CS250

Computer Architecture

Gustavo Rodriguez-Rivera

Computer Science Department
Purdue University

General Information

e \Web Page:
http://www.cs.purdue.edu/homes/cs250

e Office: LWSN1210
e E-maill: grr@cs.purdue.edu
e Textbook:

e Essentials of Computer Architecture
D. E. Comer
Prentice Hall
0-13-149179-2

Grading

e Grade allocation
Midterm:
Final:
Labs and Homework:
Attendance

e Exams also include guestions about the

projects.
e Bring you i-clicker

25%
25%
40%
10%

Course Organization

1. Basics Fundamentals of
Digital Logic
Data Representation

2. Processors
Types of Processors
Instruction Sets
Assembly Language

Course Organization

3. Memory
Types of Memory
Physical and Virtual Memory
Caching

4.Input/Output
Devices and Interfaces
Buses
Device Drivers

Course organization

5. Advanced Topics
o Parallelism
o Performance Measurement
e Architectural Hierarchy

Approach

e We will cover Computer Architecture
From the programmers point of view.
How it influences the programmers choices.
e We will not cover

Low engineering details
VLSI design

Il. Fundamentals of Digital Logic

Voltage and Current

e Voltage
Measure of potential Force
It Is measured in Volts

e Current

Measure of electron flow across a wire
It iIs measured in Ampers (Amps)

Voltage

e Voltage Is measured with a voltmeter across
two points.
e Typical digital circuits work with 5 volts:

Ground - O volts — represent a “0”
Power — 5 volts — represent a “1”

Transistor

e Building block of digital circuits
e Acts like a switch
e A transistor has three connections:

Emitter Small Curre}nt Collector

Base Base (L:arge t
rren

Collector Emitter o

e he current between “Base” and “Emitter”

controls the current between “Collector” and
“Emitter’.

Boolean Logic

e It gives the formal basis for digital circuits
e |t uses three basic functions

A
B

AND

A B A and B
0O O 0

0O 1 0

1 O 0

1 1 1

::1::::>;:;u18

OR

A B AorB NOT

0 O 0 A not A
0O 1 1 0 1
1 O 1 1 0

1 1 1

e
B AorB

Boolean Logic

e You will find that Nand and Nor Gates are
very popular.

e By using them, there is no need of Not gate

NAND NOR

A B A nand B A B A nor B
O O 1 0O O 1

0O 1 1 0 1 0

1 O 1 1 0 0

1 1 0 1 1 0

Boolean Logic

e In digital circuits 0 and 1 are represented as

0 = 0 volts
1 =+5volts

e You can interconnect digital circuits with each
other to create complex Boolean
expressions.

e (A and B) is represented as AB
e (A or B) is represented as A+B
e (not A) is represented as A’

Boolean Logic

e Example:

AB’

-

B
~D;D7\, :
A,

R B O O

A’'B +AB’

Druth Table

B A xor B

0 0

1 1
0 1
1 0

Truth Tables to Boolean 33
Expressions

e From a Truth table you can create a boolean
expression
e You can represent the boolean function as a
Sum of products: Example z=x'y+xy’
Product of sums: Example z=(x+y)(x'y’)

Sum of Products

e To create a sum of products from a truth table,
take the 1s in z (the output) and use the variables
for that row to create the product. If the variable is
x=1 then use X, otherwise if x=0 use X'.

Truth Table

R B O O X

y

0
1
0
1

Product of Sums

e To create a product of sums from a truth table,
take the Os in z (the output) and use the variables
for that row to create the product. If the variable is
x=0 then use Xx, otherwise if x=1 use X'.

Truth Table

y oz Z= (X+y)(X'+Y’)

0 0—

1 1

0

1

1

R B O O X

0

Example: Implementing add

e Assume we want to add two numbers where each
number will be one bit long.

e The resulting number may be two bits long

A plus B
A B Rl RO In decimal
O O 00 0
0O 1 01 1
: 1 O 01 1
e This can be represented as: L1 1o ,

RO = AB+B'A
R1 =AB

Implementing Add

e To Implement an adder for 8 bits or 32 bits,
many more gates are required.

Boolean Algebra

e You can manipulate the boolean expressions
like normal algebraic expressions.

e Properties
Commutative:
AB = BA
A+B=B+A
Associative:
(A+B)+C = A+(B+C)
Distributive
A(B+C) = AB+AC

De Morgan’s Law

e Negation of expressions
o (A+B) = AB’
o (ABY=A"+B

Boolean Expression Reduction

e You can simplify Boolean expressions to use fewer
gates:

e Example:
z=ab'c+ab+ac+ abc
=ab’(ct1) + ac’(1+b)

=ab’'+ac’
e Example:
m = Xyz + Xyz' + Xy + Xxyz
= X'y(z+Z') + X'y’ + xyz
= X'y+ XYy + Xxyz
=X (yty’) + xyz
=X + Xyz

Karnaugh Maps

e To make the simplification of boolean
expressions easier, we can use Karnaugh
maps.

e A Karnaugh map is a way of expressing truth
tables

e Adjacent columns or rows change only by
one digit.

e They show when refactoring can be done.

Karnaugh Table example 1

e Given an expression
r=Xyz+xyz'+xyz+x'yz

e Build a 3 variable Karnaugh
map

e Find the groups of 2,4 or 8
1’s that are adjacent.

e Make sure all 1s are
covered by the groups.

e Build expression from
groups.

r=yz +xz

e0o
:.
Karnaugh Map for r
xy/z|00 |01 |11 |10
0 0 1
1 1 0
xy/z|00 |01 |11 |10
0 |0 ¢ D

@m

r=yz +xz

Karnaugh Table example 2

e Given an expression
r=xyzkK+x'yzk+xyz’k'+xyz'k+
Xyzk+xyzk'+x'y’'zk'+xy’'zk’
e Build a 4 variable Karnaugh
map

e Find the largest groups of 2,
4 8 or 16 1's that are
adjacent.

e Make sure all 1s are covered
by the groups.

e Build expression from groups.

r=yz +xy+yzk

Karnaugh Map for r

xy/ |00 (01 (11 |10
ZK

00 (O 1 0

01 (O 1 0

11 |0 0 1 0

10 10 /Y @

r=yz +xy +yzk’

Using only NAND Gates

e Very often you build the circuits using only NAND gates.

e To convert a sum of products to only NAND gates negate the
function twice and reduce

e Example:
Z =X XOR y = xy'+x'y

Now if you negate twice the right side and applying De Morgans
law.

z = ((xy'+xy))" = ((xy')'(xy))" = (x NAND y’) NAND (x' NAND y)
Also, since x'= (X X)' = x NAND x and y' =y NAND y then we have:

z = (x NAND (y NAND y)) NAND ((x NAND x) NAND y)

10K g

I

E

o

oK
y

XOR Using only NAND gates |
Xx XOR y = (x NAND (y NAND y)) NAND ((x NAND x) NAND y)
;?_ {DOT:)% X XOR y
| e

+5V

+5V

v

LED

v

LED

v

LED

LED

Examples of Gates on 7400-
Series Chips

Flip Flops

e Basic unit of memory

Truth Table

R(reset) Q s R 0 o
0O O Keep previous value
0O 1 0O 1
1 O 1 O
S(set) Q
1 1 Not allowed

Flip Flops. Keep Current value

R(reset) 0 0
1
0 1
S(set) 0 Q
0 1
R(reset) 0
0
1 0

S(set) 0 Q

(Y X
e0o
(X
O
Flip Flops. Reset and Set
1
R(reset) 0 0
1
Reset
0
0 L o
S(set) Q
0
R(reset) ! 0
The Input R=1
0 and S=1 is not
Set allowed.
1 0

S(set) 1 Q

Binary Counter

e Counts pulses (transitions from O to 1)
e Output Is a binary number
e Contains a terminal to reset ouput to O

Binary Counter (4 bits)

41

' £11]

n

>

o

O

Truth Table

In

o B O B O =+ O

A

o O O O O O o

B

H B K KB O O O

P Bk O O KB KB O 0N

Clock

e |t Is an electronic circuit that produces a
sequencesof010101

e The frequency Is measured In hertz (Hz).

e |t IS used to synchronize operations across
gates Iin active circuits.

A4

Demultiplexor

e |t Is a circuit used to select one output

OO0 OO PFr OO0 o

ABC

0

= = P P o © O

00

01
10
11
00
01
10
11

Example of Circuit to Execute | s::
a Sequence of Steps

Position drill
Start drill

Drill hole
Clock ey | I Demulti- Remove drill
plexer Position screw
Drive screw

Remove screw driver
Move piece

Unused Gates

e Since a chip may contain multiple gates, it Is
possible to use some of the spare gates to do
other operations instead of adding a new
chip.

e Example:

1 nand X = not X

Classification of Technologies

e Small Scale Integration (SSI)
Basic Boolean Gates

e Medium Scale Integration (MSI)

Intermediate logic such as demultiplexers and
counters

e Large Scale Integration (LSI)
Small embedded processors

e Very Large Integration (VLSI)
Complex processors

Ill. Data and Program Representation

Memory of a Program

e A program sees memory as an array of bytes
that goes from address 0 to 232-1 (0 to 4GB-
1)

e That Is assuming a 32-bit architecture.

(4GB-1) 2%2-1

Memory Sections

e The memory Is organized into sections ca

“memory mappings”.

2321

\

Stack

)
Shared Libs
LB

0
Heap

Bss

Data

Text

led

Memory Sections

Each section has different permissions:
read/write/execute or a combination of them.

Text- Instructions that the program runs
Data — Initialized global variables.

Bss — Uninitialized global variables. They are
Initialized to zeroes.

Heap — Memory returned when calling malloc/new. It
grows upwards.

Stack — It stores local variables and return
addresses. It grows downwards.

Memory Sections

Dynamic libraries — They are libraries shared with
other processes.

Each dynamic library has its own text, data, and bss.

Each program has its own view of the memory that
IS Independent of each other.

This view is called the “Address Space” of the
program.

If a process modifies a byte in its own address
space, it will not modify the address space of
another process.

Example
Program hello.c
int a = 5; // Stored in data section
int b[20]; // Stored in bss
int main() { // Stored in text
int x; // Stored in stack

int *p =(int¥*)
malloc(sizeof(int)); //In heap

Memory Gaps

e Between each memory section there may be gaps
that do not have any memory mapping.

e If the program tries to access a memory gap, the OS
will send a SEGV signal that by default kills the
program and dumps a core file.

e The core file contains the value of the variables
global and local at the time of the SEGV.

e The core file can be used for “post mortem”
debugging.
gdb program-name core
gdb> where

What Is a program?

e A program is a file in a special format that contains
all the necessary information to load an application
Into memory and make it run.

e A program file includes:
machine instructions
Initialized data
List of library dependencies

List of memory sections that the program will use

List of undefined values in the executable that will be
known until the program is loaded into memory.

Executable File Formats

e There are different executable file formats
ELF — Executable Link File
It is used in most UNIX systems (Solaris, Linux)
COFF — Common Object File Format
It is used in Windows systems

a.out — Used in BSD (Berkeley Standard Distribution) and
early UNIX
It was very restrictive. It is not used anymore.

e Note: BSD UNIX and AT&T UNIX are the
predecessors of the modern UNIX flavors like
Solaris and Linux.

Building a Program

e The programmer writes a program hello.c

e The preprocessor expands #define, #include,
#ifdef etc preprocessor statements and generates a
hello.i file.

e The compiler compiles hello.i, optimizes it and
generates an assembly instruction listing hello.s

e The assembler (as) assembles hello.s and
generates an object file hello.o

e The compiler (cc or gcc) by default hides all these
iIntermediate steps. You can use compiler options to
run each step independently.

Building a program

e The linker puts together all object files as well as
the object files In static libraries.

e The linker also takes the definitions in shared
libraries and verifies that the symbols (functions
and variables) needed by the program are
completely satisfied.

e If there is symbol that is not defined in either the
executable or shared libraries, the linker will give
an error.

e Static libraries (.a files) are added to the
executable. shared libraries (.so files) are not
added to the executable file.

o000
000
L X
o
Building a Program
hello.c hello.i
. C .
Editor _’Preprocessor_’ Compiler M 0ptimizer
‘ (cc)
Programmer hello.s Executable
hello.o _ File (hello)
Assembler === Siete Shared Libraries
as '
(8s) inker (Id) (.so files). Only
Other .o files 1 definitions. It does

Static libraries (.a files) not add to size of
They add to the size of executable.
the executable.

Original file hello.c

#include <stdio.h>

main ()

{
printf ("Hello\n") ;

After preprocessor

gcc -E hello.c > hello.1i

(-E stops compiler after running preprocessor)

hello.i:
/* Expanded /usr/include/stdio.h */

typedef void * wva list;

typedef struct FILE _ FILE;

typedef int ssize t;

struct FILE {..};

extern int fprintf (FILE *, const char *, ...);
extern int fscanf (FILE *, const char *, ...);
extern int printf (const char *, ...);

/* and more */
main ()

{
printf ("Hello\n");

After assembler

gcc -S hello.c (-S stops compiler after
assembling)
hello.s:
.align 8
.LLCO: .asciz "Hello\n"
.section ".text"
.align 4
.global main
. type main, #function
.proc 04
main: save sp, -112, %sp
sethi %$hi (.LLCO), %ol
or %$ol, %lo(.LLCO), %00
call printf, O
nop
.LL2: ret

restore

After compiling

e “gcc -c hello.c” generates hello.o

e hello.o has undefined symbols, like the printf function

call that we don’t know where it is placed.

e The main function already has a value relative to the
object file hello.o

csh> nm -xv hello.o

hello.o:
[Index]
[1]

[2]

[3]

[4]

[5]

[6]

Value Size Type
| 0x00000000|0x00000000 | FILE
| 0x00000000|0x00000000 | NOTY
| 0x00000000|0x00000000 | SECT
| 0x00000000|0x00000000 | SECT
| 0x00000000|0x00000000 | NOTY
| 0x00000000|0x0000001c | FUNC

Bind
| LOCL
| LOCL
| LOCL
| LOCL
| GLOB
| GLOB

Other Shndx

|0
|0
|0
|0
|0
|0

| ABS

| 2

| 2

|3

| UNDEF
| 2

Name

|hello.c

|gcc2 _compiled
I

I
|printf
|main

After linking

e “‘gcc -o hello hello.c” dgenerates the hello
executable

e Printf does not have a value yet until the program is
loaded

csh> nm hello

[Index] Value Size Type Bind Other Shndx Name

[29] |]0x00010000|0x00000000|OBJT |LOCL |O |1 | START
[65] |]0x0001042c|0x00000074 |FUNC |GLOB |O | 9 | _start
[43] |]0x00010564 | 0x00000000 | FUNC |LOCL |O | 9 | £ini dummy
[60] | 0x000105¢c4|0x0000001c|FUNC |GLOB |O | 9 |main

[71] |]0x000206d8 | 0x00000000 | FUNC |GLOB |O |UNDEF |atexit
[72] | 0x000206£0|0x00000000 | FUNC |GLOB |O | UNDEF | _exit

[67] | 0x00020714|0x00000000|FUNC |GLOB |O | UNDEF |printf

Loading a Program

e The loader is a program that is used to run an
executable file in a process.

e Before the program starts running, the loader
allocates space for all the sections of the
executable file (text, data, bss etc)

e |t loads into memory the executable and
shared libraries (if not loaded yet)

Loading a Program

It also writes (resolves) any values in the executable
to point to the functions/variables in the shared
libraries.(E.g. calls to printf in hello.c)

Once memory image is ready, the loader jumps to
the _start entry point that calls init() of all libraries
and initializes static constructors. Then it calls
main() and the program begins.

_start also calls exit() when main() returns.
The loader is also called “runtime linker”.

Loading a Program

oader

runtime linker) p=—- Executable

In memory

Executable
File

Shared libraries (.so, .dll)

Static and Shared Libraries

e Shared libraries are shared across different
processes.

e There is only one instance of each shared
library for the entire system.

e Static libraries are not shared.

e There Is an instance of an static library for
each process.

Memory and Pointers

e A pointer is a variable that contains an

address in memory.

e In a 32 bit architectures, the size of a pointer
IS 4 bytes independent on the type of the

pointer.
(4GB-1) 232-1
P:20:
Char c = ‘a’; //asci1 65
char * p = &gc; c:12:
0

12

65

%

Address space

Ways to get a pointer value

1. Assign a numerical value into a pointer
Char * p = (char *) 0x1800;
*p =5; // Store a 5 in location 0x1800;

Note: Assigning a numerical value to a pointer isn't
recommended and only left to programmers of
OS, kernels, or device drivers

Ways to get a pointer value

2. Get memory address from another variab

int *p;
int buff]
p = &buff]
*p =78;

220:

507 ; PUffl29]: 216

17 puff[1 104
buff[O] :100:

P: 96:

/8

Ways to get a pointer value

3. Allocate memory from the heap
int *p
P = new 1nt;
int *qg;

q = (int*)malloc (sizeof (int))

Ways to get a pointer value

e YOU can pass a pointer as a parameter to a
function if the function will modify the
content of the parameters

void swap (int *a, int *Db) {
int temp;
temp=*a;
*a:*b;
*b=temp;
}

In main: swap(&x, &y)

Common Problems with e
Pointers

e \When using pointers make sure the pointer is
pointing to valid memory before assigning or getting
any value from the location

e String functions do not allocate memory for you:
char *s;
strcpy(s, "hello"); --> SEGV(uninitialized pointer)

e The only string function that allocates memory is
strdup (it calls malloc of the length of the string and
copies it)

Printing Pointers

e It is useful to print pointers for debugging
char*i;
char buff[10];
printf ("ptr=%d\n", &buff[5])
Or In hexadecimal
printf ("ptr=0x%x\n", &buff[5])

Instead of using printf, | recommend to use
fprintf (stderr, ..) since stderr is unbuffered

and it is guaranteed to be printed on the screen.

sizeof () operator in Pointers

e The size of a pointer Is always 4 bytes in a 32
bit architecture independent of the type of the
pointer:

sizeof (1int)==4 bytes
sizeof (char)==1 byte
sizeof (int*)==4 bytes

sizeof (char*)==4 bytes

String Operations

e A string Is represented in memory as a
sequence of characters in ASCII terminated
by a \O’ (ASCII Null).

char a[6];
strcpy(a,’Hello”);

14 =

- Assuming that “a” is at location 1000:

1000 1001 1002 1003 1004 1005
- The string will use one byte more than the

length of the string.

String Operations

e The C library (libc) provides simple string
functions to manipulate strings such as:

e char * strcpy(char *dest, char *src)

» Copies string from “src” to “dest” including char at the end. It
assumes that there is enough memory already in “dest”. It
does not allocate memory. It returns “dest”.

e char * strcat(char *dest, char *src)

> Appends string “src” at the end ofdest. It assumes that there
is enough memory already in “dest”. It returns “dest”.

» char * strstr(char * hay, char * needle)

» Returns a pointer of the first occurrence of the string
“needle” in the string “hay”.

String Operations
- In general the string functions will not allocate
memory.

- You have to allocate enough memory before
using them.

- The only string function that allocates
memory Iis strdup(char * s) that allocates
memory using “malloc” and returns a copy of
the string passed in “s”.

Using Pointers to Optimize ot
Execution

e Assume the following function that adds the sum of
Integers in an array using array indexing.
int sum(int * array, int n)
{
int s=0;
for (int i=0; i<n; i++)
{
s+=array[i]; // Equivalent to
//* (int*) ((char*)array+i*sizeof (int))
}

return s;

Using Pointers to Optimize Execution

e Now the equivalent code using pointers
int sum(int* array, int n)
{

int s=0;
int *p=&array[0];
int *pend=&array|[n];
while (p < pend)
{

s+=*p;

pt+;
}

return s;

Using Pointers to Optimize Execution

e \When you increment a pointer to integer it will be
Incremented by 4 units because sizeof(int)==4.

e Using pointers is more efficient because no indexing
IS required and indexing require multiplication.

e Note: An optimizer may substitute the multiplication
by a “<<" operator if the size is a power of two.
However, the array entries may not be a power of 2
and integer multiplication may be needed.

Array Operator Equivalence

e \We have the following equivalences:

int al[20];

ali] - 1s equivalent to

* (a+1) - 1s equivalent to
*(&a[0]+1) - 1s equivalent to
((1int) ((char*) &a[0]+1*sizeof (int)))

e You may substitute array indexing a[i] by
* ((int*) ((char*)&a[0]+i*sizeof (int))) and
it will work!

e C was designed to be machine independent
assembler

2D Array. 15t Implementation

o 1'approach g[3][2]:144:
Normal 2D array. 2[3][1]:140:

. al3]{0]:136:
int al4] 317 g)p):132:
a[2][1]:128:

a[il[j] == a[2][0]:124:
* (int*) ((char*)a + a'l‘ (9 -120-
i1*3*sizeof (int) + FA1r1 7. .
j*sizeof (int)) a:1: :1: 116
al1]10]:112:

a[0][2]:108:

a[0][1]:104:

a: a[0][0]:100:

2D Array 2"9 Implementation

e 2"d approach

Array of pointers to rows

int*(al4]);

for (int 1i=0; 1i<4; i++){
all]=(int*)malloc (sizeof (1nt) *3);
assert(ali] !=NULL) ;

2D Array 2"9 Implementation

e 2"d approach
Array of pointers to rows (cont)

a. a[3][0](a[3][1]a[3][2;
a[3]:112: i
a[2]:108: —a[2][0]a[2][1]a[2][2;
a[1]:104: ™ af1[0ja[L[a2
a|0]:100: \

a[0][0] a[0][1]a[0][2;

int*(afl4]);

al3][2]=5

2D Array 3'9 Implementation

e 3'd gpproach. a is a pointer to an array of pointers to
rows.

int **ay;
a=(int**)malloc(4*s1izeof (1nt*));
assert(a'!= NULL)
for (int 1=0; 1<4; 1i++)
{
ali]=(int*)malloc(3*sizeof (1nt));
assert(ali] !'= NULL)

2D Array 3'9 Implementation

e a IS a pointer to an array of pointers to rows.
(cont.)

a.

L O O O
oL N W

1:112:
1:108:
1:104:
1:100:

N\

int **a;

al[3][2]=5

_e[3][0] _[3][Lfal31[2:
—sa[2][0]a[2][1]a[2][2:
™ a[1][0]a[1][L]al1][2:
NGa[0][0]a[0][Lal0][2

Advantages of Pointer Based 4
Arrays

e You don’t need to know in advance the size
of the array (dynamic memory allocation)

e You can define an array with different row
sizes

Advantages of Pointer Based 4
Arrays

e Example: Triangular matrix

3" int **a;
\ al31[0]
a[3]:112: T
a[2]:108: —»a[2][0] a[2][1
ai(l)i 183 ™ af1][0fa[L[LAl]2
a[0]:100:
"NGoj[0]al0][1[0l 2 003]

Pointers to Functions

e Pointers to functions are often used to implement
Polymorphism in “C”.

e Polymorphism: Being able to use the same
function with arguments of different types.

e Example of function pointer:
typedef void (*FuncPtr) (1nt a);

e FuncPtr IS a type of a pointer to a function that
takes an “int” as an argument and returns “void".

An Array Mapper

typedef void (*FuncPtr) (int a);

void intArrayMapper(int *array, int n, FuncPtr func) {

for(int = 0; 1 < n; i++) {
(*func) (array[1])
}

}

int s = 0;

void sumInt(int wval) {
s += val;

}
void printInt(int wval) {
printf("val = %d \n", wval);

}

Using the Array Mapper

int a[] = {3,4,7,8};
main() {
// Print the values in the array
intArrayMapper (a, sizeof(a)/sizeof(int), printlInt);

// Print the sum of the elements in the array

s = 0;

intArrayMapper (a, sizeof(a)/sizeof(int), sumlInt);
printf (“total=%d\”, s);

A More Generic Mapper

typedef void (*GenFuncPtr) (void * a);
void genericArrayMapper (void *array,
int n, int entrySize, GenFuncPtr fun)

for(int i = 0; i < n; i++;) {
void *entry = (void¥*) (
(char*)array + i*entrySize);
(*fun) (entry) ;

Using the Generic Mapper

void sumIntGen(void *pVal) {
//pVal is pointing to an int
//Get the int val
int *pInt = (int¥*)pVal;
s += *pInt;

void printIntGen(void *pVal) {
int *pInt = (int¥*)pVal;
printf ("val = $d \n", *pInt);

Using the Generic Mapper

int a[1 = {3,4,7,8};
main() {
// Print integer values

s = 0;
genericArrayMapper(a, sizeof (a)/sizeof (int),
sizeof (int), printIntGen)

// Compute sum the integer values

genericArrayMapper(a, sizeof(a)/sizeof (int),
sizeof (int), sumIntGen);

printf (“s=%d\n”, s);

Swapping two Memory Ranges

In the labl you will implement a sort function that will sort any kind
of array.

Use the array mapper as model.

When swapping two entries of the array, you will have pointers to
the elements (void *a, *b) and the size of the entry

entrySize.
void * tmp = (void *) malloc(entrySize);
assert (tmp '= NULL) ;

memcpy (tmp, a, entrySize);
memcpy (a,b , entrySize);
memcpy (b, tmp , entrySize) ;

Note: You may allocate memory only once for tmp in the sort method and use it for
all the sorting to save muliple calls to malloc. Free tmp at the end.

String Comparison in Sort ee
Function

e Inlabl, in your sort function, when sorting strings,
you will be sorting an array of pointers, that is, of
"char* entries.

e The comparison function will be receiving a “pointer
to char* or a” char**” as argument.

int StrComFun(void *pa, void *pb) {
char** stra = (char**)pa;
char ** strb = (char**)pb;
return strcmp(*stra, *strb);

Bits and Bytes

o Bit
It stores 1 or 0O
e Byte

It is a group of 8 bits that can by individually
addressable.

e Word
It is a group of 4 bytes (32 bit architecture) or
It is a group of 8 bytes (64 bit architectures)

The address of a word is aligned to either 4 or 8
bytes respectively (multiple of 4 or 8 bytes).

Interpretation of bits

e Sometimes device registers are mapped to
memory. This is called Memory Mapped |/O.

e In this case, a bit can represent some value
or state of the device:
Bit O — Printer is on-line/off-line
Bit 1 — Landscape/Letter mode
Bit 2 — Printer need attention

Interpretation of bits

e Combination of bits are used as integers

ENENES ENEN

‘O 1 ‘ 0
27 26 25 24 23 22 21 _ 20

260+ 24 + 23 + 20 =

64 + 16 + 8 + 1 = 89

Hexadecimal Notation
e Compact form to represent binary number
e |t uses base 16.

e 4 bits represent an hexadecimal digit

Hex

S o o x W N B O

OO0 O O O O o o

Binary

0

ML B B O O O

r,rkE O O +H B O O

)OO B O B O B+» O

Hex

HE O Q W pP © o

Binary

R N = N =Ty =

0

ML B B O O O

),k O O rHr B O O

PO B O B O ¥+ O

‘N

O

Hexadecimal Notation

e Example:
Hexadecimal: 0xF4534004
Binary:
1111 0100 0101 0011 0100 0000 0000 0100
Hexadecimal
F 4 5 3 4 0 0 4
Decimal:
15*167 + 4*16° + 5*16° + 3*16% + 4*163 + 4*16°

Example of Character
Encodings

e EBCDIC
o ASCII
e Unicode

EBCDIC

e Extended Binary Coded Decimal Interchange
Format

e |t was created by IBM in the 1960s

e No longer in use except in some IBM
mainframes

ASCI]

e American Standard Code for Information
Exchange

e Used widely in UNIX and PCs
e |t uses 7 bits or 128 values
e |t only encodes the English Alphabet

ASCII Table

Dec Hxoct Char Dec Hy ©ct Himl Chr [Dec Hx Oct Himl Chr| Dec Hx Oct Hitml Chir
0 0 000 NUL {nuall) 32 20 040 Space| 64 40 100 s#6d; H 96 60 140 `
1l 1 001 Z0H (start of heading) 33 21 041 !:; ! g5 41 101 &##65: 4 97 6l 141 «#97: &
2 2 002 5Tx [(start of text) 34 Zz 04z ": 7 pe 42 10z &«#66; B 93 62 142 &«#98; b
3 3 003 ETH (end of text) 35 Z3 043 # # 67 43 103 : C 99 53 143 c C
4 4 004 EOT {end of transmission) 36 24 044 $ & 65 44 104 «#68; D |100 &4 144 &#l00; d
5 5 005 ENQ (endquiry) 37 Z5 045 %: % £9 45 105 ##69: E |101 &5 145 &#l0l; e
&6 6 006 ACE [acknowledge) 35 Z6 046 ů & 70 46 106 «#70; F |102 66 145 &«#l02; €
77 007 BEL (bell) 39 Z7 047 ' 71 47 107 «#71; & (103 &7 147 g O
8 8 010 EZ [(backspace) 40 25 050 (7 | 72 48 110 «#72:; H |104 g8 150 h: h
9 9 011 TAE (horizontal tah) 41 Z9 051 l:) 73 49 111 «#73; I |105 g9 151 «&#l05; 1
10 & 012 LF (NL line feed, new line)| 42 Z4 052 &#d: * 74 44 117 J:; J |106 64 152 &#l06; 3
11 E 013 VT ([wertical tab) 43 ZBE 053 + + 75 4B 113 «#75; K (107 8B 153 k: k
12 C 014 FF (NP form feed, new page)| 44 2C 054 ,dr | 76 4C 114 «#76; L |108 &6C 154 &«#108; 1
13 D 015 CE (carriage return) 45 2D 055 ǉ - 77 4D 115 M: M 109 6D 155 l09; I
14 E 0la 30 ([shift out) 45 ZE 056 . . 75 4F 116 N: I |110 6E 156 n 1
15 F 017 3I (shift in) 47 ZF 057 / / 79 4F 117 &«#79; 0 (111 &F 157 o o
la 10 020 DLE (data link escape) 45 30 060 -: 0 g0 50 120 «#80; P |112 70 led &#ll2: Db
17 11 021 DC1 (dewice control 1) 49 31 0A1 1: 1 g1 51 121 :; 0 |113 71 16l q d
18 12 022 DCZ [(dewice control Z2) 50 32 06Z 2 2 Gz 52 12z B |114 7% 162 r ¢
19 13 023 DC3 [(dewvice control 3) 51 33 063 3 3 83 53 123 S 3 (115 73 le3 s =
20 14 024 DC4 |(dewice control 4) £z 34 064 4 4 g4 54 124 «#84; T |116 74 1lad &#lla; T
21 15 025 NAE (negative acknowledge) 83 35 0OAR5S ő 5 85 55 125 #:; T [117 75 1lg5 u: 1
22 16 026 3YN (synchronous idle) 54 36 066 ȣ 6 g6 56 126 $ V |118 76 lee q W
23 17 027 ETE (end of trans. block) 55 37 067 7:; 7 87 57 127 &«#87; W (1192 77 167 ҇ w
24 15 030 CAN (cancel) LE 35 070 «#567 5 858 55 130 U ¥ |120 78 170 x =
25 19 031 EM (end of medium) 87 39 071 «#57: 9 §9 59 131 ' T |1z1 79 171 &#l21; ¥
26 1la 032 3UE (substitute) 55 34 07Z 5 : 90 54 13z &#%0; 2 |1z2Z2 74 172 &#lE2; 2
27 1B 033 E3ZC [escape) 59 3B 073 ; ; 91 5B 133 «#91: [(123 7B 173 «#123; {
28 1C 034 F3 (file separator) 60 3C 074 < < 9z EC 134 &##92: Y |1z24 7C 174 =#l24:
29 1D 035 G2 [(group separator) gl 30 075 &#al: = Q3 5D 155 «#937] |125 70 175 &#l25;
30 1E 036 B2 (record separator) 6z 3E 076 #6027 > 94 5E 136 «#%4; ~ |1Z6 TE 176 &#l26; ~
31 1F 037 U3 (unit separator) 63 3F 077 ? 7 95 5F 137 _ 127 7F 177 «#127; DEL

http://www.ascii.ws/ascii-chart.html

UNICODE

e Each character is 16 bits long (2 bytes)

e |t Is used to represent characters from most
anguages in the world.

e |t Is used for internationalization of programs.

e Java and C# use UNICODE to represent
strings internally.

Representation of Strings

e |na“C” program a string is a sequence of characters delimited
by a null character.

0x48 |0x65 | Ox6¢|0x6¢ | 0x6f | OX00

H e | I 0 \O

e In PASCAL the first byte represents the length of the string.

Ox5 |0x48 | 0x65| Ox6c Ox6¢| OX6f

Standard strings were limited to a length of 255

Integer Representation In T
Binary

e Each binary integer Is represented in k bits
where k Is 8, 16, 32, or 64 depending on the
type and architecture.

Integer Representation

e Example
10010101

= 1%2N7 + 1*27M+1*272+1*270 =

128+ 16+4+1
149

Binary Integer Addition

e Same as decimal addition:

e Use S1, S2 and Carry (C) to compute R and

next Carry (C+)

00 C (Carry)
1011 s1 (11)
+0110 S2 (06)
1 R

Truth Table

S1 S2 C

0

HHR KRR OOO

0

RHPROORHRO

0

HOKrROKROHR

Rrookrorrow
P PRNOPRPROOON

<+

Binary Integer Addition

100 C (CarrY) Truth Table
1011 S1 (11) 5 s o
+0110 S2 (06) o1 0 1
01 R Y o o0 1

1 0 1 0

1 1 O 0

1 1 1 1

P RPRRPOBROOONMN

<4

Binary Integer Addition

1100 C (CarrY) Truth Table
1011 S1 (11) PSP
+0110 S2 (06) o1 0 1
001 R Lo o 1

1 0 1 0

1 1 O 0

1 1 1 1

P RPRRPOBROOONMN

<4

Binary Integer Addition

11100 C (CarrY) Truth Table
1011 S1 (11) OIS
+0110 S2 (06) O
— 01 1 0

0001 R 1 0 0 1
1 0 1 0

1 1 O 0

1 1 1 1

P RPRRPOBROOONMN

<4

Binary Integer Addition

11100 C (CarrY) Truth Table
1011 S1 (11) PSP
+0110 S2 (06) o1 0 1
10001 R (17) S
1 0 1 0
1 1 O 0
1 1 1 1

P RPRRPOBROOONMN

<4

Binary Integer Subtraction

e Same as decimal subtraction:

e Use S1, S2 and Carry (C) to compute R and

next Carry (C+).

Truth Table

S1 S2 C

0O O

00 C (Carry)
1011 s1 (11)
-0110 S2 (06)

1 R

HHKEKEOOO
HFHROOKRHKERO

0

HOKrRrOHKOHR

RProokrokrrow
RPOOORREFLROON

4

Binary Integer Subtraction

000 C (Carry) Truth Table
1011 S1 (11) o o o
-0110 S2 (06)

01 R

HHKHKEOOO
HHROOKRHKERO

HORrROKOHR

RProokrorrow
RPOOORRRLRLROOMN

<4

Binary Integer Subtraction

1000 C (Carry) Truth Table
1011 S1 (11) o o o
-0110 S2 (06)

101 R

HHKHKEOOO
HHROOKRHKERO

HORrROKOHR

RProokrorrow
RPOOORRRLRLROOMN

<4

Binary Integer Subtraction

01000 C (Carry) Truth Table
1011 S1 (11) o o o
-0110 S2 (06)

0101 R

HHKHKEOOO
HHROOKRHKERO

HORrROKOHR

RProokrorrow
RPOOORRRLRLROOMN

<4

Binary Multiplication

e Same as decimal multiplication

e Just need to memorize multiplication table for
Oand 1

e Perform sums and shifts iteratively based on
the O/1 of the multiplicator

Binary Multiplication

1011
x 110
0000

Binary Multiplication

1011

x 110

0000
+1011

10110

Binary Multiplication

1011 (11)
x 110 (6)
0000
+1011
10110
+1011
1000010 (64+2=66)

Binary Multiplication.

Another example
1001 (9)
x 101 (5)
1001

Binary Multiplication.

Another example

1001 (9)
x 101 (5)

1001
+0000

01001

Binary Multiplication. :

Another example
1001 (9)
x 101 (5)
1001
+0000
01001
+1001
101101 (32+8+4+1=45)

Binary Division

e Same as decimal division

e Just need to memorize multiplication table for
Oand 1
e Perform subtractions and shifts iteratively

Binary Division

1

100 | 10110
-100
001

Binary Division

10

100 | 10110
-100
0011

Binary Division

101

(4) 100 | 10110
-100

00110

- 100

010

(5)
(16+4+2=22)

(2)

Binary Representation of
Negative Integer Numbers

e Three representations
e Sign and Magnitude
e 1l-complement
e 2-complement

Sign and Magnitude
Representation

e 1 bit for sign

e Other bits for the absolute value
e Example:

+5 = 0 0000101

-5 = 1 0000101

sign magnitude

1-Complement

e Negative numbers are obtained by inverting
all bits.

e Example:
+5 = 00000101
-5 = 11111010

2-Complement

e Negative numbers are obtained by
subtracting 1 from the positive number and
iInverting the result.

e Example:
#5 = 00000101 ¥ *(=3)
-5 = 00000101 00000101
-00000001 +11111011
00000100 00000000

11111011

(ignoring overflow)

2-Complement

e 2 complement representation is widely used
because the same piece of hardware used
for positive numbers can be used for negative
numbers:

e Example: +5 +(-3):
+5 = 00000101 00000101
-3 = 00000011
00000001 +11111101
00000010 00000010 (2)
11111101

(ignoring overflow)

Shift Operator and Signed ints

e \When signed numbers are shifted right, the
sign number Is extended to the int shifted:

E.g.intx=-5;//x=111111..111011
Inty = (x>>1);
ly=1111111111...111101
X = 5; // x =00000000000101
y=(Xx>>1);
// 'y =00000000...0000010

With unsigned ints, a O Is always inserted at the
Iaft \whan chifiad

Floating Point Representation

e Store both the exponent and mantissa

e Example:
3.5x1016

e In binary the representation uses base 2
iInstead of base 10

e Example:
1.101x2-010

Floating Point Representation

e The most common is the IEEE-754 standard

Float:
S e ‘ m bias = 127
31 23 0
Double:
S e ‘ m bias = 1023
63 52 0

Val = (-1)s x (1.m) x 2(e-bias)

Notice that the 1 in 1.m is always assumed. The only exception of all the
numbers is 0, that is represented with an exponent of O.

Floating Point Representation |3s
Example

e Double value in memory (in hex):
4024 0000 0000 0000
Binary:
0100 0000 0010 0100 0000 0000 0000 0000
Decimal?

S (bit 63) = 0 = positive number
e (bits 52 to 62) = 100 0000 0010 = 1024 + 2 = 1026
m (bits O to 51) = .0100 0000 0000 0000 0000

Val = (-1)° x (1.01), x 2 (1026-1023)
= 1x (29+2-9)x23=(1+1/4)x8=8+2=10

Byte Order

e There are two byte orders:

Little Endian — Least significant byte of the integer
IS In the lowest memory location.

Big Endian — Most significant byte of the integer is
In the lowest

Representation of 0x05

e Little Endian

0 1 2 3
0x05 0x00 0x00 0x00
e Big Endian
0 1 2 3
0x00 0x00 0x00 O0x05

How to know If It IS Little or
Big Endian

Int isLittleEndian()
{
Inti=5;
char * p = (char *) &i;
If (*p==5) {
return 1;

}

return O;

Structures

e Structures are a combination in memory of primitive

types.
e Example:

struct {
INt I;
float r;
char * a;

}s;

S:0x100

0x101
0x102
0x103
0x104
0x105
0x106
0x107
0x108
0x109
Ox10A
0x10B

Structures and Alignment

e Integers, floats, and pointers have to be aligned to 4
bytes (in a 32 bit architecture).

This means that the memory address have to be a multiple
of 4, that is, the last hex digit of the address has to be 0, 4,
8, or C.

e Doubles have to be aligned to 8 bytes.

This means that the memory address have to be a multiple
of 8, that is, the last hex digit of the address has to be O, or
8.
e If they are not aligned, the CPU will either get an
“bus error’ or slow down the execution when trying
to access this data.

Example of Alignment In 3
Structures
x:0x100 } chl
e Example: 0x101
0x102
struct { 0x103
0x104
char chl; 0x105
.] 0x106 r
Int r’ 0x107
char ch?2: 0x108 ch2
’ 0x109
char * a; 0x10A
0x10B
}X; 0x10C }
0x10D a
Ox10E
Ox10F

V. Variety of Processors

Von Neumann Architecture

e Modern processors follow this design

e Programs are stored in memory, in the same
way data is stored in memory.

e In the early days, before the “Stored
Program” concept, computers had to be
“rewired” in order to run a different program.

e |In those old days, often took weeks to load a
different program.

Von Neumann Architecture

e A computer has an address bus and a data
bus that are used to transfer data from/to the
CPU, RAM, ROM, and the devices.

e The CPU, RAM, ROM, and all devices are
attached to this bus.

Von Newman Architecture

CPU

(mouse, kbd

USB
Controler

RAM

Hard
Drive

CD/DVD
Drive

Address bus
Interrupt Line

ROM

Ethernet
Card

Processors

e Digital device that performs computation using
multiple steps.

e Types of Processors:
Fixed Logic — Least powerful. Single Operation.
Selectable Logic — Performs more than one operation.

Parameterized Logic Processor — Accepts a set of
parameters in the computation.

Programmable Logic Processor — Greatest Flexibility.
Function to compute can be changed. CPU’s belong to this
type of processors.

e CPU - Central Processing Unit

Components of a CPU

e Controller

e ALU — Arithmetic and Logical Unit
e Registers - Local Data Storage

e Internal Interconnections

e External Interface

Components of the CPU

<

Internal Connections

4

I

I

ALU

Controller

!

!

!

Registers

|

External Interface

1

1

v

Address Bus

v

Data Bus

Components of the CPU

e Controller
Controls the execution
Initiates the sequence of steps
Coordinates other components

e ALU — Arithmetic and Logical Unit

It
O

It

nrovides the Arithmetic and Boolean
nerations.

performs one operation at a time.

Components of the CPU

e Registers
Holds arguments and results of the operations

e Internal Connections

Transfers values across the components in the
CPU.

e External Interface

Provides connections to external memory as well
as |I/O devices

ALU — Arithmetic Logic Unit

e |t Is the part of the CPU that performs the
Arithmetic and Boolean operations

Integer Arithmetic - add, subtract, multiply, divide
Shift - left, right, circular
Boolean - and, or, not, exclusive or

Processor Categories

e Coprocessors

Operates in conjunction with other processor.
Example: Floating Point Accelerator.

e Microcontroller

Small programmable device. Dedicated to control
a physical system. Example: Electronic Toys.

e Microsequencer

Use to control coprocessors, memory and other
components inside a larger processor board.

Processor Categories

e Embedded System Processor
It is able to run sophisticated tasks
More powerful than a microcontroller

Example: The controller in a an MP3 player that
Includes User Interface and MP3 decoding.

e General Purpose Processor
Most powerful type of processor
Completely Programmable
Example: Pentium processor

Evolution of Processor t
Technologies

e Discrete Logic
Use TTL Gates etc used to implement processor.
It could use multiple boxes and circuit boards.

e Single circuit board

Multiple chips/controllers in a single board.
e Single chip

All the components are in a single chip.

Fetch-Execute Cycle

e This Is the basics for programmable
Processors.

e |t allows moving through the program steps a
while (1) {
Fetch from memory the next instruction to
execute in the program.

Execute this instruction.

Clock Rate and Instruction e
Rate

e Clock rate

It is the rate at which gates and hardware
components are clocked to synchronize data
transfer.

e |nstruction rate
It is the time required to execute an instruction.
Different instructions may take different times.

Example: Multiplication and division will take more
clock cycles than addition and subtraction.

Starting a Processor

e \WWhen the CPU Is powered on or when reset
The CPU is initialized
ne fetch-execute cycle starts.

ne first instruction to execute will be In a known
memory location, E.g. 0x1000

This process is called “bootstrap”.

Stopping a Processor

e \When the application finishes or it is waliting
for an event,
The program may enter an infinite loop.

In an OS, that infinite loop Is often called
“Null Process” or
“System Idle Process”.

V. Processor Types and
Instruction Sets

How to Choose an Instruction | gs
Set

e A small set is easy to implement but
Inconvenient for programmers.

e A large set is convenient for programmers but
expensive to implement.

¢ \When designing an instruction set we need to
consider

Physical size of the Processor

How the processor will be used

Power consumption

Parts of an Instruction

e Opcode
Specifies the instruction to be executed

e Operands
Specifies the registers, memory location, or
constants used Iin the instruction

e Result

Specifies the registers or memory location where
the result of the operation will be placed.

Opcode Operandl | Operand2 Result

Instruction Length

e Fixed Length
Every instruction has the same length
Reduces the complexity of the hardware
Potentially, the program will run faster.

e Variable Length
Some instructions will take more space than others

It is appealing to Assembly code programmers (Not a very
strong advantage. Most programs are written in a high-
level language).

More efficient use of memory.

Pentium continues using variable length instructions
because of backward-compatibility issues.

General Purpose Registers

e They are used to store operands and results

e Each register has a small size: 1 byte, 4
bytes, or 8 bytes.
e Floating Point Registers

Special registers used to store floating point
numbers.

Example of Using Registers

e Load A from location 0x100 and B from location 0x104. Store
A+B in C in location 0x108 (C=A+B);

load r1, @0x100
load r2, @0x104
addrl, r2, r3

store r3, @0x108

e Register Spilling — Save registers in memory for later use. The
number of registers is limited, so very often it is necessary to use
memory or the stack to store temporal values.

e Regqister allocation. Choose what values to keep in the registers
instead of memory.

Types of Instruction Sets

o CISC
o Complex Instruction Set Computer

o RISC
e Reduced Instruction Set Computer

CISC Instruction Set

e |t contains many Instructions, often hundreds.

e Some Instructions take longer than others to
complete

e Examples:

Move a range of bytes from one place in memory
to another

Compute the length of a string
e Example: x86

RISC Instruction Set

e |t contains few Instructions 32 or 64
e |nstructions have a fixed length

e Each instruction i1s executed In one clock
cycle.

e Example: Sparc, Alpha, MIPS, ARM

Execution Pipeline

e Hardware optimization technique

e Allows the execution of instructions In
parallel.

e Used by RISC architectures

Execution Pipeline

e An Iinstruction is executed by the following
steps:
Fetch the next instruction

Examine the opcode to determine the operands
needed.

Fetch the operands
Perform the specified operation
Store the result in the indicated location

e Pipelining executes this steps in parallel for
multiple instructions.

(YY)
'Y Y
[X J
o
Execution Pipeline
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Fetch Examine Fetch Perform Store

Instruction Opcode Operands Operation Result

Execution Pipeline

e Each stage operate in parallel with a different
Instruction.

e As aresult, an N stage pipeline operates over
N instructions simultaneously.

e Each stage takes one clock cycle.

e Each instruction takes one clock cycle once
the pipeline is full.

Pipeline Example

Clock

O 00 Jd o O & W dhD =

Stagel

Instl
Inst2
Inst3
Inst4
Inst5
Inst6
Inst7
Inst8
Inst9

Stage2

Instl
Inst2
Inst3
Inst4
Inst5
Inst6
Inst7
Inst8

Stage3

Instl
Inst2
Inst3
Inst4
Inst5
Inst6
Inst7

Stage4

Instl
Inst2
Inst3
Inst4
Inst5
Inst6

Stage5

Instl
Inst2
Inst3
Inst4
Inst5

Pipeline Control

e The pipeline is executed by the processor
without the programmers intervention.

e The programmer can write code that can
“stall” the pipeline

e That will happen if the next instruction
depends on the result of the previous
Instruction.

Example of a pipe stall

e Assume the following operations:
Instruction K: C <= add A B
Instruction K+1: D <= sub E C

e The Instruction K+1 needs the result of
Instruction K before it can continue.

e This causes Instruction K+1 to wait until
Instruction k completes.

Example of a pipe stall

Clock

O 00 Jd o O & W DD =

Stagel

Instk

Instk+1
Instk+2
Instk+3

Instk+4
Instk+5
Instk+6

Stage2

instk-1
Instk

Instk+1
Instk+2

Instk+3
Instk+4
Instk+5

Stage3

instk-2
instk-1
Instk

Stage4

instk-3

instk-2
instk-1

(Instk+1l) Instk

(Instk+1)

Instk+1
Instk+2
Instk+3
Instk+4

Instk+1
Instk+2
Instk+3

Stage5

instk-4
instk-3
instk-2
instk-1
Instk

Instk+1
Instk+2

Pipe Stall

e Some reasons of a pipe stall are:
Access to RAM

Call an instruction that takes along time like FP
arithmetic

Branch to a new location
Call a function

Avoiding Pipe Stalls

e A programmer can delay the use of results by
reordering the instructions:

Avoiding Stalls

e Program must be written to accommodate
Instruction pipeline
e TO minimize stalls

— Avoid introducing unnecessary branches
— Delay references to result register(s)

Avoiding Stalls :
e Example Of Avoiding Stalls

e (a) (b)

e C«—addAB C«—addAB

e D « subtractE C F«—add GH

o F«—addGH M« add K L

e J <« subtractl F D « subtract E C

o M—add KL J <« subtract | F

e P« subtract M N P « subtract M N

e Stalls eliminated by rearranging (a) to (b)

Avoiding Stalls

e Although hardware that uses an instruction
nipeline will not run at full speed unless
orograms are written to accommodate the
nipeline, a programmer can choose to ignore
pipelining and assume the hardware will
automatically increase speed whenever
possible.

VIl. CPUs Microcode Protection
and Protection Modes

User and Kernel Mode,
Interrupts, and System Calls

Computer Architecture Review

e Most modern computers use the Von
Newman Architecture where both programs
and data are stored in RAM.

e A computer has an address bus and a data
bus that are used to transfer data from/to the
CPU, RAM, ROM, and the devices.

e The CPU, RAM, ROM, and all devices are
attached to this bus.

Computer Architecture Review

USB
Controler Hard CD/DVD
(mouse, kbd Drive Drive

Data bus
Address bus
Interrupt Line

CPU RAM ROM Ethernet
Card

Kernel and User Mode

e Kernel Mode

When the CPU runs in this mode:
It can run any instruction in the CPU
It can modify any location in memory

It can access and modify any register in the CPU and
any device.

There is full control of the computer.
The OS Services run in kernel mode.

Kernel and User Mode

e User Mode

When the CPU runs in this mode:
The CPU can use a limited set of instructions

The CPU can only modify only the sections of memory
assigned to the process running the program.

The CPU can access only a subset of reqgisters in the CPU
and it cannot access registers in devices.

There is a limited access to the resources of the computer.
The user programs run in user mode

Kernel and User Mode

e \When the OS boots, It starts in kernel mode.

e In kernel mode the OS sets up all the interrupt
vectors and initializes all the devices.

e Then it starts the first process and switches to user
mode.

e In user mode it runs all the background system
processes (daemons).

e Then it runs the user shell or windows manager.

Kernel and User Mode

e User programs run in user mode.

e The programs switch to kernel mode to request OS
services (system calls)

e Also user programs switch to kernel mode when an
Interrupt arrives.

e The interrupts are executed in kernel mode.

e The interrupt vector can be modified only in kernel
mode.

e Most of the CPU time is spent in User mode

Kernel and User Mode

Kernel Mode

Kernel and User Mode

e Separation of user/kernel mode is used for:

Security: The OS calls in kernel mode make sure that the
user has enough privileges to run that call.

Robustness: If a process that tries to write to an invalid
memory location, the OS will kill the program, but the OS
continues to run. A crash in the process will not crash the
OS. > A bug in user mode causes program to crash, OS
runs. A bug in kernel mode may cause OS and system to
crash.

Fairness: OS calls in kernel mode to enforce fair access.

Interrupts

e An interrupt is an event that requires immediate
attention. In hardware, a device sets the interrupt
line to high.

e \When an interrupt is received, the CPU will stop
whatever it is doing and it will jump to to the
'Interrupt handler' that handles that specific interrupt.

e After executing the handler, it will return to the same
place where the interrupt happened and the
program continues. Examples:

move mouse

type key
ethernet packet

Steps of Servicing an Interrupt

1.

The CPU saves the Program Counter and registers
In execution stack

CPU looks up the corresponding interrupt handler
In the interrupt vector.

CPU jumps to interrupt handler and run it.

CPU restores the registers and return back to the
nlace in the program that was interrupted. The
program continues execution as if nothing
nappened.

N some cases it retries the instruction the
Instruction that was interrupted (E.g. Virtual
memory page fault handlers).

Running with Interrupts

e Interrupts allow CPU and device to run in
parallel without waiting for each other.

1. OS Requests

Device Operation |
(E.g.Write to disk;\\K 2. Device Runs

l' Operation
2. 0OS does other ‘l
things 1n parallel
wilith device. 3. When Operation
&~

complete interrupt
0S

4. OS services 1nterrupt
and continues

1s

Poling

e Alternatively, the OS may decide not use interrupts for

some devices and wait in a busy loop until completion.
OS requests Device operation
While request is not complete
do nothing;
Continue execution.

e This type of processing is called “poling” or “busy
waiting” and wastes a lot of CPU cycles.

e Poling is used for example to print debug messages In
the kernel (kprintf). We want to make sure that the
debug message is printed to before continuing the
execution of the OS.

Synchronous vs. T
Asynchronous

e Poling Is also called Synchronous
Processing since the execution of the device
IS synchronized with the program.

e An interrupt is also called Asynchronous
Processing because the execution of the
device Is not synchronized with the execution
of the program. Both device and CPU run in
parallel.

Interrupt Vector

e It IS an array of pointers that point to the
different interrupt handlers of the different
types of interrupts.

Hard Drive Interrupt handler

7

—p USB Interrupt handler (mouse, kbd)

~N Ethernet Card Interrupt handler

\ Page Fault Interrupt handler

Interrupts and Kernel Mode

Interrupts run in kernel mode. Why?

An interrupt handler must read device/CPU
registers and execute instructions only
available in kernel mode.

nterrupt vector can be modified only In

Kernel mode (security)

nterrupt vector initialized on bootup;
modified when drivers added to system

Types of Interrupts

1. Device Interrupts generated by Devices
when a request is complete or an event that
requires CPU attention happens.

The mouse is moved
A key is typed
An Ethernet packet arrives.

The hard drive has completed a read/write
operation.

A CD has been inserted in the CD drive.

Types of Interrupts

2. Math exceptions generated by the CPU when
there is a math error.

Divide by zero

3. Page Faults generated by the MMU (Memory
Management Unit) that converts Virtual memory
addresses to physical memory addresses

Invalid address: interrupt prompts a SEGV signal to the
process

Page not resident. Access to a valid address but there is
not page in memory. This causes the CPU to load the
page from disk

Invalid permission (l.e. trying to write on a read only
page) causes a SEGV signal to the process.

Types of Interrupts

4. Software Interrupt generated by software
with a special assembly instruction. This Is
how a program running in user mode
requests operating systems services.

System Calls

System Calls is the way user programs reguest
services from the OS

System calls use Software Interrupts

Examples of system calls are:
open (filename, mode)
read(file, buffer, size)
write (file, buffer, size)
fork ()
execve (cmd, args):;

System calls is the API of the OS from the user program’s point
of view. See /usr/include/sys/syscall.n

Why do we use Software oo
Interrupts for syscalls instead of
function calls?

e Software Interrupts will switch into kernel
mode

e OS services need to run in kernel mode
because:
They need privileged instructions
Accessing devices and kernel data structures
They need to enforce the security in kernel mode.

System Calls

e Only operations that need to be executed by the OS
In kernel mode are part of the system calls.

e Function like sin(x), cos(x) are not system calls.

e Some functions like printf(s) run mainly in user mode
but eventually call write () when for example the

buffer is full and needs to be flushed.

e Also malloc(size) will run mostly in user mode but
eventually it will call sbrk() to extend the heap.

System Calls

e Libc (the C library) provides wrappers for the
system calls that eventually generate the

system calls.

User Mode:

int open (fname, mode) {
return syscall (SYS op
fname, mode) ;

}
%nt syscall (s*c

Soﬁware
Interrupt

asm (INT) ;
}

Kernel Mode:

Syscall interrupt handler:
Read.:..
Write:..
open:

- Get file name and mode

- Verify file exists and
permissions of file against
mode.

- Perform operation

- return f£d4d (file

System Calls

e The software interrupt handler for system
calls has entries for all system calls.

e The handler checks that the arguments are
valid and that the operation can be executed.

e The arguments of the syscall are checked to
enforce the security and protections.

Syscall Security Enforcement

e For example, for the open syscall the following Is
checked in the syscall software interrupt handler:
open(filename, mode)

If file does not exist return error

If permissions of file do not agree with the mode the file
will be opened, return error. Consider also who the owner
of the file is and the owner of the process calling open.

If all checks pass, open file and return file handler.

Syscall details

e Te list of all system calls can be found In
fusr/include/sys/syscall.h

#define
#define
#define
#define
#define
#define
#define
##define
#define
##define
#define

SYS_exit
SYS_fork
SYS read

SYS_write

SYS open

SYS_close

SYS wait

SYS_creat

SYS link

SYS_unlink

SYS_gxec

1

R R YOO JdJo Ul bW

= O

Syscall Error reporting

e \When an error in a system call occurrs, the OS sets a
global variable called “errno” defined in libc.so with the
number of the error that gives the reason for failure.

e The list of all the errors can be found In
/usr/include/sys/errno.h

#define EPERM 1 /* Not super-user */

#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */

#define EINTR 4 /* interrupted system call */

#define EIO 5 /* 1/0 error */

#define ENXIO 6 /* No such device or address */

e You can print the corresponding error message to stderr
using perror (s) ; where s is a string prepended to the
message.

System Calls and Interrupts ot

Example

1.

The user program calls the write (fd, buff,
n) system call to write to disk.

The write wrapper in libc generates a software
Interrupt for the system call.

The OS in the interrupt handler checks the
arguments. It verifies that fd is a file descriptor for
a file opened in write mode. And also that [buff,
buff+n] is a valid memory range. If any of the
checks fail write return -1 and sets errno to the
error value.

System Calls and Interrupts oo
Example

4. The OS tells the hard drive to write the buffer in
[buff, buff+n] to disk to the file specified by fd.

5. The OS puts the current process in wait state until
the disk operation is complete. Meanwhile, the OS
switches to another process.

6. The Disk completes the write operation and
generates an interrupt.

7. The interrupt handler puts the process calling
write Into ready state so this process will be
scheduled by the OS in the next chance.

ARM Assembly Language

ARM Architecture

e ARM- Acorn RISC Machine
e ARM is an architecture created by “ARM Holdings”

e ARM Holdings does not manufacture the CPU'’s,
Instead it licenses the design to other manufacturers
so they create their own version of ARM.

e ARM has become popular because of mobile
computing: Smart phones, tablets etc.

e Itis energy-efficient, fast, and simple.

e It still lags in speed compared to the fastest Intel x86
CPUs but it is more energy efficient.

ARM CPUs

e Chips using ARM architecture
A4, A5, Ao, A7
Iphone/lpad by Apple
Qualcomm’s Snapdragon
Samsung Galaxy, LG, Nokia Lumia, Sony, Kindle
NVIDIA Tegra
Windows RT Tablet, Motorola Droid, Motorola Atrix

Broadcom, BCMXXX CPUs
Samsung Galaxy, Raspberry Pi

ARM Assembly Language :

o See:

http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm inst.pdf

and

http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm-ref.pdf

http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm_inst.pdf
arm-ref.pdf

Example Assembly Program

testl.s:
. text
.global main
main:
stmfd sp!, {fp, 1lr}
ldr r0, .L2
bl puts
ldmfd sp!, {fp, pc}
.L2:
.word .LCO
.section .rodata
.LCO:

.ascii "Hello world\O000"

Running the Assembler

pi@raspberrypi:~/cs250/1lab6-src$ gcc -o testl testl.s

pi@raspberrypi:~/cs250/1lab6-src$./testl
Hello world

pi@raspberrypi:~/cs250/1lab6-src$

Assembly Code In T
Hexadecimal

pi@raspberrypi:~/cs250/lab6-src$ gcc -Xassembler -a -o testl testl.s > out
pi@raspberrypi:~/cs250/lab6-src$ vi out

ARM GAS testl.s page 1

1

2 .text

3 .global main

4

5 main:

6 0000 00482DE9 stmfd sp!, {fp, 1lr}

7 0004 04009FE5 1ldr r0, .L2

8 0008 FEFFFFEB bl puts

9 000c 0088BDES ldmfd sp!, {fp, pc}
10 .L2:
11 0010 00000000 .word .LCO
12
13 .section .rodata
14 .LCO:
15 0000 48656C6C .ascii "Hello world\000"
15 6F20776F
15 726C6400

The third column is the code generated in hexadecimal.

Calling Conventions

e 10 tor3:

They are used to pass arguments to a function. rO is used
to return values. (No need to be restored before return).

e N14torll:

Used to hold local variables. (Need to be restored before
return)

e 13 is the stack pointer.
Stores return PC and save registers and local vars.

e r14 is the link register. (The BL instruction, used in a
subroutine call, stores the return address in this
register).

e 115 is the program counter.

Condition Code Flags

e This flags are stored in the PSR- Processor
Status Register

e They are updated by the Arithmetic
Operations

N = Negative result from ALU flag.
Z = Zero result from ALU flag.
C = ALU operation Carried out
V = ALU operation oVerflowed

Updating the Condition Code | s
Flags

e CMP regl, reg2

Performs regl-reg2

It updates N, Z, C, V

No other registers are modified
e ISTregl, reg2

Performs regl bit-and reg2

It updates N,Z

No other registers are modified

e Any instruction may modify the flags if “S” is
appended to the instruction:

Example MOVS regl, reg2 will update N, Z if reg2 is zero
or negative

ARM Instructions

ARM assembly language reference card

MOVcdS reg, arg copy argument (S = set flags)
MVNcdS reg, arg copy bitwise NOT of argument
ANDcdS reg, reg, arg bitwise AND

ORRcdS reg, reg, arg bitwise OR

EORcdS reg, reg, arg bitwise exclusive-OR

BICcdS reg, rega, argb bitwise rega AND (NOT argb)
ADDcdS reg, reg, arg add

SUBcdS reg, reg, arg subtract

RSBcdS req, reg, arg subtract reversed arguments
ADCcdS reg, reg, arg add with carry flag

SBCcdS reg, reg, arg subtract with carry flag
RSCcdS reg, reg, arg reverse subtract with carry flag
CMPcd reg, arg update flags based on subtraction
CMNcd reg, arg update flags based on addition

ARM Instructions

TSTcd reg, arg update flags based on bitwise AND

TEQcd reg, arg update flags based on bitwise exclusive-OR

MULcdS regd, rega, regb multiply rega and regb, places lower 32 bits into regd

MLACcdS regd, rega, regb, regc places lower 32 bits of rega - regb + regc into regd

UMULLcdS reg’, regu, rega, regb multiply rega and regb, place 64-bit unsigned result into {regu, reg'}
UMLALcdS reg’, regu, rega, regb place unsigned rega - regb + {regu, reg} into {regu, reg'}
SMULLcdS reg’, regu, rega, regb multiply rega and regb, place 64-bit signed result into {regu, reg'}
SMLALcdS reg’, regu, rega, regb place signed rega - regb + {regu, reg'} into {regu, reg'}

Bcd imm12 branch to imm12 words away

BLcd imm12 copy PC to LR, then branch

BXcd reg copy reg to PC

SWicd imm24 software interrupt

LDRcdB reg, mem loads word/byte from memory

STRcdB reg, mem stores word/byte to memory

LDMcdum reg!, mreg loads into multiple registers

STMcdum reg!, mreg stores multiple registers

SWPcdB regd, regm, [regn] copies regm to memory at regn,old value at address regn to regd

Optional:

cd — Condition Code

s — Update flkag or not

b — byte or word instruction

ARM Instructions Add-Ons: 1
Conditions

e Every instruction may have a condition
appended:

Example:

MOV rl, r2 and EQ (zero flag set)
becomes

MOVEQ rl,r2

This means that the r2 will be moved to rl only
If the zero flag Is set.

List of Conditions that Can be
Added to Instructions

AL or omitted always

EQ equal (zero)

NE nonequal (nonzero)

CS carry set (same as HS)
CC carry clear (same as LO)
MI minus

PL positive or zero

VS overflow set

VC overflow clear

HS unsigned higher or same
LO unsigned lower

HI unsigned higher

LS unsigned lower or same
GE signed greater than or equal
LT signed less than

GT signed greater than

LE signed less than or equal

Example: Adding two numbers

e Implement the following program in assembler:
#include <stdio.h>

int a;

int b;

int C;

main()

{

o oTw
TRNTENT
o wmn

+ C,

printf("c=%d\n", c);
}

Example: Adding two numbers in
Assembly using Registers

/* add-reg.s
Adding two numbers using registers */
.section .rodata
printfArg:
.ascii "c=%d\n"

/* Define variable 4 bytes each aligned to 4 bytes

int a; - r2
int b; - r3
int ¢; - rl
*/
.text

addrPrintfArg: .word printfArg

Adding two numbers Iin Assembly | 32

using Registers (cont.)

main:

.global main /* main() { */
stmfd sp!, {fp, 1lr} /* Save pc and lr */
mov r2, #2 /* a=2; */
mov r3, #3 /* b=3; */
add rl, r2, r3 /* ¢ =a+ b; */
1dr r0, addrPrintfArg

/* Load printf format in r0 */

/* second argument is in rl */

/* rl already has the result of a+b*/
bl printf /* printf ("c=%d\n", c); */
ldmfd sp!, {fp, pc} /* return from main */

/* } */

Adding two numbers in Assembly
using Registers (cont.)

pi@raspberrypi:~/cs250/1lab6-src$ gcc -o add-reg add-reg.s

pi@raspberrypi:~/cs250/lab6-src$./add-reg

c=5

Example: Adding Two
Numbers Using Global Vars

/* add-global.s:
Adding two numbers using global variables */

.section .rodata
printfArg:

.ascii "e=%d\n"

.section .data

.align 2

/* Define variable 4 bytes each aligned to 4 bytes
int a;

Adding Two Numbers
Global Vars (cont.)

text

/* We need to store the addresses of a and b
in .text to be able to access them in main */

addra: .word a
addrb: .word b
addrc: .word ¢
addrPrintfArg: .word printfArg

.global main
main:
stmfd sp!, {fp, Ir}

[* main() { */

[* Save pc and Ir */

ldr r3, addra *a=2;*
mov r2, #2

str r2,[r3]

[dr r3, addrb [*b=3;*

mov r2, #3
str r2,[r3]

Using

Adding two numbers using e

Global Vars (cont.)

ldr r2,

*x/
ldr

ldr
in r3 */
ldr

add
ldr
str

ldr
in rQ0 */
ldr
ldr

bl
c); */

ldmfd

/* Read a and put it in r2

read b and put it

c =a+ b; */

Load printf format

Iload ¢ in rl */
printf ("c=%d\n",

addra

r2, [r2]

r3, addrb /*
r3, [r3]

r2, r2, r3 /*
r3, addrc

r2, [r3]

r0, addrPrintfArg /*
rl, addrc

rl, [rl] /*
printf /*
sp!, {fp, pc} /* return from main */

Adding two numbers using
Global Vars (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -o add-global add-global.s
pi@raspberrypi:~/cs250/1lab6-src$./add-global
c=5

Example:

Read two

and add them

[* readadd.s

Read two numbers and add them
pi@raspberrypi:~/cs250/1lab6-src$

a: 8
b: 9
c=a+b=17
*/
.section
promptA:
.ascii
promptB:
.ascii
readA:
.ascii
readB:
.ascii
printC:
.ascii

.rodata
"a: \00O"
"b: \000"
"%d\000"
"%d\000"
"c=a+b=%d\n\000"

numbers

. /readadd

Example: Read two numbers
and add them (cont.)

.section .data
.align 2

/* Define variable 4 bytes each aligned to 4 bytes
int a;
int b;

*/
. comm a,4,4
. comm b,4,4

’

.text

/* We need to store the addresses of a and b
in .text to be able to access them in main */

addra: .word a

addrb: .word b
addrPromptA: .word promptA
addrPromptB: .word promptB
addrReadA: .word readA
addrReadB: .word readB
addrPrintC: .word printC

Example: Read two numbers
and add them (cont.)

/* main() { */

main:

.global main

stmfd

ldr
bl

ldr
ldr
bl

ldr
bl

ldr
ldr
bl

ldr
ldr

sp!, {fp, 1lr}

r0, addrPromptA
printf

r0, addrReadA
rl, addra
scanf

r0, addrPromptB
printf

r0, addrReadB

rl, addrb
scanf
r0, addra

r0, [rO]

/*
/*

/*

/*

/*

/*

Save pc and 1lr */

Prompt a */

Read a */

Prompt b */

Read b */

ro<- a */

Example: Read two numbers
and add them (cont.)

ldr
ldr

add

ldr
bl

ldmfd

rl, addrb
rl, [rl]

rl, r0O, rl

r0, addrPrintC
printf

sp!, {fp, pc}

/* rl<- b */

/* rl <- rl +r0*/

/* print c */

/* return from main */

/* } */

Example: Read two numbers | s
and add them (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -0

readac

d readadd.s

pi@raspberrypi:~/cs250/lab6-src$./readadd

a. [
b: 4
c=a+b=1

1

Mixing C and Assembly Language.
Finding max in an array.

max.c:
#include <stdio.h>
#include <stdlib.h>
extern int maxarray(int *a, int n);

main()

{ -
int n;
inti;
int*a;

printf("How many elements in array? ");
scanf("%d",&n);
a = (int*) malloc(n*sizeof(int));

for (i =0;i<n;i++){
printf("a[%d]=", i);
scanf("%d", &ali]);
}

int m = maxarray(a, n);
printf("max=%d\n", m);

000
. . 0000
Mixing C and Assembly Language.| s:::
[]] [] ..
Finding max in an array (cont.) :
maxarray.s
/* Find maximum of an array of integers. Called from "C"
extern int maxarray(int *a, int n);
*/
.text
y .global maxarray /* maxarray(int *a, int n) {
*
/* a: r0 */
/* n: rl *x/
maxarray:

stmfd sp!, {r4, r5, fp, 1lr}
/* Save pc, lr, r4d, r5 */

1ldr r2, [x0] /* max: r2 */
/* max= a[0] */

mov r3,#0 /* i: r3 */
/* i=0; */

Mixing C and Assembly Language.
Finding max in an array (cont.)

while:

nomax:

cmp
beq

mov
mov
mul
add
ldr

cmp
bgt
mov

r3,rl /* while (i'=n) { */
endmax

rd,r3 /* rd=a[i] */

r5, #4

rd,rd,r5

rd,r0,rd /* as rd=*(int*) ((char*)a+4*i)*/
rd, [r4d]

r2, r4d /* if (max < r4) max = r4d */
nomax
r2,r4

Mixing C and Assembly Language.| s:::
Finding max in an array (cont.) :

mov r5,#1 [* i++; */

add r3,r3,r5

bal while /* Go back to while */
endmax:

mov r0,r2

ldmfd sp!, {r4, r5, fp, pc}
/* return from main */

/* } */

Mixing C and Assembly Language.| s
Finding max in an array (cont.)

pi@raspberrypi:~/cs250/lab6-src$ gcc -0 max max.c
maxarray.s

pi@raspberrypi:~/cs250/lab6-src$./max
How many elements in array? 6

0]= 34

1]= 78
2]= 34
3]= 90
4]= 78
5]= 45
max=90

DYDYV YV DD

Implementing String Functions| s:
In ARM Assembly Language

e There are two functions to load/store bytes:

e |drb regl,[reg?]
Loads in regl the byte in address pointed by
reg2

e sStrb regl,[reg2]

Stores the least significant byte in regl byte Iin
address pointed by reg2

Example: strcat function In
ARM assembly

/* strcat-main.c:*/

#include <stdio.h>

#include <string.h>

extern char * mystrcat(char * a, char *b);

main ()

{
char s1[100];
char s2[100];
printf("sl1l? ") ;
gets(sl);
printf("s2? ") ;
gets (s2);
mystrcat(sl, s2);
printf ("sl+s2=%s\n", sl);

}

// Implemented in Assembly Language in mystrcat.s
// Shown here to teach you the algorithm used.
// char * mystrcat(char * a, char *b) ({

// while (*a) a++;
// while (*b) { *a=*b; a++; b++;}
// *a=0;

/1 }

Example: strcat function In

ARM assembly (cont.)

[* Concat two strings a, b. Result is in a.
extern char * mystrcat(char *a, char *b);

*/
dext
.global mystrcat
[*a:r0 */
[*b:rl */
mystrcat:
stmfd sp!, {r4, fp, Ir} [* Save pc, Ir, r4*/
[* Skip chars in a */
skip:
ldrb r2,[rO] [*r2 <-*a */
mov r3,#0
cmp r2,r3
beq endskip [* if (*a == 0) jump endskip */
mov I3,#1
add r0,r0,r3 [* at+*/
bal skip /[* go to skip */

endskip:

Example:

strcat function In

ARM assembly (cont.)

skip2:
ldrb r4,[rl]
mov r3,#0
cmp 4,13

beq endcat

strb r4,[r0]

mov r3,#1

add r0,r0,r3

add r1,r1,r3

bal skip2
endcat:

mov 3, #0

strb 3, [rO]

ldmfd sp!, {r4, fp, pc}

[* Add char by char *b to *a until we find the end of *b */
[*r4 <-*b */

[* if (*b == 0) jump endcat */
[* *a =*b; */
[* a++*/

[* b++ */
[* go to skip2 */

[**a=0;%

[* return from mystrcat */

Example: strcat function In
ARM assembly (cont.)

pi@raspberrypi:~/cs250/1lab6-src$ gcc -o strcat-main strcat-main.c
mystrcat.s

pi@raspberrypi:~/cs250/lab6-src$./strcat-main
sl? Hello

s2? World

sl+s2=HelloWorld
pi@raspberrypi:~/cs250/1lab6-src$

Midterm Review

Midterm Review

Il. Fundamentals of Digital Logic
Voltage and Current
Boolean Logic
Truth Tables
mplementation using Logical gates.
mplementing an add circuit.
-lip-Flops
Karnaugh Maps

Midterm Review

Ill. Data and program Representation
Memory of a Program

Memory Sections:
text, Data, Bss, Heap, Stack Shared Libraries

Executable File formats

Steps for building a program:

C preprocessor, Compiler, Optimizer, Assembler,
Linker.

Steps for loading a program
Static and Shared libraries

Midterm Review

Ill. Data and program Representation (cont.)
Binary Addition , Subtraction, Multiplication and Division
Sign representation:
Sign and Magnitude, Complements of 1 and 2
Floating Point Representation

Byte Order
Little Endian
Big Endian

Structures and alignment
ASCII and Unicode and String representation

Midterm Review

I\VV. Variety of Processors
Von Neumann Architecture
Address Bus and Data Bus
Components of the CPU
Fetch Execute Cycle

Midterm Review

e V. Processor Types and Instruction Sets
CISC and RISC
Execution Pipeline
Pipe Stall

e VI. Operand Addressing and Instruction
Representation

O address architecture, 1 address architecture, 2
address architecture and 3 address architecture.

Von Neumann Bottleneck

Midterm Review

e VI. Operand Addressing and Instruction
Representation (cont.)
Addressing modes:
Immediate, Direct, Indirect

e VIl. CPUs Microcode Protection and
Protection Modes

Kernel and User Mode
Promotes Security, Robustness and Fairness

Midterm Review

e VIl. CPUs Microcode Protection and Protection
Modes
Interrupts
Steps to service an interrupt
Asynchronous Processing
Poling
Interrupt Vector

Types of Interrupts:

Device Interrupts, Math exceptions, Page Faults, Software
Interrupts.

System Calls

Midterm Review

Microcode
Vertical and Horizontal Microcode

e VIIl. Assembly Language and Programming
Paradigm
ARM Assembly language

Midterm Material to Study

e Class Slides

e Midterm Exam Homework Review
e Projects Labl-Lab6

e ARM Assembly Language

e Everything up to and including chapter "Vlli|
Memory and Storage” in the book.

e | will include the ©
”?in the exam.

http://www.cs.purdue.edu/homes/cs250/LectureNotes/arm-ref.pdf

X86-64 Asembly Language

History

e Created by AMD to extend the x86
architecture to use 64 bits

e X86-64 Is a superset of x86
e |t has been adopted by Intel

e |t provides an incremental evolution to
migrate from x86-32 bits to x86-64 bits.

Register Assignment

(i)

31

—
on
55
=l
(=]

frax Yeax %ax
srhx Sebx %a:{
frox Yecx ¥ox
$rdx $edx vdx| $dh | sd1

frei Fegi %ﬁl
srdi sedi sdi| | sai1]
trbp %ebp sbp[| ®bpl

Trap Sesp ¥sp ¥epl

$r8 srad sreéw| | %r6b]
219 $rod %-1'9w
$r10 $r10d %riow| [$rlob]
§ril §r11d %rilw| [$riib]
$rl2 5r12d %ri2w $r12b
ir13 sr13d srizw| [srldb
$rld %ridd srildw
$r15 §r15d %r15w| |3115D]

Return value

Callee saved
4th argument
ard argument
2nd argument
1st argument
Callee saved
Stack pointer
5th argument
Gth argument
Callee saved
Used for linking
Unused for C
Callee saved
Callee saved

Callee saved

(Bryant/O’Hallaron “x86-Machine Level Programming”)

Using registers

e A function can use any of the argument
registers. There Is no need to save them.

e |f a function uses any of the “callee saved”,
registers it has to save them in the stack and
then restore them before returning to the
caller.

X86-64 C-Types

C declaration Intel data type GAS suffix | x86-64 Size (Bytes)
char Byte b 1
short Word W 2
int Double word 1 4
unsigned Double word 1 4
long int Quad word q 8
unsigned long | Quad word q 8
char * Quad word q 8
float Single precision = 4
double Double precision d 8
long double Extended precision £ 16

(Bryant/O’Hallaron “x86-Machine Level Programming”)

Addressing modes

e |Immediate Value
movqg $0x501208,%rdi #Put in register %rdi the
constant 0x501208
e Direct Register Reference
movqg srax, srdi #Move the contents of
fregister %rax to %rdi
e Indirect through a register
movqg %rsi, ($rdi) #Store the value in %rsi
#in the address contained in %rdi
e Direct Memory Reference
movg 0x501208, %$rdi #Fetch the contents in memory
#at address 0x501308 and store it
#in %edi

Example: Adding two numbers

. text
sum:
movq $rdi, S%rax
addqgq %$rsi, %Srax
ret
strl:
.string "5+3=%d\n"
.globl main
main:
movq $3, %rsi
movq $5, %rdi
call sum
movq $rax, 3%rsi
movq $strl, %rdi
movq $0, %rax
call printf
ret

int sum(int a, int b) {

// a=%rdi b=%rsi ret=%rax
return a + b ;

#

}

main ()

{

// r = %rax
r = sum(5, 3)

// printf needs 0 in %rax
printf ("5+3=%d\n", r);
}

g 3 33

Assembling and running

e To assemble and run program:
$sslab0l ~/cs250 $ gcc -o tl tl.s
$sslab01l ~/cs250 $./tl
5+3=8

e Notice that in the previous example we use quad
words during the arithmetic even though the type is
Int.

e Most of the time there is no penalty for doing that
and it makes programs simpler.

Using the stack

e The stack is used to
store the return address
store local variables
Save registers when running out of them.

pass arguments when they don't fit in the
registers.

Example of Using Stack

long sum(long a, long b)

{

main()

long tmp1 = a;
long tmp2 = b;
long result = tmp1 + tmp2;

return result;

long result = sum(5,3);

printf("sum(5,3)=%d\n", sum(5,3));

Stack Layout

Before calling sum:

main() ret address
ISP e 0

After calling sum:

main() ret address

sum() ret address

NOrSP e

In sum after subq $24, %rsp:

main() ret address

sum() ret address

tmpl

tmp2

result
%rsp =—»

Example of Using Stack

. text
.globl sum
. type sum, @function
sum:
subqg $24, Srsp # Create space in stack for
tmpl, tmp2 and result
movqg $rdi, 16 (%rsp) # tmpl = a
movqg $rsi, 8(%rsp) # tmp2 = Db
movq 16 (%rsp), %rax
addqg 8 ($rsp), %rax
movq $rax, (%rsp) # result = tmpl + tmp2 ;
movqg ($rsp) , %rax # return result ;
addqg $24, Srsp # Restore stack pointer

ret

Using flow control

e To test the difference conditions use:

cmpg S2, S1 # S1 - S2: Compare quad words

or

testq S2,S1 # S1 & S2: Test Quad Word

Example of If statement:
Obtaining maximum of two numbers

long max(long a, long b)
{
long result;
if (a>Db){
result = a;
}
else {
result = b;

}

return result;

Example of “if”’ statement:
Obtaining maximum of two numbers

. text
.globl max
max:
cmpgq $rsi, %$rdi # if (a>b)
jle else branch
movq $rdi, %rax # result = a
Jjmp end max
else branch: # else
movq $rsi, %rax # result = b
end max:

ret # return result

Example of “while” statement: Obtaining
the maximum of an array of numbers.

// Finds the max value in an array
long maxarray(long n, long *a) ({
long i=0;
long max = a[0];
while (i<n) {
if (max < *a) {
max = *a
}
i++
at++ ;
}

return max;

Example of “while” statement: Obtaining 4

the maximum of an array of numbers.

maxarray.s
. text
.globl maxarray

maxarray:

movq
movq

while: cmpq
jle

cmpqgq
jge
movq

afterif:
addq
addq
jmp

afterw: ret

$0,%rdx
(%rsi) ,%rax

$rdx, $rdi
afterw

%$rsi) ,S$rax
afterif
%$rsi) ,%$rax

$1,%rdx
$8,%rsi

while

HHHHFHHHH TN

long maxarray(long n, long *a)

// n = %$rdi a = %rsi
// i = %$rdx max = %$rax
i=0 ;

max = a[0];

while (i<n) { // (n-i>0)

if (max < *a) { // (max-*a<0)

max = *a

}

i++
a++ ;
}

return max; }

Example of “while” statement: Obtaining
the maximum of an array of numbers using
Array Dereferencing

// Finds the max value in an array
long maxarray(long n, long *a) ({
long i=0;
long max = a[0];
while (i<n) {
if (max < a[i]) {
max = a[i];
}
i++
}

return max;

Same program using array dereferencing

.text
.globl maxarray

maxarray:

movq $0, %$rdx

movq (%rsi) ,%rax

while: cmpq %rdx, srdi

jle afterw
movq %rdx, $rcx
imulqg $8,%rcx
addg %rsi,%rcx
cmpgq (%rcx) ,%rax
jge afterif
movq (%$rcx) ,%rax

afterif:addg $1,%rdx
jmp while

afterw: ret

3 H G HHH NN

[—

// Finds the max value in an array

long maxarray(long n, long *a)

// n = %$rdi a = %rsi
// i = %$rdx max = $%rax
i=0 ;

max = a[0]
while (i<n) { // (n-i>0)

//* (long*) ((8*i+ (char*)a)
long *tmp = al[i];

if (max < *tmp) { // (max-*tmp<0)

max = *tmp

}
i++ ;

Running the program

maxarray.c:
long a[] ={4, 6, 3,7, 9},
main()

{

printf("maxarray(5,a)=%d\n", maxarray(5,a));

}

grr@sslab01 ~/cs250 $ gcc -0 maxarray maxarray.c maxarray.s
grr@sslab0l1 ~/cs250 $./maxarray

maxarray(5,a)=9

grr@sslab01 ~/cs250 $

Defining Global Variables In
Assembly Language

e To create space for a global variable in assembly language use:
.data
.comm <var-name>, <data-size>[,<alignment>]

where
<var-name> = variable name
<data-size> = Size of variable in bytes

<alignment> = Optional alignment. Address of variable will be a multiple
of alignment. Otherwise alignment will be a power of 2 larger to
data-size up to 32.

e Example:
.data
.comm a,8 # long a;
.comm array,40 # long a[5];

.comm darray, 80,8 # double darray[10];

Example Using scanf in x86-64
assembler

Define global variable a in data section
.data
.comm a8 #long a;

ext
formatl:
.string "a="

format2:
.string "%ld"

format3:
.string "ais %ld\n"

.globl main
main: # main()
#
movq $formatl, %rdi # printf("a=");
movqg $0, %rax #
call printf #

movq $format2, %rdi # scanf("%ld",&a);
movq $a, %rsi #

movq $0, %rax #

call scanf #

movq $format3, %rdi # printf("a=%ld",a);
movq $a, %rsi #

movq (%rsi),%rsi #

movqg $0, %rax #

call printf #

ret #}

Using gdb with assembly 33
programs

e Use the following instructions to debug
assembly programs:

stepi — steps in the next instruction. If this is a
“call” instruction, it steps in the called function.

nexti — Executes next instruciton. It does not enter
Into a called funciton.

disassemble function/label- disassembles the
current function or label

Break function — Sets a break point in a function
Run — run to completion or until a breakpoint

Using gdb

(gdb) break main

Breakpoint 1 at 0x4004f4

(gdb) run

Starting program: /u/u3/grr/cs250/max

warning: no loadable sections found in added symbol-file system-supplied DSO at 0x7{fff01fe000

Breakpoint 1, 0x00000000004004f4 in main ()
(gdb) stepi
0x00000000004004f9 in main ()

(gdb)
0x00000000004004fe in main ()

(gdb)
0x0000000000400503 in main ()

(gdb)
0x000000000040051c in maxarray ()

(gdb)

0x0000000000400523 in maxarray ()

(gdb) disassemble

Dump of assembler code for function maxarray:
0x000000000040051c <maxarray+0>: mov $0x0,%rdx
0x0000000000400523 <maxarray+7>: mov (%orsi),%rax
End of assembler dump.

(gdb)

Lab/7: Writing a Simple t
Compliler

e |n this lab you will write a compiler for “Simple
C”
e This language is a reduced version of “C".

e We will concentrate on generating the
assembly language code.

e We will cover superficially the theory of
parsing and the use of Lex and Yacc

Simple C

e Subsetof C
e Only the following types are supported:
long
long*
char
char*
void
e Also it supports constructions such as if/else, while, do/while, for.
e The program consists of a declaration of functions and variables
like in “C”.
e Also you can call “C” functions from Simple C as long as the
arguments they use are char* and long (or int).

Example Simple “C” program

long fact(long n) {
if (n==0) return 1;
return n*fact(n-1);

}

void main()

{
printf("Factorial of 5 = %d\n" , fact(5));

}

Building a Compiler

e To help in the development of compllers,
tools such as Lex and Yacc have been
created.

e With these tools, the programmer
concentrates only in the grammar and the
code generation.

Lex

e Lex

takes as input a file simple.l with the regular
expressions that describe the different tokens.

It generates a scanner file “lex.yy.c” that reads
characters and forms tokens or words that the
parser uses.

Yacc

e YaccC

Takes as input a file simple.y with the grammar
that describes the language.

This file also contains “actions” that is “C” code
that describes how the code will be generated
while parsing the code.

It generates a parser file called “y.tab.c” that
reads the tokens and parses the program
according to the syntax.

When it reaches an action in the syntax tree, it
executes that action

Lex and Yacc Interaction

Scanner Parser Output File:
Input file: simple.| simple.y testl.s
testl.c (lex.yy.c) (y.tab.c) text
_ / ‘ .globl main
chars: | main:
main(int a Tokens: '

WORD LPARENT INT WORD RPARENT

lex simple.] == lex.yy.c

yacc simple.y == y.tab.c

Lex Input file simple.l

e |t contains the regular expressions that
describe the different tokens

"return” {
return RETURN:;

}

[A-Za-z][A-Za-z0-9]* {
[* Assume that file names have only alpha chars */
yylval.string_val = strdup(yytext);
return WORD:;

Yacc input file simple.y

e |t contains the grammar that describes the
anguage.
e |t also contains actions or ¢ code that will be

executed after parsing specific grammar
constructions.

e |t also includes the main() entry point of the
compiler.

Yacc input file simple.y

program :
function_or_var_list;

function_or_var_list:
function_or_var_list function
| function_or_var_list global var
| Ffempty */

function:
var_type WORD
{
fprintf(fasm, "\t.text\n");
fprintf(fasm, ".globl %s\n", $2);
fprintf(fasm, "%s:\n", $2);
}
LPARENT arguments RPARENT compound_statement

{
}

fprintf(fasm, "\tret\n");

Code generation

e You will need to add more actions to generate the
code.

e An action is a portion of code such as
{

}

fprintf(fasm, "\tret\n", $2);

that is embedded in the grammar.

e This portion of code Is executed when the parser
reaches that point.

Parsing tree

e The parser tries to parse the inout according
to the grammar

program

v

function_or_var_list

v
function

o—

var_type WORD {.} LPARENT var_type WORD RPARENT {.}

T T

long (long n)

{action} {action}

Generating Code for t
Expressions

e Since the compiler will only parse the sources
once, the easiest code to generate Is the
code for a stack-based machine.

e However a stack-based machine is slow.

e \We will optimize this by using registers for the
bottom entries of the stack.

Example of stack based e
machine

e Arithmetic expression:
4+3*8
e Equivalent in stack based machine:

oush 4
oush 3

push 8 H
| =

+ Push4 Push 3 Push 8

Parsing Expressions

® \We need the hierarchy of logical, equality, relational, additive,

multiplicative expressions to take into account the operator
precedence.

expression .
logical _or_expr
logical _or_expr:
logical _and_expr
| logical _or_expr OROR logical _and_expr

logical _and_expr:
equality _expr
| logical _and _expr ANDAND equality expr

Parsing Expressions

equality _expr:
relational_expr
| equality _expr EQUALEQUAL relational_expr
| equality _expr NOTEQUAL relational _expr

relational _expr:

additive_expr
relational _expr LESS additive_expr
relational _expr GREAT additive_expr
relational_expr LESSEQUAL additive_expr
relational _expr GREATEQUAL additive_expr

Parsing Expressions

additive_expr:
multiplicative_expr
| additive_expr PLUS multiplicative_expr {
fprintf(fasm, "\t# +\n");

}
| additive_expr MINUS multiplicative_expr

multiplicative_expr:
primary_expr
| multiplicative_expr TIMES primary_expr {
fprintf(fasm, "\t# *\n");
}
| multiplicative_expr DIVIDE primary_expr
| multiplicative_expr PERCENT primary_expr

Parsing Expressions

primary_expr:
STRING_CONST {
/[Add string to string table.
/[String table will be produced later
string_table[nstrings]=$%<string_val>1;

fprintf(fasm, "\tmov $string%d, %%rdi\n", nstrings);
nstrings++;

}

| call

WORD

WORD LBRACE expression RBRACE
AMPERSAND WORD
INTEGER_CONST {

fprintf(fasm, "\t# push %s\n", $<string_val>1);

}
| LPARENT expression RPARENT

How expressions are parsed

expression

Iogicaltor_expr

logical _and_expr
equality _expr
relational _expr
additive_expr

additive_expr PLUS multlpllcatlve expr {fprlntf(fasm,“+”)}

multiplicative_expr
multlpllcatlve expr TII\/IES primary_expr

primary_expr {fprintf(fasm,”*”)}
— = prlmary expr
INTEGER_CONST {push $1} INTEGER &ONST {push INTEGER CONST

+L$l} {push $1}

3

push 4 push3 push8 * +

Expressions Code Generation

e You will use a Stack Virtual Machine.

e The bottom elements in the stack will be
stored In registers to speed up access.

e You will need to save these registers at the
beginning of the function and restore them

before returning.

Stack Representation

Stack Position | Register/Memory

0 rbx

1 rl0

2 r13

3 rl4

4 rls

>=5 Use the execution stack

Stack Operations

e Depending of the stack position, the push or pop
Instruction will use a different register.

e Example: 4+3*8
movq $4,%rbx push 4. Use %rbx

push 3. Use 5%rl0

push 8. Use %rl3

* = Multiply 2 top values.
Push result.

+ = Add 2 top values.

Push result

movqg $3,%rl0
movqg $8,%rl3
imulg %rl3,5%rl0

addg %rl0, %rbx

movq S$rbx, Srax move result to %$rax for use in

3= H H H I H H I

statements

Implementing Variables

e Your compiler will handle three type of
variables:
Global variables
Local Variables
Arguments

Implementing Declaration of | ¢
Global Variables

e The declaration of global variables are parsed in the
rule:

global var:
var_type global var list SEMICOLON;

global var_list: WORD
| global_var_list COMA WORD

e Insert the actions {...} to
reserve space
add the variable to the global variable table.

Creating Space for Global
Variables

e Global variables are stored in the data section.
e Generate code that way:
Example:
Simple C:
long g;

Assembly:
.data
g:
.long O

Getting a Value from a Global | 33
Variables

e The parse rule that should generate the code for getting the value of a global
variable is:
primary expr:
WORD {
char * id = $<string val>l;
lookup id in local variables table

if id is a local var {

read local var from stack and push into stack.
(We will see this later).

}
else {
lookup id in global var table
if id is a global var {
Generate code to read global var and push it to stack
fprintf (fasm, “movqg %s, $%$s\n”, id, regStk[top]),
top++;
}

Saving into a global variable

e Storing into a global variable is implemented in the following rule
assignment:
WORD EQUAL expression {
// Code for a assignment
char * id = $<string val>l;
if (id is local var) {
// we will see later
}
else if (id is a global wvar) {
// Generate code to save top of the stack
// in global var
fprintf (fasm, “movqg %rbx,%s\n”, id);
top = 0;

Getting a Value from a Global | 33
Variables

e Example:
Simple C:
x =5+ g;
Assembly
movqg $5, %$rbx # push 5
movq g, %rl0 # push g (printed by code
shown before)
addg %rl0, $rbx # add and push result
to top of stack

movq %rbx, x # Save result into x

Implementing Declaration of | ¢
Local Variables

e Declaration of local variables should be done
In the production

local var:
var type local var list SEMICOLON;

local var list: WORD
| local var list COMA WORD

Implementing Declaration of | ¢
Local Variables

e Local variables are stored in the stack.

e \We need to reserve stack space at the
beginning of the function using
subq $<space>, %rsp

Where <space> is the space reserved that
needs to be restored before leaving the
function.

e We do not know how much space two
reserve.

Implementing Declaration of | ¢
Local Variables

e Two approaches:

Reserve a constant maximum stack space all the
time Example: 256 bytes, enough for 32
variables.

Instead of reserving, jump to a code at the end of
the function that reserves the stack once we know
the space we need and then jump back.
e The second approach is better but both
approaches are OK for the purpose of this

project.

Implementing Declaration of | ¢
Local Variables

e Remember that the argument registers are
overwritten during a function call.

e You need to save the argument registers in
the stack at the beginning of the function.

e Hint:

Add the arguments to the local variable table at
the beginning of the function and treat the
arguments as local variables.

Implementing Declaration of
Local Variables

Example:
long add(long a, long b) { Stack
: 1000 (new sp)
INt C,d; a
- 1008 .
C= 5’ 1016
d = c + a*b: 1024 :
’ d
return d;
} To push c to top of
register stack:
movqg 16(%rsp),$rbx
1256 (original sp)

Implementing Declaration of | g2
Local Variables

local var list: WORD {
// f£first local wvariable

local vars table[nlocals]=$<string val>;
nlocals++;

| local var list COMA WORD ({

local vars table[nlocals]=$<string val>;
nlocals++;

Generating code for while()

long i = O;
main()
{
while (i<5) {
=1+ 1;
printf("%d\n", i);
}

Generating code for while()

.data
I #longi=0;
Jlong O
dext
.globl main
main:
#while (i<5) {
while_1: # expression i<5
mov(q i, %rbx # push i

movqg $5, %r10 # push 5
cmpq %r10,%rbx # compare top of the stack (rbx-r10)
movq $0,%rax # Zero %rax
setl %al # Set byte if less
See http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/24592.pdf page 55
movq %rax,%rbx # Put result back to top

cmpq $0, %rbx # Compare top of the stack with O
je after_while_1 # Jump after while if not true

Generating code for while()

Body of while
mov(q i,%rbx # 1=+l
movq $1,%r10
addqg %r10,%rbx
movq %rbx,i

printf("%d\n,i) ;

movq $strl, %rbx # Argl of printf
movq %rbx, %ordi

mov(q i,%rbx # Arg2 of printf
movq %rbx, %orsi

movq $0,%rax # Extra Os for printf
call printf # Call printf

jmpwhile_1 #}// while

after_while_1.:

ret
text

.String "i=%d\n"

Passing Arguments for Calls

e \When parsing argument to calls let the parser
push the expressions to the register stack.

e Do not initialize top at every argument.

e The arguments will be saved in the register
stack until they are copied to the register
arguments.

Parsing Arguments for Calls

Simple C:
printf (“compute (3,4)=%d\n”, compute(3,4));

Assembly:
movqg string0, %$rbx # push string0 - printf’s arqgl
movq $3, $rlo0 # push 3 - compute’s argl
movqg $4, S$rl3 # push 4 - compute’s arg2

Copy from stack to arg regs top==

movqg $rl3, Srsi # pop into register for arg2 top==
movqg $rl0, S$rdi # pop into register for argl top==

call compute
movqg %rax, 5%rl0 # Push return val to stack top==

movq $rl0, Srsi
movq rbx, Srdi

pop into register for arg2 top==
pop into register for argl top==

3H I

movl $0, %eax # Call printf
call printf

Parsing Arguments for Calls

e The problem with nested calls is that a single
“nargs” variable sis not enough to keep count of the
number of arguments.

e The solution is to store an “nargs” into the

call_arg_list nonterminal to make the nargs local to
the function parsed.

e In %union add:
%union {
char *string_val,;
Int nargs;

}
e This will allow adding a new type

Parsing Arguments for Calls

e Modify call_arg_list to count the arguments. The $<nargs>$ stores a
variable nargs local to this rule inside the non-terminal expression that can
be used later.

call_arg_list:
expression {
$<nargs>$ = 1; // Initialize args to 1
}
| call_arg_list COMA expression {
$<nargs>$++;

J

call_arguments: /* Pass up number of args */
call_arg_list { $<nargs>$=%$<nargs>1;}
| *empty*/ { $<nargs>%$=0;}

Parsing Arguments for Calls

call
WORD LPARENT call arguments RPARENT ({
int i;
char * funcName = $<string val>l;

if (!strcmp (funcName, "printf")) ({
// printf has a variable number of args
fprintf (fasm, "\tmovl $0, %%eax\n");
}

// Move from top of stack to argument registers

fprintf (fasm, " #Push arguments to stack\n");
for (i=$<nargs>3-1; i>=0; i--) {
top—--;
fprintf (fasm, "\tmovg %%%s, %$%%s\n",
regStk|[top],

regArgs|[i]) ;
}

fprintf (fasm, "\tcall %s\n", funcName) ;

Virtual Memory Introduction

e VM allows running processes that have memory

requirements larger than available RAM to run in the
computer.

e If the following processes are running with the noted
reguirements:

IE (100MB),
MSWord (100MB),
Yahoo Messenger (30MB)
Operating System (200MB).
e This would require 430MB of memory when there
may only be 256MB of RAM available

Virtual Memory Introduction

e VM only keeps in RAM the memory that is
currently in use.

e The remaining memory is kept in disk in a
special file called "swap space”

e The VM idea was created by Peter Dening a
former head of the CS Department at Purdue

Other Uses of Virtual Memory

e Another goal of VM Is to speed up some of the tasks
In the OS for example:

Loading a program. The VM will load pages of the
program as they are needed, instead of loading the
program all at once.

During fork the child gets a copy of the memory of the
parent. However, parent and child will use the same
memory as long as it is not modified, making the fork call
faster. This is called “copy-on-write”.

Shared Libraries across processes.
Shared memory
There are other examples that we will cover later.

VM Implementations

0 Process Swapping:

The entire memory of the process is swapped in and out
of memory

a Segment Swapping

Entire parts of the program (process) are swapped in
and out of memory (libraries, text, data, bss, etc.

Problems of process swapping and segment swapping
IS that the granularity was too big and some pieces still
In use could be swapped out together with the pieces
that were not in use.

a Paging
Used by modern OSs. Covered in detail here.

Paging

Implementation of VM used by modern operating
systems.

The unit of memory that is swapped in and out is a
page

Paging divides the memory in pages of fixed size.
Usually the size of a page is 4KB in the Pentium

(x86) architecture and 8KB in the Sparc Ultra
Architecture.

Paging

OXFFFFFFFF 232-1=4(G-1

2%2/4KB-1 =220-1=2M-1

Not mapped(invalid)

Swap page 500
Qddress in I'E:I\T ppazgeelso VM Address
tes : My '
Y Swap page 456 N Pages
(page
RAM page 5 numbers)

0x00002000 8192 | EXecutable page 2 |2
0x00001000 4096 —~AM page 24
0x00000000 O 0

Paging

e The Virtual Memory system will keep In
memory the pages that are currently in use.

e It will leave In disk the memory that is not in
use.

Backing Store

e Every page in the address space Is backed
by a file in disk, called backing-store

Memory Section Backing Store
Text Executable File
Data Executable File when page is

not not modified.
Swap space when page is

modified
BSS Swap Space
Stack Swap Space

Heap Swap Space

Swap Space

e Swap space Is a designated area in disk that
IS used by the VM system to store transient
data.

e In general any section in memory that is not
persistent and will go away when the process
exits Is stored in swap space.

e Examples: Stack, Heap, BSS, modified data
etc.

Swap Space

lore 208 $ df -k

Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0sO 1032130 275238 705286 29% /
/proc 0O 0O 0 0% /proc

mnttab 0 0 0 0% /etc/mnttab

fd 0 0 0 0% /dev/fd
/dev/dsk/c0t0d0s4 2064277 1402102 600247 71% /var
swap 204800 2544 202256 2% /tmp

/dev/dsk/c0t2d0s6 15493995 11682398 3656658 77% /.lore/u92
/dev/dsk/cOt3d0s6 12386458 10850090 1412504 89% /.lore/u96
/dev/dsk/cOtldOs7 15483618 11855548 3473234 78% /.lore/u97
bors-2:/p8 12387148 8149611 4113666 67% /.bors-2/p8
bors-2:/p4 20647693 11001139 9440078 54% /.bors-2/p4
xinuserver:/u3 8744805 7433481 1223876 86% /.xinuserver/u3

galt:/home 5161990 2739404 2370967 54% /.galt/home
xinuserver:/u57 15481270 4581987 10775435 30% /.xinuserver/u57
lucan:/p24 3024579 2317975 676359 78% /.lucan/p24

ector:/pnews 8263373 359181 7821559 5% /.ector/pnews

Swap Space

lore 206 $ /usr/sbin/swap -s
total: 971192k bytes allocated + 1851648k reserved =

2822840k used, 2063640k available

lore 207 $ /usr/sbin/swap -I

swapfile dev swaplo blocks free
/dev/dsk/cOt0d0s1 32,1025 16 2097392 1993280
/dev/dsk/cOt1ld0s1 32,1033 16 2097392 2001792

Implementation of Paging

e Paging adds an extra indirection to memory
access.

e This indirection is implemented in hardware, so it
does not have excessive execution overhead.

e The Memory Management Unit (MMU) translates
Virtual Memory Addresses (vmaddr) to physical
memory addresses (phaddr).

e The MMU uses a page table to do this
translation.

Paging

e There are two types of addresses:

Virtual Memory Addresses: the address that the

CPU is using. Addresses used by programs are of
this type.

Physical Memory Addresses: The addresses of
RAM pages. This is the hardware address.

e The MMU translates the Virtual memory
addresses to physical memory addresses

The Memory Management Unit

Page Table

VM CPU
Address '* t

t Data Bus

; Address Bus

Memory
_\ Cache
Memory :
Page Table M ¢ Translation Look-
Register anagemen Aside Buffer (TLB)
Unit (MMU)

RAM

+ |

Physical /
(hardware)

Address

L1

i

1/0

The Memory Management Unit

The MMU has a Page Table Register that points to
the current page table that will be used for the
translation.

Each process has a its own page table.

The page table register is updated during a context
switch from one process to the other.

The page table has the information of the memory
ranges that are valid in a process

The Memory Management Unit

e The value of the page table register
changes every time there Is a context switch
from one process to another.

e Consecutive pages in Virtual memory may
correspond to non-consecutive pages Iin
physical memory.

The Memory Management Unit

e To prevent looking up the page table at every
memory access, the most recent translations
are stored in the Translation Look-Aside
buffer (TLB).

e The TLB speeds up the translation from
virtual to physical memory addresses.

e A page fault is an interrupt generated by the
MMU

VM to Hardware Address 1
Translation

e The VM address is divided into two parts:
Page number (higher 20 bits)

Offset (Lower 12 bits: 0-4095) (Assuming page
Size=4096 or 21?)

31 12 11 0

e Only the page number is translated. The offset
remains the same

e Example: in 0x2345, the last 3 hex digits (12 bits)
IS the offset: 0x345. The remaining digits is the
page number (20 bits): Ox2

VM to Hardware Address 1
Translation

VM Address Hardware Address
Page Page
232/212—1 —
2201 429
:
.
:

Page Table

w 1 v i - 1 1Vl Wi W W WUl W 7/ W\ Wi Wil W9 W9

000
Translation (one-level page H
table)
VM Address 0x2345 Hardware Address
Page Number Offset Page Number Offset
0x345 0X767 0x345
220-1
2
VMaddr=0x2345 | haddr=0x767525
pagenum=0x2 pagenum=0x767
offset=0x345 © offset=0x345

Page Table

Two-Level page tables

e Using a one-level page table requires too
much space: 220 entries * 4 bytes/entry =~
4AMB.

e Since the virtual memory address has a lot of
gaps, most of these entries will be unused.

e Modern architectures use a multi-level page
table to reduce the space needed

Two-Level page tables

e The page number is divided into two parts: first-
level page number and the second-level page

number
First-level index Second-level _
Offset (12 bit
() (10bits) | index (j) (10 bits) | O oo 2P

IOOOO 0000 01I)0 0000 0010 |0110 0101 0111|
First level Second level Offset

Offset=0x657 (last 3 hex digits)
1st level index (i) = 0x1 , 2"d level index (j)= 0x2

000
0000
(X XN
. -4
VM Address Translation °
; | 11
VM address - B{ 10
9
15t level 2nd
(i) level (j) offset 0x45000Q 8
.
3112221 1211 O - /V .
2 ~ 5
2101 0x45000 4 B‘ 4
0x700QQ 3
0x70000 ;
. 0
| 0x45000 Page Number
0 0x45000 Physical Mem

First Level Page Table Second Level Page Tables

(multiple tables for each
(one for each process). nDrocess.)

VM Address Translation

VM address:0x00402657
1st level; 2nd level Offset

1I=0x1 j=0x2 | 0x657
31 2221 1211 O

210-1] 0x65000

N\

0x45000

N

I—>1 0x70000

|
9
0x65000
210.1
=
5
2 2
1 4
0x700Q0
0x45000
Second Level

First Level
Page Table

Page Tables

Page Number
Physical Mem

Page number in
physical
address=0x2

O, N W MOl OO~ 00 ©:

Example

e VMaddress: 0x00402 657
e Physical Memory Address: 0x2 657

1.From the VM address find i, j, offset

2. SecondLevelPageTable= FirstLevelPageTable[i]
3. PhysMemPageNumber = SecondLevelPageTable[j]
4. PhysMemAddr= PhysMemPageNum*Pagesize + offset

e Process always have a first-level page table
e Second level page tables are allocated as needed.

e Both the first level and second level page tables
use 4KB.

Page Bits

e Each entry in the page table needs only 20 bits to store
the page number. The remaining 12 bits are used to
store characteristics of the page.

Resident Bit:
Page is resident in RAM instead of swap spacef/file.
Modified Bit:

Page has been modified since the last time the bit was cleared.
Set by the MMU.

Access Bit:
Page has been read since the last time the bit was cleared. Set
by MMU

Permission:
Read - page is readable
Write - Page is writable
Execute - Page can be executed (MMU enforces permissions)

Page Bits

e |If a CPU operation exceeds the permissions
of a page, the MMU will generate an interrupt
(page fault). The interrupt may be translated
Into a signal (SEGV, SIGBUS) to the process.

e |f a page Is accessed and the page is not
resident in RAM, the MMU generates an
interrupt to the kernel and the kernel loads
that page from disk.

Types of Page Fault

e Page Fault
Page not Resident: Page not in Physical Memory, it is in
disk
Protection Violation: Write or Access permission (as
Indicated by page bits) violated.

Processing a Page Fault

1. A program tries to read/write a location in
memory that is in a non-resident page. This could
happen when:

fetching the next instruction to execute or
trying to read/write memory not resident in RAM

2. The MMU tries to look up the VM address and
finds that the page is not resident using the
resident bit. Then the MMU generates a page
fault, that is an interrupt from the MMU

3. Save return address and registers in the stack

Processing a Page Fault

4. The CPU looks up the interrupt handler that

corresponds to the page fault in the interrupt vector
and jumps to this interrupt handler

5. In the page fault handler

If the VM address corresponds to a page that is not
valid for this process, then generate a SEGV signal

to the process. The default behavior for SEGV is to
Kill the process and dump core

Otherwise, if VM address is in a valid page, then the
page has to be loaded from disk.

Processing a Page Fault

6. Find a free page in physical memory. If there are no
free pages, then use one that is in use and write to
disk if modified

/. Load the page from disk and update the page table
with the address of the page replaced. Also, clear
the modified and access bits

8. Restore registers, return and retry the offending
Instruction

Processing a Page Fault

e The page fault handler retries the offending
iInstruction at the end of the page fault

e The page fault is completely transparent to
the program, that is, the program will have no
knowledge that the page fault occurred.

Using mmap

e The mmap() function establishes a mapping between a
process's address space and a file or shared memory

object.
#include <sys/mman.h>
void *mmap (void *addr, size_ t len, int prot,
int flags, int fildes, off t off);

e Mmap returns the address of the memory mapping and it
will be always aligned to a page size (addr%PageSize==0).

e The datain the file can be read/written as if it were memory.

Using mmap

ptr = mmap(NULL, 8192, PROT_READ|PROT WRITE, MAP_SHARED, fd, 0)

OXFFFFFFFF

ptr=
0x00020000

0x00000000

Memory

Mmap parameters

void *mmap (void *addr, size t len, int prot,
int flags, int fildes, off t off);
addr -
Suggested address. If NULL is passed the OS will choose the
address of the mapping.
len -
Length of the memory mapping. The mmaped file should have

this length of larger or the program gets SEGV on access.
prot -

Protections of the mapping: PROT READ, PROT WRITE,
PROT_EXEC, PROT_NONE.

Mmap parameters

flags: - Semantics of the mapping:
MAP SHARED - Changes in memory will be done in the file

MAP PRIVATE - Changes in memory will be kept private to the process

and will not be reflected in the file. This is called “copy-on-
write”

MAP FIXED - Force to use “addr” as is without changing. You should

know what you are doing since the memory may be already in use.
Used by loaders

MAP NORESERVE- Do not reserve swap space in
advance. Allocate swap space as needed.
MAP ANON - Anonimous mapping. Do not use any fd (file).
Use swap as the backing store. This option
is used to allocate memory
Fd -

The file descriptor of the file that will be memory mapped. Pass -1
if MAP ANON is used.

Offset -

Offset in the file where the mapping will start. It has to be a
multiple of a page size.

Mmap returns MAP FAILED ((void*)-1) if there is a failure.

Notes on mmap

e Writing in memory of a memory-mapped file will
also update the file in the disk.

e Updating the disk will not happen immediately.

e The OS will cache the change until it is
necessary to flush the changes.
When the file is closed
Periodically (every 30secs or so)
When the command “sync” is typed

e If you try to read the value from the file of a page
that has not been flushed to disk, the OS will give
you the most recent value from the memory
Instead of the disk.

Uses of VM

e The VM is not only to be able to run programs that
use more memory than the RAM available.

e VM also speeds up the execution of programs:

Mmap the text segment of an executable or shared
library

Mmap the data segment of a program

Use of VM during fork to copy memory of the parent into
the child

Allocate zero-initialized memory. it is used to allocate
space for bss, stack and sbrk()

Shared Memory

1. Mmap the text segment of | s
an executable or a shared
library

e Initially mmap does not read any pages

e any pages will be loaded on demand when they are
accessed

e startup time is fast because only the pages needed
will be loaded instead of the entire program

e It also saves RAM because only the portions of the
program that are needed will be in RAM

len B IVIIIIVLIV @ i I - i\ \vaIIIVIIL - i

an executable or a shared e
library

e Physical pages where the text segment is
stored Is shared by multiple instances of the
same program.

e Protections: PROT_READ|PROT_EXEC
e Flags: MAP_PRIVATE

len B IVIIIIVLIV @ i I - i\ \vaIIIVIIL - i

an executable or a shared
library

OXFFFFFFFF

0x00020000

0x00000000

Virtual
Memory

len B IVIIIIVLIV @ i I - i\ \vaIIIVIIL - i

an executable or a shared e
library

Physical Pages of the text section are shared across multiple
orocesses running the same program/shared library.

Process 1
Virtual

Physical Process 2

Memory Virtual
Memory Memory

2. Mmap the data segment of a | ¢s
program

During the loading of a program, the OS mmaps the
data segment of the program

The data segment contains initialized global
variables.

Multiple instances of the same program will share
the same physical memory pages where the data
segment is mapped as long as the page is not
modified

If a
the

page Is modified, the OS will create a copy of

page and make the change in the copy. This is

called "copy on write"

2. Mmap the data segment of a | ¢s
program

Processes running the same program will share the same
unmodified physical pages of the data segment

Data page A Data page A _ Data page A

Data page B D

ata page B Data page B
Data page C Data page C _ Data page C

Process 1
Virtual

Physical Process 2

Memory Virtual
Memory Memory

2. Mmap the data segment of a | ¢s
program

When a process modifies a page, It creates a private copy
(A*). This is called copy-on-write.

ata page A~ Data page A Data page A

Data page B Data page B Data page B
Data page C Data page C

Process 1
Virtual

Physical Process 2

Memory Virtual
Memory Memory

3. Use of VM during fork to copy memory of
the parent into the child

e After forking, the child gets a copy of the memory of
the parent

e Both parent and child share the same RAM pages
(physical memory) as long as they are not modified

e \When a page is modified by either parent or child,
the OS will create a copy of the page in RAM and
will do the modifications on the copy

3. Use of VM during fork to copy memory of
the parent into the child

e The copy on write In fork is accomplished by
making the common pages read-only.

e The OS will catch the modifications during
the page fault and it will create a copy and
update the page table of the writing process.

e Then it will retry the modify instruction.

3. Use of VM during fork to copy memory of
the parent into the child

After fork() both parent and child will use the same pages

Parent’s
Virtual

Physical Child’s
Memory Virtual
Memory Memory

3. Use of VM during fork to copy memory of
the parent into the child

~ When the chhild or parent modifies a page, the OS creates a
private copy (A*) for the process. This is called copy-on-write.

Parent’s
Virtual

Physical Child’s
Memory Virtual
Memory Memory

4. Allocate zero-initialized e
memory.

It is used to allocate space for bss, stack and
sbrk()

When allocating memory using sbrk or map with
the MMAP_ANON flag, all the VM pages in this
mapping will map to a single page in RAM that
has zeroes and that is read only.

When a page is modified the OS creates a copy
of the page (copy on write) and retries the
modifying instruction

This allows fast allocation. No RAM is initialized
to O’s until the page is modified

This also saves RAM. only modified pages use
RAM.

4. Allocate zero-initialized :e
memory.

e This is implemented by making the entries in the
same page table point to a page with 0s and making
the pages read only.

e An instruction that tries to modify the page will get a
page fault.

e The page fault allocates another physical page with
0’s and updates the page table to point to it.

e The Instruction is retried and the program continues
as it never happened.

4. Allocate zero-initialized e
memory.

After allocating zero initialized memory with sbrk or mmap,
all pages point to a single page with zeroes

Parent’s

Virtual
Memory

Physical
Memory

4. Allocate zero-initialized e
memory.

When a page is modified, the page creates a copy of the
page and the modification is done in the copy.

Parent’s

Virtual
Memory

Physical
Memory

5. Shared Memory

e Processes may communicate using shared
memory

e Both processes share the same physical
pages
e A modification in one page by one process

will be reflected by a change in the same
page in the other process.

5. Shared Memory

Processes that communicate using shared memory will share
the same physical pages.

Process 1

Physical Process 2
Memory

5. Shared Memory

When a page is modifed, the change will be reflected in the
other process.

Process 1

Physical Process 2
Memory

Cache and Caching

e Continue Book Class slides

e Chapters XIllI, XIll, XIV, XV, XVI, XVII (12,
13, 14, 15, 16 and 17).

http://www.cs.purdue.edu/homes/cs250/LectureNotes/book-slides.pdf

Final Exam Review

Final Exam Review

e VIII. Assembly Language and Programming

X86-Assembly Language
Register Assignment
Addressing Modes
Using the stack
Calling Conventions
Flow Control

e IX. Memory and Storage

Volatile, Non-volatile,

Random Access and Sequential Access
ROM, PROM, EEPROM

Memory Hierarchy

e Xl. Virtual Memory

MMU,

Phyicaland VM Address Memory

Address Translation

Two-level page table

Page Bits

Page faults

TLB’s

Row major and column major computations

Final Exam Review

e Xll Caches and Caching
Importance of Caching
Cache hit and cache miss
Locality of reference
Worst /Best/Average case cache performance
Hit /Miss ratio
Multiple levels of cache
Preloading caches
Write-through and write back cache
L1, L2, L3 cache
Direct mapping and set associative cache

Final Exam Review

e XlII Input/Output Concepts and Terminology
Parallel Interface / Serial Interface
Data Multiplexing

e XIV Buses and Bus Architecture

e XV Programmed and Interrupt-Driven 1/O
Polling ad Interrupts
Handling an Interrupt
Interrupt Vector
Multple levels of interrupts
DMA
Buffer chaining and Scatter Read and Gather Write

Final Exam Review

e XVI. A Programmers View of I/O and
Buffering
Upper Half and Lower Half of a Device Driver
Character oriented and block oriented devices
Buffered input and output.

Final Material to Study

e New Slides
e Old slides

e Everything up to and including chapter XIX in the
book.

e Projects

o X86-64

e Assembly Programming materials

e | will ask code fragments of the compiler project.

Extra Slides

PIC 18 Introduction

PIC18

e In the labs you will use the PIC18

e This Is a 8 bit processor that provides
Digital 1/0
Analog to Digital Conversion
Pulse Width Modulation
USB support
RS232 (Serial Line)

e Data Sheet of PIC18:

http://ww1.microchip.com/downloads/en/DeviceDoc/39632e.pdf

PIC18

e |t follows a Harvard Architecture, that is,
code and data are stored Iin separate
memory.

Code - 32KB
Data - 4KB

e |nstructions can be 2 or 4 byte long.
e The data word is 1 byte.

Data Memory

e RAM is 4KB or 212

e Therefore, pointers are 12 bits long

e The memory is divided into 16 banks.
e Each bank is 256 bytes long.

e That is 16x256=4KB

FIGURE 5-6: USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)
BsRI1) Data Memory From Opcodel?)
T] 000h 0ok T
[ofofelofofofa]s] Bank0 e [t]rfrfrf2]r]1]
100h 00h
~ - - - Bank 1 * - a
Bank Select FFh
\[200h 00h
Bank 2
— ™ 300h FFh =
00h
Bank 3
through o
bty Bank 13
FFh
EQ0h 0oh
Bank 14 —
FOOh
00h
Bank 15
FFFh FFh
Mote 1: The Access RAM bit of the instruction can be used to foree an override of the selected bank (BSR<3:0=-) to

2:

the registers of the Access Bank.
The MCVEE instruction embeds the enfire 12-bit address in the instruction.

Memory Addresses

e The Instructions that access data use a
reduced pointer that is 8 bits long (O to 255)

e The remaining 4 highest bits are specified by
the argument “a” in each instruction.

If a=0 the address refers to the “Access Bank”
that uses bank 0 for Ox00 to Ox5F and 0x60 to
OxFF from bank 15.

If a=1, the 4 highest bits are contained in a
register called BSR (Bank Selection Register)

99% of the time a=0 in your programs.

Special Function Registers and 4
General Function Registers

e The data memory is divided Iinto

SFRs — Special Function Registers. Used for
control and status of the processor.

GPRs — General Purpose Registers. Used to
store temporal results in user application.

SPECIAL FUNCTION REGISTER MAFP

TABLE 5-1:

Address Hame
FFFh| TosU
FFER| TOSH
FFOh| TosL
FFCh| STKPTR
FFBh| PCLATU
FFAh| PCLATH
FFoh PCL
FF&h| TBLPTRU
FF7h| TBLPTRH
FFGh| TBLPTRL
FFSh| TABLAT
FF4h| PRODH
FF3h| PRODL
FE2h| INTCOM
FF1h| INTCON2
FFOh| INTCON3
FEFh| nDFO!M

FEEh | POSTINCOLT

FECh|PosTDECOM

FECh| PREINCOI
FEBh| PLUSWOL
FEAh| FSROH
FESh| FSROL
FESh| WREG
FETh| INDF1(1)

FEEh | PosTINC (T

FESh |[POsSTDEC 1M

FE4h

PREINC1T

FE3h

pLUSW1!

FEZh

F5SR1H

FE1h

FSR1L

FEQh

BSR

Address
FDFh
FDER
FDDh
FDCh
FDBh
FDAR
FO9h
FD&h
FD7h
FDER
FDSh
FD4h
FD3h
FD2h
FD1h
FDOR
FCFh
FCER
FCDh
FCCh
FCBh
FCAR
FC3h
FCEh
FCTh
FCER
FCSh
FC4h
FC3h
FC2h
FC1ih
FCOh

Hame

IMDF2i1

posTINC2(T

posTDEC2M

PREINC2I

pLUSW 2T

FSR2H

FSR2ZL

STATUS

TMROH

TMROL

TOCON

_ 12}

QSCCON

HLVDCON

WOTCON

RCON

TMR1H

TMR1L

T1CON

TMR2

PR2

T2CON

w
%7}
e
m
=
e

[
L
o
I=
2
2

PSTAT

9]
L

5]
[H]

PCON1

[#]
[F]

PCON2

ADRESH

ADRESL

ADCOND

ADCON1

ADCON2

Address
FEFh
FBEh
FBDh
FBCh
FBBh
FBAR
FBSh
FB&h
FB7h
FBEh
FBSh
FB4h
FB2h
FB2h
FB1h
FBOh
FAFh
FAEhR
FADh
FaCh
FABh
FAAh
FASh
FAgh
FATh
FAEh
FASh
Fadh
Fa3h
FAZh
FA1h
FADh

Mame

CCPR1H

CCPRIL

CCP1CON

CCPR2H

CCPRZL

CCP2CON

]

BALUDCOM

ECCP1DEL

ECCP1AS

CWVRCON

CMCON

TMR3H

TMR3L

T3CON

SPBRGH

SPBRG

RCREG

TXREG

THSTA

RCSTA

_ia

EEADR

EEDATA

EECon2()

EECON1

]

_

i

IPR2

PIR2

PIE2

Address
FaFh
FSEh
FaDh
FaCh
FSBh
Fosh
F39h
FS&h
FS97h
FoEh
Fash
F24h
FS3h
F9Zh
F91h
FS0h
F&Fh
FEEh
Falh
Fa&Ch
FEBh
Faah
F&oh
F&&h
F&7h
FBEh
FB5sh
F&4h
F&3h
FB2h
FB1h
FEDh

Hame

IPR1

FIR1

PIE1

2

OSCTUNE

—ia

—a

—a

(1]

TRISER™

TRISDH!

TRISC

TRISB

TRISA

—a

[F]
[}
[F]

LaTER!

LaToR!

LATC

LATE

LATA

—a

—ia

—ia

—a

PORTE

poRTDW!

PORTC

PORTE

PORTA

Address

F7Fh
FTEh
F7Dh
F7Ch
F7Eh
F7ah
Frah
Friah
FiTh
Fr&h
F7sh
Fran
F73h
Fr2h
Frih
Frih
F&Fh
F&Eh
FEDh
F&Ch
F&Eh
FEah
FE9h
Fagh
F&7h
FEEh
FESh
Fedh
FG3h
F&2h
FE1h
F&lh

HName

LEP15

LEP14

LEP13

LUEP12

UEP11

LUEP10

LEFS

LIEFE

LEFT

LIEPE

LEFS

LEP4

LEF3

LEPZ

LEP1

LEFD

UCFG

LADDR

UCON

USTAT

UEIE

LEIR

UIE

LR

UFRMH

UFRML

SPPCONIE)

spPEPSP)

sppCFGH

sPPDATAR

_ 12

_ 12

Working Register (WREG)

e Most arithmetic and logical operations use a
register called Working Register or WREG.

Processor Status Register oe
(PSR)

e This Is a register that contains the status of the
Arithmetic Logical Unit.

e Itis separated in bits

N — Negative bit. Turns to 1 if the result of the last
operation was negative (highest bit is 1).

OV - Overflow bit. Last operation in ALU results in an
overflow.

Z — Zero bit. Last operation in ALU resulted in O.
C — Carry or Borrow. Set to 1 if addition resulted in carry or
borrow.

e Also the PSR is used in multiple branch instructions.

Digital Input/Output

e PORTA, PORTB, PORTC, PORTD

They are the registers that are mapped to the
Inputs/outputs of the PIC18.

Each bit in the port is identified as RAO, RA1 ...RA7, RB1,
RB2...RB7 and so on,

e TRISA, TRISB, TRISC, TRISD

Used to configure ports as input/output.

Each bit can be configured to be a digital input or output..
0 — Output
1 — Input

Digital Input/Output

e \WWhen configured PORTA as output for
example
O in bit RAO of PORTA gives 0V in terminal RAO
1 in bit RAO of PORTA gives +5V in terminal RAO

e \When configured PORTA as input,

OV In terminal RAO can be read as O in bit RAO of
PORTA

+5V In terminal RAO can be read as 1 in bit RAO
of PORTA

Minimum PIC18

VCC
Minimum PIC18 et
~10K
S' 1
RESET
—r — 0
0 oO—= - | NICLRVppBE3 PGD/RBT —o¢ |
=) PGC/RBS
= 2 | RAO/AND 285 [
= RAVANI BB 37
RAZAN2 BB} |—
—{ RAJAN3 BBl |2 .
| rasTocKs BRI [
L | RASIANA RBO [e =
m T i
r gt aq
0 | REVANT Vss —21 .
| v mp7 |2 =
. ED 59
= Vs RDS —
. D4 [—
3 | gscuckr .
4 RCIRX 3¢
4| 05C2CKORA6 RCHTX —2
2| pcoTioso RCS/D+ |2
® | RCITIOSLCCE? N
| RcucCP RC4/D- |—&
M . Vush -
: ED{ BD} ==
3] o

ED1 prcisFassg ED?

PicKit2 Pin Description

6 = Not Used
5=PGC

4 =PGD

3 = Ground

2 = VCC (+5V)
1=MCLR

Addressing Modes

e Inherent (Immediate)

Used in instructions that do not need an argument such as
SLEEP and RESET

e Literal

Used in instructions that specify a numeric constant such
as “‘MOVLW 0x40” that loads 0x40 in WREG

e Direct

Used in instructions that need an address as argument
such as “MOVWF 0x080” that moves WREG into 080.

e Indirect

A register or memory location contains the address of the
source or destination.

Indirect Addressing

e It uses the FSR registers and the INDF operand.

e There are four registers:
FSRO, FSR1, FSR2, FSR3, and the corresponding
INDFO, INDF1, INDF2, INDF3.

e INDFO to INDF3 are “virtual registers”.

e A read from INDF2 for example, reads the register
at the address stored in FSR2.

e Since FSRs is 12 registers long, you can use
FSRL(lower byte) and FSRH(higher 4 bits) for the
Instructions.

Byte Operations

d = 0 means destination is WREG.
d = 1 means destination is a file register and it is the default.
a is the access bank. By default it is 0.

ADDWEF f,d,a - Add W to f where d=0->W, d=1->f, a is generally
not specified (access bank stuff)

ADDWEFC f,d,a - Add W and Carry bit to f
ANDWEF f,d,a - And W with f

CLRF f,a Clear f

COMF f,a Complement f

CPFSEQ Compare, skip if f==

CPFSGT Compare, skip if f > W
CPFSLT Compare, skip if f <W

Byte Operations (cont.)

DECF f,d,a Decrement f

DECFSZ f,d,a Dec f, skip if O
DCFSNZ f,d,a Dec f, skip if not O
NCF f,d,a Increment f

NCFSZ f,d,a Increment f, skip if zero
NFSNZ f,d,a Increment f, skip if not zero
ORWEF f inclusive-OR W with f
MOVF f,d,a Move f (usually to W)
MOVFF f,ff Move f to ff

MOVWEF f,a Move W to f

MULWEF f,a W x f

Byte Operations (cont.)

e NEGF f,a Negate f

e RLCF f,d,a Rotate left f thru Carry (not-quite multiply by 2 with
carry)

RLNCEF f,d,a Rotate left (no carry)

RRCF f,d,a Rotate right through Carry
RRNCEF f,d,a Rotate right f (no carry)

SETF f,a Set f = Oxff

SUBFWB f,d,a Subtract f from w with Borrow
SUBWEF f,d,a Subtract W from f

SUBWEB f,d,a Subtract W from f with Borrow
SWAPF f,d,a Swap nibbles of f

XORWEF f,d,a W XOR f

Bit Operations (cont.)

e BCF f,b,a Bit clear, bit is indexed O to 7
e BSF f,b,a Bit set

e BTFSC f,b,a Bit test, skip if clear

e BTFSS f,b,a Bit test, skip If set

e BTG f,b,a Bit toggle

Control Operations (cont.)

BC n Branch if Carry, n is either a relative or a direct
address

B
B
B

N n Branch if Negative
NC n Branch if Not Carry

NN n Branch if Not Negative

BNOV n Branch if Not Overflow

BNZ n Branch if Not Zero

BOV n Branch if Overflow

BRA n Branch Unconditionally

BZ n Branch if Zero CALL n, s Call Subroutine

Control Operations (cont.)

CLRWDT Clear Watchdog Timer
DAW Decimal Adjust W

GOTO n Go to address

NOP No operation

POP Pop top of return stack (TOS)
PUSH Push top of return stack (TOS)
RCALL n Relative Call

RESET Software device reset
RETFIE Return from Interrupt and Enable Interrupts
RETURN s Return from subroutine
SLEEP Enter SLEEP Mode

Operations with Literals (constants)

ADDLW kk Add literal to W
ANDLW kk And literal with W
IORLW kk Incl-OR literal with W

LFSR r,kk Move literal (12 bit) 2nd word to FSRr 1st
WOrQ

MOVLB k Move literal to BSR<3:0>
MOVLW kk Move literal to W
MULLW kk Multiply literal with W
RETLW kk Return with literal in W
SUBLW kk Subtract W from literal
XORLW kk XOR literal with W

Common PIC Assembler
Constructions

¢ Including the PIC18 constant defined values
e Add
#include “P18£4550.INC”
at the beginning of the file

e In this way you can specify PORTC instead of
OxF82 when specifying names of registers

Defining a variable

e To define space for a variable use “res”.

Delayl res 2

e This defines a variable called Delayl that will
take 2 bytes.

e Make sure that it is at the beginning of the
line.

Using registers

e Loading a constant into WREG
MOVLW 0x40

e Moving the value from a register to WREG
MOVF reqg,O

e Moving the value of WREG into a register
MOVWF reg

e Moving the value of a register regl to reg2
MOVFF regl, regZ2

Adding and Subtracting :

e Add regl and reg2. Put result in regl

MOVF regl, O

4

; WREG

ADDWF reg2,0; WREG

MOVWF regl

4

; regl

= reqgl
WREG + reg2
WREG

e Subtract reg2 - regl. Put result in reg2

MOVF regl, O

4

; WREG

SUBWF reg2,0; WREG

MOVWF reg2

4

; reg2

regl
reg2-WREG
WREG

Subroutines e
e To call a subroutine

CALL foo ; Calling subroutine foo

e 10 define a subroutine
foo ; Defintion of foo

RETURN ; Return from subroutine

If/else statements
o If (regl == 0x40) {XXX} else { YYY}

MOVLW 0x40; WREG = reqgl

CPFSEQ reqgl

GOTO elsepart

..; XXX Then part

GOTO endifpart
elsepart

. ;7 YYY else part
endifpart

Using Arrays

e Arrays are implemented using Indirect Indexing
e Defining an array of bytes called “myArray” of 4 elements:
myArray res 4

e [nitializing array:

MOVLW OxFE ; myArray[0]=0xFE
MOVWF myArray

MOVLW OxFD ; myArray[1l]=0xFD
MOVWF myArray +1

MOVLW OxFB ; myArray[2]=0xFB
MOVWF myArray +2

MOVLW OxF7 ; myArray[3]=0xF7

MOVWF myArray +3;

000
000
Y
®
Using Arrays
e Indexing the Array myArray]i].
e Address is stored in FSRO and then it is
dereferenced from INDFO
LFSR 0, myArray ; Load array address in FSRO
MOVF 1,0 ; Load the value of i into WREG
ADDWF FSROL,1 ; Add myArray and i to get address
; of ith element.
MOVF INDFO,0 ; The ith element can be read

; from INDFO. Read it and put

; it into WREG. WREG=myArray[i]
MOVWF PORTB ; Now do something with it like

; writing it to PORTB

Simple Program. LED Blink +-

#include "P18f4550.INC"

CONFIG WDT=0FF; disable watchdog timer

CONFIG MCLRE = ON; MCLEAR Pin on

CONFIG DEBUG = ON; Enable Debug Mode

CONFIG LVP = OFF; Low-Voltage programming disabled (necessary for debugging)
CONFIG FOSC = INTOSCIO_EC;Internal oscillator, port function on RA6

org O; start code at O

Delayl res 2 ;reserve space for the variable Delayl
Delay? res 2 ;reserve space for the variable Delay2

Start:
CLRF PORTD ; Clear all D outputs
CLRF TRISD ; Make output all the bits in D
CLRF Delay1 ; Initialize both counters with Os.
CLRF Delay2

MainLoop:
BTG PORTD,RD1 ;Toggle PORT D PIN 1 (20)

Delay:

DECFSZ Delayl,1 ;Decrement Delayl by 1, skip next instruction if Delayl is 0
;Delayl will be decremented 256 times before skipping

GOTO Delay

DECFSZ Delay2,1 ;Decrement Delay2 by 1, skip next instruction if Delay2 is 0
;Delayl will be decremented 256 times before skipping.

GOTO Delay

GOTO MainLoop

end

Another Example. Rotate Segments

#include "P18f4550.INC"

CONFIG WDT=0FF; disable watchdog timer
CONFIG MCLRE = ON; MCLEAR Pin on
CONFIG DEBUG = ON; Enable Debug Mode

CONFIG LVP = OFF; Low-Voltage programming disabled (necessary for debugging)
CONFIG FOSC = INTOSCIO_EC;Internal oscillator, port function on RA6

org O; start code at O

Delayl res 2 ; variable Delayl
Delay?2 res 2 ; variable Delay2
Delay3 res 2 ; variable Delay3

Start:
CLRF PORTD ; Initialize with O's output D.
CLRF TRISD ; Make port D output
CLRF Delayl; Clear delay variables
CLRF Delay2

SETF TRISC ; Make port ¢ an input

MOVLW H'40' ; Initialize delay3 to 0x40. This is the delay used to rotate the segments.
MOVWF Delay3

BSF PORTD,RDO ;Turn on bit 0 in RDO

Another Example (cont.) :e

MainLoop:
RRNCF PORTD ; Rotate bits in D. This causes the segments in display to shift.

MOVF Delay3,0 ; Reload Delay?2 eith the value of Delay3. Delay2 controls the rate the
MOVWEF Delay? ; rotate takes place.

MOVLW H'FO' ; Test if Delay3 is at the maximum of OxFO or more. If that is the case, do not
CPFSLT Delay3 ; read the left switch.
goto noincrement

MOVLW 4 ;: Read the left switch.
BTFSS PORTC,0 ; If the switch is O (gnd), then increase Delay3 by 4, otherwise skip the increment.

ADDWEF Delay3,1

noincrement:

MOVLW H'05'; Test if Delay3 is at the minimum pf 0x5 or less. If that is the case do not
CPFSGT Delay3 ; read the right switch.
goto Delay

MOVLW 4 ; Read the right switch.
BTFSS PORTC,1 ; If the switch is O, then decrement Delay3 by 4, otherwise skip the decrement

operation.
SUBWF Delay3,1

Delay:

DECFSZ Delayl,1 ;Decrement Delayl by 1, skip next instruction if Delayl is O

GOTO Delay
DECFSZ Delay2,1 ;Decrement Delayl by 1, skip next instruction if Delayl is O

GOTO Delay
GOTO MainLoop

end

Example: Driving a Full-Color LED

e To drive the full-color LED you will use Pulse Width
Modulation (PWM).

e PWM sends pulses to the LED with different widths
to the three color LEDs.

e If for example, the width of the pulse is small for the
red LED, then the red LED will display a low
Intensity red light.

e |f the red LED receives a pulse with a wide width,
then the red LED will display a high intensity red
light.

Pulse Width Modulation

e Short Width = Low Intensity
e Long Width = High Intensity

Small Width Low Intensity

L N= @

Long Width High Intensity

rii=e

Pulse Width Modulation Used to
Drive a LED

Pulse Width Modulation Example

MOVFF maxColor, redCount
MOVFF maxColor, greenCount
MOVFF maxColor, blueCount

MainLoop:

: Decrement redCount
DECFSZ redCount,1
GOTO afterDecRedCount

. if redCount reaches 0 turnoff red led
BSF PORTC,RCO

: restart redCount with 255

SETF redCount

afterDecRedCount
- if redCount == red turn on red led.
MOVF redCount,0
CPFSEQ red
GOTO updateGreen
BCF PORTC, RCO

; Same for green and blue
goto MainLoop

Lab5 Driving a Full Color LED | s2¢
Algorithm

e Examples are given that shows you how to
drive the full color led and how to display the
Hello message in the display.

e Read them and understand them.
e They will be used as the base for your project

Algorithm for Driving Full 1
Color LED

e Start
Initialize Ports and Registers
Initialize colors and counters
e MainLoop
Put in a variable val the current color value (red, green, blue)

Read button 1 and 2. If they are “on” increase or decrease val. Make sure
that val is not increased beyond maxColor and is not decreased beyond 0.
Update “msg” (the display buffer) with:
msg[0]= c[currentColor]
where c is an array with the characters “r’, “g” or b” in seven-segment values.
msg[1]= “="
in seven segment value “=" is(0x48)
msg[2] = digit[(val>>4)&0xFF]
Displays most significant nibble of val
digit is an array with the hex digits in seven segment value.
msg[3]=digit[val&O0xFF]
Displays least significant nibble of val

Algorithm for Driving Full 1
Color LED (cont.)

Store val in currentColor red, green or blue
Update Display. See example code.

Read button 3 to change color if necessary. Use a variable
previouslyPressed to store the previous status of the
button.

Only update the color name if previouslyPressed is false
and button3 is pressed.

To update the color name write into msg (the display
buffer” the name of the color in seven-segment values.

Now refresh the red, green, blue LEDs PWM See example
code.

e Goto MainLoop

