0]:100:
buff[1]:104:

buff[29]:216:
220:

P: 96: 104

78

Ways to get a pointer value

3. Allocate memory from the heap
int *p

p = new int;

int *q;

q = (int*)malloc(sizeof(int))

Ways to get a pointer value

 You can pass a pointer as a parameter to a

function if the function will modify the

content of the parameters

void swap (int *a, int *b){
int temp;
temp=*a;
*a=*b;
*b=temp;

}
In main: swap(&x, &y)

Common Problems with

Pointers

 When using pointers make sure the pointer is

pointing to valid memory before assigning or getting

any value from the location

 String functions do not allocate memory for you:

char *s;

strcpy(s, "hello"); --> SEGV(uninitialized pointer)

 The only string function that allocates memory is

strdup (it calls malloc of the length of the string and

copies it)

Printing Pointers

 It is useful to print pointers for debugging

char*i;

char buff[10];

printf("ptr=%d\n", &buff[5])

Or In hexadecimal

printf("ptr=0x%x\n", &buff[5])

Instead of using printf, I recommend to use
fprintf(stderr, …) since stderr is unbuffered
and it is guaranteed to be printed on the screen.

sizeof() operator in Pointers

 The size of a pointer is always 4 bytes in a 32

bit architecture independent of the type of the

pointer:

sizeof(int)==4 bytes

sizeof(char)==1 byte

sizeof(int*)==4 bytes

sizeof(char*)==4 bytes

String Operations

 A string is represented in memory as a

sequence of characters in ASCII terminated

by a ‘\0’ (ASCII Null).

char a[6];

strcpy(a,”Hello”);

• Assuming that “a” is at location 1000:

• The string will use one byte more than the

length of the string.

H e l l o \0

1000 1001 1002 1003 1004 1005

String Operations

 The C library (libc) provides simple string

functions to manipulate strings such as:

 char * strcpy(char *dest, char *src)
 Copies string from “src” to “dest” including char at the end. It

assumes that there is enough memory already in “dest”. It

does not allocate memory. It returns “dest”.

 char * strcat(char *dest, char *src)
 Appends string “src” at the end ofdest. It assumes that there

is enough memory already in “dest”. It returns “dest”.

 char * strstr(char * hay, char * needle)
 Returns a pointer of the first occurrence of the string

“needle” in the string “hay”.

String Operations

• In general the string functions will not allocate

memory.

• You have to allocate enough memory before

using them.

• The only string function that allocates

memory is strdup(char * s) that allocates

memory using “malloc” and returns a copy of

the string passed in “s”.

Using Pointers to Optimize

Execution

 Assume the following function that adds the sum of
integers in an array using array indexing.
int sum(int * array, int n)

{

int s=0;

for(int i=0; i<n; i++)

{

s+=array[i]; // Equivalent to

//*(int*)((char*)array+i*sizeof(int))

}

return s;

}

Using Pointers to Optimize Execution

 Now the equivalent code using pointers
int sum(int* array, int n)

{

int s=0;

int *p=&array[0];

int *pend=&array[n];

while (p < pend)

{

s+=*p;

p++;

}

return s;

}

Using Pointers to Optimize Execution

 When you increment a pointer to integer it will be
incremented by 4 units because sizeof(int)==4.

 Using pointers is more efficient because no indexing
is required and indexing require multiplication.

 Note: An optimizer may substitute the multiplication
by a “<<“ operator if the size is a power of two.
However, the array entries may not be a power of 2
and integer multiplication may be needed.

Array Operator Equivalence

 We have the following equivalences:
int a[20];

a[i] - is equivalent to

*(a+i) - is equivalent to

*(&a[0]+i) – is equivalent to

((int)((char*)&a[0]+i*sizeof(int)))

 You may substitute array indexing a[i] by
((int)((char*)&a[0]+i*sizeof(int))) and
it will work!

 C was designed to be machine independent
assembler

2D Array. 1st Implementation

 1st approach

Normal 2D array.

int a[4][3];

a[0][0]:100:
a[0][1]:104:
a[0][2]:108:
a[1][0]:112:
a[1][1]:116:
a[1][2]:120:
a[2][0]:124:
a[2][1]:128:
a[2][2]:132:
a[3][0]:136:
a[3][1]:140:
a[3][2]:144:

a:

a[i][j] ==

(int)((char*)a +

i*3*sizeof(int) +

j*sizeof(int))

2D Array 2nd Implementation

 2nd approach

Array of pointers to rows

int*(a[4]);

for(int i=0; i<4; i++){

a[i]=(int*)malloc(sizeof(int)*3);

assert(a[i]!=NULL);

}

2D Array 2nd Implementation

 2nd approach

Array of pointers to rows (cont)

a[0]:100:

a[1]:104:

a[2]:108:

a[3]:112:

a[1][0]

a[0][0]

a[3][1]

a[2][0]

a[3][0]

a[2][1]

a[0][1]

a[1][1]

a[3][2]

a[2][2]

a[0][2]

a[1][2]

int*(a[4]);

a[3][2]=5

a:

2D Array 3rd Implementation

 3rd approach. a is a pointer to an array of pointers to
rows.

int **a;

a=(int**)malloc(4*sizeof(int*));

assert(a!= NULL)

for(int i=0; i<4; i++)

{

a[i]=(int*)malloc(3*sizeof(int));

assert(a[i] != NULL)

}

2D Array 3rd Implementation

 a is a pointer to an array of pointers to rows.

(cont.)

a[0]:100:

a[1]:104:

a[2]:108:

a[3]:112:

a[1][0]

a[0][0]

a[3][1]

a[2][0]

a[3][0]

a[2][1]

a[0][1]

a[1][1]

a[3][2]

a[2][2]

a[0][2]

a[1][2]

int **a;

a[3][2]=5a:

Advantages of Pointer Based

Arrays

 You don’t need to know in advance the size

of the array (dynamic memory allocation)

 You can define an array with different row

sizes

Advantages of Pointer Based

Arrays

 Example: Triangular matrix

a[0]:100:

a[1]:104:

a[2]:108:

a[3]:112:

a[1][0]

a[0][0]

a[2][0]

a[3][0]

a[2][1]

a[0][1]

a[1][1]

a[0][2]

a[1][2]

a[0][3]

int **a;a:

Pointers to Functions

 Pointers to functions are often used to implement
Polymorphism in “C”.

 Polymorphism: Being able to use the same
function with arguments of different types.

 Example of function pointer:
typedef void (*FuncPtr)(int a);

 FuncPtr is a type of a pointer to a function that
takes an “int” as an argument and returns “void”.

An Array Mapper

typedef void (*FuncPtr)(int a);

void intArrayMapper(int *array, int n, FuncPtr func) {

for(int = 0; i < n; i++) {

(*func)(array[i]);

}

}

int s = 0;

void sumInt(int val){

s += val;

}

void printInt(int val) {

printf("val = %d \n", val);

}

Using the Array Mapper

int a[] = {3,4,7,8};

main(){

// Print the values in the array

intArrayMapper(a, sizeof(a)/sizeof(int), printInt);

// Print the sum of the elements in the array

s = 0;

intArrayMapper(a, sizeof(a)/sizeof(int), sumInt);

printf(“total=%d\”, s);

}

A More Generic Mapper

typedef void (*GenFuncPtr)(void * a);

void genericArrayMapper(void *array,

int n, int entrySize, GenFuncPtr fun)

{

for(int i = 0; i < n; i++;){

void *entry = (void*)(

(char*)array + i*entrySize);

(*fun)(entry);

}

}

Using the Generic Mapper

void sumIntGen(void *pVal){

//pVal is pointing to an int

//Get the int val

int *pInt = (int*)pVal;

s += *pInt;

}

void printIntGen(void *pVal){

int *pInt = (int*)pVal;

printf("Val = %d \n", *pInt);

}

Using the Generic Mapper

int a[] = {3,4,7,8};

main() {

// Print integer values

s = 0;

genericArrayMapper(a, sizeof(a)/sizeof(int),
sizeof(int), printIntGen);

// Compute sum the integer values

genericArrayMapper(a, sizeof(a)/sizeof(int),
sizeof(int), sumIntGen);

printf(“s=%d\n”, s);

}

Swapping two Memory Ranges

 In the lab1 you will implement a sort function that will sort any kind
of array.

 Use the array mapper as model.

 When swapping two entries of the array, you will have pointers to
the elements (void *a, *b) and the size of the entry
entrySize.

void * tmp = (void *) malloc(entrySize);

assert(tmp != NULL);

memcpy(tmp, a, entrySize);

memcpy(a,b , entrySize);

memcpy(b,tmp , entrySize);

 Note: You may allocate memory only once for tmp in the sort method and use it for
all the sorting to save muliple calls to malloc. Free tmp at the end.

String Comparison in Sort

Function

 In lab1, in your sort function, when sorting strings,
you will be sorting an array of pointers, that is, of
"char* entries.

 The comparison function will be receiving a “pointer
to char*” or a” char**” as argument.

int StrComFun(void *pa, void *pb) {

char** stra = (char**)pa;

char ** strb = (char**)pb;

return strcmp(*stra, *strb);

}

Bits and Bytes

 Bit

 It stores 1 or 0

 Byte

 It is a group of 8 bits that can by individually
addressable.

 Word

 It is a group of 4 bytes (32 bit architecture) or

 It is a group of 8 bytes (64 bit architectures)

 The address of a word is aligned to either 4 or 8
bytes respectively (multiple of 4 or 8 bytes).

Interpretation of bits

 Sometimes device registers are mapped to

memory. This is called Memory Mapped I/O.

 In this case, a bit can represent some value

or state of the device:

 Bit 0 – Printer is on-line/off-line

 Bit 1 – Landscape/Letter mode

 Bit 2 – Printer need attention

Interpretation of bits

 Combination of bits are used as integers

27 26 25 24 23 22 21 20

1001010 1

26 + 24 + 23 + 20 =

64 + 16 + 8 + 1 = 89

Hexadecimal Notation
 Compact form to represent binary numbers

 It uses base 16.

 4 bits represent an hexadecimal digit
Hex Binary

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

Hex Binary

8 1 0 0 0

9 1 0 0 1

A 1 0 1 0

B 1 0 1 1

C 1 1 0 0

D 1 1 0 1

E 1 1 1 0

F 1 1 1 1

Hexadecimal Notation

 Example:

 Hexadecimal: 0xF4534004

 Binary:

1111 0100 0101 0011 0100 0000 0000 0100

 Hexadecimal

F 4 5 3 4 0 0 4

Decimal:

15*167 + 4*166 + 5*165 + 3*164 + 4*163 + 4*160

Example of Character

Encodings

 EBCDIC

 ASCII

 Unicode

EBCDIC

 Extended Binary Coded Decimal Interchange

Format

 It was created by IBM in the 1960s

 No longer in use except in some IBM

mainframes

ASCII

 American Standard Code for Information

Exchange

 Used widely in UNIX and PCs

 It uses 7 bits or 128 values

 It only encodes the English Alphabet

ASCII Table

http://www.ascii.ws/ascii-chart.html

UNICODE

 Each character is 16 bits long (2 bytes)

 It is used to represent characters from most

languages in the world.

 It is used for internationalization of programs.

 Java and C# use UNICODE to represent

strings internally.

Representation of Strings

 In a “C” program a string is a sequence of characters delimited
by a null character.

 In PASCAL the first byte represents the length of the string.

 Standard strings were limited to a length of 255

0x48

H \0olle

0x65 0x6c 0x6c 0x6f 0x00

0x48 0x65 0x6c 0x6c 0x6f0x5

Integer Representation in

Binary

 Each binary integer is represented in k bits

where k is 8, 16, 32, or 64 depending on the

type and architecture.

Integer Representation

 Example

10010101 = 1*2^7 + 1*2^4+1*2^2+1*2^0 =

= 128 + 16 + 4 + 1

= 149

Binary Integer Addition

 Same as decimal addition:

 Use S1, S2 and Carry (C) to compute R and

next Carry (C+)

00 C (Carry)

1011 S1 (11)

+0110 S2 (06)

1 R

Truth Table

S1 S2 C R C+

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Binary Integer Addition

100 C (Carry)

1011 S1 (11)

+0110 S2 (06)

01 R

Truth Table

S1 S2 C R C+

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Binary Integer Addition

1100 C (Carry)

1011 S1 (11)

+0110 S2 (06)

001 R

Truth Table

S1 S2 C R C+

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Binary Integer Addition

11100 C (Carry)

1011 S1 (11)

+0110 S2 (06)

0001 R

Truth Table

S1 S2 C R C+

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Binary Integer Addition

11100 C (Carry)

1011 S1 (11)

+0110 S2 (06)

10001 R (17)

Truth Table

S1 S2 C R C+

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Binary Integer Subtraction

 Same as decimal subtraction:

 Use S1, S2 and Carry (C) to compute R and

next Carry (C+).

00 C (Carry)

1011 S1 (11)

-0110 S2 (06)

1 R

Truth Table

S1 S2 C R C+

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Binary Integer Subtraction

000 C (Carry)

1011 S1 (11)

-0110 S2 (06)

01 R

Truth Table

S1 S2 C R C+

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Binary Integer Subtraction

1000 C (Carry)

1011 S1 (11)

-0110 S2 (06)

101 R

Truth Table

S1 S2 C R C+

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Binary Integer Subtraction

01000 C (Carry)

1011 S1 (11)

-0110 S2 (06)

0101 R

Truth Table

S1 S2 C R C+

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Binary Multiplication

 Same as decimal multiplication

 Just need to memorize multiplication table for

0 and 1

 Perform sums and shifts iteratively based on

the 0/1 of the multiplicator

Binary Multiplication

1011

x 110

0000

Binary Multiplication

1011

x 110

0000

+1011

10110

Binary Multiplication

1011 (11)

x 110 (6)

0000

+1011

10110

+1011

1000010 (64+2=66)

Binary Multiplication.

Another example

1001 (9)

x 101 (5)

1001

Binary Multiplication.

Another example

1001 (9)

x 101 (5)

1001

+0000

01001

Binary Multiplication.

Another example

1001 (9)

x 101 (5)

1001

+0000

01001

+1001

101101 (32+8+4+1=45)

Binary Division

 Same as decimal division

 Just need to memorize multiplication table for

0 and 1

 Perform subtractions and shifts iteratively

Binary Division

___1__

100 | 10110

-100

001

Binary Division

___10__

100 | 10110

-100

0011

Binary Division

___101_ (5)

(4) 100 | 10110 (16+4+2=22)

-100

00110

- 100

010 (2)

Binary Representation of

Negative Integer Numbers

 Three representations

 Sign and Magnitude

 1-complement

 2-complement

Sign and Magnitude

Representation

 1 bit for sign

 Other bits for the absolute value

 Example:

+5 = 0 0000101

-5 = 1 0000101

sign magnitude

1-Complement

 Negative numbers are obtained by inverting

all bits.

 Example:

+5 = 00000101

-5 = 11111010

2-Complement

 Negative numbers are obtained by
subtracting 1 from the positive number and
inverting the result.

 Example:

+5 = 00000101

-5 = 00000101

-00000001

00000100

11111011

+5 +(-5):

00000101

+11111011

00000000

(ignoring overflow)

2-Complement

 2 complement representation is widely used
because the same piece of hardware used
for positive numbers can be used for negative
numbers:

 Example:
+5 = 00000101

-3 = 00000011

-00000001

00000010

11111101

+5 +(-3):

00000101

+11111101

00000010 (2)

(ignoring overflow)

Shift Operator and Signed ints

 When signed numbers are shifted right, the

sign number is extended to the int shifted:

E.g. int x = -5; // x = 111111…111011

int y = (x >> 1);

// y = 1111111111…111101

x = 5; // x = 00000000000101

y = (x >> 1);

// y = 00000000…0000010

With unsigned ints, a 0 is always inserted at the

left when shifted.

Floating Point Representation

 Store both the exponent and mantissa

 Example:

 3.5x10-16

 In binary the representation uses base 2

instead of base 10

 Example:

 1.101x2-010

Floating Point Representation

 The most common is the IEEE-754 standard

s

31

e

23

m

0

Float:

s

63

e

52

m

0

Double:

Val = (-1)s x (1.m) x 2(e-bias)

bias = 127

bias = 1023

Notice that the 1 in 1.m is always assumed. The only exception of all the

numbers is 0, that is represented with an exponent of 0.

Floating Point Representation

Example

 Double value in memory (in hex):
4024 0000 0000 0000

Binary:

0100 0000 0010 0100 0000 0000 0000 0000

Decimal?

s (bit 63) = 0 = positive number

e (bits 52 to 62) = 100 0000 0010 = 1024 + 2 = 1026

m (bits 0 to 51) = .0100 0000 0000 0000 0000

Val = (-1)0 x (1.01)b x 2 (1026-1023)

= 1x (20+2-2)x23=(1+1/4)x8=8+2=10

Byte Order

 There are two byte orders:

 Little Endian – Least significant byte of the integer

is in the lowest memory location.

 Big Endian – Most significant byte of the integer is

in the lowest

Representation of 0x05

 Little Endian

 Big Endian

0 1 2 3

0x05 0x00 0x00 0x00

0 1 2 3

0x050x00 0x000x00

How to know if it is Little or

Big Endian

int isLittleEndian()

{

int i = 5;

char * p = (char *) &i;

if (*p==5) {

return 1;

}

return 0;

}

Structures

 Structures are a combination in memory of primitive

types.

 Example:

struct {

int i;

float r;

char * a;

} s;

S:0x100

0x101

0x102

0x103

0x104

0x105

0x106

0x107

0x108

0x109

0x10A

0x10B

i

r

a

Structures and Alignment

 Integers, floats, and pointers have to be aligned to 4
bytes (in a 32 bit architecture).
 This means that the memory address have to be a multiple

of 4, that is, the last hex digit of the address has to be 0, 4,
8, or C.

 Doubles have to be aligned to 8 bytes.
 This means that the memory address have to be a multiple

of 8, that is, the last hex digit of the address has to be 0, or
8.

 If they are not aligned, the CPU will either get an
“bus error” or slow down the execution when trying
to access this data.

Example of Alignment in

Structures

 Example:

struct {

char ch1;

int r;

char ch2;

char * a;

} x;

x:0x100

0x101

0x102

0x103

0x104

0x105

0x106

0x107

0x108

0x109

0x10A

0x10B

ch1

r

ch2

0x10C

0x10D

0x10E

0x10F

a

IV. Variety of Processors

Von Neumann Architecture

 Modern processors follow this design

 Programs are stored in memory, in the same

way data is stored in memory.

 In the early days, before the “Stored

Program” concept, computers had to be

“rewired” in order to run a different program.

 In those old days, often took weeks to load a

different program.

Von Neumann Architecture

 A computer has an address bus and a data

bus that are used to transfer data from/to the

CPU, RAM, ROM, and the devices.

 The CPU, RAM, ROM, and all devices are

attached to this bus.

Von Newman Architecture

CPU RAM ROM Ethernet

Card

USB

Controler

(mouse, kbd)

Hard

Drive

CD/DVD

Drive

Address bus

Data bus

Interrupt Line

Processors

 Digital device that performs computation using
multiple steps.

 Types of Processors:
 Fixed Logic – Least powerful. Single Operation.

 Selectable Logic – Performs more than one operation.

 Parameterized Logic Processor – Accepts a set of
parameters in the computation.

 Programmable Logic Processor – Greatest Flexibility.
Function to compute can be changed. CPU’s belong to this
type of processors.

 CPU – Central Processing Unit

Components of a CPU

 Controller

 ALU – Arithmetic and Logical Unit

 Registers - Local Data Storage

 Internal Interconnections

 External Interface

Components of the CPU

ALU Controller Registers

External Interface

Internal Connections

Address Bus Data Bus

Components of the CPU

 Controller

 Controls the execution

 Initiates the sequence of steps

 Coordinates other components

 ALU – Arithmetic and Logical Unit

 It provides the Arithmetic and Boolean

Operations.

 It performs one operation at a time.

Components of the CPU

 Registers

 Holds arguments and results of the operations

 Internal Connections

 Transfers values across the components in the

CPU.

 External Interface

 Provides connections to external memory as well

as I/O devices

ALU – Arithmetic Logic Unit

 It is the part of the CPU that performs the

Arithmetic and Boolean operations

 Integer Arithmetic - add, subtract, multiply, divide

 Shift - left, right, circular

 Boolean - and, or, not, exclusive or

Processor Categories

 Coprocessors

 Operates in conjunction with other processor.

Example: Floating Point Accelerator.

 Microcontroller

 Small programmable device. Dedicated to control

a physical system. Example: Electronic Toys.

 Microsequencer

 Use to control coprocessors, memory and other

components inside a larger processor board.

Processor Categories

 Embedded System Processor

 It is able to run sophisticated tasks

 More powerful than a microcontroller

 Example: The controller in a an MP3 player that

includes User Interface and MP3 decoding.

 General Purpose Processor

 Most powerful type of processor

 Completely Programmable

 Example: Pentium processor

Evolution of Processor

Technologies

 Discrete Logic

 Use TTL Gates etc used to implement processor.

 It could use multiple boxes and circuit boards.

 Single circuit board

 Multiple chips/controllers in a single board.

 Single chip

 All the components are in a single chip.

Fetch-Execute Cycle

 This is the basics for programmable

processors.

 It allows moving through the program steps a

while (1) {

Fetch from memory the next instruction to

execute in the program.

Execute this instruction.

}

Clock Rate and Instruction

Rate

 Clock rate

 It is the rate at which gates and hardware

components are clocked to synchronize data

transfer.

 Instruction rate

 It is the time required to execute an instruction.

 Different instructions may take different times.

 Example: Multiplication and division will take more

clock cycles than addition and subtraction.

Starting a Processor

 When the CPU is powered on or when reset

 The CPU is initialized

 The fetch-execute cycle starts.

 The first instruction to execute will be in a known

memory location, E.g. 0x1000

 This process is called “bootstrap”.

Stopping a Processor

 When the application finishes or it is waiting

for an event,

 The program may enter an infinite loop.

 In an OS, that infinite loop is often called

 “Null Process” or

 “System Idle Process”.

V. Processor Types and

Instruction Sets

How to Choose an Instruction

Set

 A small set is easy to implement but
inconvenient for programmers.

 A large set is convenient for programmers but
expensive to implement.

 When designing an instruction set we need to
consider

 Physical size of the Processor

 How the processor will be used

 Power consumption

Parts of an Instruction

 Opcode

 Specifies the instruction to be executed

 Operands

 Specifies the registers, memory location, or

constants used in the instruction

 Result

 Specifies the registers or memory location where

the result of the operation will be placed.

Opcode Operand1 Operand2 Result

Instruction Length

 Fixed Length
 Every instruction has the same length

 Reduces the complexity of the hardware

 Potentially, the program will run faster.

 Variable Length
 Some instructions will take more space than others

 It is appealing to Assembly code programmers (Not a very
strong advantage. Most programs are written in a high-
level language).

 More efficient use of memory.

 Pentium continues using variable length instructions
because of backward-compatibility issues.

General Purpose Registers

 They are used to store operands and results

 Each register has a small size: 1 byte, 4

bytes, or 8 bytes.

 Floating Point Registers

 Special registers used to store floating point

numbers.

Example of Using Registers

 Load A from location 0x100 and B from location 0x104. Store
A+B in C in location 0x108 (C=A+B);

load r1, @0x100

load r2, @0x104

add r1, r2, r3

store r3, @0x108

 Register Spilling – Save registers in memory for later use. The
number of registers is limited, so very often it is necessary to use
memory or the stack to store temporal values.

 Register allocation. Choose what values to keep in the registers
instead of memory.

Types of Instruction Sets

 CISC

 Complex Instruction Set Computer

 RISC

 Reduced Instruction Set Computer

CISC Instruction Set

 It contains many instructions, often hundreds.

 Some instructions take longer than others to

complete

 Examples:

 Move a range of bytes from one place in memory

to another

 Compute the length of a string

 Example: x86

RISC Instruction Set

 It contains few instructions 32 or 64

 Instructions have a fixed length

 Each instruction is executed in one clock

cycle.

 Example: Sparc, Alpha, MIPS, ARM

Execution Pipeline

 Hardware optimization technique

 Allows the execution of instructions in

parallel.

 Used by RISC architectures

Execution Pipeline

 An instruction is executed by the following
steps:

 Fetch the next instruction

 Examine the opcode to determine the operands
needed.

 Fetch the operands

 Perform the specified operation

 Store the result in the indicated location

 Pipelining executes this steps in parallel for
multiple instructions.

Execution Pipeline

Fetch

Instruction

Examine

Opcode
Fetch

Operands

Perform

Operation

Store

Result

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Execution Pipeline

 Each stage operate in parallel with a different

instruction.

 As a result, an N stage pipeline operates over

N instructions simultaneously.

 Each stage takes one clock cycle.

 Each instruction takes one clock cycle once

the pipeline is full.

Pipeline Example
Clock Stage1 Stage2 Stage3 Stage4 Stage5

1 Inst1

2 Inst2 Inst1

3 Inst3 Inst2 Inst1

4 Inst4 Inst3 Inst2 Inst1

5 Inst5 Inst4 Inst3 Inst2 Inst1

6 Inst6 Inst5 Inst4 Inst3 Inst2

7 Inst7 Inst6 Inst5 Inst4 Inst3

8 Inst8 Inst7 Inst6 Inst5 Inst4

9 Inst9 Inst8 Inst7 Inst6 Inst5

Pipeline Control

 The pipeline is executed by the processor

without the programmers intervention.

 The programmer can write code that can

“stall” the pipeline

 That will happen if the next instruction

depends on the result of the previous

instruction.

Example of a pipe stall

 Assume the following operations:

Instruction K: C <= add A B

Instruction K+1: D <= sub E C

 The instruction K+1 needs the result of

instruction K before it can continue.

 This causes instruction K+1 to wait until

instruction k completes.

Example of a pipe stall

Clock Stage1 Stage2 Stage3 Stage4 Stage5

1 Instk instk-1 instk-2 instk-3 instk-4

2 Instk+1 Instk instk-1 instk-2 instk-3

3 Instk+2 Instk+1 Instk instk-1 instk-2

4 Instk+3 Instk+2 (Instk+1)Instk instk-1

5 ------- ------- (Instk+1)------ Instk

6 ------- ------- Instk+1 ------ -------

7 Instk+4 Instk+3 Instk+2 Instk+1 -------

8 Instk+5 Instk+4 Instk+3 Instk+2 Instk+1

9 Instk+6 Instk+5 Instk+4 Instk+3 Instk+2

Pipe Stall

 Some reasons of a pipe stall are:

 Access to RAM

 Call an instruction that takes along time like FP

arithmetic

 Branch to a new location

 Call a function

Avoiding Pipe Stalls

 A programmer can delay the use of results by

reordering the instructions:

Avoiding Stalls

 Program must be written to accommodate

instruction pipeline

 To minimize stalls

 – Avoid introducing unnecessary branches

 – Delay references to result register(s)

Avoiding Stalls

Example Of Avoiding Stalls
 (a) (b)

 C add A B C add A B

 D subtract E C F add G H

 F add G H M add K L

 J subtract I F D subtract E C

 M add K L J subtract I F

 P subtract M N P subtract M N

 Stalls eliminated by rearranging (a) to (b)

Avoiding Stalls

 Although hardware that uses an instruction

pipeline will not run at full speed unless

programs are written to accommodate the

pipeline, a programmer can choose to ignore

pipelining and assume the hardware will

automatically increase speed whenever

possible.

VII. CPUs Microcode Protection

and Protection Modes

User and Kernel Mode,

Interrupts, and System Calls

Computer Architecture Review

 Most modern computers use the Von

Newman Architecture where both programs

and data are stored in RAM.

 A computer has an address bus and a data

bus that are used to transfer data from/to the

CPU, RAM, ROM, and the devices.

 The CPU, RAM, ROM, and all devices are

attached to this bus.

Computer Architecture Review

CPU RAM ROM Ethernet

Card

USB

Controler

(mouse, kbd)

Hard

Drive

CD/DVD

Drive

Address bus

Data bus

Interrupt Line

Kernel and User Mode

 Kernel Mode

 When the CPU runs in this mode:

 It can run any instruction in the CPU

 It can modify any location in memory

 It can access and modify any register in the CPU and

any device.

 There is full control of the computer.

 The OS Services run in kernel mode.

Kernel and User Mode

 User Mode

 When the CPU runs in this mode:

 The CPU can use a limited set of instructions

 The CPU can only modify only the sections of memory

assigned to the process running the program.

 The CPU can access only a subset of registers in the CPU

and it cannot access registers in devices.

 There is a limited access to the resources of the computer.

 The user programs run in user mode

Kernel and User Mode

 When the OS boots, it starts in kernel mode.

 In kernel mode the OS sets up all the interrupt

vectors and initializes all the devices.

 Then it starts the first process and switches to user

mode.

 In user mode it runs all the background system

processes (daemons).

 Then it runs the user shell or windows manager.

Kernel and User Mode

 User programs run in user mode.

 The programs switch to kernel mode to request OS
services (system calls)

 Also user programs switch to kernel mode when an
interrupt arrives.

 The interrupts are executed in kernel mode.

 The interrupt vector can be modified only in kernel
mode.

 Most of the CPU time is spent in User mode

Kernel and User Mode

Kernel Mode

User Mode

Kernel and User Mode

 Separation of user/kernel mode is used for:

 Security: The OS calls in kernel mode make sure that the

user has enough privileges to run that call.

 Robustness: If a process that tries to write to an invalid

memory location, the OS will kill the program, but the OS

continues to run. A crash in the process will not crash the

OS. > A bug in user mode causes program to crash, OS

runs. A bug in kernel mode may cause OS and system to

crash.

 Fairness: OS calls in kernel mode to enforce fair access.

Interrupts

 An interrupt is an event that requires immediate
attention. In hardware, a device sets the interrupt
line to high.

 When an interrupt is received, the CPU will stop
whatever it is doing and it will jump to to the
'interrupt handler' that handles that specific interrupt.

 After executing the handler, it will return to the same
place where the interrupt happened and the
program continues. Examples:
 move mouse

 type key

 ethernet packet

Steps of Servicing an Interrupt

1. The CPU saves the Program Counter and registers
in execution stack

2. CPU looks up the corresponding interrupt handler
in the interrupt vector.

3. CPU jumps to interrupt handler and run it.

4. CPU restores the registers and return back to the
place in the program that was interrupted. The
program continues execution as if nothing
happened.

5. In some cases it retries the instruction the
instruction that was interrupted (E.g. Virtual
memory page fault handlers).

Running with Interrupts

 Interrupts allow CPU and device to run in

parallel without waiting for each other.

1. OS Requests

Device Operation

(E.g.Write to disk) 2. Device Runs

Operation

2. OS does other

things in parallel

with device. 3. When Operation is

complete interrupt

OS
4. OS services interrupt

and continues

Poling

 Alternatively, the OS may decide not use interrupts for
some devices and wait in a busy loop until completion.
OS requests Device operation

While request is not complete

do nothing;

Continue execution.

 This type of processing is called “poling” or “busy
waiting” and wastes a lot of CPU cycles.

 Poling is used for example to print debug messages in
the kernel (kprintf). We want to make sure that the
debug message is printed to before continuing the
execution of the OS.

Synchronous vs.

Asynchronous

 Poling is also called Synchronous

Processing since the execution of the device

is synchronized with the program.

 An interrupt is also called Asynchronous

Processing because the execution of the

device is not synchronized with the execution

of the program. Both device and CPU run in

parallel.

Interrupt Vector

 It is an array of pointers that point to the

different interrupt handlers of the different

types of interrupts.

Hard Drive Interrupt handler

USB Interrupt handler (mouse, kbd)

Ethernet Card Interrupt handler

Page Fault Interrupt handler

Interrupts and Kernel Mode

 Interrupts run in kernel mode. Why?

 An interrupt handler must read device/CPU

registers and execute instructions only

available in kernel mode.

 Interrupt vector can be modified only in

kernel mode (security)

 Interrupt vector initialized on bootup;

modified when drivers added to system

Types of Interrupts

1. Device Interrupts generated by Devices
when a request is complete or an event that
requires CPU attention happens.

 The mouse is moved

 A key is typed

 An Ethernet packet arrives.

 The hard drive has completed a read/write
operation.

 A CD has been inserted in the CD drive.

Types of Interrupts

2. Math exceptions generated by the CPU when
there is a math error.

 Divide by zero

3. Page Faults generated by the MMU (Memory
Management Unit) that converts Virtual memory
addresses to physical memory addresses

 Invalid address: interrupt prompts a SEGV signal to the
process

 Page not resident. Access to a valid address but there is
not page in memory. This causes the CPU to load the
page from disk

 Invalid permission (I.e. trying to write on a read only
page) causes a SEGV signal to the process.

Types of Interrupts

4. Software Interrupt generated by software

with a special assembly instruction. This is

how a program running in user mode

requests operating systems services.

System Calls

 System Calls is the way user programs request
services from the OS

 System calls use Software Interrupts

 Examples of system calls are:
 open(filename, mode)

 read(file, buffer, size)

 write(file, buffer, size)

 fork()

 execve(cmd, args);

 System calls is the API of the OS from the user program’s point
of view. See /usr/include/sys/syscall.h

Why do we use Software

Interrupts for syscalls instead of

function calls?

 Software Interrupts will switch into kernel

mode

 OS services need to run in kernel mode

because:

 They need privileged instructions

 Accessing devices and kernel data structures

 They need to enforce the security in kernel mode.

System Calls

 Only operations that need to be executed by the OS

in kernel mode are part of the system calls.

 Function like sin(x), cos(x) are not system calls.

 Some functions like printf(s) run mainly in user mode
but eventually call write() when for example the

buffer is full and needs to be flushed.

 Also malloc(size) will run mostly in user mode but

eventually it will call sbrk() to extend the heap.

System Calls

 Libc (the C library) provides wrappers for the

system calls that eventually generate the

system calls.

User Mode:
int open(fname, mode) {

return syscall(SYS_open,

fname, mode);

}

int syscall(syscall_num, …)
{

asm(INT);

}

Kernel Mode:
Syscall interrupt handler:

Read:…

Write:…

open:

- Get file name and mode

- Verify file exists and

permissions of file against

mode.

- Perform operation

- return fd (file

descriptor)

Software

Interrupt

System Calls

 The software interrupt handler for system

calls has entries for all system calls.

 The handler checks that the arguments are

valid and that the operation can be executed.

 The arguments of the syscall are checked to

enforce the security and protections.

Syscall Security Enforcement

 For example, for the open syscall the following is

checked in the syscall software interrupt handler:

open(filename, mode)

 If file does not exist return error

 If permissions of file do not agree with the mode the file

will be opened, return error. Consider also who the owner

of the file is and the owner of the process calling open.

 If all checks pass, open file and return file handler.

Syscall details

 Te list of all system calls can be found in
/usr/include/sys/syscall.h
#define SYS_exit 1

#define SYS_fork 2

#define SYS_read 3

#define SYS_write 4

#define SYS_open 5

#define SYS_close 6

#define SYS_wait 7

#define SYS_creat 8

#define SYS_link 9

#define SYS_unlink 10

#define SYS_exec 11

…

Syscall Error reporting

 When an error in a system call occurrs, the OS sets a
global variable called “errno” defined in libc.so with the
number of the error that gives the reason for failure.

 The list of all the errors can be found in
/usr/include/sys/errno.h

#define EPERM 1 /* Not super-user */

#define ENOENT 2 /* No such file or directory */

#define ESRCH 3 /* No such process */

#define EINTR 4 /* interrupted system call */

#define EIO 5 /* I/O error */

#define ENXIO 6 /* No such device or address */

 You can print the corresponding error message to stderr
using perror(s); where s is a string prepended to the
message.

System Calls and Interrupts

Example

1. The user program calls the write(fd, buff,
n) system call to write to disk.

2. The write wrapper in libc generates a software
interrupt for the system call.

3. The OS in the interrupt handler checks the
arguments. It verifies that fd is a file descriptor for
a file opened in write mode. And also that [buff,
buff+n] is a valid memory range. If any of the
checks fail write return -1 and sets errno to the
error value.

System Calls and Interrupts

Example

4. The OS tells the hard drive to write the buffer in
[buff, buff+n] to disk to the file specified by fd.

5. The OS puts the current process in wait state until
the disk operation is complete. Meanwhile, the OS
switches to another process.

6. The Disk completes the write operation and
generates an interrupt.

7. The interrupt handler puts the process calling
write into ready state so this process will be
scheduled by the OS in the next chance.

ARM Assembly Language

ARM Architecture

 ARM- Acorn RISC Machine

 ARM is an architecture created by “ARM Holdings”

 ARM Holdings does not manufacture the CPU’s,
instead it licenses the design to other manufacturers
so they create their own version of ARM.

 ARM has become popular because of mobile
computing: Smart phones, tablets etc.

 It is energy-efficient, fast, and simple.

 It still lags in speed compared to the fastest Intel x86
CPUs but it is more energy efficient.

ARM CPUs

 Chips using ARM architecture

 A4, A5, A6, A7

 Iphone/Ipad by Apple

 Qualcomm’s Snapdragon

 Samsung Galaxy, LG, Nokia Lumia, Sony, Kindle

 NVIDIA Tegra

 Windows RT Tablet, Motorola Droid, Motorola Atrix

 Broadcom, BCMXXX CPUs

 Samsung Galaxy, Raspberry Pi

ARM Assembly Language

 See:
http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm_inst.pdf

and

http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm-ref.pdf

http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm_inst.pdf
arm-ref.pdf

Example Assembly Program

test1.s:

.text

.global main

main:

stmfd sp!, {fp, lr}

ldr r0, .L2

bl puts

ldmfd sp!, {fp, pc}

.L2:

.word .LC0

.section .rodata

.LC0:

.ascii "Hello world\000"

Running the Assembler

pi@raspberrypi:~/cs250/lab6-src$ gcc -o test1 test1.s

pi@raspberrypi:~/cs250/lab6-src$./test1

Hello world

pi@raspberrypi:~/cs250/lab6-src$

Assembly Code in

Hexadecimal
pi@raspberrypi:~/cs250/lab6-src$ gcc -Xassembler -a -o test1 test1.s > out

pi@raspberrypi:~/cs250/lab6-src$ vi out

ARM GAS test1.s page 1

1

2 .text

3 .global main

4

5 main:

6 0000 00482DE9 stmfd sp!, {fp, lr}

7 0004 04009FE5 ldr r0, .L2

8 0008 FEFFFFEB bl puts

9 000c 0088BDE8 ldmfd sp!, {fp, pc}

10 .L2:

11 0010 00000000 .word .LC0

12

13 .section .rodata

14 .LC0:

15 0000 48656C6C .ascii "Hello world\000"

15 6F20776F

15 726C6400

The third column is the code generated in hexadecimal.

Calling Conventions

 r0 to r3:
 They are used to pass arguments to a function. r0 is used

to return values. (No need to be restored before return).

 r4 to r11:
 Used to hold local variables. (Need to be restored before

return)

 r13 is the stack pointer.
 Stores return PC and save registers and local vars.

 r14 is the link register. (The BL instruction, used in a
subroutine call, stores the return address in this
register).

 r15 is the program counter.

Condition Code Flags

 This flags are stored in the PSR- Processor

Status Register

 They are updated by the Arithmetic

Operations

N = Negative result from ALU flag.

Z = Zero result from ALU flag.

C = ALU operation Carried out

V = ALU operation oVerflowed

Updating the Condition Code

Flags

 CMP reg1, reg2
 Performs reg1-reg2

 It updates N, Z, C, V

 No other registers are modified

 TST reg1, reg2
 Performs reg1 bit-and reg2

 It updates N,Z

 No other registers are modified

 Any instruction may modify the flags if “S” is
appended to the instruction:
 Example MOVS reg1, reg2 will update N, Z if reg2 is zero

or negative

ARM Instructions

ARM assembly language reference card

MOVcdS reg, arg copy argument (S = set flags)

MVNcdS reg, arg copy bitwise NOT of argument

ANDcdS reg, reg, arg bitwise AND

ORRcdS reg, reg, arg bitwise OR

EORcdS reg, reg, arg bitwise exclusive-OR

BICcdS reg, rega, argb bitwise rega AND (NOT argb)

ADDcdS reg, reg, arg add

SUBcdS reg, reg, arg subtract

RSBcdS reg, reg, arg subtract reversed arguments

ADCcdS reg, reg, arg add with carry flag

SBCcdS reg, reg, arg subtract with carry flag

RSCcdS reg, reg, arg reverse subtract with carry flag

CMPcd reg, arg update flags based on subtraction

CMNcd reg, arg update flags based on addition

ARM Instructions

TSTcd reg, arg update flags based on bitwise AND

TEQcd reg, arg update flags based on bitwise exclusive-OR

MULcdS regd, rega, regb multiply rega and regb, places lower 32 bits into regd

MLAcdS regd, rega, regb, regc places lower 32 bits of rega · regb + regc into regd

UMULLcdS reg`, regu, rega, regb multiply rega and regb, place 64-bit unsigned result into {regu, reg`}

UMLALcdS reg`, regu, rega, regb place unsigned rega · regb + {regu, reg`} into {regu, reg`}

SMULLcdS reg`, regu, rega, regb multiply rega and regb, place 64-bit signed result into {regu, reg`}

SMLALcdS reg`, regu, rega, regb place signed rega · regb + {regu, reg`} into {regu, reg`}

Bcd imm12 branch to imm12 words away

BLcd imm12 copy PC to LR, then branch

BXcd reg copy reg to PC

SWIcd imm24 software interrupt

LDRcdB reg, mem loads word/byte from memory

STRcdB reg, mem stores word/byte to memory

LDMcdum reg!, mreg loads into multiple registers

STMcdum reg!, mreg stores multiple registers

SWPcdB regd, regm, [regn] copies regm to memory at regn,old value at address regn to regd

Optional:

cd – Condition Code

s – Update flkag or not

b – byte or word instruction

ARM Instructions Add-Ons:

Conditions

 Every instruction may have a condition

appended:

Example:

MOV r1, r2 and EQ (zero flag set)

becomes

MOVEQ r1,r2

This means that the r2 will be moved to r1 only

if the zero flag is set.

List of Conditions that Can be

Added to Instructions

AL or omitted always

EQ equal (zero)

NE nonequal (nonzero)

CS carry set (same as HS)

CC carry clear (same as LO)

MI minus

PL positive or zero

VS overflow set

VC overflow clear

HS unsigned higher or same

LO unsigned lower

HI unsigned higher

LS unsigned lower or same

GE signed greater than or equal

LT signed less than

GT signed greater than

LE signed less than or equal

Example: Adding two numbers

 Implement the following program in assembler:

#include <stdio.h>

int a;

int b;

int c;

main()

{

a = 2;

b = 3;

c = b + c;

printf("c=%d\n", c);

}

Example: Adding two numbers in

Assembly using Registers

/* add-reg.s

Adding two numbers using registers */

.section .rodata

printfArg:

.ascii "c=%d\n"

/* Define variable 4 bytes each aligned to 4 bytes

int a; - r2

int b; - r3

int c; - r1

*/

.text

addrPrintfArg: .word printfArg

Adding two numbers in Assembly

using Registers (cont.)

.global main /* main() { */

main:

stmfd sp!, {fp, lr} /* Save pc and lr */

mov r2, #2 /* a=2; */

mov r3, #3 /* b=3; */

add r1, r2, r3 /* c = a + b; */

ldr r0, addrPrintfArg

/* Load printf format in r0 */

/* second argument is in r1 */

/* r1 already has the result of a+b*/

bl printf /* printf("c=%d\n", c); */

ldmfd sp!, {fp, pc} /* return from main */

/* } */

Adding two numbers in Assembly

using Registers (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -o add-reg add-reg.s

pi@raspberrypi:~/cs250/lab6-src$./add-reg

c=5

Example: Adding Two

Numbers Using Global Vars
/* add-global.s:

Adding two numbers using global variables */

.section .rodata

printfArg:

.ascii "c=%d\n"

.section .data

.align 2

/* Define variable 4 bytes each aligned to 4 bytes

int a;

int b;

int c;

*/

.comm a,4,4

.comm b,4,4

.comm c,4,4

Adding Two Numbers Using

Global Vars (cont.)

.text

/* We need to store the addresses of a and b

in .text to be able to access them in main */

addra: .word a

addrb: .word b

addrc: .word c

addrPrintfArg: .word printfArg

.global main /* main() { */

main:

stmfd sp!, {fp, lr} /* Save pc and lr */

ldr r3, addra /* a = 2; */

mov r2, #2

str r2, [r3]

ldr r3, addrb /* b = 3; */

mov r2, #3

str r2, [r3]

Adding two numbers using

Global Vars (cont.)

ldr r2, addra /* Read a and put it in r2
*/

ldr r2, [r2]

ldr r3, addrb /* read b and put it
in r3 */

ldr r3, [r3]

add r2, r2, r3 /* c = a + b; */

ldr r3, addrc

str r2, [r3]

ldr r0, addrPrintfArg /* Load printf format
in r0 */

ldr r1, addrc

ldr r1, [r1] /* Load c in r1 */

bl printf /* printf("c=%d\n",
c); */

ldmfd sp!, {fp, pc} /* return from main */

Adding two numbers using

Global Vars (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -o add-global add-global.s

pi@raspberrypi:~/cs250/lab6-src$./add-global

c=5

Example: Read two numbers

and add them
/* readadd.s
Read two numbers and add them

pi@raspberrypi:~/cs250/lab6-src$./readadd

a: 8

b: 9

c=a+b=17

*/

.section .rodata

promptA:

.ascii "a: \000"

promptB:

.ascii "b: \000"

readA:

.ascii "%d\000"

readB:

.ascii "%d\000"

printC:

.ascii "c=a+b=%d\n\000"

Example: Read two numbers

and add them (cont.)
.section .data

.align 2

/* Define variable 4 bytes each aligned to 4 bytes

int a;

int b;

*/

.comm a,4,4

.comm b,4,4

.text

/* We need to store the addresses of a and b

in .text to be able to access them in main */

addra: .word a

addrb: .word b

addrPromptA: .word promptA

addrPromptB: .word promptB

addrReadA: .word readA

addrReadB: .word readB

addrPrintC: .word printC

Example: Read two numbers

and add them (cont.)
.global main /* main() { */

main:

stmfd sp!, {fp, lr} /* Save pc and lr */

ldr r0, addrPromptA /* Prompt a */

bl printf

ldr r0, addrReadA /* Read a */

ldr r1, addra

bl scanf

ldr r0, addrPromptB /* Prompt b */

bl printf

ldr r0, addrReadB /* Read b */

ldr r1, addrb

bl scanf

ldr r0, addra /* r0<- a */

ldr r0, [r0]

Example: Read two numbers

and add them (cont.)

ldr r1, addrb /* r1<- b */

ldr r1, [r1]

add r1, r0, r1 /* r1 <- r1 +r0*/

ldr r0, addrPrintC /* print c */

bl printf

ldmfd sp!, {fp, pc} /* return from main */

/* } */

Example: Read two numbers

and add them (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -o

readadd readadd.s

pi@raspberrypi:~/cs250/lab6-src$./readadd

a: 7

b: 4

c=a+b=11

Mixing C and Assembly Language.

Finding max in an array.
max.c:

#include <stdio.h>

#include <stdlib.h>

extern int maxarray(int *a, int n);

main()

{

int n;

int i;

int * a;

printf("How many elements in array? ");

scanf("%d",&n);

a = (int*) malloc(n*sizeof(int));

for (i = 0; i < n; i++) {

printf("a[%d]= ", i);

scanf("%d", &a[i]);

}

int m = maxarray(a, n);

printf("max=%d\n", m);

}

Mixing C and Assembly Language.

Finding max in an array (cont.)

maxarray.s

/* Find maximum of an array of integers. Called from "C"

extern int maxarray(int *a, int n);

*/

.text

.global maxarray /* maxarray(int *a, int n) {
*/

/* a: r0 */

/* n: r1 */

maxarray:

stmfd sp!, {r4, r5, fp, lr}

/* Save pc, lr, r4, r5 */

ldr r2,[r0] /* max: r2 */

/* max= a[0] */

mov r3,#0 /* i: r3 */

/* i=0; */

Mixing C and Assembly Language.

Finding max in an array (cont.)

while:

cmp r3,r1 /* while (i!=n) { */

beq endmax

mov r4,r3 /* r4=a[i] */

mov r5,#4

mul r4,r4,r5

add r4,r0,r4 /* as r4=*(int*)((char*)a+4*i)*/

ldr r4,[r4]

cmp r2, r4 /* if (max < r4) max = r4 */

bgt nomax

mov r2,r4

nomax:

Mixing C and Assembly Language.

Finding max in an array (cont.)

mov r5,#1 /* i++; */

add r3,r3,r5

bal while /* Go back to while */

endmax:

mov r0,r2

ldmfd sp!, {r4, r5, fp, pc}

/* return from main */

/* } */

Mixing C and Assembly Language.

Finding max in an array (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -o max max.c
maxarray.s

pi@raspberrypi:~/cs250/lab6-src$./max

How many elements in array? 6

a[0]= 34

a[1]= 78

a[2]= 34

a[3]= 90

a[4]= 78

a[5]= 45

max=90

Implementing String Functions

in ARM Assembly Language

 There are two functions to load/store bytes:

 ldrb reg1,[reg2]

 Loads in reg1 the byte in address pointed by

reg2

 strb reg1,[reg2]

 Stores the least significant byte in reg1 byte in

address pointed by reg2

Example: strcat function in

ARM assembly
/* strcat-main.c:*/

#include <stdio.h>

#include <string.h>

extern char * mystrcat(char * a, char *b);

main()

{

char s1[100];

char s2[100];

printf("s1? ");

gets(s1);

printf("s2? ");

gets(s2);

mystrcat(s1, s2);

printf("s1+s2=%s\n", s1);

}

// Implemented in Assembly Language in mystrcat.s

// Shown here to teach you the algorithm used.

// char * mystrcat(char * a, char *b) {

// while (*a) a++;

// while (*b) { *a=*b; a++; b++;}

// *a=0;

// }

Example: strcat function in

ARM assembly (cont.)
/* Concat two strings a, b. Result is in a.

extern char * mystrcat(char *a, char *b);

*/

.text

.global mystrcat

/* a: r0 */

/* b: r1 */

mystrcat:

stmfd sp!, {r4, fp, lr} /* Save pc, lr, r4*/

/* Skip chars in a */

skip:

ldrb r2,[r0] /* r2 <- *a */

mov r3,#0

cmp r2,r3

beq endskip /* if (*a == 0) jump endskip */

mov r3,#1

add r0,r0,r3 /* a++ */

bal skip /* go to skip */

endskip:

Example: strcat function in

ARM assembly (cont.)

skip2: /* Add char by char *b to *a until we find the end of *b */

ldrb r4,[r1] /* r4 <- *b */

mov r3,#0

cmp r4,r3

beq endcat /* if (*b == 0) jump endcat */

strb r4,[r0] /* *a = *b; */

mov r3,#1

add r0,r0,r3 /* a++ */

add r1,r1,r3 /* b++ */

bal skip2 /* go to skip2 */

endcat:

mov r3, #0 /* *a = 0; */

strb r3, [r0]

ldmfd sp!, {r4, fp, pc} /* return from mystrcat */

Example: strcat function in

ARM assembly (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -o strcat-main strcat-main.c

mystrcat.s

pi@raspberrypi:~/cs250/lab6-src$./strcat-main

s1? Hello

s2? World

s1+s2=HelloWorld

pi@raspberrypi:~/cs250/lab6-src$

Midterm Review

Midterm Review

II. Fundamentals of Digital Logic

 Voltage and Current

 Boolean Logic

 Truth Tables

 Implementation using Logical gates.

 Implementing an add circuit.

 Flip-Flops

 Karnaugh Maps

Midterm Review

III. Data and program Representation

 Memory of a Program

 Memory Sections:

 text, Data, Bss, Heap, Stack Shared Libraries

 Executable File formats

 Steps for building a program:

 C preprocessor, Compiler, Optimizer, Assembler,
Linker.

 Steps for loading a program

 Static and Shared libraries

Midterm Review

III. Data and program Representation (cont.)

 Binary Addition , Subtraction, Multiplication and Division

 Sign representation:

 Sign and Magnitude, Complements of 1 and 2

 Floating Point Representation

 Byte Order

 Little Endian

 Big Endian

 Structures and alignment

 ASCII and Unicode and String representation

Midterm Review

IV. Variety of Processors

 Von Neumann Architecture

 Address Bus and Data Bus

 Components of the CPU

 Fetch Execute Cycle

Midterm Review

 V. Processor Types and Instruction Sets

 CISC and RISC

 Execution Pipeline

 Pipe Stall

 VI. Operand Addressing and Instruction

Representation

 0 address architecture, 1 address architecture, 2

address architecture and 3 address architecture.

 Von Neumann Bottleneck

Midterm Review

 VI. Operand Addressing and Instruction

Representation (cont.)

 Addressing modes:

 Immediate, Direct, Indirect

 VII. CPUs Microcode Protection and

Protection Modes

 Kernel and User Mode

 Promotes Security, Robustness and Fairness

Midterm Review

 VII. CPUs Microcode Protection and Protection

Modes

 Interrupts

 Steps to service an interrupt

 Asynchronous Processing

 Poling

 Interrupt Vector

 Types of Interrupts:

 Device Interrupts, Math exceptions, Page Faults, Software

Interrupts.

 System Calls

Midterm Review

 Microcode

 Vertical and Horizontal Microcode

 VIII. Assembly Language and Programming

Paradigm

 ARM Assembly language

Midterm Material to Study

 Class Slides

 Midterm Exam Homework Review

 Projects Lab1-Lab6

 ARM Assembly Language

 Everything up to and including chapter ”VIII

Memory and Storage” in the book.

 I will include the “Reference Card ARM

Assembly Language” in the exam.

http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm-ref.pdf

X86-64 Asembly Language

History

 Created by AMD to extend the x86

architecture to use 64 bits

 X86-64 is a superset of x86

 It has been adopted by Intel

 It provides an incremental evolution to

migrate from x86-32 bits to x86-64 bits.

Register Assignment

(Bryant/O’Hallaron “x86-Machine Level Programming”)

Using registers

 A function can use any of the argument

registers. There is no need to save them.

 If a function uses any of the “callee saved”,

registers it has to save them in the stack and

then restore them before returning to the

caller.

X86-64 C-Types

(Bryant/O’Hallaron “x86-Machine Level Programming”)

Addressing modes

 Immediate Value
movq $0x501208,%rdi #Put in register %rdi the

constant 0x501208

 Direct Register Reference
movq %rax,%rdi #Move the contents of

#register %rax to %rdi

 Indirect through a register

movq %rsi,(%rdi)#Store the value in %rsi

#in the address contained in %rdi

 Direct Memory Reference
movq 0x501208,%rdi #Fetch the contents in memory

#at address 0x501308 and store it

#in %edi

Example: Adding two numbers
.text

sum: # int sum(int a, int b) {

movq %rdi, %rax # // a=%rdi b=%rsi ret=%rax

addq %rsi, %rax # return a + b ;

ret # }

str1:

.string "5+3=%d\n"

.globl main

main: # main()

movq $3, %rsi # {

movq $5, %rdi # // r = %rax

call sum # r = sum(5, 3)

movq %rax, %rsi #

movq $str1, %rdi #

movq $0, %rax # // printf needs 0 in %rax

call printf # printf("5+3=%d\n", r);

ret # }

Assembling and running

 To assemble and run program:

$sslab01 ~/cs250 $ gcc -o t1 t1.s

$sslab01 ~/cs250 $./t1

5+3=8

 Notice that in the previous example we use quad
words during the arithmetic even though the type is
int.

 Most of the time there is no penalty for doing that
and it makes programs simpler.

Using the stack

 The stack is used to

 store the return address

 store local variables

 Save registers when running out of them.

 pass arguments when they don’t fit in the

registers.

Example of Using Stack

long sum(long a, long b)

{

long tmp1 = a;

long tmp2 = b;

long result = tmp1 + tmp2;

return result;

}.

main()

{

long result = sum(5,3);

printf("sum(5,3)=%d\n", sum(5,3));

}

Stack Layout
Before calling sum:

main() ret address
%rsp

After calling sum:

main() ret address

%rsp
sum() ret address

0

8

In sum after subq $24, %rsp:

main() ret address

%rsp

sum() ret address

0

8

16

0

tmp1

tmp2

result

Example of Using Stack
.text

.globl sum

.type sum, @function

sum:

subq $24, %rsp # Create space in stack for

tmp1, tmp2 and result

movq %rdi, 16(%rsp) # tmp1 = a

movq %rsi, 8(%rsp) # tmp2 = b

movq 16(%rsp), %rax

addq 8(%rsp), %rax

movq %rax, (%rsp) # result = tmp1 + tmp2 ;

movq (%rsp), %rax # return result ;

addq $24, %rsp # Restore stack pointer

ret

Using flow control

 To test the difference conditions use:

cmpq S2, S1 # S1 – S2: Compare quad words

or

testq S2, S1 # S1 & S2: Test Quad Word

Example of if statement:

Obtaining maximum of two numbers

long max(long a, long b)

{

long result;

if (a > b) {

result = a;

}

else {

result = b;

}

return result;

}

Example of “if” statement:

Obtaining maximum of two numbers

.text

.globl max

max:

cmpq %rsi, %rdi # if (a>b)

jle else_branch

movq %rdi, %rax # result = a

jmp end_max

else_branch: # else

movq %rsi, %rax # result = b

end_max:

ret # return result

Example of “while” statement: Obtaining

the maximum of an array of numbers.

// Finds the max value in an array

long maxarray(long n, long *a) {

long i=0;

long max = a[0];

while (i<n) {

if (max < *a) {

max = *a

}

i++ ;

a++ ;

}

return max;

}

Example of “while” statement: Obtaining

the maximum of an array of numbers.

maxarray.s

.text

.globl maxarray # long maxarray(long n, long *a)

// n = %rdi a = %rsi

maxarray: # // i = %rdx max = %rax

#

movq $0,%rdx # i=0 ;

movq (%rsi),%rax # max = a[0];

#

while: cmpq %rdx,%rdi # while (i<n) { // (n-i>0)

jle afterw #

#

cmpq (%rsi),%rax # if (max < *a) { // (max-*a<0)

jge afterif #

movq (%rsi),%rax # max = *a

}

afterif: #

addq $1,%rdx # i++ ;

addq $8,%rsi # a++ ;

jmp while # }

afterw: ret # return max; }

Example of “while” statement: Obtaining

the maximum of an array of numbers using

Array Dereferencing

// Finds the max value in an array

long maxarray(long n, long *a) {

long i=0;

long max = a[0];

while (i<n) {

if (max < a[i]) {

max = a[i];

}

i++ ;

}

return max;

}

Same program using array dereferencing

.text

.globl maxarray # // Finds the max value in an array

#

long maxarray(long n, long *a)

// n = %rdi a = %rsi

maxarray: # // i = %rdx max = %rax

#

movq $0,%rdx # i=0 ;

movq (%rsi),%rax # max = a[0]

#

while: cmpq %rdx,%rdi # while (i<n) { // (n-i>0)

jle afterw #

//*(long*)((8*i+(char*)a)

movq %rdx,%rcx # long *tmp = a[i];

imulq $8,%rcx #

addq %rsi,%rcx #

#

cmpq (%rcx),%rax # if (max < *tmp) { // (max-*tmp<0)

jge afterif #

movq (%rcx),%rax # max = *tmp

}

afterif:addq $1,%rdx # i++ ;

jmp while #

}

afterw: ret # }

Running the program

maxarray.c:

long a[] = {4, 6, 3, 7, 9 };

main()

{

printf("maxarray(5,a)=%d\n", maxarray(5,a));

}

grr@sslab01 ~/cs250 $ gcc -o maxarray maxarray.c maxarray.s

grr@sslab01 ~/cs250 $./maxarray

maxarray(5,a)=9

grr@sslab01 ~/cs250 $

Defining Global Variables in

Assembly Language

 To create space for a global variable in assembly language use:

.data

.comm <var-name>, <data-size>[,<alignment>]

where

<var-name> = variable name

<data-size> = Size of variable in bytes

<alignment> = Optional alignment. Address of variable will be a multiple
of alignment. Otherwise alignment will be a power of 2 larger to
data-size up to 32.

 Example:

.data

.comm a,8 # long a;

.comm array,40 # long a[5];

.comm darray, 80,8 # double darray[10];

Example Using scanf in x86-64

assembler
Define global variable a in data section

.data

.comm a,8 # long a;

.text

format1:

.string "a="

format2:

.string "%ld"

format3:

.string "a is %ld\n"

.globl main

main: # main()

#

movq $format1, %rdi # printf("a=");

movq $0, %rax #

call printf #

movq $format2, %rdi # scanf("%ld",&a);

movq $a, %rsi #

movq $0, %rax #

call scanf #

movq $format3, %rdi # printf("a=%ld",a);

movq $a, %rsi #

movq (%rsi),%rsi #

movq $0, %rax #

call printf #

ret # }

Using gdb with assembly

programs

 Use the following instructions to debug
assembly programs:

 stepi – steps in the next instruction. If this is a
“call” instruction, it steps in the called function.

 nexti – Executes next instruciton. It does not enter
into a called funciton.

 disassemble function/label– disassembles the
current function or label

 Break function – Sets a break point in a function

 Run – run to completion or until a breakpoint

Using gdb

(gdb) break main

Breakpoint 1 at 0x4004f4

(gdb) run

Starting program: /u/u3/grr/cs250/max

warning: no loadable sections found in added symbol-file system-supplied DSO at 0x7ffff01fe000

Breakpoint 1, 0x00000000004004f4 in main ()

(gdb) stepi

0x00000000004004f9 in main ()

(gdb)

0x00000000004004fe in main ()

(gdb)

0x0000000000400503 in main ()

(gdb)

0x000000000040051c in maxarray ()

(gdb)

0x0000000000400523 in maxarray ()

(gdb) disassemble

Dump of assembler code for function maxarray:

0x000000000040051c <maxarray+0>: mov $0x0,%rdx

0x0000000000400523 <maxarray+7>: mov (%rsi),%rax

End of assembler dump.

(gdb)

Lab7: Writing a Simple

Compiler

 In this lab you will write a compiler for “Simple

C”

 This language is a reduced version of “C”.

 We will concentrate on generating the

assembly language code.

 We will cover superficially the theory of

parsing and the use of Lex and Yacc

Simple C

 Subset of C

 Only the following types are supported:

long

long*

char

char*

void

 Also it supports constructions such as if/else, while, do/while, for.

 The program consists of a declaration of functions and variables
like in “C”.

 Also you can call “C” functions from Simple C as long as the
arguments they use are char* and long (or int).

Example Simple “C” program

long fact(long n) {

if (n==0) return 1;

return n*fact(n-1);

}

void main()

{

printf("Factorial of 5 = %d\n" , fact(5));

}

Building a Compiler

 To help in the development of compilers,

tools such as Lex and Yacc have been

created.

 With these tools, the programmer

concentrates only in the grammar and the

code generation.

Lex

 Lex

 takes as input a file simple.l with the regular

expressions that describe the different tokens.

 It generates a scanner file “lex.yy.c” that reads

characters and forms tokens or words that the

parser uses.

Yacc

 Yacc

 Takes as input a file simple.y with the grammar
that describes the language.

 This file also contains “actions” that is “C” code
that describes how the code will be generated
while parsing the code.

 It generates a parser file called “y.tab.c” that
reads the tokens and parses the program
according to the syntax.

 When it reaches an action in the syntax tree, it
executes that action

Lex and Yacc Interaction

simple.l

Parser

simple.y

Scanner

lex simple.l lex.yy.c

(lex.yy.c)

yacc simple.y y.tab.c

(y.tab.c)

m a i n (i n t a)

Input file:

test1.c

chars:

Tokens:
WORD LPARENT INT WORD RPARENT

Output File:

test1.s

.text

.globl main

main:

Lex Input file simple.l

 It contains the regular expressions that

describe the different tokens

"return" {

return RETURN;

}

[A-Za-z][A-Za-z0-9]* {

/* Assume that file names have only alpha chars */

yylval.string_val = strdup(yytext);

return WORD;

}

Yacc input file simple.y

 It contains the grammar that describes the

language.

 It also contains actions or c code that will be

executed after parsing specific grammar

constructions.

 It also includes the main() entry point of the

compiler.

Yacc input file simple.y
program :

function_or_var_list;

function_or_var_list:

function_or_var_list function

| function_or_var_list global_var

| /*empty */

;

function:

var_type WORD

{

fprintf(fasm, "\t.text\n");

fprintf(fasm, ".globl %s\n", $2);

fprintf(fasm, "%s:\n", $2);

}

LPARENT arguments RPARENT compound_statement

{

fprintf(fasm, "\tret\n");

}

;

Code generation

 You will need to add more actions to generate the
code.

 An action is a portion of code such as
{

fprintf(fasm, "\tret\n", $2);

}

that is embedded in the grammar.

 This portion of code is executed when the parser
reaches that point.

Parsing tree

 The parser tries to parse the inout according

to the grammar

factlong n(long)

program

function_or_var_list

function

var_type WORD LPARENT var_type WORD RPARENT{..} {..}

{action} {action}

Generating Code for

Expressions

 Since the compiler will only parse the sources

once, the easiest code to generate is the

code for a stack-based machine.

 However a stack-based machine is slow.

 We will optimize this by using registers for the

bottom entries of the stack.

Example of stack based

machine

 Arithmetic expression:

4+3*8

 Equivalent in stack based machine:

push 4

push 3

push 8

*

+

4

Push 4

4

Push 3

3

4

Push 8

3

8

4

*

24

28

+

Parsing Expressions
 We need the hierarchy of logical, equality, relational, additive,

multiplicative expressions to take into account the operator

precedence.

expression :

logical_or_expr

;

logical_or_expr:

logical_and_expr

| logical_or_expr OROR logical_and_expr

;

logical_and_expr:

equality_expr

| logical_and_expr ANDAND equality_expr

;

Parsing Expressions

equality_expr:

relational_expr

| equality_expr EQUALEQUAL relational_expr

| equality_expr NOTEQUAL relational_expr

;

relational_expr:

additive_expr

| relational_expr LESS additive_expr

| relational_expr GREAT additive_expr

| relational_expr LESSEQUAL additive_expr

| relational_expr GREATEQUAL additive_expr

;

Parsing Expressions

additive_expr:

multiplicative_expr

| additive_expr PLUS multiplicative_expr {

fprintf(fasm, "\t# +\n");

}

| additive_expr MINUS multiplicative_expr

;

multiplicative_expr:

primary_expr

| multiplicative_expr TIMES primary_expr {

fprintf(fasm, "\t# *\n");

}

| multiplicative_expr DIVIDE primary_expr

| multiplicative_expr PERCENT primary_expr

;

Parsing Expressions
primary_expr:

STRING_CONST {

// Add string to string table.

// String table will be produced later

string_table[nstrings]=$<string_val>1;

fprintf(fasm, "\tmov $string%d, %%rdi\n", nstrings);

nstrings++;

}

| call

| WORD

| WORD LBRACE expression RBRACE

| AMPERSAND WORD

| INTEGER_CONST {

fprintf(fasm, "\t# push %s\n", $<string_val>1);

}

| LPARENT expression RPARENT

;

How expressions are parsed
expression

logical_or_expr
logical_and_expr

equality_expr

relational_expr

multiplicative_expr

additive_expr

primary_expr

additive_expr PLUS multiplicative_expr {fprintf(fasm,“+”)}

INTEGER_CONST {push $1}

4
+

multiplicative_expr TIMES primary_expr

primary_expr

INTEGER_CONST {push

$1}

3 *

{fprintf(fasm,”*”)}

INTEGER_CONST

{push $1}
8

push 4 push 3 push 8 * +

Expressions Code Generation

 You will use a Stack Virtual Machine.

 The bottom elements in the stack will be

stored in registers to speed up access.

 You will need to save these registers at the

beginning of the function and restore them

before returning.

Stack Representation
Stack Position Register/Memory

0 rbx

1 r10

2 r13

3 r14

4 r15

>=5 Use the execution stack

Stack Operations

 Depending of the stack position, the push or pop
instruction will use a different register.

 Example: 4+3*8
movq $4,%rbx # push 4. Use %rbx

movq $3,%r10 # push 3. Use %r10

movq $8,%r13 # push 8. Use %r13

imulq %r13,%r10 # * = Multiply 2 top values.

Push result.

addq %r10,%rbx # + = Add 2 top values.

Push result

movq $rbx, $rax # move result to %rax for use in

statements

Implementing Variables

 Your compiler will handle three type of

variables:

 Global variables

 Local Variables

 Arguments

Implementing Declaration of

Global Variables

 The declaration of global variables are parsed in the
rule:
global_var:

var_type global_var_list SEMICOLON;

global_var_list: WORD

| global_var_list COMA WORD

;

 Insert the actions {…} to
 reserve space

 add the variable to the global variable table.

Creating Space for Global

Variables

 Global variables are stored in the data section.

 Generate code that way:

Example:

Simple C:

long g;

Assembly:

.data

g:

.long 0

Getting a Value from a Global

Variables

 The parse rule that should generate the code for getting the value of a global
variable is:
primary_expr:

….

WORD {

char * id = $<string_val>1;

lookup id in local variables table

if id is a local var {

read local var from stack and push into stack.
(We will see this later).

}

else {

lookup id in global var table

if id is a global var {

Generate code to read global var and push it to stack

fprintf(fasm, “movq %s, %s\n”, id, regStk[top]);

top++;

}

}

…

Saving into a global variable

 Storing into a global variable is implemented in the following rule
assignment:

WORD EQUAL expression {

// Code for a assignment

char * id = $<string_val>1;

if (id is local var) {

// we will see later

}

else if (id is a global var) {

// Generate code to save top of the stack

// in global var

fprintf(fasm, “movq %rbx,%s\n”, id);

top = 0;

}

}

Getting a Value from a Global

Variables

 Example:

Simple C:

x = 5 + g;

Assembly

movq $5, %rbx # push 5

movq g,%r10 # push g (printed by code

shown before)

addq %r10,%rbx # add and push result

to top of stack

movq %rbx, x # Save result into x

Implementing Declaration of

Local Variables

 Declaration of local variables should be done

in the production
local_var:

var_type local_var_list SEMICOLON;

local_var_list: WORD

| local_var_list COMA WORD

;

Implementing Declaration of

Local Variables

 Local variables are stored in the stack.

 We need to reserve stack space at the
beginning of the function using
 subq $<space>, %rsp

 Where <space> is the space reserved that
needs to be restored before leaving the
function.

 We do not know how much space two
reserve.

Implementing Declaration of

Local Variables

 Two approaches:

 Reserve a constant maximum stack space all the
time Example: 256 bytes, enough for 32
variables.

 Instead of reserving, jump to a code at the end of
the function that reserves the stack once we know
the space we need and then jump back.

 The second approach is better but both
approaches are OK for the purpose of this
project.

Implementing Declaration of

Local Variables

 Remember that the argument registers are

overwritten during a function call.

 You need to save the argument registers in

the stack at the beginning of the function.

 Hint:

 Add the arguments to the local variable table at

the beginning of the function and treat the

arguments as local variables.

Implementing Declaration of

Local Variables

Example:

long add(long a, long b) {

int c,d;

c = 5;

d = c + a*b;

return d;

}

a

b

c

d

Stack

1256 (original sp)

1000 (new sp)

1008

1016

1024

To push c to top of

register stack:

movq 16(%rsp),$rbx

Implementing Declaration of

Local Variables

local_var_list: WORD {

// first local variable

local_vars_table[nlocals]=$<string_val>;

nlocals++;

}

| local_var_list COMA WORD {

local_vars_table[nlocals]=$<string_val>;

nlocals++;

}

Generating code for while()

long i = 0;

main()

{

while (i<5) {

i= i + 1;

printf("%d\n", i);

}

}

Generating code for while()
.data

i: # long i = 0 ;

.long 0

.text

.globl main

main:

#while (i<5) {

while_1: # expression i<5

movq i, %rbx # push i

movq $5, %r10 # push 5

cmpq %r10,%rbx # compare top of the stack (rbx-r10)

movq $0,%rax # Zero %rax

setl %al # Set byte if less

See http://www.amd.com/us-en/assets/content_type/

white_papers_and_tech_docs/24592.pdf page 55

movq %rax,%rbx # Put result back to top

cmpq $0, %rbx # Compare top of the stack with 0

je after_while_1 # Jump after while if not true

Generating code for while()
Body of while

movq i,%rbx # i = i+1
movq $1,%r10

addq %r10,%rbx

movq %rbx,i

printf("%d\n,i) ;

movq $str1, %rbx # Arg1 of printf

movq %rbx, %rdi

movq i,%rbx # Arg2 of printf

movq %rbx, %rsi

movq $0,%rax # Extra 0s for printf

call printf # Call printf

jmp while_1 # } // while

after_while_1:

ret

.text

str1:
.string "i=%d\n"

Passing Arguments for Calls

 When parsing argument to calls let the parser

push the expressions to the register stack.

 Do not initialize top at every argument.

 The arguments will be saved in the register

stack until they are copied to the register

arguments.

Parsing Arguments for Calls
Simple C:

printf(“compute(3,4)=%d\n”, compute(3,4));

Assembly:

movq string0, %rbx # push string0 - printf’s arg1

movq $3, $r10 # push 3 - compute’s arg1

movq $4, $r13 # push 4 - compute’s arg2

Copy from stack to arg regs top==3

movq $r13, $rsi # pop into register for arg2 top==2

movq $r10, $rdi # pop into register for arg1 top==1

call compute

movq %rax, %r10 # Push return val to stack top==2

movq $r10, $rsi # pop into register for arg2 top==2

movq $rbx, $rdi # pop into register for arg1 top==1

movl $0, %eax # Call printf

call printf

Parsing Arguments for Calls

 The problem with nested calls is that a single
“nargs” variable sis not enough to keep count of the
number of arguments.

 The solution is to store an “nargs” into the
call_arg_list nonterminal to make the nargs local to
the function parsed.

 In %union add:
%union {

char *string_val;

int nargs;

}

 This will allow adding a new type

Parsing Arguments for Calls

 Modify call_arg_list to count the arguments. The $<nargs>$ stores a
variable nargs local to this rule inside the non-terminal expression that can
be used later.

call_arg_list:

expression {

$<nargs>$ = 1; // Initialize args to 1

}

| call_arg_list COMA expression {

$<nargs>$++;

};

call_arguments: /* Pass up number of args */

call_arg_list { $<nargs>$=$<nargs>1;}

| /*empty*/ { $<nargs>$=0;}

;

Parsing Arguments for Calls
call :

WORD LPARENT call_arguments RPARENT {

int i;

char * funcName = $<string_val>1;

if (!strcmp(funcName, "printf")) {

// printf has a variable number of args

fprintf(fasm, "\tmovl $0, %%eax\n");

}

// Move from top of stack to argument registers

fprintf(fasm, " #Push arguments to stack\n");

for (i=$<nargs>3-1; i>=0; i--) {

top--;

fprintf(fasm, "\tmovq %%%s, %%%s\n",

regStk[top],

regArgs[i]);

}

fprintf(fasm, "\tcall %s\n", funcName);

}

;

Virtual Memory Introduction

 VM allows running processes that have memory
requirements larger than available RAM to run in the
computer.

 If the following processes are running with the noted
requirements:
 IE (100MB),

 MSWord (100MB),

 Yahoo Messenger (30MB)

 Operating System (200MB).

 This would require 430MB of memory when there
may only be 256MB of RAM available

Virtual Memory Introduction

 VM only keeps in RAM the memory that is

currently in use.

 The remaining memory is kept in disk in a

special file called "swap space"

 The VM idea was created by Peter Dening a

former head of the CS Department at Purdue

Other Uses of Virtual Memory

 Another goal of VM is to speed up some of the tasks
in the OS for example:
 Loading a program. The VM will load pages of the

program as they are needed, instead of loading the
program all at once.

 During fork the child gets a copy of the memory of the
parent. However, parent and child will use the same
memory as long as it is not modified, making the fork call
faster. This is called “copy-on-write”.

 Shared Libraries across processes.

 Shared memory

 There are other examples that we will cover later.

VM Implementations

 Process Swapping:
 The entire memory of the process is swapped in and out

of memory

 Segment Swapping
 Entire parts of the program (process) are swapped in

and out of memory (libraries, text, data, bss, etc.

 Problems of process swapping and segment swapping
is that the granularity was too big and some pieces still
in use could be swapped out together with the pieces
that were not in use.

 Paging
 Used by modern OSs. Covered in detail here.

Paging

 Implementation of VM used by modern operating
systems.

 The unit of memory that is swapped in and out is a
page

 Paging divides the memory in pages of fixed size.

 Usually the size of a page is 4KB in the Pentium
(x86) architecture and 8KB in the Sparc Ultra
Architecture.

Paging

Address in

bytes

0

4096

8192

232-1=4G-1

.

.

.

VM Address

in pages

(page

numbers)

0

1

2

0x00000000

0x00001000

0x00002000

0xFFFFFFFF
232/4KB-1 =220-1=2M-1

RAM page 5

Swap page 456

RAM page 24

RAM page 10

RAM page 3

Swap page 500

Executable page 2

Not mapped(invalid)

Paging

 The Virtual Memory system will keep in

memory the pages that are currently in use.

 It will leave in disk the memory that is not in

use.

Backing Store

 Every page in the address space is backed

by a file in disk, called backing-store

Memory Section Backing Store

Text Executable File

Data Executable File when page is

not not modified.

Swap space when page is

modified

BSS Swap Space

Stack Swap Space

Heap Swap Space

Swap Space

 Swap space is a designated area in disk that

is used by the VM system to store transient

data.

 In general any section in memory that is not

persistent and will go away when the process

exits is stored in swap space.

 Examples: Stack, Heap, BSS, modified data

etc.

Swap Space

lore 208 $ df -k

Filesystem kbytes used avail capacity Mounted on

/dev/dsk/c0t0d0s0 1032130 275238 705286 29% /

/proc 0 0 0 0% /proc

mnttab 0 0 0 0% /etc/mnttab

fd 0 0 0 0% /dev/fd

/dev/dsk/c0t0d0s4 2064277 1402102 600247 71% /var

swap 204800 2544 202256 2% /tmp

/dev/dsk/c0t2d0s6 15493995 11682398 3656658 77% /.lore/u92

/dev/dsk/c0t3d0s6 12386458 10850090 1412504 89% /.lore/u96

/dev/dsk/c0t1d0s7 15483618 11855548 3473234 78% /.lore/u97

bors-2:/p8 12387148 8149611 4113666 67% /.bors-2/p8

bors-2:/p4 20647693 11001139 9440078 54% /.bors-2/p4

xinuserver:/u3 8744805 7433481 1223876 86% /.xinuserver/u3

galt:/home 5161990 2739404 2370967 54% /.galt/home

xinuserver:/u57 15481270 4581987 10775435 30% /.xinuserver/u57

lucan:/p24 3024579 2317975 676359 78% /.lucan/p24

ector:/pnews 8263373 359181 7821559 5% /.ector/pnews

Swap Space

lore 206 $ /usr/sbin/swap -s

total: 971192k bytes allocated + 1851648k reserved =

2822840k used, 2063640k available

lore 207 $ /usr/sbin/swap -l

swapfile dev swaplo blocks free

/dev/dsk/c0t0d0s1 32,1025 16 2097392 1993280

/dev/dsk/c0t1d0s1 32,1033 16 2097392 2001792

Implementation of Paging

 Paging adds an extra indirection to memory

access.

 This indirection is implemented in hardware, so it

does not have excessive execution overhead.

 The Memory Management Unit (MMU) translates

Virtual Memory Addresses (vmaddr) to physical

memory addresses (phaddr).

 The MMU uses a page table to do this

translation.

Paging

 There are two types of addresses:

 Virtual Memory Addresses: the address that the

CPU is using. Addresses used by programs are of

this type.

 Physical Memory Addresses: The addresses of

RAM pages. This is the hardware address.

 The MMU translates the Virtual memory

addresses to physical memory addresses

The Memory Management Unit

CPU

Memory

Cache

Memory

Management

Unit (MMU)

Translation Look-

Aside Buffer (TLB)

Page Table

Register

Page Table

RAM

I/O

Address Bus

Data Bus

VM

Address

Physical

(hardware)

Address

The Memory Management Unit

 The MMU has a Page Table Register that points to

the current page table that will be used for the

translation.

 Each process has a its own page table.

 The page table register is updated during a context

switch from one process to the other.

 The page table has the information of the memory

ranges that are valid in a process

The Memory Management Unit

 The value of the page table register

changes every time there is a context switch

from one process to another.

 Consecutive pages in Virtual memory may

correspond to non-consecutive pages in

physical memory.

The Memory Management Unit

 To prevent looking up the page table at every

memory access, the most recent translations

are stored in the Translation Look-Aside

buffer (TLB).

 The TLB speeds up the translation from

virtual to physical memory addresses.

 A page fault is an interrupt generated by the

MMU

VM to Hardware Address

Translation

 The VM address is divided into two parts:
 Page number (higher 20 bits)

 Offset (Lower 12 bits: 0-4095) (Assuming page
size=4096 or 212)

 Only the page number is translated. The offset
remains the same

 Example: in 0x2345, the last 3 hex digits (12 bits)
is the offset: 0x345. The remaining digits is the
page number (20 bits): 0x2

31 12 11 0

Page number Offset

VM to Hardware Address

Translation

Page

Number
Offset

VM Address

Page Table

Page

Number
Offset

Hardware Address

0

1

2

…

232/212-1 =

220-1

789

625

367

429

VM to Hardware Address

Translation (one-level page

table)

0x2 0x345

VM Address 0x2345

Page Table

0x345

Hardware Address

0

1

2

…

232/212-1 =

220-1

0x789

0x625

0x767

0x429

Page Number Page Number OffsetOffset

0x767

VMaddr=0x2345

pagenum=0x2

offset=0x345

haddr=0x767345

pagenum=0x767

offset=0x345

Two-Level page tables

 Using a one-level page table requires too

much space: 220 entries * 4 bytes/entry =~

4MB.

 Since the virtual memory address has a lot of

gaps, most of these entries will be unused.

 Modern architectures use a multi-level page

table to reduce the space needed

Two-Level page tables

 The page number is divided into two parts: first-
level page number and the second-level page
number

 Example: VM address:0x00402657

 Offset=0x657 (last 3 hex digits)

 1st level index (i) = 0x1 , 2nd level index (j)= 0x2

First-level index

(i) (10 bits)

Second-level

index (j) (10 bits)
Offset (12 bits)

First level Second level Offset

0000 0000 0100 0000 0010 0110 0101 0111

VM Address Translation

VM address

1st level

(i)

2nd

level (j)
offset

31 22 21 12 11 0

First Level Page Table

(one for each process).

Second Level Page Tables

(multiple tables for each

process.)

i 0x45000

0x70000

0

210-1 0x45000

0x45000

0x70000

0x45000

2
4

5
7

10
9

0
1

2

3

4

5

6

7

8

9

10

11

Page Number

Physical Mem

VM Address Translation

VM address:0x00402657

i=0x1

2nd level offset

31 22 21 12 11 0

First Level

Page Table

Second Level

Page Tables

0x70000

0x45000

0

210-1 0x65000

0x65000

0x70000

0x45000

2
4

5
7

9

0
1

2

3

4

5

6

7

8

9

…

Page Number

Physical Mem

Page number in

physical

address=0x2

1st level

j=0x2 0x657

1

1

2

i

j

210-1

Example

 VMaddress: 0x00402 657

 Physical Memory Address: 0x2 657

1.From the VM address find i, j, offset

2. SecondLevelPageTable= FirstLevelPageTable[i]

3. PhysMemPageNumber = SecondLevelPageTable[j]

4. PhysMemAddr= PhysMemPageNum*Pagesize + offset

 Process always have a first-level page table

 Second level page tables are allocated as needed.

 Both the first level and second level page tables
use 4KB.

Page Bits

 Each entry in the page table needs only 20 bits to store
the page number. The remaining 12 bits are used to
store characteristics of the page.
 Resident Bit:

 Page is resident in RAM instead of swap space/file.

 Modified Bit:

Page has been modified since the last time the bit was cleared.
Set by the MMU.

 Access Bit:

 Page has been read since the last time the bit was cleared. Set
by MMU

 Permission:
Read  page is readable

Write  Page is writable

Execute  Page can be executed (MMU enforces permissions)

Page Bits

 If a CPU operation exceeds the permissions
of a page, the MMU will generate an interrupt
(page fault). The interrupt may be translated
into a signal (SEGV, SIGBUS) to the process.

 If a page is accessed and the page is not
resident in RAM, the MMU generates an
interrupt to the kernel and the kernel loads
that page from disk.

Types of Page Fault

 Page Fault
 Page not Resident: Page not in Physical Memory, it is in

disk

 Protection Violation: Write or Access permission (as

indicated by page bits) violated.

Processing a Page Fault

1. A program tries to read/write a location in
memory that is in a non-resident page. This could
happen when:

fetching the next instruction to execute or

trying to read/write memory not resident in RAM

2. The MMU tries to look up the VM address and
finds that the page is not resident using the
resident bit. Then the MMU generates a page
fault, that is an interrupt from the MMU

3. Save return address and registers in the stack

Processing a Page Fault

4. The CPU looks up the interrupt handler that
corresponds to the page fault in the interrupt vector
and jumps to this interrupt handler

5. In the page fault handler

If the VM address corresponds to a page that is not
valid for this process, then generate a SEGV signal
to the process. The default behavior for SEGV is to
kill the process and dump core

Otherwise, if VM address is in a valid page, then the
page has to be loaded from disk.

Processing a Page Fault

6. Find a free page in physical memory. If there are no

free pages, then use one that is in use and write to

disk if modified

7. Load the page from disk and update the page table

with the address of the page replaced. Also, clear

the modified and access bits

8. Restore registers, return and retry the offending

instruction

Processing a Page Fault

 The page fault handler retries the offending

instruction at the end of the page fault

 The page fault is completely transparent to

the program, that is, the program will have no

knowledge that the page fault occurred.

Using mmap

 The mmap() function establishes a mapping between a
process's address space and a file or shared memory
object.

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

int flags, int fildes, off_t off);

 Mmap returns the address of the memory mapping and it
will be always aligned to a page size (addr%PageSize==0).

 The data in the file can be read/written as if it were memory.

Using mmap

Memory

0x00000000

0xFFFFFFFF

Disk

File

mmapptr=

0x00020000

ptr = mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)

Mmap parameters

void *mmap(void *addr, size_t len, int prot,

int flags, int fildes, off_t off);

addr –

Suggested address. If NULL is passed the OS will choose the

address of the mapping.

len –

Length of the memory mapping. The mmaped file should have

this length of larger or the program gets SEGV on access.

prot –

Protections of the mapping: PROT_READ, PROT_WRITE,

PROT_EXEC, PROT_NONE.

Mmap parameters

flags: - Semantics of the mapping:

MAP_SHARED – Changes in memory will be done in the file

MAP_PRIVATE – Changes in memory will be kept private to the process
and will not be reflected in the file. This is called “copy-on-
write”

MAP_FIXED – Force to use “addr” as is without changing. You should
know what you are doing since the memory may be already in use.
Used by loaders

MAP_NORESERVE– Do not reserve swap space in

advance. Allocate swap space as needed.

MAP_ANON – Anonimous mapping. Do not use any fd (file).

Use swap as the backing store. This option

is used to allocate memory

Fd –

The file descriptor of the file that will be memory mapped. Pass –1
if MAP_ANON is used.

Offset –

Offset in the file where the mapping will start. It has to be a
multiple of a page size.

Mmap returns MAP_FAILED ((void*)-1) if there is a failure.

Notes on mmap

 Writing in memory of a memory-mapped file will
also update the file in the disk.

 Updating the disk will not happen immediately.

 The OS will cache the change until it is
necessary to flush the changes.
 When the file is closed

 Periodically (every 30secs or so)

 When the command “sync” is typed

 If you try to read the value from the file of a page
that has not been flushed to disk, the OS will give
you the most recent value from the memory
instead of the disk.

Uses of VM

 The VM is not only to be able to run programs that
use more memory than the RAM available.

 VM also speeds up the execution of programs:
1. Mmap the text segment of an executable or shared

library

2. Mmap the data segment of a program

3. Use of VM during fork to copy memory of the parent into
the child

4. Allocate zero-initialized memory. it is used to allocate
space for bss, stack and sbrk()

5. Shared Memory

1. Mmap the text segment of

an executable or a shared

library
 initially mmap does not read any pages

 any pages will be loaded on demand when they are

accessed

 startup time is fast because only the pages needed

will be loaded instead of the entire program

 It also saves RAM because only the portions of the

program that are needed will be in RAM

1. Mmap the text segment of

an executable or a shared

library

 Physical pages where the text segment is

stored is shared by multiple instances of the

same program.

 Protections: PROT_READ|PROT_EXEC

 Flags: MAP_PRIVATE

1. Mmap the text segment of

an executable or a shared

library

Virtual

Memory

0x00000000

0xFFFFFFFF

Disk

text

mmap

0x00020000
text

Executable File

1. Mmap the text segment of

an executable or a shared

library

Physical

Memory

text
text

Process 1

Virtual

Memory

Process 2

Virtual

Memory

text

Physical Pages of the text section are shared across multiple

processes running the same program/shared library.

2. Mmap the data segment of a

program

 During the loading of a program, the OS mmaps the
data segment of the program

 The data segment contains initialized global
variables.

 Multiple instances of the same program will share
the same physical memory pages where the data
segment is mapped as long as the page is not
modified

 If a page is modified, the OS will create a copy of
the page and make the change in the copy. This is
called "copy on write"

2. Mmap the data segment of a

program

.

Physical

Memory

Process 1

Virtual

Memory

Process 2

Virtual

Memory

Data page A

Data page B

Data page C

Data page A

Data page B

Data page C

Data page A

Data page B

Data page C

Processes running the same program will share the same

unmodified physical pages of the data segment

2. Mmap the data segment of a

program

.

Physical

Memory

Process 1

Virtual

Memory

Process 2

Virtual

Memory

Data page A

Data page B

Data page C

Data page A*

Data page B

Data page C

Data page A

Data page B

Data page C

When a process modifies a page, it creates a private copy

(A*). This is called copy-on-write.

Data page A*

3. Use of VM during fork to copy memory of

the parent into the child

 After forking, the child gets a copy of the memory of

the parent

 Both parent and child share the same RAM pages

(physical memory) as long as they are not modified

 When a page is modified by either parent or child,

the OS will create a copy of the page in RAM and

will do the modifications on the copy

3. Use of VM during fork to copy memory of

the parent into the child

 The copy on write in fork is accomplished by

making the common pages read-only.

 The OS will catch the modifications during

the page fault and it will create a copy and

update the page table of the writing process.

 Then it will retry the modify instruction.

3. Use of VM during fork to copy memory of

the parent into the child

.

Physical

Memory

Parent’s

Virtual

Memory

Child’s

Virtual

Memory

page A

page B

page C

page A

page B

page C

page A

page B

page C

After fork() both parent and child will use the same pages

3. Use of VM during fork to copy memory of

the parent into the child

.

Physical

Memory

Parent’s

Virtual

Memory

Child’s

Virtual

Memory

page A

page B

page C

page A*

page B

page C

page A

page B

page C

When the chhild or parent modifies a page, the OS creates a

private copy (A*) for the process. This is called copy-on-write.

page A*

4. Allocate zero-initialized

memory.

 It is used to allocate space for bss, stack and
sbrk()

 When allocating memory using sbrk or map with
the MMAP_ANON flag, all the VM pages in this
mapping will map to a single page in RAM that
has zeroes and that is read only.

 When a page is modified the OS creates a copy
of the page (copy on write) and retries the
modifying instruction

 This allows fast allocation. No RAM is initialized
to O’s until the page is modified

 This also saves RAM. only modified pages use
RAM.

4. Allocate zero-initialized

memory.

 This is implemented by making the entries in the
same page table point to a page with 0s and making
the pages read only.

 An instruction that tries to modify the page will get a
page fault.

 The page fault allocates another physical page with
0’s and updates the page table to point to it.

 The instruction is retried and the program continues
as it never happened.

4. Allocate zero-initialized

memory.

.

Physical

Memory

Parent’s

Virtual

Memory

0’s

page A 0’s

page B 0’s

page C 0’s

After allocating zero initialized memory with sbrk or mmap,

all pages point to a single page with zeroes

4. Allocate zero-initialized

memory.

.

Physical

Memory

Parent’s

Virtual

Memory

0’s

page A 0’s

page B X

page C 0’s

When a page is modified, the page creates a copy of the

page and the modification is done in the copy.

page B X

5. Shared Memory

 Processes may communicate using shared

memory

 Both processes share the same physical

pages

 A modification in one page by one process

will be reflected by a change in the same

page in the other process.

5. Shared Memory

Physical

Memory

Process 1

page A

page B

page C

page A

page B

page C

page A

page B

page C

Processes that communicate using shared memory will share

the same physical pages.

Process 2

5. Shared Memory

Physical

Memory

Process 1

page A X

page B

page C

page A X

page B

page C

page A X

page B

page C

When a page is modifed, the change will be reflected in the

other process.

Process 2

Cache and Caching

 Continue Book Class slides

 http://www.cs.purdue.edu/homes/cs250/Lectu

reNotes/book-slides.pdf

 Chapters XII, XIII, XIV, XV, XVI, XVII (12 ,

13, 14, 15, 16 and 17).

http://www.cs.purdue.edu/homes/cs250/LectureNotes/book-slides.pdf

Final Exam Review

Final Exam Review

 VIII. Assembly Language and Programming
 X86-Assembly Language

 Register Assignment

 Addressing Modes

 Using the stack

 Calling Conventions

 Flow Control

 IX. Memory and Storage
 Volatile, Non-volatile,

 Random Access and Sequential Access

 ROM, PROM, EEPROM

 Memory Hierarchy

 XI. Virtual Memory
 MMU,

 Phyicaland VM Address Memory

 Address Translation

 Two-level page table

 Page Bits

 Page faults

 TLB’s

 Row major and column major computations

Final Exam Review

 XII Caches and Caching
 Importance of Caching

 Cache hit and cache miss

 Locality of reference

 Worst /Best/Average case cache performance

 Hit /Miss ratio

 Multiple levels of cache

 Preloading caches

 Write-through and write back cache

 L1, L2, L3 cache

 Direct mapping and set associative cache

Final Exam Review

 XIII Input/Output Concepts and Terminology
 Parallel Interface / Serial Interface

 Data Multiplexing

 XIV Buses and Bus Architecture

 XV Programmed and Interrupt-Driven I/O
 Polling ad Interrupts

 Handling an Interrupt

 Interrupt Vector

 Multple levels of interrupts

 DMA

 Buffer chaining and Scatter Read and Gather Write

Final Exam Review

 XVI. A Programmers View of I/O and

Buffering

 Upper Half and Lower Half of a Device Driver

 Character oriented and block oriented devices

 Buffered input and output.

Final Material to Study

 New Slides

 Old slides

 Everything up to and including chapter XIX in the

book.

 Projects

 X86-64

 Assembly Programming materials

 I will ask code fragments of the compiler project.

Extra Slides

PIC 18 Introduction

PIC18

 In the labs you will use the PIC18

 This is a 8 bit processor that provides

 Digital I/O

 Analog to Digital Conversion

 Pulse Width Modulation

 USB support

 RS232 (Serial Line)

 Data Sheet of PIC18:
 http://ww1.microchip.com/downloads/en/DeviceDoc/39632e.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/39632e.pdf

PIC18

 It follows a Harvard Architecture, that is,

code and data are stored in separate

memory.

 Code - 32KB

 Data - 4KB

 Instructions can be 2 or 4 byte long.

 The data word is 1 byte.

Data Memory

 RAM is 4KB or 212

 Therefore, pointers are 12 bits long

 The memory is divided into 16 banks.

 Each bank is 256 bytes long.

 That is 16x256=4KB

Memory Addresses

 The instructions that access data use a
reduced pointer that is 8 bits long (0 to 255)

 The remaining 4 highest bits are specified by
the argument “a” in each instruction.

 If a=0 the address refers to the “Access Bank”
that uses bank 0 for 0x00 to 0x5F and 0x60 to
0xFF from bank 15.

 If a=1, the 4 highest bits are contained in a
register called BSR (Bank Selection Register)

 99% of the time a=0 in your programs.

Special Function Registers and

General Function Registers

 The data memory is divided into

 SFRs – Special Function Registers. Used for

control and status of the processor.

 GPRs – General Purpose Registers. Used to

store temporal results in user application.

Working Register (WREG)

 Most arithmetic and logical operations use a

register called Working Register or WREG.

Processor Status Register

(PSR)

 This is a register that contains the status of the
Arithmetic Logical Unit.

 It is separated in bits
 N – Negative bit. Turns to 1 if the result of the last

operation was negative (highest bit is 1).

 OV – Overflow bit. Last operation in ALU results in an
overflow.

 Z – Zero bit. Last operation in ALU resulted in 0.

 C – Carry or Borrow. Set to 1 if addition resulted in carry or
borrow.

 Also the PSR is used in multiple branch instructions.

Digital Input/Output

 PORTA, PORTB, PORTC, PORTD

 They are the registers that are mapped to the

inputs/outputs of the PIC18.

 Each bit in the port is identified as RA0, RA1 …RA7, RB1,

RB2…RB7 and so on,

 TRISA, TRISB, TRISC, TRISD

 Used to configure ports as input/output.

 Each bit can be configured to be a digital input or output..

 0 – Output

 1 – Input

Digital Input/Output

 When configured PORTA as output for

example

 0 in bit RA0 of PORTA gives 0V in terminal RA0

 1 in bit RA0 of PORTA gives +5V in terminal RA0

 When configured PORTA as input,

 0V in terminal RA0 can be read as 0 in bit RA0 of

PORTA

 +5V in terminal RA0 can be read as 1 in bit RA0

of PORTA

Minimum PIC18

Addressing Modes

 Inherent (Immediate)
 Used in instructions that do not need an argument such as

SLEEP and RESET

 Literal
 Used in instructions that specify a numeric constant such

as “MOVLW 0x40” that loads 0x40 in WREG

 Direct
 Used in instructions that need an address as argument

such as “MOVWF 0x080” that moves WREG into 080.

 Indirect
 A register or memory location contains the address of the

source or destination.

Indirect Addressing

 It uses the FSR registers and the INDF operand.

 There are four registers:

 FSR0, FSR1, FSR2, FSR3, and the corresponding

 INDF0, INDF1, INDF2, INDF3.

 INDF0 to INDF3 are “virtual registers”.

 A read from INDF2 for example, reads the register

at the address stored in FSR2.

 Since FSRs is 12 registers long, you can use

FSRL(lower byte) and FSRH(higher 4 bits) for the

instructions.

Byte Operations

d = 0 means destination is WREG.

d = 1 means destination is a file register and it is the default.

a is the access bank. By default it is 0.

 ADDWF f,d,a - Add W to f where d=0->W, d=1->f, a is generally
not specified (access bank stuff)

 ADDWFC f,d,a - Add W and Carry bit to f

 ANDWF f,d,a - And W with f

 CLRF f,a Clear f

 COMF f,a Complement f

 CPFSEQ Compare, skip if f==W

 CPFSGT Compare, skip if f > W

 CPFSLT Compare, skip if f < W

Byte Operations (cont.)

 DECF f,d,a Decrement f

 DECFSZ f,d,a Dec f, skip if 0

 DCFSNZ f,d,a Dec f, skip if not 0

 INCF f,d,a Increment f

 INCFSZ f,d,a Increment f, skip if zero

 INFSNZ f,d,a Increment f, skip if not zero

 IORWF f inclusive-OR W with f

 MOVF f,d,a Move f (usually to W)

 MOVFF f,ff Move f to ff

 MOVWF f,a Move W to f

 MULWF f,a W x f

Byte Operations (cont.)

 NEGF f,a Negate f

 RLCF f,d,a Rotate left f thru Carry (not-quite multiply by 2 with
carry)

 RLNCF f,d,a Rotate left (no carry)

 RRCF f,d,a Rotate right through Carry

 RRNCF f,d,a Rotate right f (no carry)

 SETF f,a Set f = 0xff

 SUBFWB f,d,a Subtract f from w with Borrow

 SUBWF f,d,a Subtract W from f

 SUBWFB f,d,a Subtract W from f with Borrow

 SWAPF f,d,a Swap nibbles of f

 XORWF f,d,a W XOR f

Bit Operations (cont.)

 BCF f,b,a Bit clear, bit is indexed 0 to 7

 BSF f,b,a Bit set

 BTFSC f,b,a Bit test, skip if clear

 BTFSS f,b,a Bit test, skip if set

 BTG f,b,a Bit toggle

Control Operations (cont.)

 BC n Branch if Carry, n is either a relative or a direct
address

 BN n Branch if Negative

 BNC n Branch if Not Carry

 BNN n Branch if Not Negative

 BNOV n Branch if Not Overflow

 BNZ n Branch if Not Zero

 BOV n Branch if Overflow

 BRA n Branch Unconditionally

 BZ n Branch if Zero CALL n, s Call Subroutine

Control Operations (cont.)

 CLRWDT Clear Watchdog Timer

 DAW Decimal Adjust W

 GOTO n Go to address

 NOP No operation

 POP Pop top of return stack (TOS)

 PUSH Push top of return stack (TOS)

 RCALL n Relative Call

 RESET Software device reset

 RETFIE Return from Interrupt and Enable Interrupts

 RETURN s Return from subroutine

 SLEEP Enter SLEEP Mode

Operations with Literals (constants)

 ADDLW kk Add literal to W

 ANDLW kk And literal with W

 IORLW kk Incl-OR literal with W

 LFSR r,kk Move literal (12 bit) 2nd word to FSRr 1st
word

 MOVLB k Move literal to BSR<3:0>

 MOVLW kk Move literal to W

 MULLW kk Multiply literal with W

 RETLW kk Return with literal in W

 SUBLW kk Subtract W from literal

 XORLW kk XOR literal with W

Common PIC Assembler

Constructions

 Including the PIC18 constant defined values

 Add

#include “P18f4550.INC”

at the beginning of the file

 In this way you can specify PORTC instead of

0xF82 when specifying names of registers

Defining a variable

 To define space for a variable use “res”.

Delay1 res 2

 This defines a variable called Delay1 that will

take 2 bytes.

 Make sure that it is at the beginning of the

line.

Using registers

 Loading a constant into WREG

MOVLW 0x40

 Moving the value from a register to WREG

MOVF reg,0

 Moving the value of WREG into a register

MOVWF reg

 Moving the value of a register reg1 to reg2

MOVFF reg1, reg2

Adding and Subtracting

 Add reg1 and reg2. Put result in reg1
MOVF reg1,0 ; WREG = reg1

ADDWF reg2,0; WREG = WREG + reg2

MOVWF reg1 ; reg1 = WREG

 Subtract reg2 - reg1. Put result in reg2
MOVF reg1,0 ; WREG = reg1

SUBWF reg2,0; WREG = reg2-WREG

MOVWF reg2 ; reg2 = WREG

Subroutines
 To call a subroutine

…

CALL foo ; Calling subroutine foo

…

…

 To define a subroutine

foo ; Defintion of foo

…

RETURN ; Return from subroutine

If/else statements

 If (reg1 == 0x40) {XXX} else { YYY}

MOVLW 0x40; WREG = reg1

CPFSEQ reg1

GOTO elsepart

….; XXX Then part

GOTO endifpart

elsepart

… ; YYY else part

endifpart

Using Arrays

 Arrays are implemented using Indirect Indexing

 Defining an array of bytes called “myArray” of 4 elements:

myArray res 4

 Initializing array:

MOVLW 0xFE ; myArray[0]=0xFE

MOVWF myArray

MOVLW 0xFD ; myArray[1]=0xFD

MOVWF myArray +1

MOVLW 0xFB ; myArray[2]=0xFB

MOVWF myArray +2

MOVLW 0xF7 ; myArray[3]=0xF7

MOVWF myArray +3;

Using Arrays

 Indexing the Array myArray[i].

 Address is stored in FSR0 and then it is
dereferenced from INDF0

LFSR 0, myArray ; Load array address in FSR0

MOVF i,0 ; Load the value of i into WREG

ADDWF FSR0L,1 ; Add myArray and i to get address

; of ith element.

MOVF INDF0,0 ; The ith element can be read

; from INDF0. Read it and put

; it into WREG. WREG=myArray[i]

MOVWF PORTB ; Now do something with it like

; writing it to PORTB

Simple Program. LED Blink
#include "P18f4550.INC"

CONFIG WDT=OFF; disable watchdog timer
CONFIG MCLRE = ON; MCLEAR Pin on
CONFIG DEBUG = ON; Enable Debug Mode
CONFIG LVP = OFF; Low-Voltage programming disabled (necessary for debugging)
CONFIG FOSC = INTOSCIO_EC;Internal oscillator, port function on RA6

org 0; start code at 0

Delay1 res 2 ;reserve space for the variable Delay1

Delay2 res 2 ;reserve space for the variable Delay2

Start:
CLRF PORTD ; Clear all D outputs
CLRF TRISD ; Make output all the bits in D
CLRF Delay1 ; Initialize both counters with 0s.
CLRF Delay2

MainLoop:
BTG PORTD,RD1 ;Toggle PORT D PIN 1 (20)

Delay:
DECFSZ Delay1,1 ;Decrement Delay1 by 1, skip next instruction if Delay1 is 0

;Delay1 will be decremented 256 times before skipping
GOTO Delay
DECFSZ Delay2,1 ;Decrement Delay2 by 1, skip next instruction if Delay2 is 0

;Delay1 will be decremented 256 times before skipping.
GOTO Delay
GOTO MainLoop
end

Another Example. Rotate Segments

#include "P18f4550.INC"

CONFIG WDT=OFF; disable watchdog timer
CONFIG MCLRE = ON; MCLEAR Pin on
CONFIG DEBUG = ON; Enable Debug Mode
CONFIG LVP = OFF; Low-Voltage programming disabled (necessary for debugging)
CONFIG FOSC = INTOSCIO_EC;Internal oscillator, port function on RA6

org 0; start code at 0

Delay1 res 2 ; variable Delay1

Delay2 res 2 ; variable Delay2

Delay3 res 2 ; variable Delay3

Start:
CLRF PORTD ; Initialize with 0's output D.
CLRF TRISD ; Make port D output
CLRF Delay1; Clear delay variables
CLRF Delay2

SETF TRISC ; Make port c an input

MOVLW H'40' ; Initialize delay3 to 0x40. This is the delay used to rotate the segments.
MOVWF Delay3

BSF PORTD,RD0 ;Turn on bit 0 in RD0

Another Example (cont.)
MainLoop:

RRNCF PORTD ; Rotate bits in D. This causes the segments in display to shift.

MOVF Delay3,0 ; Reload Delay2 eith the value of Delay3. Delay2 controls the rate the
MOVWF Delay2 ; rotate takes place.

MOVLW H'F0' ; Test if Delay3 is at the maximum of 0xF0 or more. If that is the case, do not
CPFSLT Delay3 ; read the left switch.
goto noincrement

MOVLW 4 ; Read the left switch.
BTFSS PORTC,0 ; If the switch is 0 (gnd), then increase Delay3 by 4, otherwise skip the increment.
ADDWF Delay3,1

noincrement:

MOVLW H'05' ; Test if Delay3 is at the minimum pf 0x5 or less. If that is the case do not
CPFSGT Delay3 ; read the right switch.
goto Delay

MOVLW 4 ; Read the right switch.
BTFSS PORTC,1 ; If the switch is 0, then decrement Delay3 by 4, otherwise skip the decrement
operation.
SUBWF Delay3,1

Delay:

DECFSZ Delay1,1 ;Decrement Delay1 by 1, skip next instruction if Delay1 is 0
GOTO Delay
DECFSZ Delay2,1 ;Decrement Delay1 by 1, skip next instruction if Delay1 is 0
GOTO Delay
GOTO MainLoop

end

Example: Driving a Full-Color LED

 To drive the full-color LED you will use Pulse Width

Modulation (PWM).

 PWM sends pulses to the LED with different widths

to the three color LEDs.

 If for example, the width of the pulse is small for the

red LED, then the red LED will display a low

intensity red light.

 If the red LED receives a pulse with a wide width,

then the red LED will display a high intensity red

light.

Pulse Width Modulation

 Short Width = Low Intensity

 Long Width = High Intensity

Pulse Width Modulation Example

MOVFF maxColor, redCount
MOVFF maxColor, greenCount
MOVFF maxColor, blueCount

MainLoop:
;;;;;; RED LED ;;;;;;
; Decrement redCount
DECFSZ redCount,1
GOTO afterDecRedCount

; if redCount reaches 0 turnoff red led
BSF PORTC,RC0
; restart redCount with 255
SETF redCount

afterDecRedCount
; if redCount == red turn on red led.
MOVF redCount,0
CPFSEQ red
GOTO updateGreen
BCF PORTC, RC0

…

; Same for green and blue

goto MainLoop

Lab5 Driving a Full Color LED

Algorithm

 Examples are given that shows you how to

drive the full color led and how to display the

Hello message in the display.

 Read them and understand them.

 They will be used as the base for your project

Algorithm for Driving Full

Color LED

 Start
 Initialize Ports and Registers

 Initialize colors and counters

 MainLoop
 Put in a variable val the current color value (red, green, blue)

 Read button 1 and 2. If they are “on” increase or decrease val. Make sure
that val is not increased beyond maxColor and is not decreased beyond 0.

 Update “msg” (the display buffer) with:
 msg[0]= c[currentColor]

 where c is an array with the characters “r”, “g” or b” in seven-segment values.

 msg[1]= “=“
 in seven segment value “=“ is(0x48)

 msg[2] = digit[(val>>4)&0xFF]
 Displays most significant nibble of val

 digit is an array with the hex digits in seven segment value.

 msg[3]=digit[val&0xFF]
 Displays least significant nibble of val

Algorithm for Driving Full

Color LED (cont.)

 Store val in currentColor red, green or blue

 Update Display. See example code.

 Read button 3 to change color if necessary. Use a variable
previouslyPressed to store the previous status of the
button.

 Only update the color name if previouslyPressed is false
and button3 is pressed.

 To update the color name write into msg (the display
buffer” the name of the color in seven-segment values.

 Now refresh the red, green, blue LEDs PWM See example
code.

 Goto MainLoop

