Chapter 2

Review of Pointers and Memory Allocation

1.1. Introduction

In this chapter we will talk about the pointers in C. Pointers are fundamental in understanding
how variables are passed by reference, how to access arrays more efficiently, and also memory
allocation. We will start by reviewing how pointers are defined in “C”, and then we will continue
with explaining some basic data structures that use pointers, and we will finish with pointer to
functions.

1.2 Memory and Pointers
A pointer is a variable that contains an address in memory. In a 64 bit architectures, the size of a

pointer is 8 bytes independent on the type of the pointer. Below you can see a graphical
representation of memory along with a pointer. Notice the pointer p contains the address of the
variable c, and not the value contained there. You would create a pointer like this in the manner
shown to the left of the image.

Address Memory

char c ='A’; /] Ascii 65

char * p = &c; p 2000: 1200

¢ 1200: 65 (ascii for A)

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

1.3 Ways to get a pointer value
=> Assign a numerical value into a pointer

char * p = (char *) 0x1800;
*p = 5; // Store a 5 in location 0x1800;

Above, you can see how you would go about creating a pointer to a location, and then
assigning a value to the memory location the pointer is pointing to. Note: Assigning a numerical
value to a pointer isn't recommended and only left to programmers of OS, kernels, or device

drivers

-> Get memory address from another variable:
Below you can see a graphical representation of how you would retrieve the address of a
specific index in an array and then assign a value to that index.

Address Memory
1240
buff[29]: 1232
int *p;
int buff[30];
p = &buff[1]; buff[2]: 1016
p =78; buff[1]: 1008 | 78
buff[0]: 1000
p: 400 1008

= Allocate memory from the heap
Here we can see an example of assigning memory from the heap to pointers using both
the new operator from C++ and the malloc function call used in C. While using malloc in C++ is
entirely valid, you will often tend to use new when allocating data structures to ensure their
constructor is called to properly set up the variable.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

int *p

p = new int;

int *q;

q = (int*)malloc(sizeof(int))

=>» Pass a pointer as a parameter to a function (Pass by Reference)
void swap (int *a, int *b){
int temp;
temp="*a;
*a=*b;

}

In main:
swap(&x, &y)

1.4 Common Problems with Pointers

- When using pointers make sure the pointer is pointing to valid memory before assigning
or getting any value from the location.

-> String functions do not allocate memory for you:

char *s;
strcpy(s, "hello"); --> SEGV/(uninitialized pointer)

- The only string function that allocates memory is strdup (it calls malloc of the length of
the string and copies it)

1.5 Printing Pointers
It is useful to print pointers for debugging
char*ji;
char buff[10];
printf ("ptr=%d\n", &buff[5])

Or In hexadecimal

printf ("ptr=0x%x\n", &buff[5])

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

Instead of using printf, We recommend to use fprintf(stderr, ...) since stderr is unbuffered and
it is guaranteed to be printed on the screen.

1.6 sizeof() operator in Pointers

The size of a pointer is always 8 bytes in a 64bit architecture independent of the type of the
pointer:

sizeof (int)==8 bytes

sizeof (char)==1 byte

sizeof (int*)==8 bytes

sizeof (char*)==8 bytes

1.7 Using Pointers to Optimize Execution
Assume the following function that adds the sum of integers in an array using array indexing.

int sum(int * array, int n)

{
int s=0;
for (int i=0; i<n; i++)
{
s+=array[i]; // Equivalent to
//* (int*) ((char*)array+i*sizeof (int))
}
return s;
}

Now the equivalent code using pointers

int sum(int* array, int n)
{
int s=0;
int *p=&array[O0];
int *pend=&array|[n];
while (p < pend)
{
s+=*p;
p++;
}

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

return s;

}

When you increment a pointer to integer it will be incremented by 8 units because sizeof(int)==8.
Using pointers is more efficient because no indexing is required and indexing require
multiplication. An optimizer may substitute the multiplication by a “<<* operator if the size is a
power of two. However, the size of the array entries may not be a power of 2 and integer
multiplication may be needed.

1.8 Array Operator Equivalence

When C was designed by Kernighan, Ritchie, and Thompson, they wanted to create a high level
language that would not sacrifice the same optimization opportunities that you have by
programming in an assembly language. They had the great idea to give arrays and pointers the
same equivalence and to be able to use arrays or pointers interchangeably.

We have the following equivalences in C between arrays and pointers:

Assume an array such as
int a[20];

Then we have:
ali] - is equivalent to
*(a+i) - is equivalent to
*(&a[0]+i) — is equivalent to
((int)((char*)&a[0]+i*sizeof(int)))

This means that you may substitute any array indexing such as afi] in your program by
((int)((char*) &a[0]+i*sizeof(int))) and it will work! C was designed to be a machine
independent assembler.

1.9 2D Array Representation and Jagged Arrays

We can represent 2D arrays in C in at least these three different ways. Surprisingly, the array
operator in C can be used in any of these three ways without change.

[Consecutive Rows in Memory
3 Array of pointers to Rows
1 Pointer to an Array of Pointers to Rows

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

2D Array as Consecutive Rows in Memory
Assume the normal array
int a[4]1[3];

You will see that to access an element a[i] [j] in this array C will generate the following
pointer operations:

a[i]l[j] == *(int*) ((char*)a + i*3*sizeof(int) + j*sizeof(int))

The matrix a will be represented in memory in the following way:

Address Memory

1096
a[3][2]: 1088

int a[4][3]; a[1][2]: 1040 5
a[1][2]=5 a[1][1]: 1032
a[1][0]: 1024
a[0][2]: 1016
a[0][1]: 1008
a[0][0]: 1000

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

2D Array as an Array of Pointers to Rows (Fixed Rows Jagged Array)

You may also represent a 2D array as an array of pointer to rows. The array may be declared as
a global or local variable and the number of rows is defined at compilation time.

Address Memory al3]0] Tal3][1 [al3]i2)=5
, -

a[0ji2]: 1016 |, [a@0r a2l T2

a[0][2]: 1016 —

a[0][1]: 1008 =r~[2101 [alfr [alfie]

a[o][0]: 1000

a[0]0] [a[o]1] | al0l[2]

// Implementation of Jagged Array

int* (a[4]);

for(int i=0; i<4; i++){
af[i]l=(int*)malloc (sizeof (int) *3) ;
assert(a[i] '=NULL) ;

}

a[3][2] = 5;

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

2D Array as a pointer to an Array of Pointers to Rows (Open Jagged Array)

In the previous approach the number of rows has to be set at compilation time. You may also
represent a 2D array as an array of pointer to rows. The pointer to the array of pointer to rows is
defined as a double pointer. In this way the number of rows and columns can be prespecified at
run time.

int **a;
a: al[3][2]=5
N\
a3J:112: _xa[3]10] a[3]11]al3]12]
a[2]:108: —>a[2][0] a[2][1]a[2][2]
a|l1]:104: \ﬂ N §
a[0]:100: \ [1][0]a[1][T]a[1][2]
=P a[0](0] a[0][1]a[0][2]

int ™ a;
a=(int™")malloc(4*sizeof{int*));
assert{ al= NULL)
for(int i=0; i<4; i++)
{
alil=(int")malloc{3*sizeof(int));
assert(a[i] = MULL

)

The main advantage of a jagged array is that it is the memory allocator does not need to allocate
a single large chunk of memory that often forces more memory usage, but instead smaller

blocks may be used. In addition, you can define an array with different row sizes like the following
triangular matrix:

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

Example: Triangular matrix

int **a3;

a.
\\n al3][0
a|3]:112: ‘/dl L
a[2]:108: —»ia[2](0] a[2][1]
a[1]:104: S aolaiintaning
1100, 1\4[|[0fa[1][L[a[1](2]
a[0][0] a[0][1]a[0][2[a[0][3]

Pointers to Functions

Pointers to functions have many uses in C programming. A pointer to a function is a variable that
contains the address of a function in memory. A pointer to a function allows executing a function
through a pointer.

There are many uses for pointer to functions:

1. You can write functions that take a pointer to a function as a parameter to be able to
customize the same algorithm without modifying the implementation. For example, you
could write a sorting function that takes a pointer to a comparison function that allows
sorting an array in ascending, or descending order, or to be able to use custom
comparison functions without having to modify the code that sorts the array.

2. You could write a function that iterates over the elements of a data structure such as a
tree or hash table and applies a function passed as parameter to every element in the
data structure.

3. You can implement object orientation and subclassing in “C” without having to use C++.
For instance, UNIX is written in C and it has the concept of a FILE. A FILE has a table
called the “vnode” that has pointers to functions to a read(), write(), open(), close()
functions that can be used for that FILE. A FILE in disk will have different read/write
functions than a FILE that represents a console. It is interesting to see that the
implementation of FILEs came before C++ or the invention of Object Oriented
Languages. In fact C++ implements inheritance by using a table of pointer to functions
called the V-Table that points to the virtual functions of the class that may be overwritten
by a subclass.

Here is an example of a function pointer:

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

typedef void (*FuncPtr) (int a);

FuncPtr is a type of a pointer to a function that takes an “int” as an argument and returns “void”.

Implementing an Array Mapper

Here is an example of an mapper for an array of integers. The function intArrayMapper() takes
as argument an array of type int, n the size of the array, and a function func that is applied to
every member of the array.

typedef void (*FuncPtr) (int a);

void intArrayMapper(int *array, int n, FuncPtr func) ({
for(int = 0; i < n; i++) {
(*func) (array[1]);
}

}

int s = 0;
void sumInt(int wval) {
s += val;

}

void printInt(int val) {
printf("val = %d \n", val);
}

int a[] = {3,4,7,8};
main() {
// Print the values in the array
intArrayMapper (a, sizeof (a)/sizeof (int), printInt);

// Print the sum of the elements in the array

s =0;

intArrayMapper (a, sizeof (a)/sizeof (int), sumInt);
printf (“total=%d\”, s);

This int array mapper has the disadvantage that it can only be used by int arrays. We could
rewrite this array mapper to be used on any type of array.

typedef void (*GenFuncPtr) (void * a);
void genericArrayMapper (void *array,
int n, int entrySize, GenFuncPtr fun)

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

for(int 1 = 0; i < n; i++;){
void *entry = (void¥*) (
(char*)array + i*entrySize);
(*fun) (entry) ;

void sumIntGen(void *pVal) {
//pVal is pointing to an int
//Get the int val
int *pInt = (int*)pVal;
s += *pInt;

}

void printIntGen(void *pVal) {
int *pInt = (int¥*)pVal;
printf("val = %d \n", *pInt);
}

int a[] = {3,4,7,8};
main() {
// Print integer values
s =0;
genericArrayMapper(a, sizeof(a)/sizeof(int),
sizeof (int) , printIntGen) ;

// Compute sum the integer values

genericArrayMapper(a, sizeof(a)/sizeof(int),
sizeof (int), sumIntGen) ;

printf (“s=%d\n”, s);

You may use the same approach for example to write a generic mysort function that can be
used to sort an array regardless of the type of the array.

typedef int (*ComparisonFunction) (void * a, void * b);
void mysort(void * array, int nentries, int entrySize,
ComparisonFunction compFunc) ;

This function takes a pointer to the array, the number of entries, and the size of each entry to be
able to compute where each entry in the array starts, and a pointer to a comparison function.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

When swapping two entries of the array, you will have pointers to the elements void *a, *b and
the size of the entry entrySize.

// Allocate temporary memory area dynamically

// used for swapping elements. Do it only once at
// the beginning of the sorting function

void * tmp = (void *) malloc (entrySize) ;
assert(tmp !'= NULL),

// Inside sorting loop

void * a = (void*) ((char*)array + i * entrySize);
void * b = (void*) ((char*)array + (i+l) * entrySize);
memcpy (tmp, a, entrySize);

memcpy (a,b , entrySize);

memcpy (b, tmp , entrySize);

// Outside sorting loop
free (tmp)

Note: You may allocate memory only once for tmp in the sort method and use it for all the sorting
to save multiple calls to malloc. Free tmp at the end.

If you are sorting strings, the comparison function passed to mysort will be receiving a “pointer to
char*” or a "char**” as argument.

int StrComFun(void *pa, void *pb) {
char** stra = (char**)pa;
char ** strb = (char**)pb;
return strcmp(*stra, *strb);

Memory Allocation Errors

Explicit Memory Allocation (calling free) uses less memory and is faster than Implicit Memory
Allocation (Garbage Collection) .However, Explicit Memory Allocation is Error Prone. Here is a list
of the errors that a programmer may make when using malloc()/free() incorrectly.

1. Memory Leaks
2. Premature Free

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

3. Double Free
4. Wild Frees
5. Memory Smashing

Memory Leaks

Memory leaks are objects in memory that are no longer in use by the program but that are not
freed. This causes the application to use excessive amounts of heap memory until it runs out of
physical memory and the application starts to swap slowing down the system.

If the problem continues, the system may run out of swap space. Often server programs (24/7)
need to be “rebounced” (shutdown and restarted) because they become so slow due to memory
leaks.

Memory leaks are a problem for long lived applications (24/7). Short lived applications may suffer
memory leaks but is often not a problem since memory is freed when the program goes away.
Memory leaks are a “slow but persistent disease”. There are other more serious problems in
memory allocation like premature frees.

Example of an (extreme) Memory Leak:

int * i;
while (1) {
pPtr = new int;

}

Premature Frees

A premature free is caused when an object that is still in use by the program is freed.

The freed object is added to the free list modifying the next/previous pointer. If the object is
modified, the next and previous pointers may be overwritten, causing further calls to malloc/free
to crash. Premature frees are difficult to debug because the crash may happen far away from
the source of the error.

Example of a Premature Free:

int * p = new int;
*p=8;
delete p; // delete adds object to free list updating header info

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

*p = 9; // next ptr in the malloc free list may be modified.
int *q = new int; // this call or other future malloc/free

// calls will crash because the free

// list is corrupted.

To reduce the occurrence of Premature Frees
it is a good practice to assign NULL (p=NULL)
after free.

In this way your program will get a SEGV
signal if the object is used after delete
so you can debug it.

int * p = new int;

*p=8;

delete p; // delete adds object to free list updating header info
p = NULL; // Set Pointer to NULL so it cannot be used again.

*p = 9; // This causes <SEGV> trying to write to a NULL pointer
// You may determine with a debugger where the
// error happened.

Double Free

Double free is caused by freeing an object that is already free. This can cause the object to be
added to the free list twice corrupting the free list. After a double free, future calls to malloc/free
may crash. Here is an example of a double free:

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

Example of a Double Free
int * p = new int;

delete p; // delete adds object to free list
delete p; // deleting the object again

// overwrites the next/prev ptr

// corrupting the free list

// future calls to free/malloc

// will crash

Wild Frees

Wild frees happen when a program attempts to free a pointer in memory that was not returned
by malloc. Since the memory was not returned by malloc, it does not have a header.

When attempting to free this non-heap object, the free may crash. Also if it succeeds, the free
list will be corrupted so future malloc/free calls may crash. In addition, memory allocated with
malloc() should only be deallocated with free() and memory allocated with new should only be
deallocated with delete. Wild frees are also called “free of non-heap objects”.

Example of a Wild Free

int q;
int * p = &q;

delete p;
// p points to an object without
// header. Free will crash or
// it will corrupt the free list.

Another Example of a Wild Free

char * p = new char[100];
p=p+10;

delete [] p:
// p points to an object without

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

// header. Free will crash or
// it will corrupt the free list.

Memory Smashing

Memory Smashing happens when less memory is allocated than the amount of memory that will

be used. This causes the header of the object that immediately follows to be overwritten,

corrupting the free list. Subsequent calls to malloc/free may crash. Sometimes the smashing

happens in the unused portion of the object causing no damage.

char * s = new char[8];
strcpy (s, “hello world”);

// We are allocating less memory for

// the string than the memory being

// used. Strcpy will overwrite the

// header and maybe next/prev of the

// object that comes after s causing

// future calls to malloc/free to crash.
// Special care should be taken to also

// allocate space for the null character
// at the end of strings.

Debugging Memory Allocation Errors

Memory allocation errors are difficult to debug since the effect may happen farther away from the
cause. Memory leaks are the least important of the problems since the effects take longer to
show. As a first step to debug premature free, double frees, wild frees, you may comment out
free calls and see if the problem goes away. If the problem goes away, you may uncomment the
free calls one by one until the bug shows up again and you will find the offending free.

There are tools that help you detect memory allocation errors. Here is a list of a few of them:

Valgrind (Open Source: http://valgrind.org/)
IBM Rational Purify

Bounds Checker

Insure++

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach

(V2014-10-27) (systemsprogrammingbook.com)

Using gdb

While the focus of this book is not on learning fundamental programming topics like debugging,
we will briefly review using gdb and some simple debugging paradigms you may or may not
have heard before. This is in the hopes that if you are new to programming or it has been a
while you will have a brief starting point from which to begin. Note that while we are focusing on
the GNU debugger, the common commands we will cover are similar to and found in almost all
other debuggers including IDEs like the Microsoft Visual Studio built-in debugger.

The GNU debugger is available on all platforms, but is most readily available on linux
distributions from the command line. You will use gdb often, or a similar tool to debug your
programs when you come upon troublesome issues you can'’t easily resolve. You can use gdb
to step slowly through your program in order to look at it a line or a few at a time to specify where
and what your problem is while it is running.

Common Commands

run/r

This command runs your program inside the debugger, often this will print information relevant to
where the crashed occured if you have not set a breakpoint since the program will simply run
until it finishes or crashes. If it crashes you will find te next command quite useful.

list /1

This will list the lines of code near where the program crashed. This will often give you a good
idea of where to start looking for errors but it is important to note that this will certainly not always
show you the lines where the root of the problem lies, and more often than not it will not show
you the line where the problem actually lies.

where

This is equivalent to printing a backtrace from within the program, allowing you to see the call
stack that led to the program crash. This is helpful by allowing you to see which functions were
called in what order to lead to the crash.

up
This command simply moves you one step back up the call stack

p / print VARIABLENAME

This command has two main uses. You can use it to print out the whatever the current value of
a variable is at the time of execution, or you can use it to change the value of a variable that is
currently in scope while the program is running. This can be useful in some cases to determine
if a variable is accidentally uninitialized, set to the incorrect value, etc.

b / breakpoint LINE# or FUNCTION_NAME

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

Setting a breakpoint will allow you to force a program to “take a break” when it reaches that point
of execution. This allows you to watch your program step by step as it continues from that point

by using step or next. This way you can determine exactly at which point things start to go awry

during your program.

n / next
The next command will run a single line after the previous line allowing you to step through your
program without stepping inside of each function, it will just keep executing calls from the current
function.

s | step

Step works similarly to next, except instead of stepping over each function call you reach, it
allows you to step inside the function. This lets you see every command executed instead of
treating function calls you reach as “black boxes” that simply take their input produce their output
and move on.

Debugging Example

In the below debugging example, we are running a sample program which has a memory
allocation error. One of the arrays is not initialized and a value is expected to be placed into it.
We fix this by setting a breakpoint at where the problem is, discovering the problem, and then
rerunning the program and using print to initialize the array while still in gdb to check the solution.

bash-2.05% gdb debug

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.16 (sparc-sun-solaris2.5), Copyright 1996 Free Software Foundation, Inc...
(gdb) break main

Breakpoint 1 at 0x10bb8: file public.c, line 19.

(gdb) run

Starting program: /home/champion/e/cs252/test-grr/lab1-src/debug
warning: Unable to find dynamic linker breakpoint function.

warning: GDB will be unable to debug shared library initializers

warning: and track explicitly loaded dynamic code.

Breakpoint 1, main (argc=1, argv=0xffbffae4) at public.c:19
19 printf ("Starting tests.\n");

(gdb) n

Starting tests.

20 fflush (stdout);

(gdb) n

22 initialize_array ();

37 int *numbers = NULL, i = 0;
(gdb) n

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

39 for (i=0;i<4;i++){
(gdb) n

40 numbers[i] =i + 1;
(gdb) n

Program received signal SIGSEGV, Segmentation fault.
0x10c3c in initialize_array () at public.c:40

40 numbers|i] =i + 1;

(gdb) print numbers

$1 = (int *) 0x0 « Here we see that the array is uninitalized.
(gdb) run

Breakpoint 1, main (argc=1, argv=0xffbffae4) at public.c:19
19 printf ("Starting tests.\n");

(gdb) n

Starting tests.

20 fflush (stdout);

(gdb) n

22 initialize_array ();

(gdb) s

initialize_array () at public.c:39

37 int *numbers = NULL, i = 0;
(gdb) n

39 for (i=0;i<4;i++){

(gdb) print numbers = (int*) malloc(sizeof(int) * 5)
$4 = (int *) 0x603010

(gdb) n

(gdb) n

40 numbers[i] =i + 1; « Program doesn’t crash here, so we seem to be good to go.

General Debugging Strategies and Tips

Write short unit tests after finishing a small section of code
When a problem is found, start from the last module you didn't unit tests
Keep tested modules self-contained to prevent having to retest code or risk introducing

new bugs to “correct” code.

e Explain the problem to a "rubber duck". Explain to a friend, your monitor, the cat,
anything nearby to make sure your logic sounds reasonable out loud.

e Don't think "that's impossible", because it obviously just happened. Don't assume
anything when debugging, that section of code that "can't be wrong" is more likely to be

the problem than not.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

Chapter Summary Questions
1. In your own words, attempt to explain what a pointer really is, and what it is used for. If
you struggle to come up with a clean explanation that you wouldn’t want to show to
someone, try to reread some select sections of this chapter.
2. What is a memory allocation error? What are the different types of memory allocation
errors?
3. Whatis gdb? Why would you use it?

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

