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Grading

 Grade allocation

 Midterm: 25%

 Final: 25%

 Labs and Homework: 40%

 Attendance 10%

 Exams also include questions about the 

projects.

 Bring you i-clicker



Course Organization

1. Basics Fundamentals of 

 Digital Logic

 Data Representation

2. Processors 

 Types of Processors

 Instruction Sets 

 Assembly Language 



Course Organization

3. Memory

 Types of Memory

 Physical and Virtual Memory

 Caching

4.Input/Output

 Devices and Interfaces

 Buses

 Device Drivers



Course organization

5. Advanced Topics

 Parallelism

 Performance Measurement

 Architectural Hierarchy



Approach

 We will cover Computer Architecture 

 From the programmers point of view.

 How it influences the programmers choices.

 We will not cover

 Low engineering details

 VLSI design



II. Fundamentals of Digital Logic



Voltage and Current

 Voltage

 Measure of potential Force

 It is measured in Volts

 Current

 Measure of electron flow across a wire

 It is measured in Ampers (Amps)



Voltage

 Voltage is measured with a voltmeter across 

two points.

 Typical digital circuits work with 5 volts:

 Ground - 0 volts – represent a “0”

 Power – 5 volts – represent a “1”



Transistor

 Building block of digital circuits

 Acts like a switch

 A transistor has three connections:

 Emitter

 Base

 Collector

 The current between “Base” and “Emitter” 
controls the current between “Collector” and 
“Emitter”.

Emitter

Base

CollectorSmall Current

Large 

Current



Boolean Logic

 It gives the formal basis for digital circuits

 It uses three basic functions

AND

A  B  A and B

0  0    0

0  1    0

1  0    0

1  1    1

OR

A  B  A or B

0  0    0

0  1    1

1  0    1

1  1    1

NOT

A  not A

0    1

1    0

A

B A and B

A

B A or B



Boolean Logic

 You will find that Nand and Nor Gates are 

very popular.

 By using them, there is no need of Not gate

NAND

A  B  A nand B

0  0    1

0  1    1

1  0    1

1  1    0

NOR

A  B  A nor B

0  0    1

0  1    0

1  0    0

1  1    0

A

B

A

B



Boolean Logic

 In  digital circuits 0 and 1 are represented as

 0 =  0 volts

 1  = +5 volts

 You can interconnect digital circuits with each 
other to create complex Boolean 
expressions.

 (A and B) is represented as AB

 (A or B) is represented as A+B

 (not A) is represented as A’



Boolean Logic

 Example:

A

B

AB’

A’B +AB’

A’ B

A’

B’

B

A

Truth Table

A  B  A xor B

0  0    0

0  1    1

1  0    1

1  1    0



Truth Tables to Boolean 

Expressions

 From a Truth table you can create a boolean 

expression

 You can represent the boolean function as a

 Sum of  products: Example z=x’y+xy’

 Product of sums: Example z=(x+y)(x’y’)



Sum of Products

 To create a sum of products from a truth table, 
take the 1s in z (the output) and use the variables 
for that row to create the product. If the variable is 
x=1 then use x, otherwise if x=0 use x’.

Truth Table

x  y    z

0  0    0

0  1    1

1  0    1

1  1    0

z= x’y + xy’



Product of Sums

 To create a product of sums from a truth table, 
take the 0s in z (the output) and use the variables 
for that row to create the product. If the variable is 
x=0 then use x, otherwise if x=1 use x’.

Truth Table

x  y    z

0  0    0

0  1    1

1  0    1

1  1    0

z= (x+y)(x’+y’)



Example: Implementing add

 Assume we want to add two numbers where each 
number will be one bit long. 

 The resulting number may be two bits long

 This can be represented as:
R0  = A’B+B’A  

R1 = AB

A plus B

A  B   R1 R0 In decimal

0  0    0 0     0 

0  1    0 1     1

1  0    0 1     1

1  1    1 0     2



Implementing Add

 To implement an adder for 8 bits or 32 bits, 

many more gates are required.



Boolean Algebra

 You can manipulate the boolean expressions 

like normal algebraic expressions. 

 Properties

 Commutative: 

 AB = BA   

 A+B=B+A

 Associative: 

 (A+B)+C = A+(B+C)

 Distributive

A(B+C) = AB+AC



De Morgan’s Law

 Negation of expressions

 (A+B)’ = A’B’

 (AB)’ = A’ + B’



Boolean Expression Reduction

 You can simplify Boolean expressions to use fewer 
gates:

 Example:
z = a’b’c + a’b’+ ac’+ abc’

= a’b’(c+1) + ac’(1+b)

= a’b’+ac’

 Example:
m = x’yz + x’yz’ + x’y’ + xyz

= x’y(z+z’) + x’y’ + xyz

= x’y+ x’y’ + xyz

= x’(y+y’) + xyz

= x’ + xyz



Karnaugh Maps 

 To make the simplification of boolean 

expressions easier, we can use Karnaugh 

maps.

 A Karnaugh map is a way of expressing truth 

tables

 Adjacent columns or rows change only by 

one digit.

 They show when refactoring can be done.



Karnaugh Table example 1

 Given an expression

r = x’yz’+xyz’+x’y’z+x’yz

 Build a 3 variable Karnaugh 

map

 Find the groups of 2, 4 or 8 

1’s that are adjacent.

 Make sure all 1s are 

covered by the groups.

 Build expression from 

groups.

r = yz’ + x’z

xy/z 00 01 11 10

0 0 1 1 0

1 1 1 0 0

Karnaugh Map for r

xy/z 00 01 11 10

0 0 1 1 0

1 1 1 0 0

r = yz’ + x’z



Karnaugh Table example 2

 Given an expression

r = x’yz’k’+x’yz’k+xyz’k’+xyz’k+ 
xyzk+xyzk’+x’y’zk’+xy’zk’

 Build a 4 variable Karnaugh 
map

 Find the largest groups of 2, 
4, 8 or 16 1’s that are 
adjacent.

 Make sure all 1s are covered 
by the groups.

 Build expression from groups.

r = yz’ + xy + y’zk’

xy/

zk

00 01 11 10

00 0 1 1 0

01 0 1 1 0

Karnaugh Map for r

11 0 0 1 0

10 1 0 1 1

r = yz’ + xy + y’zk’



Using only NAND Gates

 Very often you build the circuits using only NAND gates.

 To convert a sum of products to only NAND gates negate the 
function twice and reduce

 Example:

z = x XOR y = xy'+x'y

Now if you negate twice the right side and applying De Morgans 
law.

z = ((xy'+x'y)')' = ((xy')'(x'y)')' = (x NAND y') NAND (x' NAND  y)

Also, since x'= (x x)' = x NAND x and y' = y NAND y then we have:

z = (x NAND (y NAND y)) NAND ((x NAND x) NAND y)



XOR Using only NAND gates

+5V +5V

xy

10K 10K

LED

+5V

10K

LEDLED

z

x XOR y = (x NAND (y NAND y)) NAND ((x NAND x) NAND y) 

x’

y’

x

y

x XOR y

LED



Examples of Gates on 7400-

Series Chips



Flip Flops

 Basic unit of memory

S(set)

Q
R(reset)

Q’

Truth Table

S  R    Q  Q’

0  0    Keep previous value

0  1    0  1

1  0    1  0

1  1    Not allowed



Flip Flops. Keep Current value

S(set)

Q
R(reset)

Q’

0

0

0

1

S(set)

Q
R(reset)

Q’

0

0

1

0

1

0

0

1



Flip Flops. Reset and Set

S(set)

Q
R(reset)

Q’

1

0

0

1

S(set)

Q
R(reset)

Q’

0

1

1

0

1

0

0

1

Set

Reset

The Input R=1 

and S=1 is not 

allowed.



Binary Counter

 Counts pulses (transitions from 0 to 1)

 Output is a binary number

 Contains a terminal to reset ouput to 0



Binary Counter (4 bits)

t0

5
A

B

C

Truth Table

In    A  B  C

0     0  0  0

1     0  0  1

0     0  0  1

1     0  1  0

0     0  1  0

1     0  1  1

0     0  1  1

.      . . .

In



Clock

 It is an electronic circuit that produces a 

sequences of 0 1 0 1 0 1

 The frequency is measured in hertz (Hz).

 It is used to synchronize operations across 

gates in active circuits.

0

5



Demultiplexor

 It is a circuit used to select one output

A=1

B=1

C=0

0  0  0

0  0  1

0  1  0

A B C

0  1  1

1  0  0

1  0  1

1  1  0

1  1  1

0

0

0

1

0

0

0

0



Example of Circuit to Execute 

a Sequence of Steps

Position drill

Start drill

Drill hole

Remove drill

Position screw

Drive screw

Remove screw driver

Move piece

Clock Counter
Demulti-

plexer



Unused Gates

 Since a chip may contain multiple gates, it is 

possible to use some of the spare gates to do 

other operations instead of adding a new 

chip.

 Example:

 1 nand x = not x



Classification of Technologies

 Small Scale Integration (SSI) 

 Basic Boolean Gates

 Medium Scale Integration (MSI)

 Intermediate logic such as demultiplexers and 
counters

 Large Scale Integration (LSI)

 Small embedded processors

 Very Large Integration (VLSI)

 Complex processors



III. Data and Program Representation



Memory of a Program

 A program sees memory as an array of bytes 

that goes from address 0 to 232-1 (0 to 4GB-

1)

 That is assuming a 32-bit architecture.

0

(4GB-1) 232-1



Memory Sections

 The memory is organized into sections called 

“memory mappings”.

Stack

Text

Data

Bss

Heap

Shared Libs

0

232-1



Memory Sections

 Each section has different permissions: 
read/write/execute or a combination of them.

 Text- Instructions that the program runs

 Data – Initialized global variables. 

 Bss – Uninitialized global variables. They are 
initialized to zeroes.

 Heap – Memory returned when calling malloc/new. It 
grows upwards.

 Stack – It stores local variables and return 
addresses. It grows downwards.



Memory Sections

 Dynamic libraries – They are libraries shared with 
other processes.  

 Each dynamic library has its own text, data, and bss.

 Each program has its own view of the memory that 
is independent of each other. 

 This view is called the “Address Space” of the 
program.

 If a process modifies a byte in its own address 
space, it will not modify the address space of 
another process.



Example

Program hello.c

int a = 5;   // Stored in data section

int b[20];   // Stored in bss

int main() { // Stored in text

int x;     // Stored in stack

int *p =(int*)

malloc(sizeof(int)); //In heap

}



Memory Gaps

 Between each memory section there may be gaps 
that do not have any memory mapping.

 If the program tries to access a memory gap, the OS 
will send a SEGV signal that by default kills the 
program and dumps a core file.

 The core file contains the value of the variables 
global and local at the time of the SEGV. 

 The core file can be used for “post mortem” 
debugging.
gdb program-name core

gdb> where 



What is a program?

 A program is a file in a special format that contains 
all the necessary information to load an application 
into memory and make it run.

 A program file includes:
 machine instructions

 initialized data

 List of library dependencies

 List of memory sections that the program will use

 List of undefined values in the executable that will be 
known until the program is loaded into memory.



Executable File Formats

 There are different executable file formats
 ELF – Executable Link File

It is used in most UNIX systems (Solaris, Linux)

 COFF – Common Object File Format

It is used in Windows systems

 a.out – Used in BSD (Berkeley Standard Distribution) and 
early UNIX

It was very restrictive. It is not used anymore.

 Note: BSD UNIX and AT&T UNIX are the 
predecessors of the modern UNIX flavors like 
Solaris and Linux.



Building a Program

 The programmer writes a program hello.c

 The preprocessor expands #define, #include, 
#ifdef etc preprocessor statements and generates a 
hello.i file.

 The compiler compiles hello.i, optimizes it and 
generates an assembly instruction listing hello.s

 The assembler (as) assembles hello.s and 
generates an object file hello.o

 The compiler (cc or gcc) by default hides all these 
intermediate steps. You can use compiler options to 
run each step independently.



Building a program

 The linker puts together all object files as well as 
the object files in static libraries.

 The linker also takes the definitions in shared 
libraries and verifies that the symbols (functions 
and variables) needed by the program are 
completely satisfied.

 If there is symbol that is not defined in either the 
executable or shared libraries, the linker will give 
an error.

 Static libraries (.a files) are added to the 
executable. shared libraries (.so files) are not 
added to the executable file. 



Building a Program

Programmer

C 

Preprocessor Compiler

(cc)
Optimizer

Assembler 

(as)

(static)

Linker (ld)

Editor

hello.c hello.i

hello.s

hello.o

Executable 

File (hello)

Other .o files
Static libraries (.a files) 

They add to the size of 

the executable. 

Shared Libraries 

(.so files). Only 

definitions. It does 

not add to size of 

executable.



Original file hello.c

#include <stdio.h>

main()

{

printf("Hello\n");

}



After preprocessor

gcc -E hello.c > hello.i  

(-E stops compiler after running preprocessor)

hello.i:

/* Expanded /usr/include/stdio.h */

typedef void *__va_list;

typedef struct __FILE  __FILE;

typedef int     ssize_t;

struct FILE {…};

extern int fprintf(FILE *, const char *, ...);

extern int fscanf(FILE *, const char *, ...);

extern int printf(const char *, ...);

/* and more */

main()

{

printf("Hello\n");

}



After assembler

gcc -S hello.c    (-S stops compiler after 

assembling)

hello.s:

.align 8

.LLC0:  .asciz  "Hello\n"

.section        ".text"

.align 4

.global main

.type    main,#function

.proc   04

main:   save    %sp, -112, %sp

sethi   %hi(.LLC0), %o1

or      %o1, %lo(.LLC0), %o0

call    printf, 0

nop

.LL2:   ret

restore

.



After compiling

 “gcc -c hello.c” generates hello.o

 hello.o has undefined symbols, like the printf function 
call that we don’t know where it is placed.

 The main function already has a value relative to the 
object file hello.o

csh> nm -xv hello.o
hello.o:

[Index]   Value      Size      Type  Bind  Other Shndx   Name

[1]     |0x00000000|0x00000000|FILE |LOCL |0    |ABS    |hello.c

[2]     |0x00000000|0x00000000|NOTY |LOCL |0    |2      |gcc2_compiled

[3]     |0x00000000|0x00000000|SECT |LOCL |0    |2      |

[4]     |0x00000000|0x00000000|SECT |LOCL |0    |3      |

[5]     |0x00000000|0x00000000|NOTY |GLOB |0    |UNDEF  |printf

[6]     |0x00000000|0x0000001c|FUNC |GLOB |0    |2      |main



After linking

 “gcc –o hello hello.c” generates the hello 
executable

 Printf does not have a value yet until the program is 
loaded

csh> nm hello
[Index]   Value      Size      Type  Bind  Other Shndx   Name

[29]    |0x00010000|0x00000000|OBJT |LOCL |0    |1      |_START_

[65]    |0x0001042c|0x00000074|FUNC |GLOB |0    |9      |_start

[43]    |0x00010564|0x00000000|FUNC |LOCL |0    |9      |fini_dummy

[60]    |0x000105c4|0x0000001c|FUNC |GLOB |0    |9      |main

[71]    |0x000206d8|0x00000000|FUNC |GLOB |0    |UNDEF  |atexit

[72]    |0x000206f0|0x00000000|FUNC |GLOB |0    |UNDEF  |_exit

[67]    |0x00020714|0x00000000|FUNC |GLOB |0    |UNDEF  |printf



Loading a Program

 The loader is a program that is used to run an 

executable file in a process.

 Before the program starts running, the loader 

allocates space for all the sections of the 

executable file (text, data, bss etc)

 It loads into memory the executable and 

shared libraries (if not loaded yet)



Loading a Program

 It also writes (resolves) any values in the executable 
to point to the functions/variables in the shared 
libraries.(E.g. calls to printf in hello.c)

 Once memory image is ready, the loader jumps to 
the _start entry point that calls init() of all libraries 
and initializes static constructors. Then it calls 
main() and the program begins. 

 _start also calls exit() when main() returns.

 The loader is also called “runtime linker”.



Loading a Program

Loader  

(runtime linker) 

(/usr/lib/ld.so.1)

Executable 

File

Executable 

in memory

Shared libraries (.so, .dll)



Static and Shared Libraries

 Shared libraries are shared across different 

processes. 

 There is only one instance of each shared 

library for the entire system.

 Static libraries are not shared.  

 There is an instance of an static library for 

each process.



Memory and Pointers

 A pointer is a variable that contains an 

address in memory.

 In a 32 bit architectures, the size of a pointer 

is 4 bytes independent on the type of the 

pointer.

0

(4GB-1) 232-1

Address space

p:20: 12
Char c = ‘a’;  //ascii 65

char * p =  &c; c:12: 65



Ways to get a pointer value

1. Assign a numerical value into a pointer

Char * p = (char *) 0x1800;

*p = 5; // Store a 5 in location 0x1800;

Note: Assigning a numerical value to a pointer isn't 

recommended and only left to programmers of 

OS, kernels, or device drivers 



Ways to get a pointer value

2. Get memory address from another variable:

int *p;

int buff[ 30];

p = &buff[1];

*p =78; buff[0]:100:
buff[1]:104:

buff[29]:216:
220:

P: 96: 104

78



Ways to get a pointer value

3. Allocate memory from the heap
int *p 

p = new int; 

int *q; 

q = (int*)malloc(sizeof(int))



Ways to get a pointer value

 You can pass a pointer as a parameter to a 

function if the function will modify the 

content of the parameters

void swap (int *a, int *b){
int temp; 
temp=*a;
*a=*b;
*b=temp; 

}
In main: swap(&x, &y)



Common Problems with 

Pointers

 When using pointers make sure the pointer is 

pointing to valid memory before assigning or getting 

any value from the location

 String functions do not allocate memory for you: 

char *s; 

strcpy(s, "hello"); --> SEGV(uninitialized pointer)

 The only string function that allocates memory is 

strdup (it calls malloc of the length of the string and 

copies it) 



Printing Pointers

 It is useful to print pointers for debugging

char*i; 

char buff[10]; 

printf("ptr=%d\n", &buff[5]) 

Or In hexadecimal

printf("ptr=0x%x\n", &buff[5])

Instead of using printf, I recommend to use 
fprintf(stderr, …) since stderr is unbuffered 
and it is guaranteed to be printed on the screen.



sizeof() operator in Pointers

 The size of a pointer is always 4 bytes in a 32 

bit architecture independent of the type of the 

pointer:

sizeof(int)==4 bytes

sizeof(char)==1 byte

sizeof(int*)==4 bytes

sizeof(char*)==4 bytes



String Operations

 A string is represented in memory as a 

sequence of characters in ASCII terminated 

by a ‘\0’ (ASCII Null).

char a[6];

strcpy(a,”Hello”);

• Assuming that “a” is at location 1000:

• The string will use one byte more than the 

length of the string.

H e l l o \0

1000 1001 1002 1003 1004 1005



String Operations

 The C library (libc) provides simple string 

functions to manipulate strings such as:

 char * strcpy(char *dest, char *src) 
 Copies string from “src” to “dest” including char at the end. It 

assumes that there is enough memory already in “dest”. It 

does not allocate memory. It returns “dest”.

 char * strcat(char *dest, char *src) 
 Appends string “src” at the end ofdest. It assumes that there 

is enough memory already in  “dest”. It returns “dest”.

 char * strstr(char * hay, char * needle)
 Returns a pointer of the first occurrence of the string 

“needle” in the string “hay”.



String Operations

• In general the string functions will not allocate 

memory.

• You have to allocate enough memory before 

using them.

• The only string function that allocates 

memory is strdup(char * s) that allocates 

memory using “malloc” and returns a copy of 

the string passed in “s”.



Using Pointers to Optimize 

Execution

 Assume the following function that adds the sum of 
integers in an array using array indexing.
int sum(int * array, int n)

{

int s=0;

for(int i=0; i<n; i++)

{

s+=array[i]; // Equivalent to

//*(int*)((char*)array+i*sizeof(int))

}

return s;

}



Using Pointers to Optimize Execution

 Now the equivalent code using pointers
int sum(int* array, int n)

{

int s=0; 

int *p=&array[0];

int *pend=&array[n];

while (p < pend)

{

s+=*p;

p++;

}

return s;

}



Using Pointers to Optimize Execution

 When you increment a pointer to integer it will be 
incremented by 4 units because sizeof(int)==4.

 Using pointers is more efficient because no indexing 
is required and indexing require multiplication.

 Note: An optimizer may substitute the multiplication 
by a “<<“ operator if the size is a power of two. 
However, the array entries may not be a power of 2 
and integer multiplication may be needed.



Array Operator  Equivalence

 We have the following equivalences:
int a[20];

a[i]       - is equivalent to 

*(a+i)     - is equivalent to 

*(&a[0]+i) – is equivalent to

*((int*)((char*)&a[0]+i*sizeof(int)))

 You may substitute array indexing a[i] by 
*((int*)((char*)&a[0]+i*sizeof(int))) and 
it will work!

 C was designed to be machine independent 
assembler 



2D Array. 1st Implementation

 1st approach

Normal 2D array.

int a[4][3];

a[0][0]:100:
a[0][1]:104:
a[0][2]:108:
a[1][0]:112:
a[1][1]:116:
a[1][2]:120:
a[2][0]:124:
a[2][1]:128:
a[2][2]:132:
a[3][0]:136:
a[3][1]:140:
a[3][2]:144:

a:

a[i][j] == 

*(int*)((char*)a + 

i*3*sizeof(int) + 

j*sizeof(int))



2D Array 2nd Implementation

 2nd approach

Array of pointers to rows

int*(a[4]); 

for(int i=0; i<4; i++){

a[i]=(int*)malloc(sizeof(int)*3);

assert(a[i]!=NULL);

}



2D Array 2nd Implementation

 2nd approach

Array of pointers to rows (cont)

a[0]:100:

a[1]:104:

a[2]:108:

a[3]:112:

a[1][0]

a[0][0]

a[3][1]

a[2][0]

a[3][0]

a[2][1]

a[0][1]

a[1][1]

a[3][2]

a[2][2]

a[0][2]

a[1][2]

int*(a[4]);

a[3][2]=5

a:



2D Array 3rd Implementation

 3rd approach. a is a pointer to an array of pointers to 
rows. 

int **a;

a=(int**)malloc(4*sizeof(int*));

assert( a!= NULL)

for(int i=0; i<4; i++)

{

a[i]=(int*)malloc(3*sizeof(int));

assert(a[i] != NULL)

}



2D Array 3rd Implementation

 a is a pointer to an array of pointers to rows. 

(cont.)

a[0]:100:

a[1]:104:

a[2]:108:

a[3]:112:

a[1][0]

a[0][0]

a[3][1]

a[2][0]

a[3][0]

a[2][1]

a[0][1]

a[1][1]

a[3][2]

a[2][2]

a[0][2]

a[1][2]

int **a; 

a[3][2]=5a:



Advantages of Pointer Based 

Arrays

 You don’t need to know in advance the size 

of the array (dynamic memory allocation)

 You can define an array with different row 

sizes



Advantages of Pointer Based 

Arrays

 Example: Triangular matrix

a[0]:100:

a[1]:104:

a[2]:108:

a[3]:112:

a[1][0]

a[0][0]

a[2][0]

a[3][0]

a[2][1]

a[0][1]

a[1][1]

a[0][2]

a[1][2]

a[0][3]

int **a;a:



Pointers to Functions

 Pointers to functions are often used to implement 
Polymorphism in “C”.

 Polymorphism: Being able to use the same 
function with arguments of different types. 

 Example of function pointer:
typedef void (*FuncPtr)(int a);

 FuncPtr is a type of a pointer to a function that 
takes an “int” as an argument and returns “void”.



An Array Mapper

typedef void (*FuncPtr)(int a);

void intArrayMapper( int *array, int n, FuncPtr func ) {

for( int = 0; i < n; i++ ) {

(*func)( array[ i ] );

}

}

int s = 0;

void sumInt( int val ){

s += val;

}

void printInt( int val ) {

printf("val = %d \n", val);

}



Using the Array Mapper

int a[ ] = {3,4,7,8};

main( ){

// Print the values in the array

intArrayMapper(a, sizeof(a)/sizeof(int), printInt);

// Print the sum of the elements in the array

s = 0;

intArrayMapper(a, sizeof(a)/sizeof(int), sumInt);

printf(“total=%d\”, s);

}



A More Generic Mapper

typedef void (*GenFuncPtr)(void * a);

void genericArrayMapper( void *array, 

int n, int entrySize, GenFuncPtr fun )

{

for( int i = 0; i < n; i++; ){

void *entry = (void*)( 

(char*)array + i*entrySize );

(*fun)(entry);

}

}



Using the Generic Mapper

void sumIntGen( void *pVal ){

//pVal is pointing to an int

//Get the int val

int *pInt = (int*)pVal;

s += *pInt;

}

void printIntGen( void *pVal ){

int *pInt = (int*)pVal;

printf("Val = %d \n", *pInt);

}



Using the Generic Mapper

int a[ ] = {3,4,7,8}; 

main( ) {

// Print integer values

s = 0;

genericArrayMapper( a, sizeof(a)/sizeof(int), 
sizeof(int), printIntGen);

// Compute sum the integer values

genericArrayMapper( a, sizeof(a)/sizeof(int), 
sizeof(int), sumIntGen);

printf(“s=%d\n”, s);

}



Swapping two Memory Ranges

 In the lab1 you will implement a sort function that will sort any kind 
of array. 

 Use the array mapper as model.

 When swapping two entries of the array, you will have pointers to 
the elements (void *a, *b) and the size of the entry 
entrySize.

void * tmp = (void *) malloc(entrySize);

assert(tmp != NULL);

memcpy(tmp, a, entrySize);

memcpy(a,b , entrySize);

memcpy(b,tmp , entrySize);

 Note: You may allocate memory only once for tmp in the sort method and use it for 
all the sorting to save muliple calls to malloc. Free tmp at the end.



String Comparison in Sort 

Function

 In lab1, in your sort function, when sorting strings, 
you will be sorting an array of pointers, that is, of 
"char* entries.

 The comparison function will be receiving a “pointer 
to char*” or a” char**” as argument.

int StrComFun( void *pa, void *pb) {

char** stra  =  (char**)pa;

char ** strb  = (char**)pb;

return strcmp( *stra, *strb);

}



Bits and Bytes

 Bit 

 It stores 1 or 0

 Byte 

 It is a group of 8 bits that can by individually 
addressable.

 Word 

 It is a group of 4 bytes (32 bit architecture) or

 It is a group of 8 bytes (64 bit architectures)

 The address of a word is aligned to either 4 or 8 
bytes respectively (multiple of 4 or 8 bytes).



Interpretation of bits

 Sometimes device registers are mapped to 

memory. This is called Memory Mapped I/O.

 In this case, a bit can represent some value 

or state of the device:

 Bit 0 – Printer is on-line/off-line

 Bit 1 – Landscape/Letter mode

 Bit 2 – Printer need attention



Interpretation of bits

 Combination of bits are used as integers

27 26 25 24 23 22 21 20

1001010 1

26 + 24 + 23 + 20 = 

64 + 16 + 8 + 1 = 89



Hexadecimal Notation
 Compact form to represent binary numbers

 It uses base 16.

 4 bits represent an hexadecimal digit
Hex   Binary

0     0  0  0  0

1     0  0  0  1

2     0  0  1  0

3     0  0  1  1

4     0  1  0  0

5     0  1  0  1

6     0  1  1  0

7     0  1  1  1

Hex   Binary

8     1  0  0  0

9     1  0  0  1

A     1  0  1  0

B     1  0  1  1

C     1  1  0  0

D     1  1  0  1

E     1  1  1  0

F     1  1  1  1



Hexadecimal Notation

 Example:

 Hexadecimal: 0xF4534004

 Binary:

1111  0100  0101 0011 0100 0000 0000 0100

 Hexadecimal

F        4       5        3       4      0        0       4

Decimal:

15*167 + 4*166 + 5*165 + 3*164 + 4*163 + 4*160  



Example of Character 

Encodings

 EBCDIC

 ASCII

 Unicode



EBCDIC

 Extended Binary Coded Decimal Interchange 

Format

 It was created by IBM in the 1960s

 No longer in use except in some IBM 

mainframes



ASCII

 American Standard Code for Information 

Exchange

 Used widely in UNIX and PCs

 It uses 7 bits or 128 values

 It only encodes the English Alphabet



ASCII Table

http://www.ascii.ws/ascii-chart.html



UNICODE

 Each character is 16 bits long (2 bytes)

 It is used to represent characters from most 

languages in the world.

 It is used for internationalization of programs.

 Java and C# use UNICODE to represent 

strings internally.



Representation of Strings

 In a “C” program a string is a sequence of characters delimited 
by a null character.

 In PASCAL the first byte represents the length of the string. 

 Standard strings were limited to a length of 255

0x48

H \0olle

0x65 0x6c 0x6c 0x6f 0x00

0x48 0x65 0x6c 0x6c 0x6f0x5



Integer Representation in 

Binary

 Each binary integer is represented in k bits 

where k is 8, 16, 32, or 64 depending on the 

type and architecture.



Integer Representation

 Example

10010101 = 1*2^7 + 1*2^4+1*2^2+1*2^0 =

=   128 + 16 + 4 + 1

=   149



Binary Integer Addition

 Same as decimal addition: 

 Use S1, S2 and Carry (C) to compute R and 

next Carry (C+) 

00 C  (Carry)

1011 S1 (11)

+0110 S2 (06)

1 R   

Truth Table

S1 S2 C   R C+

0  0  0   0 0

0  0  1   1 0

0  1  0   1 0

0  1  1   0 1

1  0  0   1 0

1  0  1   0 1

1  1  0   0 1

1  1  1   1 1



Binary Integer Addition

100 C  (Carry)

1011 S1 (11)

+0110 S2 (06)

01 R   

Truth Table

S1 S2 C   R C+

0  0  0   0 0

0  0  1   1 0

0  1  0   1 0

0  1  1   0 1

1  0  0   1 0

1  0  1   0 1

1  1  0   0 1

1  1  1   1 1



Binary Integer Addition

1100 C  (Carry)

1011 S1 (11)

+0110 S2 (06)

001 R

Truth Table

S1 S2 C   R C+

0  0  0   0 0

0  0  1   1 0

0  1  0   1 0

0  1  1   0 1

1  0  0   1 0

1  0  1   0 1

1  1  0   0 1

1  1  1   1 1



Binary Integer Addition

11100 C  (Carry)

1011 S1 (11)

+0110 S2 (06)

0001 R

Truth Table

S1 S2 C   R C+

0  0  0   0 0

0  0  1   1 0

0  1  0   1 0

0  1  1   0 1

1  0  0   1 0

1  0  1   0 1

1  1  0   0 1

1  1  1   1 1



Binary Integer Addition

11100 C  (Carry)

1011 S1 (11)

+0110 S2 (06)

10001 R  (17)

Truth Table

S1 S2 C   R C+

0  0  0   0 0

0  0  1   1 0

0  1  0   1 0

0  1  1   0 1

1  0  0   1 0

1  0  1   0 1

1  1  0   0 1

1  1  1   1 1



Binary Integer Subtraction

 Same as decimal subtraction:

 Use S1, S2 and Carry (C) to compute R and 

next Carry (C+).

00 C  (Carry)

1011 S1 (11)

-0110 S2 (06)

1 R

Truth Table

S1 S2 C   R C+

0  0  0   0 0

0  0  1   1 1

0  1  0   1 1

0  1  1   0 1

1  0  0   1 0

1  0  1   0 0

1  1  0   0 0

1  1  1   1 1



Binary Integer Subtraction

000 C  (Carry)

1011 S1 (11)

-0110 S2 (06)

01 R

Truth Table

S1 S2 C   R C+

0  0  0   0 0

0  0  1   1 1

0  1  0   1 1

0  1  1   0 1

1  0  0   1 0

1  0  1   0 0

1  1  0   0 0

1  1  1   1 1



Binary Integer Subtraction

1000 C  (Carry)

1011 S1 (11)

-0110 S2 (06)

101 R

Truth Table

S1 S2 C   R C+

0  0  0   0 0

0  0  1   1 1

0  1  0   1 1

0  1  1   0 1

1  0  0   1 0

1  0  1   0 0

1  1  0   0 0

1  1  1   1 1



Binary Integer Subtraction

01000 C  (Carry)

1011 S1 (11)

-0110 S2 (06)

0101 R

Truth Table

S1 S2 C   R C+

0  0  0   0 0

0  0  1   1 1

0  1  0   1 1

0  1  1   0 1

1  0  0   1 0

1  0  1   0 0

1  1  0   0 0

1  1  1   1 1



Binary Multiplication

 Same as decimal multiplication

 Just need to memorize multiplication table for 

0 and 1

 Perform sums and shifts iteratively based on 

the 0/1 of the multiplicator



Binary Multiplication

1011

x 110

0000



Binary Multiplication

1011

x 110

0000

+1011

10110



Binary Multiplication

1011  (11)

x 110 ( 6)

0000

+1011

10110

+1011

1000010  (64+2=66)



Binary Multiplication. 

Another example 

1001  (9)

x 101 (5)

1001



Binary Multiplication. 

Another example 

1001  (9)

x 101 (5)

1001

+0000

01001



Binary Multiplication. 

Another example 

1001  (9)

x 101 (5)

1001

+0000

01001

+1001

101101  (32+8+4+1=45)



Binary Division 

 Same as decimal division

 Just need to memorize multiplication table for 

0 and 1

 Perform subtractions and shifts iteratively



Binary Division

___1__

100 | 10110

-100

001



Binary Division

___10__

100 | 10110

-100

0011



Binary Division

___101_ (5)

(4) 100 | 10110 (16+4+2=22)

-100

00110

- 100

010 (2)



Binary Representation of 

Negative Integer Numbers

 Three representations

 Sign and Magnitude

 1-complement

 2-complement



Sign and Magnitude 

Representation

 1 bit for sign

 Other bits for the absolute value

 Example:

+5 =  0 0000101

-5 =  1 0000101

sign magnitude



1-Complement

 Negative numbers are obtained by inverting 

all bits.

 Example:

+5 =  00000101

-5 =  11111010



2-Complement

 Negative numbers are obtained by 
subtracting 1 from the positive number and 
inverting the result.

 Example:

+5 =  00000101

-5 =  00000101

-00000001

00000100

11111011 

+5 +(-5):

00000101

+11111011

00000000

(ignoring overflow)



2-Complement

 2 complement representation is widely used 
because the same piece of hardware used 
for positive numbers can be used for negative 
numbers:

 Example:
+5 = 00000101

-3  = 00000011

-00000001

00000010

11111101

+5 +(-3):

00000101

+11111101

00000010 (2)

(ignoring overflow)



Shift Operator and Signed ints

 When signed numbers are shifted right, the 

sign number is extended to the int shifted:

E.g. int x = -5; // x = 111111…111011

int y = (x >> 1);

// y = 1111111111…111101

x = 5; // x = 00000000000101

y = (x >> 1);

// y = 00000000…0000010

With unsigned ints, a 0 is always inserted at the 

left when shifted.



Floating Point Representation

 Store both the exponent and mantissa

 Example:

 3.5x10-16

 In binary the representation uses base 2 

instead of base 10

 Example:

 1.101x2-010



Floating Point Representation

 The most common is the IEEE-754 standard

s

31

e

23

m

0

Float:

s

63

e

52

m

0

Double:

Val = (-1)s x  (1.m) x 2(e-bias)

bias = 127

bias = 1023

Notice that the 1 in 1.m is always assumed. The only exception of all the 

numbers is 0, that is represented with an exponent of 0.



Floating Point Representation 

Example

 Double value in memory (in hex): 
4024 0000 0000 0000

Binary: 

0100 0000 0010 0100 0000 0000 0000 0000

Decimal?

s (bit 63) = 0 = positive number

e (bits 52 to 62) =  100 0000 0010 = 1024 + 2 = 1026

m (bits 0 to 51) = .0100 0000 0000 0000 0000

Val = (-1)0 x  (1.01)b x 2 (1026-1023)

= 1x (20+2-2)x23=(1+1/4)x8=8+2=10



Byte Order

 There are two byte orders:

 Little Endian – Least significant byte of the integer 

is in the lowest memory location.

 Big Endian – Most significant byte of the integer is 

in the lowest 



Representation of 0x05

 Little Endian

 Big Endian 

0 1 2 3

0x05 0x00 0x00 0x00

0 1 2 3

0x050x00 0x000x00



How to know if it is Little or 

Big Endian

int isLittleEndian()

{

int i = 5;

char *  p = (char *) &i;

if (*p==5) {

return 1;

}

return 0;

}



Structures

 Structures are a combination in memory of primitive 

types.

 Example:

struct {

int i;

float r;

char * a;

} s;

S:0x100

0x101

0x102

0x103

0x104

0x105

0x106

0x107

0x108

0x109

0x10A

0x10B

i

r

a



Structures and Alignment

 Integers, floats, and pointers have to be aligned to 4 
bytes (in a 32 bit architecture).
 This means that the memory address have to be a multiple 

of 4, that is, the last hex digit of the address has to be 0, 4, 
8, or C.

 Doubles have to be aligned to 8 bytes.
 This means that the memory address have to be a multiple 

of 8, that is, the last hex digit of the address has to be 0, or 
8.

 If they are not aligned, the CPU will either get an 
“bus error” or slow down the execution when trying 
to access this data.



Example of Alignment in 

Structures

 Example:

struct {

char ch1;

int r;

char ch2;

char * a;

} x;

x:0x100

0x101

0x102

0x103

0x104

0x105

0x106

0x107

0x108

0x109

0x10A

0x10B

ch1

r

ch2

0x10C

0x10D

0x10E

0x10F

a



IV. Variety of Processors



Von Neumann Architecture

 Modern processors follow this design

 Programs are stored in memory, in the same 

way data is stored in memory.

 In the early days, before the “Stored 

Program” concept, computers had to be 

“rewired” in order to run a different program. 

 In those old days, often took weeks to load a 

different program.



Von Neumann Architecture

 A computer has an address bus and a data 

bus that are used to transfer data from/to the 

CPU, RAM, ROM, and the devices.

 The CPU, RAM, ROM, and all devices are 

attached to this bus.



Von Newman Architecture

CPU RAM ROM Ethernet

Card

USB 

Controler 

(mouse, kbd)

Hard 

Drive

CD/DVD 

Drive

Address bus

Data bus

Interrupt Line



Processors

 Digital device that performs computation using 
multiple steps.

 Types of Processors:
 Fixed Logic – Least powerful. Single Operation.

 Selectable Logic – Performs more than one operation.

 Parameterized Logic Processor – Accepts a set of 
parameters in the computation.

 Programmable Logic Processor – Greatest Flexibility. 
Function to compute can be changed. CPU’s belong to this 
type of processors.

 CPU – Central Processing Unit



Components of a CPU

 Controller

 ALU – Arithmetic and Logical Unit

 Registers - Local Data Storage

 Internal Interconnections

 External Interface



Components of the CPU

ALU Controller Registers

External Interface

Internal Connections

Address Bus Data Bus



Components of the CPU

 Controller

 Controls the execution

 Initiates the sequence of steps

 Coordinates other components

 ALU – Arithmetic and Logical Unit

 It provides the Arithmetic and Boolean 

Operations.

 It performs one operation at a time.



Components of the CPU

 Registers

 Holds arguments and results of the operations

 Internal Connections

 Transfers values across the components in the 

CPU.

 External Interface

 Provides connections to external memory as well 

as I/O devices



ALU – Arithmetic Logic Unit

 It is the part of the CPU that performs the 

Arithmetic and Boolean operations

 Integer Arithmetic - add, subtract, multiply, divide

 Shift - left, right, circular

 Boolean - and, or, not, exclusive or



Processor Categories

 Coprocessors

 Operates in conjunction with other processor. 

Example: Floating Point Accelerator.

 Microcontroller

 Small programmable device. Dedicated to control 

a physical system. Example: Electronic Toys.

 Microsequencer

 Use to control coprocessors, memory and other 

components inside a larger processor board.



Processor Categories

 Embedded System Processor

 It is able to run sophisticated tasks

 More powerful than a microcontroller

 Example: The controller in a an MP3 player that 

includes User Interface and MP3 decoding.

 General Purpose Processor

 Most powerful type of processor

 Completely Programmable

 Example: Pentium processor



Evolution of Processor 

Technologies

 Discrete Logic 

 Use TTL Gates etc used to implement processor.

 It could use multiple boxes and circuit boards.

 Single circuit board

 Multiple chips/controllers  in a single board.

 Single chip

 All the components are in a single chip.



Fetch-Execute Cycle

 This is the basics for programmable 

processors.

 It allows moving through the program steps a

while (1) {

Fetch from memory the next instruction to 

execute in the program.

Execute this instruction.

}



Clock Rate and Instruction 

Rate

 Clock rate

 It is the rate at which gates and hardware 

components are clocked to synchronize data 

transfer.

 Instruction rate

 It is the time required to execute an instruction.

 Different instructions may take different times.

 Example: Multiplication and division will take more 

clock cycles than addition and subtraction. 



Starting a Processor

 When the CPU is powered on or when reset

 The CPU is initialized

 The fetch-execute cycle starts.

 The first instruction to execute will be in a known 

memory location, E.g. 0x1000

 This process is called “bootstrap”.



Stopping a Processor

 When the application finishes or it is waiting 

for an event,

 The program may enter an infinite loop.

 In an OS, that infinite loop is often called 

 “Null Process” or 

 “System Idle Process”.



V. Processor Types and 

Instruction Sets



How to Choose an Instruction 

Set

 A small set is easy to implement but 
inconvenient for programmers.

 A large set is convenient for programmers but 
expensive to implement.

 When designing an instruction set we need to 
consider

 Physical size of the Processor

 How the processor will be used

 Power consumption



Parts of an Instruction

 Opcode

 Specifies the instruction to be executed

 Operands

 Specifies the registers, memory location, or 

constants used in the instruction

 Result

 Specifies the registers or memory location where 

the result of the operation will be placed.

Opcode Operand1 Operand2 Result



Instruction Length

 Fixed Length
 Every instruction has the same length

 Reduces the complexity of the hardware

 Potentially, the program will run faster.

 Variable Length
 Some instructions will take more space than others

 It is appealing to Assembly code programmers (Not a very 
strong advantage. Most programs are written in a high-
level language).

 More efficient use of memory.

 Pentium continues using variable length instructions 
because of backward-compatibility issues.



General Purpose Registers

 They are used to store operands and results

 Each register has a small size: 1 byte, 4 

bytes, or 8 bytes.

 Floating Point Registers

 Special registers used to store floating point 

numbers.



Example of Using Registers

 Load A from location 0x100 and B from location 0x104. Store 
A+B in C in location 0x108 (C=A+B);

load r1, @0x100

load r2, @0x104

add r1, r2, r3

store r3, @0x108

 Register Spilling – Save registers in memory for later use. The 
number of registers is limited, so very often it is necessary to use 
memory or the stack to store temporal values.

 Register allocation. Choose what values to keep in the registers 
instead of memory.



Types of Instruction Sets

 CISC 

 Complex Instruction Set Computer

 RISC 

 Reduced Instruction Set Computer 



CISC Instruction Set

 It contains many instructions, often hundreds.

 Some instructions take longer than others to 

complete

 Examples:

 Move a range of bytes from one place in memory 

to another

 Compute the length of a string

 Example: x86



RISC Instruction Set

 It contains few instructions 32 or 64

 Instructions have a fixed length

 Each instruction is executed in one clock 

cycle.

 Example: Sparc, Alpha, MIPS, ARM



Execution Pipeline

 Hardware optimization technique 

 Allows the execution of instructions in 

parallel.

 Used by RISC architectures



Execution Pipeline

 An instruction is executed by the following 
steps:

 Fetch the next instruction

 Examine the opcode to determine the operands 
needed.

 Fetch the operands

 Perform the specified operation

 Store the result in the indicated location

 Pipelining executes this steps in parallel for 
multiple instructions.



Execution Pipeline

Fetch 

Instruction

Examine 

Opcode
Fetch 

Operands

Perform 

Operation

Store 

Result

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5



Execution Pipeline

 Each stage operate in parallel with a different 

instruction.

 As a result, an N stage pipeline operates over 

N instructions simultaneously. 

 Each stage takes one clock cycle.

 Each instruction takes one clock cycle once 

the pipeline is full. 



Pipeline Example
Clock Stage1 Stage2 Stage3 Stage4 Stage5

1 Inst1

2 Inst2    Inst1

3 Inst3    Inst2    Inst1

4 Inst4    Inst3    Inst2    Inst1

5 Inst5    Inst4    Inst3    Inst2    Inst1

6 Inst6    Inst5    Inst4    Inst3    Inst2

7 Inst7    Inst6    Inst5    Inst4    Inst3

8 Inst8    Inst7    Inst6    Inst5    Inst4

9 Inst9    Inst8    Inst7    Inst6    Inst5



Pipeline Control

 The pipeline is executed by the processor 

without the programmers intervention.

 The programmer can write code that can 

“stall” the pipeline

 That will happen if the next instruction 

depends on the result of the previous 

instruction.



Example of a pipe stall

 Assume the following operations:

Instruction K:   C <= add A B

Instruction K+1: D <= sub E C

 The instruction K+1 needs the result of 

instruction K before it can continue.

 This causes instruction K+1 to wait until 

instruction k completes.



Example of a pipe stall

Clock Stage1 Stage2 Stage3 Stage4 Stage5

1 Instk    instk-1  instk-2  instk-3  instk-4

2 Instk+1  Instk    instk-1  instk-2  instk-3

3 Instk+2  Instk+1  Instk    instk-1  instk-2

4 Instk+3  Instk+2  (Instk+1)Instk    instk-1

5 ------- ------- (Instk+1)------ Instk

6 ------- ------- Instk+1  ------ -------

7 Instk+4  Instk+3  Instk+2  Instk+1  -------

8 Instk+5  Instk+4  Instk+3  Instk+2  Instk+1

9 Instk+6  Instk+5  Instk+4  Instk+3  Instk+2



Pipe Stall

 Some reasons of a pipe stall are:

 Access to RAM

 Call an instruction that takes along time like FP 

arithmetic

 Branch to a new location

 Call a function



Avoiding Pipe Stalls

 A programmer can delay the use of results by 

reordering the instructions:



Avoiding Stalls

 Program must be written to accommodate 

instruction pipeline

 To minimize stalls

 – Avoid introducing unnecessary branches

 – Delay references to result register(s)



Avoiding Stalls

Example Of Avoiding Stalls
 (a) (b)

 C add A B C add A B

 D subtract E C F add G H

 F add G H M add K L

 J subtract I F D subtract E C

 M add K L J subtract I F

 P subtract M N P subtract M N

 Stalls eliminated by rearranging (a) to (b)



Avoiding Stalls

 Although hardware that uses an instruction 

pipeline will not run at full speed unless 

programs are written to accommodate the 

pipeline, a programmer can choose to ignore 

pipelining and assume the hardware will 

automatically increase speed whenever 

possible.



VII. CPUs Microcode Protection 

and Protection Modes



User and Kernel Mode, 

Interrupts, and System Calls 



Computer Architecture Review

 Most modern computers use the Von 

Newman Architecture where both programs 

and data are stored in RAM.

 A computer has an address bus and a data 

bus that are used to transfer data from/to the 

CPU, RAM, ROM, and the devices.

 The CPU, RAM, ROM, and all devices are 

attached to this bus.



Computer Architecture Review

CPU RAM ROM Ethernet

Card

USB 

Controler 

(mouse, kbd)
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Interrupt Line



Kernel and User Mode

 Kernel Mode

 When the CPU runs in this mode:

 It can run any instruction in the CPU

 It can modify any location in memory

 It can access and modify any register in the CPU and 

any device.

 There is full control of the computer.

 The OS Services run in kernel mode.



Kernel and User Mode

 User Mode

 When the CPU runs in this mode:

 The CPU can use a limited set of instructions

 The CPU can only modify only the sections of memory 

assigned to the process running the program.

 The CPU can access only a subset of registers in the CPU 

and it cannot access registers in devices.

 There is a limited access to the resources of the computer.

 The user programs run in user mode



Kernel and User Mode

 When the OS boots, it starts in kernel mode.

 In kernel mode the OS sets up all the interrupt 

vectors and initializes all the devices.

 Then it starts the first process and switches to user 

mode.

 In user mode it runs all the background system 

processes (daemons). 

 Then it runs the user shell or windows manager.



Kernel and User Mode

 User programs run in user mode.

 The programs switch to kernel mode to request OS  
services (system calls)

 Also user programs switch to kernel mode when an 
interrupt arrives. 

 The interrupts are executed in kernel mode.

 The interrupt vector can be modified only in kernel 
mode.

 Most of the CPU time is spent in User mode



Kernel and User Mode

Kernel Mode

User Mode



Kernel and User Mode

 Separation of user/kernel mode is used for: 

 Security: The OS calls in kernel mode make sure that the 

user has enough privileges to run that call. 

 Robustness: If a process that tries to write to an invalid 

memory location, the OS will kill the program, but the OS 

continues to run. A crash in the process will not crash the 

OS. > A bug in user mode causes program to crash, OS 

runs. A bug in kernel mode may cause OS and system to 

crash. 

 Fairness: OS calls in kernel mode to enforce fair access. 



Interrupts

 An interrupt is an event that requires immediate 
attention. In hardware, a device sets the interrupt 
line to high.

 When an interrupt is received, the CPU will stop 
whatever it is doing and it will jump to to the 
'interrupt handler' that handles that specific interrupt. 

 After executing the handler, it will return to the same 
place where the interrupt happened and the 
program continues. Examples: 
 move mouse 

 type key 

 ethernet packet 



Steps of Servicing an Interrupt 

1. The CPU saves the Program Counter and registers 
in execution stack 

2. CPU looks up the corresponding interrupt handler 
in the interrupt vector. 

3. CPU jumps to interrupt handler and run it.

4. CPU restores the registers and return back to the 
place in the program that was interrupted. The 
program continues execution as if nothing 
happened.

5. In some cases it retries the instruction the 
instruction that was interrupted (E.g. Virtual 
memory page fault handlers). 



Running with Interrupts

 Interrupts allow CPU and device to run in 

parallel without waiting for each other.

1. OS Requests 

Device Operation 

(E.g.Write to disk) 2. Device Runs 

Operation

2. OS does other 

things in parallel 

with device. 3. When Operation is 

complete interrupt 

OS
4. OS services interrupt 

and continues



Poling

 Alternatively, the OS may decide not use interrupts for 
some devices and wait in a busy loop until completion.
OS requests Device operation

While request is not complete

do nothing;

Continue execution.

 This type of processing is called “poling” or “busy 
waiting” and wastes a lot of CPU cycles.

 Poling is used for example to print debug messages in 
the kernel (kprintf). We want to make sure that the 
debug message is printed to before continuing the 
execution of the OS.



Synchronous vs. 

Asynchronous

 Poling is also called Synchronous 

Processing since the execution of the device 

is synchronized with the program.

 An interrupt is also called Asynchronous 

Processing because the execution of the 

device is not synchronized with the execution 

of the program. Both device and CPU run in 

parallel.



Interrupt Vector

 It is an array of pointers that point to the 

different interrupt handlers of the different 

types of interrupts.

Hard Drive Interrupt handler

USB Interrupt handler (mouse, kbd)

Ethernet Card Interrupt handler

Page Fault Interrupt handler



Interrupts and Kernel Mode

 Interrupts run in kernel mode. Why? 

 An interrupt handler must read device/CPU 

registers and execute instructions only 

available in kernel mode.

 Interrupt vector can be modified only in 

kernel mode (security) 

 Interrupt vector initialized on bootup; 

modified when drivers added to system 



Types of Interrupts

1. Device Interrupts generated by Devices 
when a request is complete or an event that 
requires CPU attention happens.

 The mouse is moved

 A key is typed

 An Ethernet packet arrives.

 The hard drive has completed a read/write 
operation.

 A CD has been inserted in the CD drive.



Types of Interrupts

2. Math exceptions generated by the CPU when 
there is a math error.

 Divide by zero

3. Page Faults generated by the MMU (Memory 
Management Unit) that converts Virtual memory 
addresses to physical memory addresses

 Invalid address: interrupt prompts a SEGV signal to the 
process

 Page not resident. Access to a valid address but there is 
not page in memory. This causes the CPU to load the 
page from disk

 Invalid permission (I.e. trying to write on a read only 
page) causes a SEGV signal to the process. 



Types of Interrupts

4. Software Interrupt generated by software 

with a special assembly instruction.  This is 

how a program running in user mode 

requests operating systems services.



System Calls

 System Calls is the way user programs request 
services from the OS

 System calls use Software Interrupts

 Examples of system calls are:
 open(filename, mode)

 read(file, buffer, size)

 write(file, buffer, size)

 fork()

 execve(cmd, args);

 System calls is the API of the OS from the user program’s point 
of view. See /usr/include/sys/syscall.h



Why do we use Software 

Interrupts for syscalls instead of 

function calls?

 Software Interrupts will switch into kernel 

mode

 OS services need to run in kernel mode 

because:

 They need privileged instructions

 Accessing devices and kernel data structures

 They need to enforce the security in kernel mode.



System Calls

 Only operations that need to be executed by the OS 

in kernel mode are part of the system calls.

 Function like sin(x), cos(x) are not system calls.

 Some functions like printf(s) run mainly in user mode 
but eventually call write() when for example the 

buffer is full and needs to be flushed.

 Also malloc(size) will run mostly in user mode but 

eventually it will call sbrk() to extend the heap.



System Calls

 Libc (the C library) provides wrappers for the 

system calls that eventually generate the 

system calls.

User Mode:
int open(fname, mode) {

return syscall(SYS_open, 

fname, mode);

}

int syscall(syscall_num, …) 
{

asm(INT);

}

Kernel Mode:
Syscall interrupt handler:

Read:…

Write:…

open:

- Get file name and mode

- Verify file exists and 

permissions of file against 

mode.

- Perform operation

- return fd (file 

descriptor)

Software 

Interrupt



System Calls

 The software interrupt handler for system 

calls has entries for all system calls.

 The handler checks that the arguments are 

valid and that the operation can be executed.

 The arguments of the syscall are checked to 

enforce the security and protections. 



Syscall Security Enforcement

 For example, for the open syscall the following is 

checked in the syscall software interrupt handler:

open(filename, mode)

 If file does not exist return error

 If  permissions of file do not agree with the mode the file 

will be opened, return error. Consider also who the owner 

of the file is and the owner of the process calling open.

 If all checks pass, open file and return file handler.



Syscall details

 Te list of all system calls can be found in 
/usr/include/sys/syscall.h
#define SYS_exit        1

#define SYS_fork        2

#define SYS_read        3

#define SYS_write       4

#define SYS_open        5

#define SYS_close       6

#define SYS_wait        7

#define SYS_creat       8

#define SYS_link        9

#define SYS_unlink      10

#define SYS_exec        11

…



Syscall Error reporting

 When an error in a system call occurrs, the OS sets a 
global variable called “errno” defined in libc.so with the 
number of the error that gives the reason for failure.

 The list of all the errors can be found in 
/usr/include/sys/errno.h

#define EPERM   1       /* Not super-user    */

#define ENOENT  2       /* No such file or directory */

#define ESRCH   3       /* No such process */

#define EINTR   4       /* interrupted system call  */

#define EIO     5       /* I/O error  */

#define ENXIO   6       /* No such device or address */

 You can print the corresponding error message to stderr
using perror(s); where s is a string prepended to the 
message.



System Calls and Interrupts 

Example

1. The user program calls the write(fd, buff, 
n) system call to write to disk.

2. The write wrapper in libc generates a software 
interrupt for the system call.

3. The OS in the interrupt handler checks the 
arguments. It verifies that fd is a file descriptor for 
a file opened in write mode. And also that [buff, 
buff+n] is a valid memory range.  If any of the 
checks fail write return -1 and sets errno to the 
error value.



System Calls and Interrupts 

Example

4. The OS tells the hard drive to write the buffer in 
[buff, buff+n] to disk to the file specified by fd.

5. The OS puts the current process in wait state until 
the disk operation is complete. Meanwhile, the OS 
switches to another process.

6. The Disk completes the write operation and 
generates an interrupt.

7. The interrupt handler puts the process calling 
write into ready state so this process will be 
scheduled by the OS in the next chance.



ARM Assembly Language



ARM Architecture

 ARM- Acorn RISC Machine

 ARM is an architecture created by “ARM Holdings” 

 ARM Holdings does not manufacture the CPU’s, 
instead it licenses the design to other manufacturers 
so they create their own version of ARM.

 ARM has become popular because of mobile 
computing: Smart phones, tablets etc.

 It is energy-efficient, fast, and simple.

 It still lags in speed compared to the fastest Intel x86 
CPUs but it is more energy efficient.



ARM CPUs

 Chips using ARM architecture

 A4, A5, A6, A7 

 Iphone/Ipad by Apple

 Qualcomm’s Snapdragon 

 Samsung Galaxy, LG, Nokia Lumia, Sony, Kindle

 NVIDIA Tegra

 Windows RT Tablet, Motorola Droid, Motorola Atrix

 Broadcom, BCMXXX CPUs

 Samsung Galaxy, Raspberry Pi



ARM Assembly Language

 See:
http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm_inst.pdf

and

http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm-ref.pdf

http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm_inst.pdf
arm-ref.pdf


Example Assembly Program

test1.s:

.text

.global main

main:

stmfd   sp!, {fp, lr}

ldr     r0, .L2

bl      puts

ldmfd   sp!, {fp, pc}

.L2:

.word   .LC0

.section        .rodata

.LC0:

.ascii  "Hello world\000"



Running the Assembler

pi@raspberrypi:~/cs250/lab6-src$ gcc -o test1 test1.s

pi@raspberrypi:~/cs250/lab6-src$ ./test1

Hello world

pi@raspberrypi:~/cs250/lab6-src$



Assembly Code in 

Hexadecimal
pi@raspberrypi:~/cs250/lab6-src$ gcc -Xassembler -a -o test1 test1.s > out

pi@raspberrypi:~/cs250/lab6-src$ vi out

ARM GAS  test1.s                        page 1

1

2                            .text

3                            .global main

4

5                    main:

6 0000 00482DE9              stmfd   sp!, {fp, lr}

7 0004 04009FE5              ldr     r0, .L2

8 0008 FEFFFFEB              bl      puts

9 000c 0088BDE8              ldmfd   sp!, {fp, pc}

10                    .L2:

11 0010 00000000              .word   .LC0

12

13                            .section        .rodata

14                    .LC0:

15 0000 48656C6C              .ascii  "Hello world\000"

15      6F20776F

15      726C6400

The third column is the code generated in hexadecimal.



Calling Conventions

 r0 to r3: 
 They are used to pass arguments to a function. r0 is used 

to return values. (No need to be restored before return).

 r4 to r11: 
 Used to hold local variables. (Need to be restored before 

return)

 r13 is the stack pointer.
 Stores return PC and save registers and local vars. 

 r14 is the link register. (The BL instruction, used in a 
subroutine call, stores the return address in this 
register).

 r15 is the program counter.



Condition Code Flags

 This flags are stored in the PSR- Processor 

Status Register

 They are updated by the Arithmetic 

Operations

N = Negative result from ALU flag.

Z = Zero result from ALU flag.

C = ALU operation Carried out

V = ALU operation oVerflowed



Updating the Condition Code 

Flags

 CMP reg1, reg2 
 Performs reg1-reg2 

 It updates N, Z, C, V

 No other registers are modified

 TST reg1, reg2
 Performs reg1 bit-and reg2

 It updates N,Z

 No other registers are modified

 Any instruction may modify the flags if “S” is 
appended to the instruction: 
 Example MOVS reg1, reg2 will update N, Z if reg2 is zero 

or negative



ARM Instructions

ARM assembly language reference card

MOVcdS reg, arg copy argument (S = set flags)

MVNcdS reg, arg copy bitwise NOT of argument

ANDcdS reg, reg, arg bitwise AND

ORRcdS reg, reg, arg bitwise OR

EORcdS reg, reg, arg bitwise exclusive-OR

BICcdS reg, rega, argb bitwise rega AND (NOT argb)

ADDcdS reg, reg, arg add

SUBcdS reg, reg, arg subtract

RSBcdS reg, reg, arg subtract reversed arguments

ADCcdS reg, reg, arg add with carry flag

SBCcdS reg, reg, arg subtract with carry flag

RSCcdS reg, reg, arg reverse subtract with carry flag

CMPcd reg, arg update flags based on subtraction

CMNcd reg, arg update flags based on addition



ARM Instructions

TSTcd reg, arg update flags based on bitwise AND

TEQcd reg, arg update flags based on bitwise exclusive-OR

MULcdS regd, rega, regb multiply rega and regb, places lower 32 bits into regd

MLAcdS regd, rega, regb, regc places lower 32 bits of rega · regb + regc into regd

UMULLcdS reg`, regu, rega, regb multiply rega and regb, place 64-bit unsigned result into {regu, reg`}

UMLALcdS reg`, regu, rega, regb place unsigned rega · regb + {regu, reg`} into {regu, reg`}

SMULLcdS reg`, regu, rega, regb multiply rega and regb, place 64-bit signed result into {regu, reg`}

SMLALcdS reg`, regu, rega, regb place signed rega · regb + {regu, reg`} into {regu, reg`}

Bcd imm12 branch to imm12 words away

BLcd imm12 copy PC to LR, then branch

BXcd reg copy reg to PC

SWIcd imm24 software interrupt

LDRcdB reg, mem loads word/byte from memory

STRcdB reg, mem stores word/byte to memory

LDMcdum reg!, mreg loads into multiple registers

STMcdum reg!, mreg stores multiple registers

SWPcdB regd, regm, [regn] copies regm to memory at regn,old value at address regn to regd

Optional:

cd – Condition Code

s – Update flkag or not

b – byte or word instruction  



ARM Instructions Add-Ons: 

Conditions

 Every instruction may have a condition 

appended:

Example:

MOV r1, r2 and EQ (zero flag set)

becomes

MOVEQ r1,r2

This means that the r2 will be moved to r1 only 

if the zero flag is set.



List of Conditions that Can be 

Added to Instructions

AL or omitted always

EQ equal (zero)

NE nonequal (nonzero)

CS carry set (same as HS)

CC carry clear (same as LO)

MI minus

PL positive or zero

VS overflow set

VC overflow clear

HS unsigned higher or same

LO unsigned lower

HI unsigned higher

LS unsigned lower or same

GE signed greater than or equal

LT signed less than

GT signed greater than

LE signed less than or equal



Example: Adding two numbers

 Implement the following program in assembler:

#include <stdio.h>

int a;

int b;

int c;

main()

{

a = 2;

b = 3;

c = b + c;

printf("c=%d\n", c);

}



Example:  Adding two numbers in 

Assembly using Registers

/* add-reg.s 

Adding two numbers using registers */

.section        .rodata

printfArg:

.ascii  "c=%d\n"

/* Define variable 4 bytes each aligned to 4 bytes

int a; - r2

int b; - r3

int c; - r1

*/

.text

addrPrintfArg: .word printfArg



Adding two numbers in Assembly 

using Registers (cont.)

.global main            /* main() { */

main:

stmfd   sp!, {fp, lr}  /* Save pc and lr */

mov     r2, #2        /* a=2; */

mov     r3, #3        /* b=3; */

add     r1, r2, r3    /* c = a + b; */

ldr     r0, addrPrintfArg 

/* Load printf format in r0 */

/* second argument is in r1 */

/* r1 already has the result of a+b*/

bl      printf   /* printf("c=%d\n", c); */

ldmfd   sp!, {fp, pc}   /* return from main */

/* } */



Adding two numbers in Assembly 

using Registers (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -o add-reg add-reg.s

pi@raspberrypi:~/cs250/lab6-src$ ./add-reg

c=5



Example: Adding Two 

Numbers Using Global Vars
/* add-global.s:

Adding two numbers using global variables */

.section        .rodata

printfArg:

.ascii  "c=%d\n"

.section .data

.align 2

/* Define variable 4 bytes each aligned to 4 bytes

int a;

int b;

int c;

*/

.comm   a,4,4

.comm   b,4,4

.comm   c,4,4



Adding Two Numbers  Using 

Global Vars (cont.)

.text

/* We need to store the addresses of a and b

in .text to be able to access them in main */

addra:  .word a

addrb:  .word b

addrc:  .word c

addrPrintfArg: .word printfArg

.global main            /* main() { */

main:

stmfd   sp!, {fp, lr}           /* Save pc and lr */

ldr     r3, addra               /* a = 2; */

mov     r2, #2

str     r2, [r3]

ldr     r3, addrb               /* b = 3; */

mov     r2, #3

str     r2, [r3]



Adding two numbers  using 

Global Vars (cont.)

ldr     r2, addra               /* Read a and put it in r2 
*/

ldr     r2, [r2]

ldr     r3, addrb               /* read b and put it 
in r3 */

ldr     r3, [r3]

add     r2, r2, r3              /* c = a + b; */

ldr     r3, addrc

str     r2, [r3]

ldr     r0, addrPrintfArg       /* Load printf format 
in r0 */

ldr     r1, addrc

ldr     r1, [r1]                /* Load c in r1 */

bl      printf                  /* printf("c=%d\n", 
c); */

ldmfd   sp!, {fp, pc}   /* return from main */



Adding two numbers  using 

Global Vars (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -o add-global add-global.s

pi@raspberrypi:~/cs250/lab6-src$ ./add-global

c=5



Example: Read two numbers 

and add them 
/* readadd.s
Read two numbers and add them

pi@raspberrypi:~/cs250/lab6-src$ ./readadd

a: 8

b: 9

c=a+b=17

*/

.section        .rodata

promptA:

.ascii  "a: \000"

promptB:

.ascii  "b: \000"

readA:

.ascii  "%d\000"

readB:

.ascii  "%d\000"

printC:

.ascii  "c=a+b=%d\n\000"



Example: Read two numbers 

and add them (cont.)
.section .data

.align 2

/* Define variable 4 bytes each aligned to 4 bytes

int a;

int b;

*/

.comm   a,4,4

.comm   b,4,4

.text

/* We need to store the addresses of a and b

in .text to be able to access them in main */

addra:  .word a

addrb:  .word b

addrPromptA: .word promptA

addrPromptB: .word promptB

addrReadA: .word readA

addrReadB: .word readB

addrPrintC: .word printC



Example: Read two numbers 

and add them (cont.)
.global main            /* main() { */

main:

stmfd   sp!, {fp, lr}           /* Save pc and lr */

ldr     r0, addrPromptA         /* Prompt a */

bl      printf

ldr     r0, addrReadA           /* Read a */

ldr     r1, addra

bl      scanf

ldr     r0, addrPromptB         /* Prompt b */

bl      printf

ldr     r0, addrReadB           /* Read b */

ldr     r1, addrb

bl      scanf

ldr     r0, addra               /* r0<- a */

ldr     r0, [r0]



Example: Read two numbers 

and add them (cont.)

ldr     r1, addrb             /* r1<- b */

ldr     r1, [r1]

add     r1, r0, r1            /* r1 <- r1 +r0*/

ldr     r0, addrPrintC        /* print c */

bl      printf

ldmfd   sp!, {fp, pc}   /* return from main */

/* } */



Example: Read two numbers 

and add them (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -o 

readadd readadd.s

pi@raspberrypi:~/cs250/lab6-src$ ./readadd

a: 7

b: 4

c=a+b=11



Mixing C and Assembly Language. 

Finding max in an array.
max.c:

#include <stdio.h>

#include <stdlib.h>

extern int maxarray(int *a, int n);

main()

{

int n;

int i;

int * a;

printf("How many elements in array? ");

scanf("%d",&n);

a = (int*) malloc(n*sizeof(int));

for (i = 0; i < n; i++) {

printf("a[%d]= ", i);

scanf("%d", &a[i]);

}

int m = maxarray(a, n);

printf("max=%d\n", m);

}



Mixing C and Assembly Language. 

Finding max in an array (cont.)

maxarray.s

/* Find maximum of an array of integers. Called from "C"

extern int maxarray(int *a, int n);

*/

.text

.global maxarray       /* maxarray(int *a, int n) { 
*/

/* a: r0 */

/* n: r1 */

maxarray:

stmfd   sp!, {r4, r5, fp, lr}   

/* Save pc, lr, r4, r5 */

ldr     r2,[r0]                 /* max: r2  */

/* max= a[0] */

mov     r3,#0                   /* i: r3 */

/* i=0; */



Mixing C and Assembly Language. 

Finding max in an array (cont.)

while:

cmp     r3,r1        /* while (i!=n) { */

beq     endmax

mov     r4,r3        /* r4=a[i] */

mov     r5,#4

mul     r4,r4,r5

add     r4,r0,r4 /* as r4=*(int*)((char*)a+4*i)*/

ldr     r4,[r4]

cmp     r2, r4      /* if (max < r4) max = r4 */

bgt     nomax

mov     r2,r4

nomax:



Mixing C and Assembly Language. 

Finding max in an array (cont.)

mov     r5,#1      /* i++; */

add     r3,r3,r5

bal     while      /* Go back to while */

endmax:

mov     r0,r2

ldmfd   sp!, {r4, r5, fp, pc}   

/* return from main */

/* } */



Mixing C and Assembly Language. 

Finding max in an array (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -o max max.c 
maxarray.s

pi@raspberrypi:~/cs250/lab6-src$ ./max

How many elements in array? 6

a[0]= 34

a[1]= 78

a[2]= 34

a[3]= 90

a[4]= 78

a[5]= 45

max=90



Implementing String Functions 

in ARM Assembly Language

 There are two functions to load/store bytes:

 ldrb reg1,[reg2]   

 Loads in reg1 the byte in address pointed by 

reg2

 strb reg1,[reg2]   

 Stores the least significant byte in reg1 byte in 

address pointed by reg2



Example: strcat function in 

ARM assembly
/* strcat-main.c:*/

#include <stdio.h>

#include <string.h>

extern char * mystrcat(char * a, char *b);

main()

{

char s1[100];

char s2[100];

printf("s1? ");

gets(s1);

printf("s2? ");

gets(s2);

mystrcat(s1, s2);

printf("s1+s2=%s\n", s1);

}

// Implemented in Assembly Language in mystrcat.s

// Shown here to teach you the algorithm used.

// char * mystrcat(char * a, char *b) {

//        while (*a) a++;

//        while (*b) { *a=*b; a++; b++;}

//        *a=0;

// }



Example: strcat function in 

ARM assembly (cont.)
/* Concat two strings a, b. Result is in a.

extern char * mystrcat(char *a, char *b);

*/

.text

.global mystrcat

/* a: r0 */

/* b: r1 */

mystrcat:

stmfd   sp!, {r4, fp, lr}       /* Save pc, lr, r4*/

/* Skip chars in a */

skip:

ldrb    r2,[r0]                 /* r2 <- *a */

mov     r3,#0

cmp     r2,r3

beq     endskip                 /* if (*a == 0) jump endskip */

mov     r3,#1

add     r0,r0,r3                /* a++ */

bal     skip                    /* go to skip */

endskip:



Example: strcat function in 

ARM assembly (cont.)

skip2:                                   /* Add char by char *b to *a until we find the end of *b */

ldrb    r4,[r1]                 /* r4 <- *b */

mov     r3,#0

cmp     r4,r3

beq     endcat                  /* if (*b == 0) jump endcat */

strb    r4,[r0]                 /* *a = *b; */

mov     r3,#1

add     r0,r0,r3                /* a++ */

add     r1,r1,r3                /* b++ */

bal     skip2                   /* go to skip2 */

endcat:

mov     r3, #0                  /* *a = 0; */

strb    r3, [r0]

ldmfd   sp!, {r4, fp, pc}       /* return from mystrcat */



Example: strcat function in 

ARM assembly (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -o strcat-main strcat-main.c 

mystrcat.s

pi@raspberrypi:~/cs250/lab6-src$ ./strcat-main

s1? Hello

s2? World

s1+s2=HelloWorld

pi@raspberrypi:~/cs250/lab6-src$



Midterm Review



Midterm Review

II. Fundamentals of Digital Logic

 Voltage and Current

 Boolean Logic

 Truth Tables

 Implementation using Logical gates.

 Implementing an add circuit.

 Flip-Flops

 Karnaugh Maps



Midterm Review

III. Data and program Representation

 Memory of a Program

 Memory Sections: 

 text, Data, Bss, Heap, Stack Shared Libraries

 Executable File formats

 Steps for building a program:

 C preprocessor, Compiler, Optimizer, Assembler, 
Linker.

 Steps for loading a program

 Static and Shared libraries



Midterm Review

III. Data and program Representation (cont.)

 Binary Addition , Subtraction, Multiplication and Division

 Sign representation: 

 Sign and Magnitude, Complements of 1 and 2

 Floating Point Representation

 Byte Order

 Little Endian

 Big Endian

 Structures and alignment

 ASCII and Unicode and String representation



Midterm Review

IV. Variety of Processors

 Von Neumann Architecture

 Address Bus and Data Bus

 Components of the CPU

 Fetch Execute Cycle



Midterm Review

 V. Processor Types and Instruction Sets

 CISC and RISC

 Execution Pipeline

 Pipe Stall

 VI. Operand Addressing and Instruction 

Representation

 0 address architecture, 1 address architecture, 2 

address architecture and 3 address architecture.

 Von Neumann Bottleneck



Midterm Review

 VI. Operand Addressing and Instruction 

Representation (cont.)

 Addressing modes:

 Immediate, Direct, Indirect

 VII. CPUs Microcode Protection and 

Protection Modes

 Kernel and User Mode

 Promotes Security, Robustness and Fairness



Midterm Review

 VII. CPUs Microcode Protection and Protection 

Modes

 Interrupts

 Steps to service an interrupt

 Asynchronous Processing

 Poling

 Interrupt Vector

 Types of Interrupts:

 Device Interrupts, Math exceptions, Page Faults, Software 

Interrupts.

 System Calls



Midterm Review

 Microcode

 Vertical and Horizontal Microcode

 VIII. Assembly Language and Programming 

Paradigm

 ARM Assembly language



Midterm Material to Study 

 Class Slides

 Midterm Exam Homework Review 

 Projects Lab1-Lab6

 ARM Assembly Language

 Everything up to and including chapter ”VIII 

Memory and Storage” in the book.

 I will include the “Reference Card ARM 

Assembly Language” in the exam.

http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm-ref.pdf


X86-64 Asembly Language



History

 Created by AMD to extend the x86 

architecture to use 64 bits

 X86-64 is a superset of x86

 It has been adopted by Intel

 It provides an incremental evolution to 

migrate from x86-32 bits to x86-64 bits.



Register Assignment

(Bryant/O’Hallaron “x86-Machine Level Programming”)



Using registers

 A function can use any of the argument 

registers. There is no need to save them.

 If a function uses any of the “callee saved”, 

registers it has to save them in the stack and 

then restore them before returning to the 

caller.



X86-64 C-Types

(Bryant/O’Hallaron “x86-Machine Level Programming”)



Addressing modes

 Immediate Value
movq $0x501208,%rdi  #Put in register %rdi the

# constant 0x501208

 Direct Register Reference
movq %rax,%rdi #Move the contents of 

#register %rax to %rdi

 Indirect through a register

movq %rsi,(%rdi)#Store the value in %rsi 

#in the address contained in %rdi

 Direct Memory Reference
movq 0x501208,%rdi #Fetch the contents in memory

#at address 0x501308 and store it                 

#in %edi



Example: Adding two numbers
.text

sum:                          # int sum(int a, int b) {

movq    %rdi, %rax    #   // a=%rdi b=%rsi ret=%rax

addq %rsi, %rax     #   return a + b ;

ret                   # }

str1:

.string "5+3=%d\n"

.globl main

main:                         # main()

movq $3, %rsi       # {

movq $5, %rdi       #   // r = %rax

call sum            #   r = sum(5, 3)

movq %rax, %rsi     # 

movq $str1, %rdi    # 

movq $0, %rax       #   // printf needs 0 in %rax

call printf         #   printf("5+3=%d\n", r); 

ret                    # }



Assembling and running

 To assemble and run program:  

$sslab01 ~/cs250 $ gcc -o t1 t1.s

$sslab01 ~/cs250 $ ./t1

5+3=8

 Notice that in the previous example we use quad 
words during the arithmetic even though the type is 
int.

 Most of the time there is no penalty for doing that 
and it makes programs simpler.



Using the stack

 The stack is used to 

 store the return address 

 store local variables

 Save registers when running out of them.

 pass arguments when they don’t fit in the 

registers.



Example of Using Stack

long sum(long a, long b)

{

long tmp1 = a;

long tmp2 = b;

long result = tmp1 + tmp2;

return result;

}.

main()

{

long result = sum(5,3);

printf("sum(5,3)=%d\n", sum(5,3));

}



Stack Layout
Before calling sum:

main() ret address
%rsp

After calling sum:

main() ret address

%rsp
sum() ret address

0

8

In sum after subq $24, %rsp:

main() ret address

%rsp

sum() ret address

0

8

16

0

tmp1

tmp2

result



Example of Using Stack
.text

.globl sum

.type sum, @function

sum:

subq $24, %rsp          # Create space in stack for 

# tmp1, tmp2 and result

movq %rdi, 16(%rsp)     # tmp1 = a

movq %rsi, 8(%rsp)      # tmp2 = b

movq 16(%rsp), %rax

addq 8(%rsp), %rax      

movq %rax, (%rsp)       # result = tmp1 + tmp2 ; 

movq (%rsp), %rax       # return result ; 

addq $24, %rsp          # Restore stack pointer

ret



Using flow control

 To test the difference conditions use:

cmpq S2, S1    # S1 – S2:  Compare quad words

or

testq S2, S1     # S1 & S2:  Test Quad Word



Example of if statement: 

Obtaining maximum of two numbers

long max(long a, long b)

{

long result;

if (a > b) {

result = a;

}

else {

result = b;

}

return result;

}



Example of “if” statement: 

Obtaining maximum of two numbers

.text

.globl max

max:

cmpq    %rsi, %rdi     # if (a>b)

jle     else_branch

movq    %rdi, %rax     #   result = a

jmp     end_max

else_branch: # else

movq    %rsi, %rax     #   result = b

end_max:

ret                    # return result



Example of “while” statement: Obtaining 

the maximum of an array of numbers.

// Finds the max value in an array

long maxarray(long n, long *a) {

long i=0; 

long max = a[0];

while (i<n) {

if (max < *a) { 

max = *a

}

i++ ;

a++ ; 

}

return max;

}



Example of “while” statement: Obtaining 

the maximum of an array of numbers.

maxarray.s

.text

.globl maxarray              # long maxarray(long n, long *a)

#    // n = %rdi     a = %rsi

maxarray:                    #    // i = %rdx     max = %rax

#

movq    $0,%rdx       #    i=0 ; 

movq    (%rsi),%rax   #    max = a[0];

#

while: cmpq    %rdx,%rdi     #    while (i<n) { // (n-i>0) 

jle     afterw        #

#

cmpq    (%rsi),%rax   #      if (max < *a) { // (max-*a<0)

jge     afterif       #

movq    (%rsi),%rax   #        max = *a

#      }

afterif:                      #

addq    $1,%rdx       #      i++ ;

addq    $8,%rsi       #      a++ ; 

jmp while         #    }

afterw: ret                   # return max; }



Example of “while” statement: Obtaining 

the maximum of an array of numbers using 

Array Dereferencing

// Finds the max value in an array

long maxarray(long n, long *a) {

long i=0; 

long max = a[0];

while (i<n) {

if (max < a[i]) { 

max = a[i];

}

i++ ;

}

return max;

}



Same program using array dereferencing

.text

.globl maxarray # // Finds the max value in an array

#

# long maxarray(long n, long *a)

#    // n = %rdi     a = %rsi

maxarray:                       #    // i = %rdx     max = %rax

#

movq    $0,%rdx        #    i=0 ; 

movq    (%rsi),%rax     #    max = a[0]

#

while: cmpq    %rdx,%rdi       #    while (i<n) { // (n-i>0) 

jle     afterw          #

#            //*(long*)((8*i+(char*)a)

movq    %rdx,%rcx       #      long *tmp = a[i]; 

imulq   $8,%rcx         #

addq    %rsi,%rcx       #

#

cmpq    (%rcx),%rax     #      if (max < *tmp) { // (max-*tmp<0) 

jge     afterif         #

movq    (%rcx),%rax     #        max = *tmp

#      }

afterif:addq    $1,%rdx         #      i++ ;

jmp while           #      

#    }

afterw: ret                     # }



Running the program

maxarray.c:

long a[] = {4, 6, 3, 7, 9 };

main()

{

printf("maxarray(5,a)=%d\n", maxarray(5,a));

}

grr@sslab01 ~/cs250 $ gcc -o maxarray maxarray.c maxarray.s

grr@sslab01 ~/cs250 $ ./maxarray

maxarray(5,a)=9

grr@sslab01 ~/cs250 $ 



Defining Global Variables in 

Assembly Language

 To create space for a global variable in assembly language use:

.data

.comm <var-name>, <data-size>[,<alignment>]

where

<var-name> = variable name

<data-size> = Size of variable in bytes

<alignment> = Optional alignment. Address of variable will be a multiple 
of alignment. Otherwise alignment will be a power of 2 larger to 
data-size up to 32.

 Example:

.data

.comm   a,8 # long a;

.comm   array,40         # long a[5];

.comm   darray, 80,8   # double darray[10];



Example Using scanf in x86-64 

assembler
# Define global variable a in data section

.data

.comm a,8 # long a;

.text

format1:

.string "a="

format2:

.string "%ld"

format3:

.string "a is %ld\n"

.globl main

main:                          # main()

#

movq $format1, %rdi #   printf("a="); 

movq $0, %rax       #   

call printf         #

movq $format2, %rdi #   scanf("%ld",&a); 

movq $a, %rsi       #  

movq $0, %rax       #   

call scanf          #

movq $format3, %rdi #   printf("a=%ld",a); 

movq $a, %rsi       #

movq (%rsi),%rsi    #

movq $0, %rax       #   

call printf         #

ret                    # }



Using gdb with assembly 

programs

 Use the following instructions to debug 
assembly programs:

 stepi – steps in the next instruction. If this is a 
“call” instruction, it steps in the called function.

 nexti – Executes next instruciton. It does not enter 
into a called funciton.

 disassemble function/label– disassembles the 
current function or label

 Break function – Sets a break point in a function

 Run – run to completion or until a breakpoint



Using gdb

(gdb) break main

Breakpoint 1 at 0x4004f4

(gdb) run

Starting program: /u/u3/grr/cs250/max 

warning: no loadable sections found in added symbol-file system-supplied DSO at 0x7ffff01fe000

Breakpoint 1, 0x00000000004004f4 in main ()

(gdb) stepi

0x00000000004004f9 in main ()

(gdb) 

0x00000000004004fe in main ()

(gdb) 

0x0000000000400503 in main ()

(gdb) 

0x000000000040051c in maxarray ()

(gdb) 

0x0000000000400523 in maxarray ()

(gdb) disassemble

Dump of assembler code for function maxarray:

0x000000000040051c <maxarray+0>:        mov    $0x0,%rdx

0x0000000000400523 <maxarray+7>:        mov    (%rsi),%rax

End of assembler dump.

(gdb) 



Lab7: Writing a Simple 

Compiler

 In this lab you will write a compiler for “Simple 

C”

 This language is a reduced version of “C”. 

 We will concentrate on generating the 

assembly language code.

 We will cover superficially the theory of 

parsing and the use of Lex and Yacc  



Simple C

 Subset of C

 Only the following types are supported:

long

long*

char

char*

void

 Also it supports constructions such as if/else, while, do/while, for.

 The program consists of a declaration of functions and variables 
like in “C”.

 Also you can call “C” functions from Simple C as long as the 
arguments they use are char* and long (or int).



Example Simple “C” program

long fact(long n) {

if (n==0) return 1;

return n*fact(n-1);

}

void main()

{

printf("Factorial of 5 = %d\n" , fact(5));

}



Building a Compiler

 To help in the development of compilers, 

tools such as Lex and Yacc have been 

created.

 With these tools, the programmer 

concentrates only in the grammar and the 

code generation.



Lex

 Lex 

 takes as input a file simple.l with the regular 

expressions that describe the different tokens.

 It generates a scanner file “lex.yy.c” that reads 

characters and forms tokens or words that the 

parser uses.



Yacc

 Yacc

 Takes as input a file simple.y with the grammar 
that describes the language.

 This file also contains “actions” that is “C” code 
that describes how the code will be generated 
while parsing the code.

 It generates a parser file called “y.tab.c” that 
reads the tokens and parses the program 
according to the syntax. 

 When it reaches an action in the syntax tree, it 
executes that action



Lex and Yacc Interaction

simple.l

Parser

simple.y

Scanner

lex simple.l lex.yy.c

(lex.yy.c)

yacc simple.y y.tab.c

(y.tab.c)

m  a  i  n  (  i  n  t    a)

Input file: 

test1.c

chars:

Tokens:
WORD LPARENT INT WORD RPARENT

Output File: 

test1.s

.text

.globl main

main:



Lex Input file simple.l

 It contains the regular expressions that 

describe the different tokens

"return" {

return RETURN;

}

[A-Za-z][A-Za-z0-9]*  {

/* Assume that file names have only alpha chars */

yylval.string_val = strdup(yytext);

return WORD;

}



Yacc input file simple.y

 It contains the grammar that describes the 

language.

 It also contains actions or c code that will be 

executed after parsing specific grammar 

constructions.

 It also includes the main() entry point of the 

compiler.



Yacc input file simple.y
program :

function_or_var_list;

function_or_var_list:

function_or_var_list function

| function_or_var_list global_var

| /*empty */

;

function:

var_type WORD

{

fprintf(fasm, "\t.text\n");

fprintf(fasm, ".globl %s\n", $2);

fprintf(fasm, "%s:\n", $2);

}

LPARENT arguments RPARENT compound_statement

{

fprintf(fasm, "\tret\n");

}

;



Code generation

 You will need to add more actions to generate the 
code.

 An action is a portion of code such as
{

fprintf(fasm, "\tret\n", $2);

}

that is embedded in the grammar.

 This portion of code is executed when the parser 
reaches that point.



Parsing tree

 The parser tries to parse the inout according 

to the grammar

factlong n( long )

program

function_or_var_list

function

var_type WORD LPARENT var_type WORD RPARENT{..} {..}

{action} {action}



Generating Code for 

Expressions

 Since the compiler will only parse the sources 

once, the easiest code to generate is the 

code for a stack-based machine.

 However a stack-based machine is slow. 

 We will optimize this by using registers for the 

bottom entries of the stack.



Example of stack based 

machine

 Arithmetic expression:

4+3*8

 Equivalent in stack based machine:

push 4

push 3

push 8

*

+

4

Push 4

4

Push 3

3

4

Push 8

3

8

4

*

24

28

+



Parsing Expressions
 We need the hierarchy of logical, equality, relational, additive, 

multiplicative expressions to take into account the operator 

precedence. 

expression :

logical_or_expr

;

logical_or_expr:

logical_and_expr

| logical_or_expr OROR logical_and_expr

;

logical_and_expr:

equality_expr

| logical_and_expr ANDAND equality_expr

;



Parsing Expressions

equality_expr:

relational_expr

| equality_expr EQUALEQUAL relational_expr

| equality_expr NOTEQUAL relational_expr

;

relational_expr:

additive_expr

| relational_expr LESS additive_expr

| relational_expr GREAT additive_expr

| relational_expr LESSEQUAL additive_expr

| relational_expr GREATEQUAL additive_expr

;



Parsing Expressions

additive_expr:

multiplicative_expr

| additive_expr PLUS multiplicative_expr {

fprintf(fasm, "\t# +\n");

}

| additive_expr MINUS multiplicative_expr

;

multiplicative_expr:

primary_expr

| multiplicative_expr TIMES primary_expr {

fprintf(fasm, "\t# *\n"); 

}

| multiplicative_expr DIVIDE primary_expr

| multiplicative_expr PERCENT primary_expr

;



Parsing Expressions
primary_expr:

STRING_CONST {

// Add string to string table.

// String table will be produced later

string_table[nstrings]=$<string_val>1;

fprintf(fasm, "\tmov $string%d, %%rdi\n", nstrings);

nstrings++;

}

| call

| WORD

| WORD LBRACE expression RBRACE

| AMPERSAND WORD

| INTEGER_CONST {

fprintf(fasm, "\t# push %s\n", $<string_val>1);

}

| LPARENT expression RPARENT

;



How expressions are parsed
expression

logical_or_expr
logical_and_expr

equality_expr

relational_expr

multiplicative_expr

additive_expr

primary_expr

additive_expr                   PLUS      multiplicative_expr   {fprintf(fasm,“+”)}

INTEGER_CONST {push $1}

4
+

multiplicative_expr TIMES primary_expr

primary_expr

INTEGER_CONST {push 

$1}

3 *

{fprintf(fasm,”*”)}

INTEGER_CONST 

{push $1}
8

push 4 push 3 push 8 * +



Expressions Code Generation

 You will use a Stack Virtual Machine.

 The bottom elements in the stack will be 

stored in registers to speed up access.

 You will need to save these registers at the 

beginning of the function and restore them 

before returning.



Stack Representation
Stack Position Register/Memory

0 rbx

1 r10

2 r13

3 r14

4 r15

>=5 Use the execution stack



Stack Operations

 Depending of the stack position, the push or pop 
instruction will use a different register. 

 Example: 4+3*8
movq $4,%rbx      # push 4. Use %rbx

movq $3,%r10      # push 3. Use %r10

movq $8,%r13      # push 8. Use %r13

imulq  %r13,%r10  # * = Multiply 2 top values. 

#   Push result.

addq %r10,%rbx    # + = Add 2 top values. 

#   Push result

movq $rbx, $rax   # move result to %rax for use in 

# statements



Implementing Variables

 Your compiler will handle three type of 

variables:

 Global variables

 Local Variables

 Arguments



Implementing Declaration of 

Global Variables

 The declaration of global variables are parsed in the 
rule:
global_var:

var_type global_var_list SEMICOLON;

global_var_list: WORD

| global_var_list COMA WORD

;

 Insert the actions {…} to 
 reserve space

 add the variable to the global variable table. 



Creating Space for Global 

Variables

 Global variables are stored in the data section.

 Generate code that way:

Example: 

Simple C: 

long g;

Assembly:

.data

g:

.long 0



Getting a Value from a Global 

Variables

 The parse rule that should generate the code for getting the value of a global 
variable is:
primary_expr:

….

WORD {

char * id = $<string_val>1;

lookup id in local variables table

if id is a local var {

read local var from stack and push into stack. 
(We will see this later).

}

else {

lookup id in global var table

if id is a global var {

Generate code to read global var and push it to stack

fprintf(fasm, “movq %s, %s\n”, id, regStk[top]);

top++;

}

}

…



Saving into a global variable

 Storing into a global variable is implemented in the following rule
assignment:

WORD EQUAL expression {

// Code for a assignment

char * id = $<string_val>1;

if (id is local var) {

// we will see later

}

else if (id is a global var) {

// Generate code to save top of the stack

// in global var

fprintf(fasm, “movq %rbx,%s\n”, id);

top = 0;

}

}



Getting a Value from a Global 

Variables

 Example:

Simple C:

x = 5 + g;

Assembly

movq $5, %rbx    # push 5

movq g,%r10      # push g (printed by code 

#         shown before)

addq %r10,%rbx   # add and push result

#    to top of stack

movq %rbx, x     # Save result into x



Implementing Declaration of 

Local Variables

 Declaration of local variables should be done 

in the production
local_var:

var_type local_var_list SEMICOLON;

local_var_list: WORD

| local_var_list COMA WORD

;



Implementing Declaration of 

Local Variables

 Local variables are stored in the stack. 

 We need to reserve stack space at the 
beginning of the function using 
 subq $<space>, %rsp

 Where <space> is the space reserved that 
needs to be restored before leaving the 
function.

 We do not know how much space two 
reserve.



Implementing Declaration of 

Local Variables

 Two approaches:

 Reserve a constant maximum stack space all the 
time Example: 256 bytes, enough for 32 
variables.

 Instead of reserving, jump to a code at the end of 
the function that reserves the stack once we know 
the space we need and then jump back.

 The second approach is better but both 
approaches are OK for the purpose of this 
project.



Implementing Declaration of 

Local Variables

 Remember that the argument registers are 

overwritten during a function call.

 You need to save the argument registers in 

the stack at the beginning of the function.

 Hint: 

 Add the arguments to the local variable table at 

the beginning of the function and treat the 

arguments as local variables.



Implementing Declaration of 

Local Variables

Example:

long add(long a, long b) {

int c,d;

c = 5;

d = c + a*b;

return d;

}

a

b

c

d

Stack

1256 (original sp)

1000 (new sp)

1008

1016

1024

To push c to top of 

register stack:

movq 16(%rsp),$rbx



Implementing Declaration of 

Local Variables

local_var_list: WORD { 

// first local variable

local_vars_table[nlocals]=$<string_val>;

nlocals++;

}

| local_var_list COMA WORD {

local_vars_table[nlocals]=$<string_val>;

nlocals++;

}



Generating code for while()

long i = 0;

main()

{

while (i<5) {

i= i + 1;

printf("%d\n", i);

}

}



Generating code for while()
.data

i:                                                  # long i = 0 ; 

.long 0

.text

.globl main

main:

#while (i<5) {

while_1: #    expression i<5

movq i, %rbx            # push i

movq $5, %r10 # push 5

cmpq %r10,%rbx # compare top of the stack (rbx-r10)

movq $0,%rax # Zero %rax

setl %al # Set byte if less

# See http://www.amd.com/us-en/assets/content_type/

white_papers_and_tech_docs/24592.pdf page 55

movq %rax,%rbx # Put result back to top

cmpq $0, %rbx # Compare top of the stack with 0

je after_while_1 # Jump after while if not true



Generating code for while()
# Body of while

movq i,%rbx           #   i = i+1
movq $1,%r10

addq %r10,%rbx

movq %rbx,i

#   printf("%d\n,i) ;

movq $str1, %rbx # Arg1 of printf

movq %rbx, %rdi

movq i,%rbx # Arg2 of printf

movq %rbx, %rsi

movq $0,%rax # Extra 0s for printf

call printf # Call printf

jmp while_1      # } // while

after_while_1:

ret

.text

str1:
.string "i=%d\n"



Passing Arguments for Calls

 When parsing argument to calls let the parser 

push the expressions to the register stack.

 Do not initialize top at every argument.

 The arguments will be saved in the register 

stack until they are copied to the register 

arguments. 



Parsing Arguments for Calls
Simple C:

printf(“compute(3,4)=%d\n”, compute(3,4));

Assembly:

movq string0, %rbx # push string0  - printf’s arg1 

movq $3, $r10      # push 3        - compute’s arg1

movq $4, $r13      # push 4        - compute’s arg2

# Copy from stack to arg regs top==3

movq $r13, $rsi    # pop into register for arg2  top==2

movq $r10, $rdi    # pop into register for arg1  top==1

call compute

movq %rax, %r10    # Push return val to stack    top==2

movq $r10, $rsi    # pop into register for arg2  top==2

movq $rbx, $rdi    # pop into register for arg1  top==1

movl $0, %eax      # Call printf

call printf            



Parsing Arguments for Calls

 The problem with nested calls is that a single 
“nargs” variable sis not enough to keep count of the 
number of arguments.

 The solution is to store an “nargs” into the 
call_arg_list nonterminal to make the nargs local to 
the function parsed.

 In %union add:
%union {

char   *string_val;

int    nargs;

}

 This will allow adding a new type



Parsing Arguments for Calls

 Modify call_arg_list to count the arguments. The $<nargs>$ stores a 
variable nargs local to this rule inside the non-terminal expression that can 
be used later.

call_arg_list:

expression {

$<nargs>$ = 1; // Initialize args to 1

}

| call_arg_list COMA expression {

$<nargs>$++;

};

call_arguments:  /* Pass up number of args */

call_arg_list { $<nargs>$=$<nargs>1;}

| /*empty*/ { $<nargs>$=0;}

;



Parsing Arguments for Calls
call :

WORD LPARENT  call_arguments RPARENT {

int i;

char * funcName = $<string_val>1;

if (!strcmp(funcName, "printf")) {

// printf has a variable number of args

fprintf(fasm, "\tmovl    $0, %%eax\n");

}

// Move from top of stack to argument registers

fprintf(fasm, "    #Push arguments to stack\n");

for (i=$<nargs>3-1; i>=0; i--) {

top--;

fprintf(fasm, "\tmovq %%%s, %%%s\n",

regStk[top],

regArgs[i]); 

}

fprintf(fasm, "\tcall %s\n", funcName);

}

;



Virtual Memory Introduction

 VM allows running processes that have memory 
requirements larger than available RAM to run in the 
computer.

 If the following processes are running with the noted 
requirements: 
 IE (100MB), 

 MSWord (100MB), 

 Yahoo Messenger (30MB)

 Operating System (200MB).

 This would require 430MB of memory when there 
may only be 256MB of RAM available



Virtual Memory Introduction

 VM only keeps in RAM the memory that is 

currently in use.

 The remaining memory is kept in disk in a 

special file called "swap space"

 The VM idea was created by Peter Dening a 

former head of the CS Department at Purdue



Other Uses of Virtual Memory

 Another goal of VM is to speed up some of the tasks 
in the OS for example:
 Loading a program. The VM will load pages of the 

program as they are needed, instead of loading the 
program all at once.

 During fork the child gets a copy of the memory of the 
parent. However, parent and child will use the same 
memory as long as it is not modified, making the fork call 
faster. This is called “copy-on-write”.

 Shared Libraries across processes.

 Shared memory

 There are other examples that we will cover later.



VM Implementations

 Process Swapping:
 The entire memory of the process is swapped in and out 

of memory

 Segment Swapping
 Entire parts of the program (process) are swapped in 

and out of memory (libraries, text, data, bss, etc.

 Problems of process swapping and segment swapping 
is that the granularity was too big and some pieces still 
in use could be swapped out together with the pieces 
that were not in use.

 Paging
 Used by modern OSs. Covered in detail here.



Paging

 Implementation of VM used by modern operating 
systems.

 The unit of memory that is swapped in and out is a 
page

 Paging divides the memory in pages of fixed size.

 Usually the size of a page is 4KB in the Pentium 
(x86) architecture and 8KB in the Sparc Ultra 
Architecture.



Paging

Address in 

bytes

0

4096

8192

232-1=4G-1

.

.

.

VM Address 

in pages 

(page 

numbers)

0

1

2

0x00000000

0x00001000

0x00002000

0xFFFFFFFF
232/4KB-1 =220-1=2M-1

RAM page 5

Swap page 456

RAM page 24

RAM page 10

RAM page 3

Swap page 500

Executable page 2 

Not mapped(invalid)



Paging

 The Virtual Memory system will keep in 

memory the pages that are currently in use.

 It will leave in disk the memory that is not in 

use.



Backing Store

 Every page in the address space is backed 

by a file in disk, called backing-store

Memory Section Backing Store

Text Executable File

Data Executable File when page is 

not not modified. 

Swap space when page is 

modified

BSS Swap Space

Stack Swap Space

Heap Swap Space



Swap Space

 Swap space is a designated area in disk that 

is used by the VM system to store transient 

data.

 In general any section in memory that is not 

persistent and will go away when the process 

exits is stored in swap space.

 Examples: Stack, Heap, BSS, modified data 

etc.



Swap Space

lore 208 $ df -k

Filesystem            kbytes    used   avail capacity  Mounted on

/dev/dsk/c0t0d0s0    1032130  275238  705286    29%    /

/proc                      0       0       0     0%    /proc

mnttab                     0       0       0     0%    /etc/mnttab

fd                         0       0       0     0%    /dev/fd

/dev/dsk/c0t0d0s4    2064277 1402102  600247    71%    /var

swap                  204800    2544  202256     2%    /tmp

/dev/dsk/c0t2d0s6    15493995 11682398 3656658    77%    /.lore/u92

/dev/dsk/c0t3d0s6    12386458 10850090 1412504    89%    /.lore/u96

/dev/dsk/c0t1d0s7    15483618 11855548 3473234    78%    /.lore/u97

bors-2:/p8           12387148 8149611 4113666    67%    /.bors-2/p8

bors-2:/p4           20647693 11001139 9440078    54%    /.bors-2/p4

xinuserver:/u3       8744805 7433481 1223876    86%    /.xinuserver/u3

galt:/home           5161990 2739404 2370967    54%    /.galt/home

xinuserver:/u57      15481270 4581987 10775435    30%    /.xinuserver/u57

lucan:/p24           3024579 2317975  676359    78%    /.lucan/p24

ector:/pnews         8263373  359181 7821559     5%    /.ector/pnews



Swap Space

lore 206 $ /usr/sbin/swap -s

total: 971192k bytes allocated + 1851648k reserved = 

2822840k used, 2063640k available

lore 207 $ /usr/sbin/swap -l

swapfile             dev  swaplo blocks   free

/dev/dsk/c0t0d0s1   32,1025     16 2097392 1993280

/dev/dsk/c0t1d0s1   32,1033     16 2097392 2001792



Implementation of Paging

 Paging adds an extra indirection to memory 

access.

 This indirection is implemented in hardware, so it 

does not have excessive execution overhead.

 The Memory Management Unit (MMU) translates 

Virtual Memory Addresses (vmaddr) to physical 

memory addresses (phaddr).

 The MMU uses a page table to do this 

translation.



Paging

 There are two types of addresses:

 Virtual Memory Addresses: the address that the 

CPU is using. Addresses used by programs are of 

this type.

 Physical Memory Addresses: The addresses of 

RAM pages. This is the hardware address.

 The MMU translates the Virtual memory 

addresses to physical memory addresses



The Memory Management Unit

CPU

Memory 

Cache

Memory 

Management 

Unit (MMU)

Translation Look-

Aside Buffer (TLB)

Page Table 

Register

Page Table

RAM

I/O

Address Bus

Data Bus

VM 

Address

Physical 

(hardware) 

Address



The Memory Management Unit

 The MMU has a Page Table Register that points to 

the current page table that will be used for the 

translation.

 Each process has a its own page table.

 The page table register is updated during a context 

switch from one process to the other. 

 The page table has the information of the memory 

ranges that are valid in a process



The Memory Management Unit

 The value of the page table register

changes every time there is a context switch 

from one process to another.

 Consecutive pages in Virtual memory may 

correspond to non-consecutive pages in 

physical memory.



The Memory Management Unit

 To prevent looking up the page table at every 

memory access, the most recent translations 

are stored in the Translation Look-Aside 

buffer (TLB).

 The TLB speeds up the translation from 

virtual to physical memory addresses.

 A page fault is an interrupt generated by the 

MMU



VM to Hardware Address 

Translation

 The VM address is divided into two parts:
 Page number (higher 20 bits)

 Offset (Lower 12 bits: 0-4095) (Assuming page 
size=4096 or 212)

 Only the page number is translated. The offset 
remains the same

 Example: in 0x2345, the last 3 hex digits (12 bits) 
is the offset: 0x345. The remaining digits is the 
page number (20 bits): 0x2

31                      12 11       0

Page number Offset



VM to Hardware Address 

Translation

Page 

Number
Offset

VM Address

Page Table

Page 

Number
Offset

Hardware Address

0

1

2

…

232/212-1 =

220-1

789

625

367

429



VM to Hardware Address 

Translation (one-level page 

table)

0x2 0x345

VM Address 0x2345

Page Table

0x345

Hardware Address

0

1

2

…

232/212-1 =

220-1

0x789

0x625

0x767

0x429

Page Number Page Number OffsetOffset

0x767

VMaddr=0x2345 

pagenum=0x2 

offset=0x345

haddr=0x767345 

pagenum=0x767 

offset=0x345



Two-Level page tables

 Using a one-level page table requires too 

much space: 220 entries * 4 bytes/entry =~ 

4MB.

 Since the virtual memory address has a lot of 

gaps, most of these entries will be unused.

 Modern architectures use a multi-level page 

table to reduce the space needed



Two-Level page tables

 The page number is divided into two parts: first-
level page  number and the second-level page 
number

 Example: VM address:0x00402657

 Offset=0x657 (last 3 hex digits)

 1st level index (i) = 0x1 , 2nd level index (j)= 0x2

First-level index 

(i) (10 bits)

Second-level 

index (j) (10 bits)
Offset (12 bits)

First level Second level Offset

0000 0000 0100 0000 0010 0110 0101 0111



VM Address Translation

VM address

1st level 

(i)

2nd 

level (j)
offset

31    22 21    12 11     0

First Level Page Table 

(one for each process).

Second Level Page Tables 

(multiple tables for each 

process.)

i 0x45000

0x70000

0

210-1 0x45000

0x45000

0x70000

0x45000

2
4

5
7

10
9

0
1

2

3

4

5

6

7

8

9

10

11

Page Number 

Physical Mem



VM Address Translation

VM address:0x00402657

i=0x1

2nd level offset

31    22 21    12 11     0

First Level 

Page Table

Second Level 

Page Tables

0x70000

0x45000

0

210-1 0x65000

0x65000

0x70000

0x45000

2
4

5
7

9

0
1

2

3

4

5

6

7

8

9

…

Page Number 

Physical Mem

Page number in 

physical 

address=0x2

1st level

j=0x2 0x657

1

1

2

i

j

210-1



Example

 VMaddress: 0x00402 657

 Physical Memory Address: 0x2 657

1.From the VM address find i, j, offset

2. SecondLevelPageTable= FirstLevelPageTable[i]

3. PhysMemPageNumber = SecondLevelPageTable[j]

4. PhysMemAddr= PhysMemPageNum*Pagesize + offset

 Process always have a first-level page table

 Second level page tables are allocated as needed.

 Both the first level and second level page tables 
use 4KB.



Page Bits

 Each entry in the page table needs only 20 bits to store 
the page number. The remaining 12 bits are used to 
store characteristics of the page. 
 Resident Bit:

 Page is resident in RAM instead of swap space/file. 

 Modified Bit:

Page has been modified since the last time the bit was cleared. 
Set by the MMU.

 Access Bit:

 Page has been read since the last time the bit was cleared. Set 
by MMU

 Permission:
Read  page is readable

Write  Page is writable

Execute  Page can be executed (MMU enforces permissions)



Page Bits

 If a CPU operation exceeds the permissions 
of a page, the MMU will generate an interrupt 
(page fault). The interrupt may be translated 
into a signal (SEGV, SIGBUS) to the process. 

 If a page is accessed and the page is not 
resident in RAM, the MMU generates an 
interrupt to the kernel and the kernel loads 
that page from disk. 



Types of Page Fault

 Page Fault 
 Page not Resident: Page not in Physical Memory, it is in 

disk 

 Protection Violation: Write or Access permission (as 

indicated by page bits) violated. 



Processing a Page Fault

1. A program tries to read/write a location in 
memory that is in a non-resident page. This could 
happen when:

fetching the next instruction to execute or 

trying to read/write memory not resident in RAM

2. The MMU tries to look up the VM address and 
finds that the page is not resident using the 
resident bit. Then the MMU generates a page 
fault, that is an interrupt from the MMU

3. Save return address and registers in the stack



Processing a Page Fault

4. The CPU looks up the interrupt handler that 
corresponds to the page fault in the interrupt vector 
and jumps to this interrupt handler

5. In the page fault handler

If the VM address corresponds to a page that is not 
valid for this process, then generate a SEGV signal 
to the process. The default behavior for SEGV is to 
kill the process and dump core

Otherwise, if VM address is in a valid page, then the 
page has to be loaded from disk.



Processing a Page Fault

6. Find a free page in physical memory.  If there are no 

free pages, then use one that is in use and write to 

disk if modified

7. Load the page from disk and update the page table 

with the address of the page replaced. Also, clear 

the modified and access bits

8. Restore registers, return and retry the offending 

instruction



Processing a Page Fault

 The page fault handler retries the offending 

instruction at the end of the page fault

 The page fault is completely transparent to 

the program, that is, the program will have no 

knowledge that the page fault occurred.



Using mmap

 The mmap() function  establishes  a  mapping   between   a  
process's  address space and a file or shared memory 
object.

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, 

int flags, int fildes, off_t off);

 Mmap returns the address of the memory mapping and it 
will be always aligned to a page size (addr%PageSize==0).

 The data in the file can be read/written as if it were memory.



Using mmap

Memory

0x00000000

0xFFFFFFFF

Disk

File

mmapptr=

0x00020000

ptr = mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)



Mmap parameters

void *mmap(void *addr, size_t len, int prot, 

int flags, int fildes, off_t off);

addr –

Suggested address. If NULL is passed the OS will choose the 

address of the mapping.

len –

Length of the memory mapping. The mmaped file should have 

this length of larger or the program gets SEGV on access.

prot –

Protections of the mapping: PROT_READ, PROT_WRITE, 

PROT_EXEC, PROT_NONE.



Mmap parameters

flags: - Semantics of the mapping:

MAP_SHARED – Changes in memory will be done in the file

MAP_PRIVATE – Changes in memory will be kept private to the process 
and will not be reflected in the file. This is called “copy-on-
write” 

MAP_FIXED – Force to use “addr” as is without changing. You should 
know what you are doing since the memory may be already in use. 
Used by loaders

MAP_NORESERVE– Do not reserve swap space in 

advance. Allocate swap space as needed.

MAP_ANON – Anonimous mapping. Do not use any fd (file).    

Use swap as the backing store. This option

is used to allocate memory

Fd –

The file descriptor of the file that will be memory mapped. Pass –1 
if MAP_ANON is used.

Offset –

Offset in the file where the mapping will start. It has to be a 
multiple of a page size.

Mmap returns MAP_FAILED ((void*)-1) if there is a failure. 



Notes on mmap

 Writing in memory of a memory-mapped file will 
also update the file in the disk.

 Updating the disk will not happen immediately. 

 The OS will cache the change until it is 
necessary to flush the changes.
 When the file is closed

 Periodically (every 30secs or so)

 When the command “sync” is typed

 If you try to read the value from the file of a page 
that has not been flushed to disk, the OS will give 
you the most recent value from the memory 
instead of the disk.



Uses of VM

 The VM is not only to be able to run programs that 
use more memory than the RAM available.

 VM also speeds up the execution of programs:
1. Mmap the text segment of an executable or shared 

library

2. Mmap the data segment of a program

3. Use of VM during fork to copy memory of the parent into 
the child

4. Allocate zero-initialized memory. it is used to allocate 
space for bss, stack and sbrk()

5. Shared Memory



1. Mmap the text segment of 

an executable or a shared 

library
 initially mmap does not read any pages 

 any pages will be loaded on demand when they are 

accessed 

 startup time is fast because only the pages needed 

will be loaded instead of the entire program 

 It also saves RAM because only the portions of the 

program that are needed will be in RAM 



1. Mmap the text segment of 

an executable or a shared 

library

 Physical pages where the text segment is 

stored is shared by multiple instances of the 

same program.

 Protections: PROT_READ|PROT_EXEC

 Flags: MAP_PRIVATE



1. Mmap the text segment of 

an executable or a shared 

library

Virtual 

Memory

0x00000000

0xFFFFFFFF

Disk

text

mmap

0x00020000
text

Executable File 



1. Mmap the text segment of 

an executable or a shared 

library

Physical 

Memory

text
text

Process 1 

Virtual 

Memory

Process 2 

Virtual 

Memory

text

Physical Pages of the text section are shared across multiple 

processes running the same program/shared library.



2. Mmap the data segment of a 

program

 During the loading of a program, the OS mmaps the 
data segment of the program

 The data segment contains initialized global 
variables.

 Multiple instances of the same program will share 
the same physical memory pages where the data 
segment is mapped as long as the page is not 
modified 

 If a page is modified, the OS will create a copy of 
the page and make the change in the copy. This is 
called "copy on write" 



2. Mmap the data segment of a 

program

.

Physical 

Memory

Process 1 

Virtual 

Memory

Process 2 

Virtual 

Memory

Data page A

Data page B

Data page C

Data page A

Data page B

Data page C

Data page A

Data page B

Data page C

Processes running the same program will share the same 

unmodified physical pages of the data segment



2. Mmap the data segment of a 

program

.

Physical 

Memory

Process 1 

Virtual 

Memory

Process 2 

Virtual 

Memory

Data page A

Data page B

Data page C

Data page A*

Data page B

Data page C

Data page A

Data page B

Data page C

When a process modifies a page, it creates a private copy 

(A*). This is called copy-on-write.

Data page A*



3. Use of VM during fork to copy memory of 

the parent into the child

 After forking, the child gets a copy of the memory of 

the parent 

 Both parent and child share the same RAM pages 

(physical memory) as long as they are not modified 

 When a page is modified by either parent or child, 

the OS will create a copy of the page in RAM and 

will do the modifications on the copy 



3. Use of VM during fork to copy memory of 

the parent into the child

 The copy on write in fork is accomplished by 

making the common pages read-only. 

 The OS will catch the modifications during 

the page fault and it will create a copy and 

update the page table of the writing process.

 Then it will retry the modify instruction. 



3. Use of VM during fork to copy memory of 

the parent into the child

.

Physical 

Memory

Parent’s 

Virtual 

Memory

Child’s 

Virtual 

Memory

page A

page B

page C

page A

page B

page C

page A

page B

page C

After fork() both parent and child will use the same pages



3. Use of VM during fork to copy memory of 

the parent into the child

.

Physical 

Memory

Parent’s 

Virtual 

Memory

Child’s 

Virtual 

Memory

page A

page B

page C

page A*

page B

page C

page A

page B

page C

When the chhild or parent modifies a page, the OS creates a 

private copy (A*) for the process. This is called copy-on-write.

page A*



4. Allocate zero-initialized 

memory.

 It is used to allocate space for bss, stack and 
sbrk()

 When allocating memory using sbrk or map with 
the MMAP_ANON flag, all the VM pages in this 
mapping will map to a single page in RAM that 
has zeroes and that is read only.

 When a page is modified the OS creates a copy 
of the page (copy on write) and retries the 
modifying instruction

 This allows fast allocation. No RAM is initialized 
to O’s until the page is modified

 This also saves RAM. only modified pages use 
RAM.



4. Allocate zero-initialized 

memory.

 This is implemented by making the entries in the 
same page table point to a page with 0s and making 
the pages read only.

 An instruction that tries to modify the page will get a 
page fault.

 The page fault allocates another physical page with 
0’s and updates the page table to point to it.

 The instruction is retried and the program continues 
as it never happened.



4. Allocate zero-initialized 

memory.

.

Physical 

Memory

Parent’s 

Virtual 

Memory

0’s

page A 0’s

page B 0’s

page C 0’s

After allocating zero initialized memory with sbrk or mmap, 

all pages point to a single page with zeroes



4. Allocate zero-initialized 

memory.

.

Physical 

Memory

Parent’s 

Virtual 

Memory

0’s

page A 0’s

page B X

page C 0’s

When a page is modified, the page creates a copy of the 

page and the modification is done in the copy.

page B X



5. Shared Memory

 Processes may communicate using shared 

memory

 Both processes share the same physical 

pages

 A modification in one page by one process 

will be reflected by a change in the same 

page in the other process.



5. Shared Memory

Physical 

Memory

Process 1

page A

page B

page C

page A

page B

page C

page A

page B

page C

Processes that communicate using shared memory will share 

the same physical pages.

Process 2



5. Shared Memory

Physical 

Memory

Process 1

page A X

page B

page C

page A X

page B

page C

page A X

page B

page C

When a page is modifed, the change will be reflected in the 

other process.

Process 2



Cache and Caching

 Continue Book Class slides

 http://www.cs.purdue.edu/homes/cs250/Lectu

reNotes/book-slides.pdf

 Chapters XII, XIII, XIV, XV, XVI, XVII (12 , 

13, 14, 15, 16 and 17).

http://www.cs.purdue.edu/homes/cs250/LectureNotes/book-slides.pdf


Final Exam Review



Final Exam Review

 VIII. Assembly Language and Programming 
 X86-Assembly Language

 Register Assignment

 Addressing Modes

 Using the stack

 Calling Conventions

 Flow Control

 IX. Memory and Storage
 Volatile, Non-volatile,

 Random Access and Sequential Access

 ROM, PROM, EEPROM

 Memory Hierarchy

 XI. Virtual Memory
 MMU, 

 Phyicaland VM Address Memory

 Address Translation

 Two-level page table

 Page Bits

 Page faults

 TLB’s

 Row major and column major computations



Final Exam Review

 XII Caches and Caching
 Importance of Caching

 Cache hit and cache miss

 Locality of reference

 Worst /Best/Average case cache performance

 Hit /Miss ratio

 Multiple levels of cache

 Preloading caches

 Write-through and write back cache

 L1, L2, L3 cache

 Direct mapping and set associative cache



Final Exam Review

 XIII Input/Output Concepts and Terminology
 Parallel Interface / Serial Interface

 Data Multiplexing

 XIV Buses and Bus Architecture

 XV Programmed and Interrupt-Driven I/O
 Polling ad Interrupts

 Handling an Interrupt

 Interrupt Vector

 Multple levels of interrupts

 DMA

 Buffer chaining and Scatter Read and Gather Write



Final Exam Review

 XVI.  A Programmers View of I/O and 

Buffering

 Upper Half and Lower Half of a Device Driver

 Character oriented and block oriented devices

 Buffered input and output.



Final Material to Study 

 New Slides

 Old slides 

 Everything up to and including chapter XIX in the 

book.

 Projects 

 X86-64 

 Assembly Programming materials

 I will ask code fragments of the compiler project.



Extra Slides



PIC 18 Introduction



PIC18

 In the labs you will use the PIC18

 This is a 8 bit processor that provides 

 Digital I/O

 Analog to Digital Conversion

 Pulse Width Modulation

 USB support

 RS232 (Serial Line)

 Data Sheet of PIC18:
 http://ww1.microchip.com/downloads/en/DeviceDoc/39632e.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/39632e.pdf


PIC18 

 It follows a Harvard Architecture, that is, 

code and data are stored in separate 

memory.

 Code - 32KB

 Data - 4KB

 Instructions can be 2 or 4 byte long.

 The data word is 1 byte.



Data Memory

 RAM is 4KB or 212

 Therefore, pointers are 12 bits long

 The memory is divided into 16 banks. 

 Each bank is 256 bytes long.

 That is 16x256=4KB





Memory Addresses

 The instructions that access data use a 
reduced pointer that is 8 bits long (0 to 255) 

 The remaining 4 highest bits are specified by 
the argument “a” in each instruction.

 If a=0 the address refers to the “Access Bank” 
that uses bank 0 for 0x00 to 0x5F and 0x60 to 
0xFF from bank 15.

 If a=1, the 4 highest bits are contained in a 
register called BSR (Bank Selection Register)

 99% of the time a=0 in your programs. 



Special Function Registers and 

General Function Registers

 The data memory is divided into

 SFRs – Special Function Registers. Used for 

control and status of the processor.

 GPRs – General Purpose Registers. Used to 

store temporal results in user application.





Working Register (WREG) 

 Most arithmetic and logical operations use a 

register called Working Register or WREG.



Processor Status Register 

(PSR)

 This is a register that contains the status of the 
Arithmetic Logical Unit.

 It is separated in bits
 N – Negative bit. Turns to 1 if the result of the last 

operation was negative (highest bit is 1).

 OV – Overflow bit. Last operation in ALU results in an 
overflow.

 Z – Zero bit. Last operation in ALU resulted in 0.

 C – Carry or Borrow. Set to 1 if addition resulted in carry or 
borrow.

 Also the PSR is used in multiple branch instructions.



Digital Input/Output

 PORTA, PORTB, PORTC, PORTD

 They are the registers that are mapped to the 

inputs/outputs of the PIC18.

 Each bit in the port is identified as RA0, RA1 …RA7, RB1, 

RB2…RB7 and so on,

 TRISA, TRISB, TRISC, TRISD 

 Used to configure ports as input/output.

 Each bit can be configured to be a digital input or output..

 0 – Output

 1 – Input



Digital Input/Output

 When configured PORTA as output for 

example

 0 in bit RA0 of PORTA gives 0V in terminal RA0

 1 in bit RA0 of PORTA gives +5V in terminal RA0

 When configured PORTA as input,

 0V in terminal RA0 can be read as 0 in bit RA0 of 

PORTA

 +5V in terminal RA0 can be read as 1 in bit RA0 

of PORTA



Minimum PIC18



Addressing Modes

 Inherent (Immediate)
 Used in instructions that do not need an argument such as 

SLEEP and RESET 

 Literal
 Used in instructions that specify a numeric constant such 

as “MOVLW 0x40” that loads 0x40 in WREG

 Direct
 Used in instructions that need an address as argument 

such as “MOVWF 0x080” that moves WREG into 080. 

 Indirect
 A register or memory location contains the address of the 

source or destination.



Indirect Addressing 

 It uses the FSR registers and the INDF operand.

 There are four registers: 

 FSR0, FSR1, FSR2, FSR3, and the corresponding 

 INDF0, INDF1, INDF2, INDF3.

 INDF0 to INDF3 are “virtual registers”. 

 A read from INDF2 for example, reads the register 

at the address stored in FSR2.

 Since FSRs is 12 registers long, you can use 

FSRL(lower byte) and FSRH(higher 4 bits) for the 

instructions.



Byte Operations

d = 0 means destination is WREG. 

d = 1 means destination is a file register and it is the default.

a is the access bank. By default it is 0.

 ADDWF f,d,a - Add W to f where d=0->W, d=1->f, a is generally 
not specified (access bank stuff) 

 ADDWFC f,d,a - Add W and Carry bit to f 

 ANDWF f,d,a - And W with f 

 CLRF f,a Clear f 

 COMF f,a Complement f 

 CPFSEQ Compare, skip if f==W

 CPFSGT Compare, skip if f > W 

 CPFSLT Compare, skip if f < W 



Byte Operations (cont.)

 DECF f,d,a Decrement f 

 DECFSZ f,d,a Dec f, skip if 0 

 DCFSNZ f,d,a Dec f, skip if not 0 

 INCF f,d,a Increment f 

 INCFSZ f,d,a Increment f, skip if zero

 INFSNZ f,d,a Increment f, skip if not zero 

 IORWF f inclusive-OR W with f 

 MOVF f,d,a Move f (usually to W) 

 MOVFF f,ff Move f to ff 

 MOVWF f,a Move W to f 

 MULWF f,a W x f 



Byte Operations (cont.)

 NEGF f,a Negate f 

 RLCF f,d,a Rotate left f thru Carry (not-quite multiply by 2 with 
carry) 

 RLNCF f,d,a Rotate left (no carry) 

 RRCF f,d,a Rotate right through Carry 

 RRNCF f,d,a Rotate right f (no carry) 

 SETF f,a Set f = 0xff 

 SUBFWB f,d,a Subtract f from w with Borrow

 SUBWF f,d,a Subtract W from f 

 SUBWFB f,d,a Subtract W from f with Borrow 

 SWAPF f,d,a Swap nibbles of f 

 XORWF f,d,a W XOR f 



Bit Operations (cont.)

 BCF f,b,a Bit clear, bit is indexed 0 to 7 

 BSF f,b,a Bit set 

 BTFSC f,b,a Bit test, skip if clear 

 BTFSS f,b,a Bit test, skip if set 

 BTG f,b,a Bit toggle 



Control Operations (cont.)

 BC n Branch if Carry, n is either a relative or a direct 
address 

 BN n Branch if Negative 

 BNC n Branch if Not Carry 

 BNN n Branch if Not Negative 

 BNOV n Branch if Not Overflow 

 BNZ n Branch if Not Zero 

 BOV n Branch if Overflow 

 BRA n Branch Unconditionally 

 BZ n Branch if Zero CALL n, s Call Subroutine 



Control Operations (cont.)

 CLRWDT Clear Watchdog Timer 

 DAW Decimal Adjust W 

 GOTO n Go to address 

 NOP No operation 

 POP Pop top of return stack (TOS) 

 PUSH Push top of return stack (TOS) 

 RCALL n Relative Call 

 RESET Software device reset 

 RETFIE Return from Interrupt and Enable Interrupts

 RETURN s Return from subroutine 

 SLEEP Enter SLEEP Mode 



Operations with Literals (constants)

 ADDLW kk Add literal to W 

 ANDLW kk And literal with W 

 IORLW kk Incl-OR literal with W 

 LFSR r,kk Move literal (12 bit) 2nd word to FSRr 1st 
word 

 MOVLB k Move literal to BSR<3:0> 

 MOVLW kk Move literal to W 

 MULLW kk Multiply literal with W 

 RETLW kk Return with literal in W 

 SUBLW kk Subtract W from literal 

 XORLW kk XOR literal with W 



Common PIC Assembler 

Constructions

 Including the PIC18 constant defined values

 Add  

#include “P18f4550.INC”

at the beginning of the file

 In this way you can specify PORTC instead of 

0xF82 when specifying names of registers



Defining a variable

 To define space for a variable use “res”. 

Delay1 res 2 

 This defines a variable called Delay1 that will 

take 2 bytes.

 Make sure that it is at the beginning of the 

line.



Using registers

 Loading a constant into WREG

MOVLW 0x40

 Moving the value from a register to WREG

MOVF reg,0

 Moving the value of WREG into a register

MOVWF reg

 Moving the value of a register reg1 to reg2

MOVFF reg1, reg2



Adding and Subtracting

 Add reg1 and reg2. Put result in reg1
MOVF reg1,0 ; WREG = reg1

ADDWF reg2,0; WREG = WREG + reg2

MOVWF reg1  ; reg1 = WREG

 Subtract reg2 - reg1. Put result in reg2
MOVF reg1,0 ; WREG = reg1

SUBWF reg2,0; WREG = reg2-WREG

MOVWF reg2  ; reg2 = WREG



Subroutines
 To call a subroutine

…

CALL foo ; Calling subroutine foo

…

…

 To define a subroutine

foo  ; Defintion of foo

…

RETURN ; Return from subroutine



If/else statements

 If (reg1 == 0x40) {XXX} else { YYY}

MOVLW 0x40; WREG = reg1

CPFSEQ reg1

GOTO elsepart

….; XXX Then part

GOTO endifpart

elsepart

… ; YYY else part

endifpart



Using Arrays

 Arrays are implemented using Indirect Indexing

 Defining an array of bytes called “myArray” of 4 elements:

myArray res 4

 Initializing array:

MOVLW 0xFE ; myArray[0]=0xFE

MOVWF myArray 

MOVLW 0xFD ; myArray[1]=0xFD 

MOVWF myArray +1

MOVLW 0xFB        ; myArray[2]=0xFB 

MOVWF myArray +2

MOVLW 0xF7        ; myArray[3]=0xF7 

MOVWF myArray +3;



Using Arrays

 Indexing the Array myArray[i]. 

 Address is stored in FSR0 and then it is 
dereferenced from INDF0

LFSR 0, myArray ; Load array address in FSR0

MOVF i,0        ; Load the value of i into WREG

ADDWF FSR0L,1   ; Add myArray and i to get address 

; of ith element.

MOVF INDF0,0    ; The ith element can be read

; from INDF0. Read it and put 

; it into WREG. WREG=myArray[i]

MOVWF PORTB     ; Now do something with it like 

; writing it to PORTB



Simple Program. LED Blink
#include "P18f4550.INC"

CONFIG WDT=OFF; disable watchdog timer
CONFIG MCLRE = ON; MCLEAR Pin on
CONFIG DEBUG = ON; Enable Debug Mode
CONFIG LVP = OFF; Low-Voltage programming disabled (necessary for debugging)
CONFIG FOSC = INTOSCIO_EC;Internal oscillator, port function on RA6

org 0; start code at 0

Delay1 res 2 ;reserve space for the variable Delay1

Delay2 res 2 ;reserve space for the variable Delay2

Start:
CLRF PORTD ; Clear all D outputs
CLRF TRISD ; Make output all the bits in D
CLRF Delay1 ; Initialize both counters with 0s.
CLRF Delay2

MainLoop:
BTG PORTD,RD1 ;Toggle PORT D PIN 1 (20)

Delay:
DECFSZ Delay1,1 ;Decrement Delay1 by 1, skip next instruction if Delay1 is 0

;Delay1 will be decremented 256 times before skipping
GOTO Delay 
DECFSZ Delay2,1 ;Decrement Delay2 by 1, skip next instruction if Delay2 is 0

;Delay1 will be decremented 256 times before skipping.
GOTO Delay
GOTO MainLoop
end



Another Example. Rotate Segments

#include "P18f4550.INC"

CONFIG WDT=OFF; disable watchdog timer
CONFIG MCLRE = ON; MCLEAR Pin on
CONFIG DEBUG = ON; Enable Debug Mode
CONFIG LVP = OFF; Low-Voltage programming disabled (necessary for debugging)
CONFIG FOSC = INTOSCIO_EC;Internal oscillator, port function on RA6

org 0; start code at 0

Delay1 res 2 ; variable Delay1

Delay2 res 2 ; variable Delay2

Delay3 res 2 ; variable Delay3

Start:
CLRF PORTD ; Initialize with 0's output D. 
CLRF TRISD ; Make port D output
CLRF Delay1; Clear delay variables
CLRF Delay2

SETF TRISC ; Make port c an input

MOVLW H'40' ; Initialize delay3 to 0x40. This is the delay used to rotate the segments.
MOVWF Delay3

BSF PORTD,RD0 ;Turn on bit 0 in RD0 



Another Example (cont.)
MainLoop:

RRNCF PORTD ; Rotate bits in D. This causes the segments in display to shift.

MOVF Delay3,0 ; Reload Delay2 eith the value of Delay3. Delay2 controls the rate the
MOVWF Delay2 ; rotate takes place.

MOVLW H'F0' ; Test if Delay3 is at the maximum of 0xF0 or more. If that is the case, do not
CPFSLT Delay3 ; read the left switch.
goto noincrement

MOVLW 4 ; Read the left switch.
BTFSS PORTC,0 ; If the switch is 0 (gnd), then increase Delay3 by 4, otherwise skip the increment.
ADDWF Delay3,1

noincrement:

MOVLW H'05' ; Test if Delay3 is at the minimum pf 0x5 or less. If that is the case do not 
CPFSGT Delay3 ; read the right switch.
goto Delay

MOVLW 4 ; Read the right switch.
BTFSS PORTC,1 ; If the switch is 0, then decrement Delay3 by 4, otherwise skip the decrement 
operation.
SUBWF Delay3,1

Delay:

DECFSZ Delay1,1 ;Decrement Delay1 by 1, skip next instruction if Delay1 is 0
GOTO Delay 
DECFSZ Delay2,1 ;Decrement Delay1 by 1, skip next instruction if Delay1 is 0
GOTO Delay
GOTO MainLoop

end



Example: Driving a Full-Color LED 

 To drive the full-color LED you will use Pulse Width 

Modulation (PWM). 

 PWM sends pulses to the LED with different widths 

to the three color LEDs.

 If for example, the width of the pulse is small for the 

red LED, then the red LED will display a low 

intensity red light.

 If the red LED receives a pulse with a wide width, 

then the red LED will display a high intensity red 

light. 



Pulse Width Modulation

 Short Width = Low Intensity

 Long Width = High Intensity



Pulse Width Modulation Example

MOVFF maxColor, redCount
MOVFF maxColor, greenCount
MOVFF maxColor, blueCount

MainLoop:
;;;;;; RED LED ;;;;;;
; Decrement redCount
DECFSZ redCount,1
GOTO afterDecRedCount

; if redCount reaches 0 turnoff red led
BSF PORTC,RC0
; restart redCount with 255
SETF redCount

afterDecRedCount
; if redCount == red turn on red led.
MOVF redCount,0
CPFSEQ red
GOTO updateGreen 
BCF PORTC, RC0

…

; Same for green and blue

goto MainLoop



Lab5 Driving a Full Color LED 

Algorithm

 Examples are given that shows you how to 

drive the full color led and how to display the 

Hello message in the display.

 Read them and understand them. 

 They will be used as the base for your project



Algorithm for Driving Full 

Color LED

 Start
 Initialize Ports and Registers

 Initialize colors and counters

 MainLoop
 Put in a variable val the current color value (red, green, blue)

 Read button 1 and 2. If they are “on” increase or decrease val. Make sure 
that val is not increased beyond maxColor and is not decreased beyond 0.

 Update  “msg” (the display buffer) with:
 msg[0]= c[currentColor] 

 where c is an array with the characters “r”, “g” or b” in seven-segment values.

 msg[1]= “=“
 in seven segment value “=“ is(0x48)

 msg[2] = digit[(val>>4)&0xFF] 
 Displays most significant nibble of val

 digit is an array with the hex digits in seven segment value. 

 msg[3]=digit[val&0xFF] 
 Displays least significant nibble of val



Algorithm for Driving Full 

Color LED (cont.)

 Store val in currentColor red, green or blue

 Update Display. See example code.

 Read button 3 to change color if necessary. Use a variable 
previouslyPressed to store the previous status of the 
button. 

 Only update the color name if previouslyPressed is false 
and button3 is pressed.

 To update the color name write into msg (the display 
buffer” the name of the color in seven-segment values.

 Now refresh the red, green, blue LEDs PWM See example 
code. 

 Goto MainLoop


