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1 Abstract

This paper describes an algorithm for cyclic distributed garbage collection and its implemen-
tation. The algorithm is an extension of reference-listing that collects cyclic garbage. It uses
back-tracing instead of mark-and-sweep to eliminate the need of global synchronization. First,
by using a special heuristic the algorithm chooses an object that is likely to be garbage (suspect).
Then the algorithm recursively traces back the references to find the transitive closure of objects
that reach the suspect. If this closure does not contain any root, the objects in the closure are
garbage, and therefore collected.

Back-tracing distributed garbage collection has been covered in previous works, however none
of these works mentioned the issues involved in the implementation of this algorithm in a real
environment. These implementation issues are addressed and solved in this paper.

To prove the feasibility of back-tracing, it has been implemented using off the shelf software
components.

This paper describes the algorithm, the issues, their solutions and an implementation.

2 Introduction

The way networking applications are implemented has evolved since the creation of the In-
ternet. The growth in complexity of these applications has motivated the creation of better
networking abstractions to deal with this complexity. This evolution is similar to the evolu-
tion of computer languages. Garbage collection is now a required feature in modern computer
languages. For the same reasons, distributed garbage collection is also a necessity in modern
distributed systems.

Distributed garbage collection algorithms can be grouped in two families: Reference Counting
and Tracing[Jon96, PS95].



Reference counting is a garbage collection technique that is rarely used in non-distributed
systems because of its high overhead and its incapability to collect cyclic garbage. However,
it is a popular technique in distributed garbage collection because it does not require global
synchronization. Reference Counting keeps a count of the number of references that point to an
object. When this counter drops to zero, the object can be safely removed. Reference counting
keeps a relaxed approximation of the reachability graph, i.e. the set of objects that have a
reference counter greater than zero is a superset of the true reachable objects. This relaxed
approximation eliminates the need of a termination algorithm to collect garbage, but has the
disadvantage that cyclic garbage is not collected.

Reference listing is a variation of reference counting that is tolerant to failures [SDP92a,
BEN'93, MS91]. In reference listing the server that owns an exported object keeps a list of
other servers that have references to that object. In this way, increment/decrement operations
are substituted by insert/delete operations.

Since a list of servers is kept instead of a single counter, duplicated messages do not affect
the consistency of the reference listing. For example, if an insert message is duplicated, the first
message will update the reference list, but the second one will not have any effect since that
entry already exists. The same is also valid for delete messages.

There are some implementations that combine reference listing with local garbage collection
[BEN'93]. During a local garbage collection, every exported object is considered part of the
root set. When a proxy is found to be unreachable from the root set, a delete message is sent to
the corresponding remote object to delete that server from the reference list. When the remote
object’s reference list is empty, the remote object is no longer considered part of the root set,
and furthermore collected in the next local garbage collection if it is not locally reachable.

Reference listing is also tolerant of server crashes. If a server detects that another server has
crashed, it may remove the entries in the reference lists that correspond to the crashed server.
To detect that a server has crashed, the owner of the remote object periodically sends a special
message called ping to the servers that have proxies to that remote object. If a server does not
respond to the ping messages after a prespecified number of them, the server is deleted from the
reference list [BENT93].

Reference listing scales up well to large networks. However it is not capable of collecting
garbage cycles. Currently reference listing has been implemented in commercial products like
Microsoft DCOM [Mic94], and Java RMI [GM95].

Tracing distributed garbage collection is based on mark-and-sweep garbage collection. Tracing
distributed garbage collection is able to collect cycles of garbage, however it requires global
coordination. The reason is the following: mark-and-sweep defines as garbage everything that
is left unmarked after a mark phase. This implies that after a mark-phase, all the servers in
the system have to agree on the same condition: that there are no more objects to be marked.
This problem is equivalent to the costly termination detection problem in a distributed system
[TM93]. Examples of distributed garbage collection algorithms that implement mark-and-sweep
garbage collection are [JJ92, MA84|.

In one hand, reference counting algorithms can be efficient and scalable, but are unable to
collect cyclic garbage. In the other hand, tracing distributed garbage collection algorithms
collect cyclic garbage but require global synchronization. This paper describes an algorithm that



collects cyclic garbage and that does not need global synchronization.

This paper proposes an extension of reference-listing called back-tracing, that is scalable and
collects cyclic garbage. The idea is the following: starting with an exported object that is
suspected of being garbage (e.g. an exported object that is not locally reachable), the collector
adds to a set all the objects that contain pointers to the suspect. Then all the objects that contain
pointers to any object in the set are also added and so on. If the final set does not contain a
root object, then all the objects in the set are garbage. Otherwise, the suspect is not garbage.
The process of obtaining this set is called back-tracing a suspect. The back-tracing algorithm
has the desirable property that back-tracings are localized. For instance, in mark-and-sweep (i.e.
forward-tracing), all the servers that participate in a garbage collection need to synchronize to
agree when the mark phase has ended to be able to sweep the unmarked objects. However, in
back-tracing only a subset of the total number of servers, that are the servers visited during the
back-tracing of a single suspect will need synchronization. It is shown in this paper that the
synchronization needed for back-tracing does not require the servers to stop execution.

Some previous work has been done on back-tracing [Fuc95]. However several important im-
plementation issues were left open: These issues have to be solved before back-tracing can be
implemented. First, normal pointers can be followed in only one direction, the to direction, and
back-tracing needs to follow pointers backwards, the from direction. These kind of pointers that
can be followed backwards are not usually available in normal programs. Second, the objects
and pointers traced during back-tracing can be modified while the back-tracing goes on, and
therefore live objects could be prematurely collected. Third, a single object can be visited sev-
eral times by different back-traces, making it complicated to store the state of the back-trace in
the objects visited. Finally, no implementation was available to prove that this algorithm could
be successfully implemented with off the shelf software components.

This paper addresses and solves these issues. It also shows how a prototype of the back-tracing
algorithm was built using the Orbix distributed system[Ion95], and Boehm’s conservative garbage
collector [BW88]. Finally, the paper shows directions of future work.

3 The Back-Tracing Algorithm

By definition, live objects are the objects that are reachable from root objects by following
a chain of object references. Alternatively a live object is one that when following backwards
the chain of references that reach the live object, a root object is found. This first definition is
used by mark-and-sweep garbage collection to detect garbage objects. The second one is used
by back-tracing garbage collection.

Back-tracing is a trial-an-error algorithm. First, an object that one suspects to be garbage is
chosen. Then object references that point to this suspect are followed backwards. References to
objects found during the back trace are also followed back until they are exhausted. If a root
object is reached during the back-trace, then the suspect is still alive. Otherwise, if no root is
found, then the suspect and all the objects back-traced are garbage.

The algorithm sounds simple and easy to implement. However, there are several issues that
need to be solved before it can be successfully implemented.

First, the algorithm needs a good heuristic to determine which objects to back-trace. If a



non-garbage object is selected for back-tracing, then all the work done during the back-tracing
will be wasted. The efficiency of the algorithm therefore depends in great part on how garbage
suspects are selected.

Second, not all the back-references necessary for back-tracing are available in a program.
Back-references can be divided in two classes: local back-references, and remote back-references.
Remote back-references can be provided by a reference-listing algorithm. Since back-tracing
is an extension of reference listing, every exported object keeps a list of the servers that have
proxies to the exported object. Reference-lists are in fact remote back-references since they point
from exported objects back to proxies in other servers. Within the address space of a program
however, local back-references do not exist. Pointers in memory have only information about the
to direction, but not the from direction. One approach to implement back-pointers is to modify
the language run-time system to keep for every object a list of the locations of the pointers that
point to the object. This approach is extremely inefficient, since every pointer operation has to
update also the list of back-pointers. An alternative approach is to use the local garbage collector
to obtain back-pointer information. This is the approach described in this paper.

Since there is no global coordination, servers may run back-tracings for different garbage
suspects that share the same ancestors. The data structures used to represent back-tracings
should consider these cases.

Finally, the modification of objects during a back-trace can cause the premature collection of
live objects. This is equivalent to the problem of incremental garbage collection. If an object
has been back-traced and then a new back-reference to it is created, the new back-reference
will not be considered by the back-trace in progress, and therefore the object could be collected
prematurely.

The solution to these four issues is described in the next sections.

3.1 Determination of Garbage Suspects

The efficiency of back-tracing garbage collection depends in great part on the heuristic to
choose garbage suspects. Back-tracing a live object is a waste of execution time and network
bandwidth. Therefore garbage suspects should be chosen carefully. This section describes a
simple heuristic. A following section describes an improved heuristic based on object’s age.

The simple heuristic chooses as a garbage suspect any exported object that is not locally
reachable. These are characteristics that any useless exported object have. This heuristic can
be implemented with a flag called locally-reachable that is initialized to True when the object
is first exported. This flag is set to False during a local garbage collection if after tracing local
roots but before tracing exported objects, the object was not marked and therefore not locally
reachable.

But that is not all. An exported object that is not locally reachable can still be accessed
remotely. Furthermore, it can become locally reachable again as a result of a remote method
invocation. To take into account this cases, every time an exported object o is used in a remote
method invocation, either as argument or as a target, o.locally-reachable is set to True.

A garbage suspect is therefore, any exported object with a flag locally-reachable equal to False.
If distributed garbage objects exist, the algorithm makes sure that there are always suspects
available by running the local garbage collector periodically.



3.2 Local and Remote Back-References

The second issue is how local and remote back-references necessary for back-tracing are ob-
tained. Back-tracing is an extension of reference listing, and therefore remote back-references
are already available in the form of reference-lists. Every exported object o has a list o.ref-list
of servers that have proxies to 0. However, local back-references do not exist and therefore have
to be computed in some way. This section describes how the local garbage collector computes
local back-references.

It is important to say that not all the local back-references are necessary for back-tracing. Ex-
ported objects and proxies are the only ones relevant for distributed garbage collection. Objects
that are not exported can be automatically collected by the local garbage collector once they are
not reachable from either local roots or exported objects. It is possible therefore, to obtain an
approximation of all the back-references hiding all non exported objects, and only representing
how exported objects and proxies reach each other.

Every proxy or exported object z stores its back-references both local and remote, in a list
z.back-refs. The list z.back-refs contains pairs of the form (object, server), where a single pair
represents either a proxy or an exported object that points to z. If object resides in server, then
the pair represents an exported object. Otherwise, the pair represents a proxy.

To determine z.back-refs, the local garbage collector is modified in the following way. First,
after tracing all the local roots but before tracing the exported objects, the local garbage collector
saves the mark-bits in a temporal area. Then z.back-refs is initialized to empty in all proxies and
exported objects.

Second, for every exported object o that is not locally reachable, the local garbage collector
clears all the mark-bits and traces o. If a proxy or exported object z is marked after tracing o,
then o reaches = and therefore the pair (o, this-server) is added to z.back-refs.

So far only local back-references have been taken into account. To account for the remote
back-references, for every exported object o that is not locally reachable, and for every server s
in o.ref-list, the pair (o, s) is added to o.back-refs. If an exported object or proxy z is locally
reachable, the special pair (local-root, this-server) is added to z.back-refs.

Finally, the mark-bits are restored from the temporal area, and all the non locally reachable
exported objects are traced again to prevent the premature collection of live objects that are
only reachable from non locally reachable exported objects. Objects that are left unmarked are
recycled during the sweep phase.

An example of how back references are obtained by the local garbage collector is shown in
Figure 1.

3.3 Performing Back-Tracing

This section describes how back-traces are performed and the data structures used to support
simultaneous back-traces. Given the asynchronous nature of back-tracing, it is possible that
two garbage suspects that have the same ancestors may trigger back-traces that trace the same
ancestor simultaneously. Therefore the data structures used for back-tracing should support
simultaneous back-traces that consider the same objects. Also, it is desirable to have all the state
of a back-trace in the same server that triggered the back-trace to make it easier to halt when a



h O
A @ e Oe’ B
f'.back-refs = {(b, A} f.back-refs = {(f', A}
h' . back-refs = {(RL, A} b’ . back-refs = {(f, B)}
b. back-refs = {(b', B)} e’ .back-refs = {(R2,B)}

e. back-refs {(R1,A)} h. back-refs = {(f,B), (h',A}

Figure 1: Back-references computed by local GC

root object is found. The following algorithm and data structures satisfy these restrictions.

A single back-trace is represented by a queue @ of pairs (object, server), where each pair
represents, as before, either a proxy or a exported object that participates in the back-trace. @
also has two indices: current and tail. Current points to the next element to back-trace in Q).
Tail points to one after the last element inserted in ().

Initially @ is empty. When a garbage suspect susp triggers a back-trace, the pair (susp, this-
server) is inserted into Q. Current is initialized to 0, and t¢ail to 1. Then all the back-references
of susp in susp.back-refs are inserted to ) and current is incremented. Then the next proxy or
exported object (z, server)in @ pointed by current is back-traced by inserting to @ all the back-
references in z.back-refs. Then current is incremented, and so on. Only unrepeated elements are
inserted in () and therefore the back-trace is guaranteed to end at some point in time (Figure 2
and Figure 3 )

The back-trace terminates when: (a) An object in @ is a local-root, in which case the suspect
is also reachable, and therefore the back-trace is halted; or (b) current and tail have the same
index, in which case all the proxies and exported objects that reach the suspect have been back-
traced and exhausted, and therefore none of them is reachable from any local root. Furthermore,
the proxies and exported objects in () can be recycled.

() is maintained in the same server that starts the back-trace. Several back-traces can be
performed simultaneously in several servers by keeping different (s in each server.

To obtain the back-references of a remote object or proxy (o, server) during a back-trace,
a special procedure getBackRefs(o) is provided in each server. When this procedure is called,
either locally or remotely, it returns the list o.back-refs.

A back-trace that ends without reaching a local root means that the suspect and all the proxies
and exported objects in () are not reachable from any local root. If that is the case, the servers
that own these proxies and exported objects are informed. These exported objects and proxies
will not be traced in the next local garbage collection and hence collected.

A back-trace that halts because some exported object or proxy in ) is reachable from a local
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root means that the suspect is also reachable from a root object. If that is the case, no action is
taken and @) is discarded.

3.4 Incremental Back-Tracing

There is a problem in back-tracing that is similar to the problems of incremental garbage
collection. Objects and back-references that participate in a back-trace can be modified while a
back-trace is taking place and therefore, the risk of prematurely collecting live objects.

For instance, lets assume that some exported object has been back-traced and this exported
object and all its proxies have been already inserted in (). While the back-trace is going on, a
new proxy for this exported object is created. Since the exported object has been already back-
traced, this new proxy is not inserted in (), and therefore not back-traced. Assuming that this
new proxy is reachable from a root, but no other object in the back-trace was found reachable
from a root, then the exported-object will be prematurely collected.

This problem can be described in terms of Dijkstra’s tricolor marking used for incremental
garbage collection [DLM*78], and now adapted for back-tracing. Exported objects and proxies
in @) that have been already back-traced are black. Exported objects and proxies in () that have
not been back-traced are grey. All the objects that are not in ) are white.

Alternatively, exported objects and proxies that have an index in @) less that current are black.
Exported objects and proxies that have an index in () greater or equal than current but less than
tail are grey. All the other objects are white.

Using this tricolor marking it is possible to explain the problem of premature collection in the
following way. An exported object or proxy is missed during a back-trace if both the following
two conditions occur during the back-trace.

1. A new reference is created that goes from a white to a black exported object or proxy.

2. All the paths from root objects to grey exported objects or proxies are deleted. The white
exported object or proxy is left reachable from a root object.

A situation when the two conditions occur is shown in Figure 4.

In order to avoid the premature collection of live objects either one of these conditions has to
be prevented. To prevent the first condition it is necessary to catch with a barrier every operation
that creates a new reference for a black object or proxy and either turn the black object to grey
by removing it from () and inserting it again, or by turning the white object to grey by inserting
it to Q.

Preventing the second condition means to always keep a path from the root objects to the grey
objects if such path existed when the back-trace started.

The algorithm described in this paper detects the first condition. However, instead of trying
to fix the colors of the white and black objects and proceed with the back-trace, the algorithm
just halts the back-trace. That is because it is not worth resuming the back-trace since the black
object was already reachable from a root, and therefore very likely to continue being reachable
when the back-trace ends.

The barrier that detects when a new reference is created for a black object is implemented
in the following way. Because of the way the local garbage collector is implemented, a black
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exported object or proxy z in () is not reachable from a local root when its back-references in
@ were computed. Therefore, there are only two ways a reference can be created for z and
therefore be missed: (a) Passing z back to the server where z lives as argument or result of a
remote method invocation. or (b) Invoking a remote method in an exported object that locally
reaches 1.

To detect this two cases, a new field called wversion is added to every exported object o.
o.version is increased every time o is used in a remote method invocation either as a argument,
result, or target. By looking at the changes in o.version it is possible to determine if o or any of
the objects that o reaches locally, may have a new reference.

The back-references stored in z.back-refs are now represented by the triplet (object, server,
version). As before, this triplet can represent either a proxy or a exported object. When back-
references are computed by the local garbage collector, if an exported object o is found to locally
reach z, then the triplet (o, this-server, o.version) is inserted in z.back-refs. When adding the
remote back-references to an exported object o, for every server in o.ref-list, a triplet (o, server,
o.version) is inserted in z.back-refs. This triplet (object, server, version) is also used for the
entries in Q.

The version number in a back-reference indicates what wversion of the object reaches a given
proxy or exported object. The main idea behind incremental back-tracing is that a black object
or proxy z in () can have a new back-reference that is not in @ only if the version number of
any of the triplets that were inserted in () when z was back-traced is different than the current
version number in the original object. Therefore, if at the end of a back-trace, there is a triplet
(o, server, version) in @) such that version and o.version are different, then the back-trace has
to be halted because there may be a new reference to a black object that was not considered in
the back-trace.



Incremental back-tracing has two phases: a back-trace phase and a validation phase. The first
phase back-traces the objects to determine if the suspect is garbage. The second phase validates
that no changes occurred in the back-traced objects while the back-trace was taking place. There
is a special call getVersion(o) in any server that returns the value o.version when called remotely
or locally. During the second phase, for every exported object (o, server, version)in @ version is
compared with the result of the function getVersion(o) executed in server. If these numbers are
different in any of the triplets, the back-trace is halted. Otherwise, the servers that own entries
in () are told to collect these proxies and exported objects in the next local garbage collection.

Some locking is necessary to make the computation and access of the back-references atomic.
A mutex lock is used when the local garbage collector computes the back-references, when new
remote back-references are created, and in the function getBackRefs().

3.5 Generational Back-Tracing

Previous sections have explained that choosing the right garbage suspects can increase the
performance of back-tracing. This section explain a heuristic that takes into account the age of
the objects.

In generational garbage collection [Wil95, LH83, Ung84, Sha88, Zor90, DeT90, Hay91], new
objects are collected more frequently than older ones because they are the most likely to be
garbage. By using the same idea, generational back-tracing performs back-tracing of recently
allocated objects more frequently than old objects.

The back-tracing algorithm described before performs back-tracing of every single non locally
reachable object every T seconds. In the new heuristic, the more time an object has survived
collections, the less frequent it is back-traced. The frequency function that is used in the imple-
mentation is shown in Figure 5. This figure shows that if an object has survived for 5 minutes,
then it is back-traced every 12 minutes. If an object has survived 10 minutes, then it is back-
traced every 22 minutes and so on. The maximum interval between back-traces for any object
in this case is every 60 minutes. The smallest interval is 1 minute. The parameters of the expo-
nential function shown here are the ones used in the implementation but they are configurable.

This new heuristic benefits the common case when an object is created and then kept alive
during the entire execution of the program. The old heuristic back-traces the object every
1 minute. With generational back-tracing, the object is back-traced every 60 minutes in the
steady state.

3.6 Back-Trace Factoring

Back-Trace Factoring is another optimization that improves the efficiency of back-tracing dis-
tributed garbage collection by reducing the number of redundant back-traces.

The last section showed that if a suspect is found reachable after a back-trace, the suspect’s
back-trace interval is increased. However, the back-trace interval of other objects involved in
back-trace is not affected even when they are also found reachable. Hence, these objects may
trigger redundant back-traces almost immediately after they have been used in a back-trace.

For example, assume a list of 4 objects a, b, ¢, and d, where a is locally reachable. Assume
also that d is chosen suspect. Then ¢, b, and a participate in the back-trace. Since a is locally
reachable the back-trace halts, d is determined reachable, and its back-trace interval incremented.
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Figure 5: Back-Tracing Interval vs. Object Age.

However, the back-trace intervals of a, b, and ¢ are not modified. Hence, b and c are likely to
be chosen suspects and trigger back-traces after a short period of time, even when they were
recently found reachable.

In general, a list of n elements where the first element is reachable from a local root triggers
n — 1 back-traces before all its elements have their back-trace interval incremented. In each
back-trace n/2 objects in average are visited. Therefore the total number of object visits is
(n—1)n/2 = O(n?) (Figure 6).

To reduce the number of object visits, every time an object is visited during a back-trace,
the back-trace interval of the object visited is also incremented. In this way, if the suspect is
found reachable, all the objects involved in the back-trace will have the back-trace interval also
incremented. This mechanism is called back-trace factoring

By using this mechanism, the number of back-traces performed before all the objects in the
list of n elements have their back-trace interval incremented is computed as follows. Assuming
that suspects are chosen randomly in the list, the expected number of objects visited in the first
back-trace is n/2 (Figure 7). Since the back-trace interval is incremented in the objects visited,
they will not trigger back-traces immediately afterwards. For the second back-trace, one of the
remaining n/2 objects in the list is chosen suspect. In this back-trace, the expected number
of objects that have their back-trace interval incremented and that had not been incremented
before is n/4 (Figure 7). Following the same reasoning, the expected number of back-traces is
log(n), and the number of object visits is n/2+ (n/2+n/4) + (n/2+n/4+n/8)... = O(nlog(n)).
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4 Implementation

The back-tracing algorithm described in this paper has been implemented using off the shelf
software components: the Solaris operating system. Boehm’s conservative garbage collector
[BDS91], Orbix [Ion95], Solaris, and C++.

The distributed garbage collector (DGC) is implemented as a library that can be linked with
any Orbix program. The DGC automatically collects Orbix objects when they are no longer
reachable from any local or remote root. The library implements in Orbix a special exported ob-
ject called the distributed garbage collector object (DGC object). Every server that participates
in the distributed garbage collection needs to have a DGC object. Servers that are not linked
with the DGC library still can import collectible objects. However, the roots of servers without
DGC'’s are not considered during distributed garbage collections. In the other side, servers linked
with the DGC library can import/export both collectible and non collectible objects. This gives
backwards compatibility to existing Orbix programs.

The local garbage collector is based on Boehm’s conservative garbage collection library. Some
extra functionality was added to the original collector to trace Orbix’s roots in a special manner
and to compute the back-references.

In Orbix theres is an Object Table (OT) that contains pointers to all the proxies and exported
objects that exist in the server. Since the local collector considers the OT and all the Orbix
data structures part of the root set, an unmodified local collector would always mark all the
exported objects and proxies. As a result, exported objects and proxies would be always locally
reachable and therefore never collected. To solve this problem, the local garbage collector traces
Orbix’s data structures in a special to eliminate the unnecessary retention of exported objects
and proxies.

When Orbix data structures are traced, only objects that are neither proxies nor exported
objects are pushed to the mark stack. After finding out which exported objects are locally
reachable and which ones are not, the local garbage collector traces all the exported objects
and proxies in the system to prevent the premature collection of other objects reachable from
exported objects and proxies.

This solution is not ideal. The ideal solution would be to modify the data structures in
Orbix and to use weak pointers instead of normal pointers when referencing exported objects
and proxies. Weak pointers are a special kind of pointers that do not keep alive the objects they
point to. However, since Orbix’s sources are not available, this solution is not feasible in the
current implementation.

The local garbage collector was modified to obtain the local back-references using auxiliary
tracing in the way described in the last section. After tracing all roots but before tracing exported
objects, each non locally reachable exported object is traced independently. If a proxy or exported
object z is reachable from exported object o , then o is added to the list of back-references of .

There are two main issues in the interfacing of the distributed garbage collector and Orbix.
First, collectible and non-collectible objects have to be differentiated, so the distributed garbage
collector can process collectible objects in a special manner both in the client and in the server
side. And second, since no Orbix’s source code is available, the distributed garbage has to
intercept and reimplement the creation/deletion operations on object references.

The first issue comes from the fact that there may be some servers without distributed garbage



collection in the system, i.e. some of the exported objects and proxies may not be garbage
collectible. Furthermore, it is necessary to differentiate garbage collectible objects and non
garbage collectible objects.

In order to keep the garbage collectible property orthogonal to object type, the collectible
property is linked to object names. When a collectible object is created, a special suffix is added
at the end of the object’s name by using the function setGarbageCollectible( o ). Only exported
objects and proxies that have this special suffix are handled by the distributed garbage collector.
All the other objects and proxies that do not have this special suffix are ignored by the distributed
garbage collector.

The second issue is solved by intercepting and reimplementing some Orbix function calls. In the
same way that Boehm’s collector can intercept malloc/free and new/delete operations to control
memory allocation, the distributed garbage collector intercepts the duplicate/release reference
operations defined in Orbix to control remote object allocation. These operations are always
called when marhsaling and unmarshaling object references. If the marker of the object passed
as argument to these functions corresponds to a garbage collectible object, then the distributed
garbage collector handles the object in a special way. Otherwise, it just calls the corresponding
duplicate/release operation defined in Orbix. Some help from the dynamic linker is necessary to
have access to both DGC’s and Orbix’s implementations of the duplicate and release functions.

Orbix does not implement reference listing. Instead, Orbix uses a mix of explicit deallocation
and local reference counting to keep track of local pointers to exported objects and proxies. In
Orbix, every proxy and exported object has a reference count. The programmer has to explicitly
call duplicate or release when duplicating or removing pointers to proxies or exported objects. If
the reference count goes to 0, the exported object or proxy is removed. The reference counter is
only kept locally and therefore does not influence any other reference counters of corresponding
exported objects or proxies in other servers. This limited functionality of reference counting is
not enough for the requirements of the back-tracing garbage collection algorithm. Therefore, it
is necessary to implement reference listing on top of Orbix.

Reference listing is implemented on top of Orbix by inserting special code in the duplicate(o)
and release(0) operations. These operations are called every time an object reference is marshaled
or unmarshaled. For every exported object the distributed garbage collector maintains a list of
servers that have a proxy to the exported object. When a new proxy is created, the server that
owns the exported object is informed, and then it adds the proxy’s server to the reference list.

The distributed garbage collector is a library that can be linked to any Orbix program. The
distributed garbage collector is itself an exported object implemented in Orbix. Every server that
participates in the distributed garbage collection exports a similar DGC object. DGC objects
in different servers communicate with each other through Orbix. Currently the DGC object is
implemented in Solaris and C++. However nothing prevents the implementation of DGC objects
in other languages such as Java and Visual Basic, and other operating systems such as Windows
NT and other Unix flavors, to furthermore create heterogeneous distributed garbage collection.



5 Directions for Future Work

There are still several open issues in back-tracing garbage collection. Here it is a list of just a
few of them.

More work has to be done to reduce the number of remote method calls needed for back-
tracing. It would be possible to reduce the number of remote method calls by using a better
heuristic for choosing garbage suspects. One possibility is to combine Hughes algorithm [Hug85]
with back-tracing and perform back-tracing only in those objects that have a time-stamp older
than some prespecified value.

Also the distributed garbage collection implementation shown here is homogeneous in the sense
that only Orbix applications in Solaris can use it. However nothing prevents other servers that
use other operating systems or languages to use it as long as they also implement a distributed
garbage collector object with the same IDL interface and characteristics. In this way it is
possible to have heterogenous distributed garbage collection. A good candidate for implementing
distributed garbage collection is Java. The current Remote Method Invocation (RMI) in Java
uses reference listing for distributed garbage collection, andtherefore is unable to collect cyclic
garbage.

Another future direction is to analyze the performance of back-tracing using real applications.
Unfortunately, since cyclic distributed garbage collection is not currently available, there are no
too many applications that make full use of distributed garbage collection. Hopefully the number
of these applications will start growing once distributed garbage collection is widely spread.

Finally, it would be worth exploring the possibility of using back-tracing for garbage collecting
persistent stores.

References

[BDS91] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage collec-
tion. In Proceedings of the 1991 SIGPLAN Conference on Programming Language
Design and Implementation, pages 157-164, Toronto, Ontario, June 1991. ACM Press.

[BEN'93] Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, and Edward Wobber. Dis-
tributed Garbage Collection for Network Objects. Technical Report 116, Digital
Systems Research Center, 1993.

[BW88]  Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative en-
vironment. Software Practice and Ezxperience, 18(9):807-820, September 1988.

[DeT90]  John DeTreville. Experience with concurrent garbage collectors for Modula-2+. Tech-
nical Report 64, Digital Equipment Corporation Systems Research Center, Palo Alto,
California, August 1990.

[DLM*78] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: An exercise in cooperation. Communications
of the ACM, 21(11):966-975, November 1978.



[Fuc95|

[GMOY5]

[Hay91]

[Hug85)

[Ton95]
[1792]

[Jon96]

[LHS83]

[MAS4]

[Mic94]

[MS91]

[PS95]

Matthew Fuchs. Garbage collection on an open network. In Henry Baker, editor, In-
ternational Workshop on Memory Management, Lecture Notes in Computer Science,
Concurrent Engineering Research Center, West Virginia University, Mor gantown,
WV, September 1995. Springer-Verlag.

James Gosling and Henry McGilton. The JAVA Language Environment: A White
Paper. Available from http://www.javasoft.com/whitePaper, 1995.

Barry Hayes. Using key object opportunism to collect old objects. In Andreas
Paepcke, editor, Conference on Object Oriented Programming Systems, Languages
and Applications (OOPSLA ’91), pages 33—46, Phoenix, Arizona, October 1991. ACM
Press.

John Hughes. A distributed garbage collection algorithm. In Jean-Pierre Jouan-
naud, editor, Functional Languages and Computer Architectures, number 201 in Lec-
ture Notes in Computer Science, pages 256-272, Nancy (France), September 1985.
Springer-Verlag.

Iona Technologies, Dublin, Ireland. Orbiz Programmer’s Guide, July 1995.

N. C. Juul and E. Jul. Comprehensive and robust garbage collection in a distributed
system. In Proc. Int. Workshop on Memory Management, number 637 in Lecture
Notes in Computer Science, pages 103-115, Saint-Malo (France), September 1992.
Springer-Verlag.

Richard E. Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. John Wiley & Sons, New York, 1996. With a chapter on Distributed
Garbage Collection by R. Lins.

Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the life-
times of objects. Communications of the ACM, 26(6):419-429, June 1983.

Khayri A. Mohamed-Ali. Object Oriented Storage Management and Garbage Collec-
tion wn Distributed Processing Systems. PhD thesis, Royal Institute of Technology,
Stockholm, December 1984.

Microsoft Corporation. OLE2 Programmer’s Reference, volume 2. Microsoft Press,
1994.

Luigi Mancini and S. K. Shrinivastava. Fault-tolerant reference counting for garbage
collection in distributed systems. Computer Journal, 34(6):503-513, December 1991.

David Plainfossé and Marc Shapiro. A survey of distributed garbage collection tech-
niques. In Proc. Int. Workshop on Memory Management, Kinross Scotland (UK),
September 1995.



[SDP92a]

[SDP92b)]

[Sha88]

[TM93]

[Ung84]

[Wil92]

[Wil95]

[Zor90]

Marc Shapiro, Peter Dickman, and David Plainfossé. Robust, distributed references
and acyclic garbage collection. In Symp. on Principles of Distributed Computing,

pages 135-146, Vancouver (Canada), August 1992. ACM. Superseded by [SDP92b]:
corrects a bug, more elegant, more informative.

Marc Shapiro, Peter Dickman, and David Plainfossé. SSP chains: Robust, distributed
references supporting acyclic garbage collection. Rapport de Recherche 1799, Institut
National de la Recherche en Informatique et Automatique, Rocquencourt (France),
nov 1992. Also available as Broadcast Technical Report #1.

Robert A. Shaw. Empirical Analysis of a Lisp System. PhD thesis, Stanford Univer-
sity, Palo Alto, California, February 1988. Technical Report CSL-TR-88-351, Stanford
University Computer Systems Laboratory.

G. Tel and F. Mattern. The derivation of distributed termination detection algorithms
from garbage collection schemes. ACM Transactions on Programming Languages and
Systems, 15(1):1-35, January 1993.

David M. Ungar. Generation scavenging: A non-disruptive high-performance storage
reclamation algorithm. In ACM SIGSOFT/SIGPLAN Software Engineering Sympo-
stum on Practical Software Development Environments, pages 157-167. ACM Press,
April 1984. Published as ACM SIGPLAN Notices 19(5), May, 1987.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves Bekkers and
Jacques Cohen, editors, International Workshop on Memory Management, number
637 in Lecture Notes in Computer Science, pages 1-42, St. Malo, France, September
1992. Springer-Verlag.

Paul R. Wilson. Garbage collection. Computing Surveys, 1995. Expanded ver-
sion of [Wil92]. Draft available via anonymous internet FTP from cs.utexas.edu as
pub/garbage/bigsurv.ps. In revision, to appear.

Benjamin Zorn. Comparing mark-and-sweep and stop-and-copy garbage collection.
In Conference Record of the 1990 ACM Symposium on LISP and Functional Pro-
gramming, pages 87-98, Nice, France, June 1990. ACM Press.



