
Improving Binary Code Similarity Transformer Models by
Semantics-Driven Instruction Deemphasis

Xiangzhe Xu
Purdue University
West Lafayette, USA
xu1415@purdue.edu

Shiwei Feng
Purdue University
West Lafayette, USA
feng292@purdue.edu

Yapeng Ye
Purdue University
West Lafayette, USA
ye203@purdue.edu

Guangyu Shen
Purdue University
West Lafayette, USA
shen447@purdue.edu

Zian Su
Purdue University
West Lafayette, USA
su284@purdue.edu

Siyuan Cheng
Purdue University
West Lafayette, USA
cheng535@purdue.edu

Guanhong Tao
Purdue University
West Lafayette, USA
taog@purdue.edu

Qingkai Shi
Purdue University
West Lafayette, USA
shi553@purdue.edu

Zhuo Zhang
Purdue University
West Lafayette, USA
zhan3299@purdue.edu

Xiangyu Zhang
Purdue University
West Lafayette, USA

xyzhang@cs.purdue.edu

ABSTRACT

Given a function in the binary executable form, binary code similar-

ity analysis determines a set of similar functions from a large pool

of candidate functions. These similar functions are usually com-

piled from the same source code with different compilation setups.

Such analysis has a large number of applications, such as malware

detection, code clone detection, and automatic software patching.

The state-of-the art methods utilize complex Deep Learning models

such as Transformer models. We observe that these models suffer

from undesirable instruction distribution biases caused by specific

compiler conventions. We develop a novel technique to detect such

biases and repair them by removing the corresponding instructions

from the dataset and finetuning the models. This entails synergy

between Deep Learning model analysis and program analysis. Our

results show that we can substantially improve the state-of-the-art

models’ performance by up to 14.4% in the most challenging cases

where test data may be out of the distributions of training data.

CCS CONCEPTS

• Security and privacy → Software reverse engineering; •

Computing methodologies→Machine learning.

KEYWORDS

Binary Similarity Analysis, Transformer, Program Analysis

ACM Reference Format:

Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan

Cheng, Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang.

2023. Improving Binary Code Similarity Transformer Models by Semantics-

Driven Instruction Deemphasis. In Proceedings of the 32nd ACM SIGSOFT

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598121

International Symposium on Software Testing and Analysis (ISSTA ’23), July

17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3597926.3598121

1 INTRODUCTION

Given a query function 5 , code similarity analysis [1, 5, 16, 28, 29]

finds the functions from a pool % that are similar to 5 . Similar-

ity analysis has a wide range of applications in automatic soft-

ware patching [3, 36, 46, 55, 56, 68], software plagiarism detec-

tion [9, 33, 52, 60, 71], and 1-day vulnerability detection [15, 62].

For instance, a critical security vulnerability might be detected

in a library. It is essential to detect whether an existing project

contains the problematic function from that library. Binary simi-

larity analysis is a special kind of code similarity analysis. It han-

dles functions in the executable form, without source code or any

symbolic information. In the context of binary similarity analy-

sis, similar functions are usually compiled from the same source

code with different compilers or compilation options. It is partic-

ularly useful in reverse engineering [21, 22, 44, 62] and malware

analysis [6, 10, 18, 19, 24, 26, 70]. Traditionally, binary similarity

analysis is achieved using classic program analysis such as control-

flow differential analysis [7, 25], program dependence analysis [67],

symbolic execution [13, 33], and trace analysis [13, 17, 22, 40, 62].

Recent research has shown that Deep Learning models, such as

Transformer models, can achieve state-of-the-art results in binary

similarity analysis, outperforming classic methods [44, 61]. For

example, JTrans [61] uses Transformer models and achieves 62.5%

accuracy, 30.5% better than the prior work. In JTrans, the model

first encodes 5 and every function in % to embeddings. It then

computes the cosine similarity between the embedding of 5 and

the embeddings of all functions in % . A high cosine similarity value

between a pair of embeddings indicates that the model considers

the related two functions similar. Functions in % are further ranked

by the similarity values and the top-: functions may be selected as

similar functions. The model is trained on a large set of function

pairs that are labeled as similar or dissimilar, using contrastive

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1106

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3597926.3598121
https://doi.org/10.1145/3597926.3598121
https://doi.org/10.1145/3597926.3598121
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598121&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

learning. In total, there are over 3 million function pairs used in

training, much more than a few other similar methods [27, 37, 44].

However, as we will show in Section 2.2, the inherent compiler

conventions (e.g., generating specific instruction sequences at func-

tion prologues) introduce instruction distribution biases, some of

which are undesirably associated with specific similarity analysis

results. For example, a particular instruction appearing in the pro-

logue of a function but not in the other similar function may lead to

a misclassification of dissimilarity. However, we cannot simply re-

move instruction distribution biases because many of them are not

caused by compilers, but rather due to unique program semantics.

In other words, they may be important to correct classification.

In this paper, we aim to identify and suppress undesirable biases

to improve Transformer-based binary similarity analysis models. In

particular, we first determine a set of instructions that are important

to classification results (regarding all training samples). We then

use program analysis to determine if these instructions indeed

have semantics importance. If not, they are likely due to compiler

introduced biases.We further propose to preclude these instructions

by removing them from all the binary functions and finetuning the

model with the updated dataset.

Our contributions are summarized as follows.

• We propose a novel instruction deemphasis technique that

can effectively prevent a model from learning instruction

distribution biases introduced by compilers, and improve the

generalizability of models on out-of-distribution data.

• We devise a method to identify instructions from a binary

function that may significantly affect the classification re-

sults of a binary similarity analysis model.

• We propose a novel metric that can measure the importance

of a single instruction to the semantics of a binary function.

• We develop a prototype DiEmph. We conduct experiments

on 6 state-of-the-art models and evaluate the effectiveness

of DiEmph on 7 real-world projects widely-used for the bi-

nary similarity tasks. The results show that DiEmph im-

proves models’ performance on out-of-distribution data by

3.7–14.4%. In the most practical application scenario, namely,

using the most complex model trained on the largest dataset,

DiEmph achieves 14.4% accuracy improvement on out-of-

distribution data, from 37.2% to 51.6%.

2 MOTIVATION

In this section, we use an example to discuss the limitation of

existing methods and illustrate our method.

2.1 Motivating Example

The example is simplified from the function xrealloc() in Core-

utils [12]. It is shown in Fig. 1a. The function is used to change the

sizes of an allocated memory region. It takes as input two parame-

ters. The first one is a pointer to an allocated memory region, and

the second is a new size. In common cases, the function returns

a pointer with the new size (at line 13). If the second parameter

is zero, xrealloc will free the region and return a null pointer

(at line 9). The if-statement at line 12 handles exceptional cases:

if the function realloc returns a null pointer, a non-return error

processing function xrealloc_die will be invoked. The function

emits an error message and terminates the execution.

We compile the function with the GCC compiler and the option

-O3, and with the Clang compiler and the option -O0. The resulting

control flow graphs (CFGs) are shown in Fig. 1b and Fig. 1c, respec-

tively. We number the basic blocks and list the numbers in the red

circle at the upper left corner of each basic block. Note that we label

the corresponding basic blockswith the same numbers. At the begin-

ning of both CFGs, the two parameters p and n are stored in registers

rdi and rsi, respectively. The first basic blocks of both functions

contain the function prologue (e.g., saving registers and allocating

a stackframe). Basic blocks 2–3 contain the program logic for com-

mon cases: invoking realloc and returning its result. Basic blocks

4 (in both CFGs) free the pointer pwhen the new size n is zero. Basic

blocks 5 process exceptional cases as shown at line 12 of Fig. 1a.

2.2 Limitations in State-of-the-Art Models

The CFGs in Fig. 1b and Fig. 1c have similar control structures

and have many corresponding instructions. However, the state-

of-the-art Transformer-based method JTrans [61] produces a low

similarity score (0.3) to this pair of CFGs. The majority of similar

function pairs are expected to have a score larger than 0.5. Thus

the model mistakenly concludes these two CFGs are not similar.

We investigate the results and find that the model is undesirably

sensitive to some special patterns in the function prologue, namely,

these patterns are considered very important to classification results

by the model. Some of the misclassification-inducing patterns are

highlighted by the orange circles in Fig. 1b and Fig. 1c. Specifically,

in the optimized version (Fig. 1b), the GCC compiler inserts an

additional instruction endbr64 at the beginning. The instruction is

irrelevant to the program functionality. It is used to support control

flow integrity [54], a security feature on recent processors. However,

the model tends to consider a pair of functions likely dissimilar

when one has the instruction and the other does not. By manually

adding the endbr64 instruction to the un-optimized version, we

can increase the similarity score for this pair of binary functions

to 0.60. Even removing the instruction from the optimized version

allows us to improve it to 0.52.

We further investigate the training dataset and find that the

endbr64 instruction has an undesirable bias in distribution. The

training data of JTrans [61] contains over 3 million binary functions

with different functionalities. For each pair of binary functions in

the training dataset, there are two possible labels, i.e., similar and

dissimilar, whose ratio is 1:2. Following the same ratio, we randomly

select 0.9 million pairs of similar functions and 1.8 million pairs

of dissimilar functions and study the distribution of the endbr64

instruction in these two kinds of function pairs. The results are

shown in Fig. 2. Observe that when only one of the function has

the instruction, the numbers of similar and dissimilar function

pairs have the ratio of 1:27, substantially deviated from the 1:2 ratio.

Hence the trainedmodel undesirably associates the inconsistency of

endbr64’s presence with the conclusion of dissimilarity. Note that

not all distribution biases are problematic. It is quite common that

certain instructions (or sequences) are representative for specific

functionalities. Therefore, a simple idea of removing all biases can

hardly work.

1107

Improving Binary Code Similarity Transformer Models by Semantics-Driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

1 void x a l l o c _ d i e () {

2 . . .

3 e x i t (−1) ;

4 }

5 void ∗ x r e a l l o c (void ∗ p ,

6 s i z e _ t n) {

7 i f (! n && p) {

8 f r e e (p) ;

9 return NULL ;

10 }

11 p = r e a l l o c (p , n) ;

12 i f (! p && n)

x a l l o c _ d i e () ;

13 return p ;

14 }

(a) Source Code

; p stores in rdi
; n stores in rsi
1:endbr64
2:push rbx
; also store n in rbx
3:mov rbx, rsi
4:if (rdi==0 && rsi!=0)

; realloc(p, n)
5:mov rsi, rbx
; return value is in rax
6:call realloc
7:if (rax==0 && rbx!=0)

; free(p)
10:call free
11:xor rax, rax
12:ret

13:call xalloc_die
14:xchg ax, ax8:pop rbx

9:ret

1

2

3

4

5

(b) CFG (GCC -O3)

; p stores in rdi
; n stores in rsi
1:push rbp
2:mov rbp, rsp
...
; store parameters
3:mov [rbp-0x10], rdi
4:mov [rbp-0x18], rsi
5:if ([rbp-0x18]==0 && p)

...
6:call realloc
7:mov [rbp-0x8], rax
8:if([rbp-0x8]==0 && n)

12:mov rdi, [rbp-0x10]
13:call free
; return value
; stores in [rbp-0x8]
14:mov [rbp-0x8], 0

15:call xalloc_die
9:mov rax, [rbp-0x8]
10:pop rbp
11:ret

1

2

5

4

3

(c) CFG (Clang -O0)

Figure 1: Motivating example. The two control flow graphs (CFGs) are the compilation results of Fig. 1a. Green and red edges in

the CFGs denote the control flow that the related branch is taken, or not taken, respectively. Red edges also denote the default

control flow. We number the basic blocks and show the numbers in red circles.

Dissimilar Function Pairs

with endbr64 in one of the functions

Dissimilar Function Pairs

with endbr64 in both/neither of the functions

Similar Function Pairs

with endbr64 in one of the functions

Similar Function Pairs

with endbr64 in both/neither of the functions

1.42M

0.75M

493k

18k

Figure 2: Undesirable bias in the distribution of training

dataset. We divide samples in the training dataset of JTrans

into four categories. The pie chart depicts the number of

samples in each category.

2.3 Our Technique

Existing techniques suffer from biased distributions of certain in-

structions. These biases are caused by compilers whose inherent

behaviors may not strictly follow a normal distribution due to their

deterministic nature. The overarching idea of our technique is to

deemphasize instructions that do not denote essential program se-

mantics, such as the aforementioned endbr64 instruction added to

support control-flow-integrity.

We determine instructions that are important to classification

results over the entire training set. The importance of an instruction

8 is determined by embedding changes of all functions involving 8

when we remove 8 from the function (Section 3.1). It is also called

the classification importance. For an instruction 8 of top-: classifica-

tion importance, we use program analysis to determine 8’s semantics

importance. Specifically, given a function, if 8 is in the backward

slice of any stable variable, (e.g., a heap variable, or a return vari-

able) in the function, 8 is considered semantically important to the

function. A variable is unstable if it is likely changed by compiler

optimization. A local variable of a primitive type (e.g., int) is un-

stable because it may be placed on stack in one version and in a

register in another (optimized) version. Stable variables tend to

have consistent representations in similar functions. Intuitively,

an instruction is considered important if it directly or transitively

contributes to the computation of some stable variables. We say

8 is semantically important regarding a dataset if it is important

for at least a certain number of functions in the dataset. Additional

challenges need to be addressed in the backward slicing as certain

dependences need to be precluded (Section 3.2). If an instruction

has top classification importance but not semantics importance,

it is removed from all the functions in the training dataset. We

then finetune the model using the reduced dataset to repair the

undesirable biases.

In our example, the endbr64 at the beginning of Fig. 1b has a rel-

atively high classification importance of 0.1, while the instruction

call realloc has an importance of only 0.05. That is, the model

considers endbr64 even more important than the call instruction.

Although endbr64 has classification importance, it is not semanti-

cally important. In particular, we identify all the stable variables

in the function and then determine the important instructions. For

instance, the ret instruction (at line 9 in block 3) implicitly returns

the value in rax to the caller1. Thus rax@9 (meaning rax at line

9) is a stable variable. We highlight all the instructions that affect

rax@9 with blue shadow (i.e., its backward slice). The blue dashed

arrows denote the dependences. First, rax@9 is (implicitly) defined

by the function call realloc at line 6 through its return. And the

result of the function call is affected by its parameters. The first

parameter (rdi) is defined at the function entry, and the second

one (rsi) is defined at line 5. The instruction mov rsi, rbxmeans

that copying the value in register rbx to rsi. The variable rsi@5

hence depends on rbx@5, which is defined at line 3. The variable

rbx@3 is in turn defined by rsi from the function entry. Thus our

analysis identifies that instructions at lines 3, 5, 6 affect the variable

rax@9 and consider them important. The endbr64 instruction is

considered semantically unimportant.

Removing endbr64 and a fewmore instructions of similar nature

from all functions in the dataset and fine-tuning the model allows

us to improve JTrans’s accuracy from 37.2% to 51.6%.

1At the binary level, function return value is in rax by default.

1108

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

3 DESIGN

The overall workflow of DiEmph is shown in Fig. 3. At the top we

show a typical training pipeline of Transformer model. The model is

first pretrained. The pretraining usually consumes tremendous time

and computing resources. Thus developers for downstream tasks

do not need to repeat the pretraining process. Instead, they directly

finetune a pretrained model on a domain-specific dataset (e.g., a

binary similarity dataset in our scenario), which takes significantly

less effort.

DiEmph takes as input a finetuned binary similarity model and

the dataset for finetune. It aims to produce a new model with better

performance via removing certain instructions from the dataset and

rerunning the finetune process. Specifically, the technique samples

functions from the training dataset, and analyzes classification

importance for all instructions in these # functions (Step 1). After

that, it selects the instructions with exceptionally large classifica-

tion importance (Step 2) and uses program analysis to determine

whether these instructions are semantically important (Step 3). For

instructions that have high classification importance but are not

semantically important, we remove them from the training dataset

(Step 4) and rerun the finetune process (Step 5). Finally, these prob-

lematic instructions will also be removed from the model input at

inference time (Step 6) to ensure input space consistency in finetune

and testing.

This section is organized as follows. In Section 3.1, we introduce

how classification importance of an instruction is computed. In

Section 3.2, we illustrate the challenges and our solutions when

analyzing the semantics importance of an instruction.

3.1 Classification Importance Analysis

In the first step, we determine a set of instructions that are important

to model classification results. As mentioned before, this is achieved

by sampling # functions from the training dataset and studying

function embedding changes caused by removing individual instruc-

tions. There are other alternatives to infer input importance in the

literature of Deep Learning, e.g., by analyzing gradients [4, 47, 53]

and attentions [11, 31, 59]. However, Transformer models have a

discrete tokenization step which makes back-propagating gradi-

ents to the input space challenging. In addition, there are usually

many attention heads, each yielding different importance results.

We hence consider the model as a black box and observe how em-

beddings are changed by instruction removal. Note that if after

removing an instruction, function embeddings drastically change,

similarity query results likely have significant changes as well. The

removed instruction is hence important to the classification results.

Formally, given an instruction 8 in a function 5 , the classification

importance of 8 regarding the function, noted as I2 , is defined as

follows.

I2 = 1 − 2>B
(

emb(5), emb(5 \{8})
)

(1)

In the above equation, 2>B denotes the cosine similarity between

two embeddings. emb(5) and emb(5 \{8}) denote the embedding

for 5 and the embedding for the resulting function after removing

8 from 5 , respectively.

The overall classification importance is then derived from the

sampled functions leveraging the above per-function classifi-

cation importance equation. The process is formally described by

Pretrained

Model

Training

Dataset

Finetuned

Model

Test

Dataset

Finetune Test

Classification

Importance

Analysis

Semantics

Importance

AnalysisSelect Outlier Instructions

Training Dataset

w/ Instruction

Deemphasis

Finetuned

Model

Test Dataset

w/ Instruction

Deemphasis

+ Encode

-
Remove

Finetune

-
Remove

Test

Instruction Deemphasis

1 2 3

4

5

6

Pretrained

Model

Figure 3: Workflow of DiEmph. At the top is a typical training

pipeline of Transformer model. Our technique is shown in

the light green box. Major steps are marked in orange circles.

Algorithm. 1. The algorithm takes as input a model and # func-

tions sampled from the training dataset, and produces a list of

instructions of top-: classification importance regarding the whole

dataset. It first selects the most important instructions in each func-

tion (lines 3–10). The variable importantInstr defined at line 2 is

a counter. It counts how many times an instruction is selected as

one of the most important instructions (regarding a function) in

lines 8–10. This is achieved by an outlier analysis explained later.

Then the counter is sorted, and the most frequent instructions

are returned (line 11). Empirically, we use # = 200 and = 4.

Our ablation study in Section 4.6 shows that the performance of

DiEmph is consistent across different values of # and .

To select in a function the instructions with an exceptionally

large classification importance, the algorithm uses the Kernel Den-

sity Estimation (KDE) (line 8) that finds outliers from a distribution.

KDE fits a continuous probabilistic distribution given a list of dis-

crete data points. Then it detects outliers by computing the probabil-

ities that the corresponding importance values appear. Specifically,

given an instruction 8 , it computes P(- < I2 (8)), where - is a

random variable following the fitted distribution, and P denotes

probability that - is less than the classification importance of 8 . If

P(- < I2 (8)) is close to 1, it means that the classification impor-

tance of 8 is significantly larger than other instructions.

3.2 Semantics Importance Analysis

After deciding a set of instructions that have classification impor-

tance, the next step is to identify their semantics importance. This

is achieved by identifying the stable variables in the # sampled

functions, computing the backward program slices of these vari-

ables through a specially designed algorithm, and calculating the

frequencies of instructions in the slices. That is, if an instruction

frequently occurs in the backward slices of stable variables, it is

considered to have semantics importance (regarding the whole

dataset).

3.2.1 Detection of Stable Variables. In our setting, stable variables

include global, heap, return variables, and variables passed as func-

tion actual arguments. Stable variables are not sensitive to compiler

and compilation option changes. For example, a heap variable tends

1109

Improving Binary Code Similarity Transformer Models by Semantics-Driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Algorithm 1: Selecting Instructions with High Classifica-

tion Importance

1 Function select(model, functions)

// importantInstr is a map from instructions to integers.

// It counts how may times an instruction is considered

important. Initially, all instructions are mapped to 0.

2 importantInstr = {}

3 for 5 ∈functions do

4 allInstrs = []

5 for i ∈ 5 do

// emb(5) denotes using<>34; to encode 5

6 I2 (8) = cos
(

emb(5), emb(5 \{8 })
)

7 allInstrs.append(8 , I2 (8))

8 outliers = KDE(allInstrs)

9 for 8, _ ∈ outliers do

10 importantInstr[8] += 1

11 return largestK(importantInstr)

to stay as a heap variable with compilation changes. Since we di-

rectly deal with binary executables, variable symbolic information

is not available. We hence perform the following analysis to recog-

nize the stable variables.

Identifying Global and Heap Variables. Global and heap vari-

ables are recognized by identifying whether a memory access in-

struction accesses a global or heap address. This is achieved by

performing backward slicing on the address operand, typically a

register, and checking if it is based on a global address, which is

reflected by a constant address value in the global memory region,

or on the return value of a heap allocation function. For example,

in Fig. 4a, the register rdi at line 10 is used to compute a memory

address. By tracing back the data flow, DiEmph finds that rdi@10 is

defined at line 1. The lea instruction at line 1 copies the address of

a global variable (GLOBAL_VAR) to rdi@12, Similarly,DiEmph uses

the same backward slicing technique to identify accesses to heap

variables. Take Fig. 4b as an example. The memory address at line

10 is computed by rbp+0x10. Rbx@10 is defined at line 2 by rax@2.

Rax@2 is the return value of the call (at line 1) to function malloc,

which allocates a piece of heap memory. Thus rbx@10 denotes a

heap variable.

Identifying Function Return Variables. Return variables are

considered stable variables since they denote function outputs.

In x86 binary, an ret instruction does not have any operand. If

there is a return value, it is by default stored in register rax (by

instructions preceding the return instruction). The challenge lies

in that a function that does not have an explicit return variable

also uses ret to exit its execution. It is hence challenging to decide

if a function has any return variable. Note that a simple method

that searches for any write to rax before ret can hardly work as

rax is a commonly used register in regular computation. Thus,

when DiEmph analyzes an ret instruction in a function, it further

analyzes invocations to this function (in other functions) and checks

whether rax is being used right after the invocations. The intuition

2Here, GLOBAL_VAR is a token introduced by our preprocessor that considers any
constant value in address loading instructions like lea as a global variable.

1: lea rdi, GLOBAL_VAR
2: ...
10: mov [rdi], 0

1: call malloc
2: mov rbx, rax
...
10: mov [rbx+0x10], 0

(a) Write to a Global Variable (b) Write to a Heap Variable

1:ret
...
; call site
10:call f
11:mov rbx, rax

(c) Return a Variable to a Caller

1:mov rsi, rdx
2:mov rdi, rbx
3:call gee
; in gee
10:mov rcx, rdi
11:call foo
; in foo
20:mov rcx, rsi

(d) Pass a Variable to a Callee

Figure 4: Examples about how DiEmph identifies stable vari-

ables. Dashed blue lines indicate data flows in the code snip-

pets.

is that if the function has a return value, the value tends to be used

after the function call (e.g., assigning to some variable). Particularly,

for each invocation, if the register rax is used after the call without

a new definition, DiEmph marks that the (invoked) function has

a return value. For example, as shown in Fig. 4c, DiEmph tries

to analyze whether the return instruction at line 1 in function 5

returns a value to the caller. Suppose it finds an invocation of 5

at line 10. After the call to 5 , at line 11, rax is used without re-

definition. This indicates the variable denoted by rax is returned

from the function 5 . Note that if DiEmph cannot find an invocation

for the function, it conservatively assumes that the function has a

return variable.

Identifying Function Actual Arguments. If a variable is being

passed as an actual argument to some function, it is considered

stable. However, without symbolic information, function signature

is not available and variables passed as actual arguments are not

explicit.We leverage the compiler convention that the first six actual

arguments are passed from a caller to a callee using registers. This

convention is true for all mainstream compilers as far as we know.

As such, by checking data flow through registers across function call

boundary allows us to identify variables that are passed as function

arguments. For example, in Fig. 4d, the program calls to 644 at line

3. DiEmph steps into the function 644 , and finds that rdi@10 is

used before definition. That indicates rdi is a parameter of 644 . As

such, rdi@2 is a stable variable. In some cases, the use of parameter-

passing registers may not always be directly visible in the callee. For

instance, in Fig. 4d, the register rsi is not used inside 644 . However,

function644 calls another function 5 >> (line 11), and the parameters

of 5 >> are the same with 644 . In this case, the compiler does not

repeat the code for parameter passing. Instead, the variables in

rsi@10 and rdi@10 are implicitly passed to 5 >> . Note that at line

20, the register rsi is used before definition, indicating rsi@20 is

an argument. To handle such cases, DiEmph recursively traverses

the call graph of a binary project and detects direct and transitive

parameter passing.

3.2.2 Semantics Importance via Binary Slicing. After identifying

all stable variables, DiEmph measures the semantics importance of

1110

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

1 in t g ;

2 in t foo () {

3 in t x ;

4 . . .

5 g = x ;

6 }

(a) Source Code of foo()

1:push rbp
2:push rbx
3:mov rbp, rsp
4:sub rsp, 0x20
...
9:mov [rbp-0x10], rcx
10:mov STABLE_VAR,[rbp-0x10]

(b) Optimized Version

1:push rbp
2:push rbx
3:mov rbp, rsp
4:sub rsp, 0x50
...
9:mov [rbp-0x20], rcx
10:mov STABLE_VAR,[rbp-0x20]

(c) Un-optimized Version

Figure 5: Example for stack variable accesses in binary programs. (a) shows a code snippet for function foo(). (b) and (c) are two

possible resulting binary programs after compilation. (b) is an optimized version with fewer variables on stack. The variable x

is located at [rbp-0x10]. (c) is an un-optimized version with more variables on stack, and x is located at [rbp-0x20].

Algorithm 2: Computing Semantics Importance

1 Function getSemanticsImportance(function, stableVars)

// instructionToCounter maps instructions to integers.

// It counts how many stable variables an instruction may

affect. Initially, all instructions are mapped to 0.

2 instructionToCounter = {}

3 for E ∈ stableVars do

4 backSlice = backwardSlicing(function, v)

5 for 8 ∈ function do

6 if 8 ∈backSlice then

7 instructionToCounter[i] += 1

8 semanticsImportance = {}

9 for 8 ∈ function do

10 semanticsImportance[i] = instructionToCounter[i] /

len(importantVars)

11 return semanticsImportance

each instruction based on the backward slices of these stable vari-

ables (within the # sampled functions). The procedure is defined

in Algorithm 2. The algorithm takes as input a binary function

and a set of stable variables. It computes and returns the semantics

importance for each instruction. It maintains a counter (line 2) for

each instruction, and increases the counter by 1 every time the in-

struction is found in the slice of a stable variable (line 6). Finally, the

importance for each instruction is computed as the ratio between

the number of stable variables it may affect and the number of all

stable variables.

A prominent challenge in slicing a binary program is to handle

memory accesses. Different from source code, a binary program

accesses most variables by their addresses. Therefore, statically de-

termining if a memory read is dependent on a memory write entails

precisely determining the set of addresses these accesses may refer

to. This is a hard problem, especially at the binary level. Existing

methods such as value set analysis [2] and stochastic analysis [72]

are either imprecise or unsound. DiEmph resorts to a conservative

solution and considers that any read to a global or a heap region

is potentially dependent on any write to the same region, without

disambiguating the addresses within the region. In contrast, for

accesses to stack memory, which usually denote local variable or

function argument accesses, we precisely determine their symbolic

addresses and compute precise dependences. The rationale of hav-

ing an over-approximate solution for global and heap accesses is

that we are collecting the slices for all global and heap variables

anyway.

Precluding Stack Address Dependences. A special feature of

our slicing algorithm is that we preclude dependences induced by

address computation if the address is on stack. Note that although

local variables, usually allocated on stack, do not belong to stable

variables, their accesses may be involved in the slices of stable vari-

ables, e.g., when a local loop variable 8 is used to index a global array

�[8]. In fact, the slice of a stable variable usually includes a larger

number of local variable accesses on stack. Although the inclusion

of these accesses in the slice is completely correct, the compilation

convention for such accesses may lead to substantial distribution

biases. For example, while a local variable read is as simple as the

presence of the variable in an expression, at the binary level, the

read is broken down into multiple instructions such as computing

the appropriate stack address and then performing the read. The

stack address computation itself may include multiple instructions.

Strictly following the standard slicing algorithm, these instructions

should all be included in the slice and hence have semantics impor-

tance. However, they are in fact semantically unimportant as they

are just stack access conventions. Depending on the stack memory

layout optimizations, the compiler may place a variable in different

stack locations and use different instruction patterns to compute

the address before any access. Such differences shall be neutralized.

Hence in DiEmph, we use data-flow analysis to determine if an

address involved in a memory access denotes a stack address. If so,

we preclude the dependence through the address operand from the

slice. In the following, we use an example to illustrate the problem

and then explain the data-flow analysis.

Example. Fig. 5 shows a function foo() in 5a and two versions of

its compiled code in 5b and 5c. In 5a, the program declares a local

integer variable G . It also has a global variable 6, which is a stable

variable according to our definition. The local variable is used in

the computation of 6 (line 5) and hence included in the slice of 6.

Lines 1–4 in 5b and 5c show a typical function prologue. At first, the

current values of the stack base register rbp and a general register

rbx are stored on the stack (lines 1–2). In x86, there are two stack

registers: the stack base pointer rbp pointing to the start of the

previous stack frame (the stack frame of the caller function) and

the stack pointer rsp denoting the end of the stack frame. Hence

the region between rbp and rsp denotes the whole stack frame.

Note that stack allocation is from high address to low address such

that the value of rsp is smaller than that of rbp. A push instruction

saves a value of a register to the memory location pointed to by the

1111

Improving Binary Code Similarity Transformer Models by Semantics-Driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

stack pointer rsp and automatically reduces rsp by 8 (assuming a

64bit machine). The saved values will be restored before returning

from foo() such that the caller’s stack frame can be re-activated.

After saving, the registers can be safely updated inside foo().

Take 5b as an example. Lines 3–4 set up a new stack frame for

foo(). In particular, the base pointer is set to the end of the previous

stack frame (line 3) and the end of the new stack frame is set to an

address that is 32 smaller. As such, a 32-byte stack region delimited

by the new rbp and rsp values is allocated. In lines 9 and 10, a

stack address falling into the frame rbp-0x10 is accessed in the

computation of 6, which is normalized to a symbol STABLE_VAR

by our preprocessor. Observe that due to different stack layout

strategies (for optimization purposes), the stack addresses of G are

different in 5b and 5c, and the instruction encodings of the accesses

are hence also different.

The arrows in 5b and 5c denote the program dependences. Blue

arrows denote the dependences between two variables in the source

code, and orange ones denotes the address dependences (induced by

rbp). Note that there is dependence between instructions on line 2

and line 3 because line 2 implicitly subtracts rsp. If we included the

orange dependences, lines 1–3 (those in the orange shade) would

be included in the slice of 6. In fact, all the stack accesses in foo()

are transitively dependent on lines 1–3, leading to a conclusion that

these were semantically very important instructions. However, they

are just low-level artifacts that do not correspond to source-level

semantics. Therefore, DiEmph precludes all dependences through

stack address operands. Our ablation study in Section 4.6 demon-

strates the importance of such strategy. □

The technical challenge lies in recognizing all operands denoting

stack addresses. We achieve this by a data-flow analysis. A naive

algorithm that simply finds all uses of rbp and rsp and rules out

their dependences does not generalize well. For example, in the

newer versions of GCC, the register rbp might be used as a normal

register [20]. In this case, removing all dependencies with rbp may

skip important dependencies. On the other hand, a compiler may

copy stack pointers to other locations [63, 64].

We thus use Algorithm 3 to prune the stack address dependences.

The algorithm performs a conservative data flow analysis to decide

whether a variable contains a stack address of the stack. To sim-

plify the discussion, we assume the binary program is lifted to an

SSA form [51] so that we can directly deal with variables instead

of registers or addresses. Intuitively, for a variable E at a program

point ? , the algorithm considers E contains a stack address if and

only if E contains a stack address in all paths to ? . The algorithm

(line 14) takes a function as the input, and outputs variables that

contain stack addresses at each instruction. Lines 15–19 initialize

the data structures used in the analysis. The loop at line 20 iter-

atively propagates the analysis results, and terminates when the

results converge. Line 15 defines two maps from instruction to set

of variables: stackAddrIn[i] and stackAddrOut[i] record the set of

variables containing a stack address at the program points before

and after i, respectively. Initially, stackAddrIn maps all instructions

to the empty set, and stackAddrOut maps all instructions to the

universal set (to handle loops). At the entry point, only rsp stores

an address to the stack.

For the program point before each instruction 8 , the algorithm

intersects the analysis results from all the predecessors of 8 (line 2).

Algorithm 3: Pruning Stack Address Dependences

1 Function merge(i)

2 stackAddrIn[i] =
⋂

?∈?A43 (8) stackAddrOut[p]

3 Function propagate(i)

4 stackAddrOut[i] = stackAddrIn[i]

5 definedVar = def(i)

6 if 8 defines an address then

7 for var ∈ uses(i) do

8 if var ∈ stackAddrIn[i] then

9 stackAddrOut[i].add(definedVar)

10 return

11 if definedVar ∈ stackAddrIn[i] then

12 stackAddrOut[i].remove(definedVar)

13 return

14 Function analyze(f)

15 stackAddrIn, stackAddrOut = {}, {}

16 for i ∈ f do

17 stackAddrIn[i] = ∅

18 stackAddrOut[i] = ⊤

19 stackAddrIn[f.entry] = {rsp}

20 while True do

21 prevStackAddrOut = stackAddrOut

22 for i ∈ f do

23 merge(i)

24 propagate(i)

25 if prevStackAddrOut == stackAddrOut then

26 break

27 return stackAddrIn

Our analysis assumes only arithmetic instructions and copy instruc-

tions between variables can be used to calculate a stack address.

For an instruction that may define a stack address (line 2), if at least

one of the used variables contains a stack address, the analysis con-

siders this instruction defines a variable containing stack address

(line 9). Otherwise, the variable defined by this instruction kills the

previous definitions that are in the set stackAddrOut (line 11).

4 EVALUATION

DiEmph is implemented on IDA Pro [23] and PyTorch [48]. We

evaluate our technique via the following research questions (RQs):

RQ1: Can DiEmph help binary similarity models achieve better

performance when the compiler configurations of the test dataset

are different from the training dataset? We say that the test data

are out-of-distribution. It denotes a realistic and challenging use

scenario for binary analysis tools.

RQ2: Is DiEmph effective with different pool sizes of the candidate

functions?

RQ3: How does DiEmph affect performance of models when the

compiler configurations of the test dataset align with those of the

training dataset? In this case, we say the test data are in-distribution.

RQ4: How much time does DiEmph take to analyze functions in

training datasets?

RQ5:Howdoes each component ofDiEmph affect the performance?

1112

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

We also conduct a case study to demonstrate the effectiveness of

DiEmph on out-of-distribution test data.

4.1 Experiment Setup

We conduct the experiments on a server with a 24-core Intel Xeon

4214R CPU at 2.40GHz, 188G memory, 8 Nvidia RTX A6000 GPUs,

and Ubuntu 18.04.

Baseline Models. We train two state-of-the-art Transformer sim-

ilarity analysis models, i.e., JTrans [61] and Trex [44] on three

well-known public datasets, resulting 6 baseline models in total.

Although there are other binary code similarity methods and some

are based on Deep Learning models as well, it was shown that the

Transformer based methods (i.e., our baselines) outperform these

techniques [44, 61]. For each model, we use the model pretrained by

its authors, and finetune the model on three different well-known

public datasets for the binary similarity task. The first dataset is

BinaryCorp-3M [61]. It contains around 3million binary functions

(which correspond to around 600 k functions in source code). The

dataset is compiled by GCC with 5 different optimization flags. The

second dataset is BinKit [27]. It contains 51 GNU projects compiled

with 9 different compilers × 4 different optimization flags. It has

around 4.5million binary functions (which correspond to around

126 k source code functions). The third dataset is HowSolve [35]. It

contains 7 projects compiled with 8 compilers× 5 optimization flags,

which correspond to around 4.4million binary functions (around

110 k source code functions). Note that for the later two datasets,

we only use the binary programs compiled for the x64 architecture.

For each model/dataset setting, we use the same set of hyper-

parameters to finetune both the original and the DiEmph-enhanced

models. For most hyper-parameters (e.g., learning rate), we use the

default values coming with the models. We tune the number of

epochs due to the significant difference in dataset sizes. Our training

scripts are publicly available at [65], and the key hyper-parameters

are listed in Section A of the supplementary material[66].

Test Datasets. We build two test datasets from the real-world

projects commonly-used in binary similarity analysis [15, 21, 27,

35, 44]. We first recognize projects that are used by at least two

of existing work [15, 21, 27, 35, 44], and then we filter out the

projects that contain less than 500 binary functions. Our datasets

hence consist of 7 real-world projects. They are Curl, Coreutils,

Binutils, ImageMagick, SQLite, OpenSSL and Putty. Dataset-I: Bi-

nary programs in the first dataset are compiled by GCC-7.5 with

-O0 and -O3 optimization flags. They are considered as test data

within the distribution of the training dataset because (1) all train-

ing datasets contain binary programs compiled with GCC (2) all

training datasets contain binary programs compiled by a compiler

newer than GCC-7.5. That indicates all the optimizations/conven-

tions by GCC-7.5 are very likely present in the training dataset. We

obtain the binaries from [44]. Dataset-II: Binary programs in the

second dataset are compiled by GCC-9.4 with -O3 flag and Clang-10

with -O0 flag. They are considered as test data with compiler config-

urations different to the training datasets because programs in the

training datasets are compiled with older versions of compilers. The

two new compilers introduce new optimizations and likely emit

instructions with new patterns [20, 32]. For simplicity, we refer to

Dataset-I as the In-Distribution dataset, and refer to Dataset-II as the

Out-of-Distribution dataset. We want to point out that we exclude

all projects in test datasets from the training datasets and make

sure there are no overlapping functions between the test datasets

and the training datasets.

Metrics. In this section, we use precision at 1 (PR@1) as our metrics.

Suppose that we iteratively query a set of binary functions from a

pool of candidate functions. PR@1 measures in how many queries,

the correct function (i.e., the function compiled from the same

source code as the query function) is returned as the most similar

function. Note that our experiments are conducted in a way that

each function has only one similar function (more details later in the

section). We also evaluate DiEmph in terms of PR@5, PR@10, and

Mean Reciprocal Rank (MRR). The results are shown in Section B

of the supplementary material[66] for brevity.

4.2 RQ1: Performance Improvement on the
Out-of-Distribution Dataset

In this section, we evaluate whether DiEmph can help models

achieve better performance on the out-of-distribution dataset. For

each baseline model, DiEmph takes as input the model and the

training dataset, and outputs a list of instructions need to be deem-

phasized. To obtain an improved model, we remove the top-four

most frequently occurring problematic instructions from the train-

ing dataset and rerun the finetune process. We then test the per-

formance for both the baseline model and the improved model on

the out-of-distribution dataset. For each binary program in our

dataset, we randomly sample 500 functions from the O0 binary, and

query them one by one in a pool consisting of the corresponding

500 functions from the O3 binary. In other words, there is only

one similar function in the pool for each query. Such a setup is

consistent with the literature [22, 35, 62]. During testing, we also

remove the deemphasized instructions from the test inputs to the

improved model for input space consistency.

The results are shown in Table 1. We can see that DiEmph im-

proves the PR@1 of models by 3.7-14.4%. Note that these improve-

ments are considered significant for the binary similarity task due

to its challenging nature. In the binary similarity literature, the

improvement to the baseline method is usually 3-8% [15, 62]. We

can observe that the improvement is most prominent on the JTrans

model trained with the BinaryCorp-3M dataset. DiEmph improves

it by 14.4%. The improved JTrans model trained with the deempha-

sized BinaryCorp-3M denotes the new state-of-the-art. The fact

that we are able to achieve substantial improvement on the most

complex model and the largest dataset indicates the value of in-

struction deemphasis in practice. The improvements are around 6%

and 4% for the models trained with the How-Solve dataset and the

BinKit dataset, respectively. The improvements on models trained

with the BinKit dataset are lower because BinKit contains only

around 126 k source code functions. Although each function is

compiled with many different configurations, the limited program

diversity leads to limited generalizability. The improvement on the

Trex model trained with the BinaryCorp-3M dataset is relatively

low (3.7%). That is because the BinaryCorp-3M dataset contains

many functions with relatively complex control-flow structures,

and Trex does not precisely encode control flow information such

that it may not learn control flow features well.

1113

Improving Binary Code Similarity Transformer Models by Semantics-Driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 1: Performance (PR@1) improvement on the out-of-distribution dataset. The first column lists the name of binary

programs. The model setups are listed in the first row. Each model is denoted with its architecture and the training dataset, in

the form of">34;�A2ℎ30C0B4C . ��, � , and �(denote BinaryCorp-3M, Binkit, and How-solve, respectively. In the second row,

for each model, Ori. means the PR@1 for the original model, DiEmph means the PR@1 for the model improved by DiEmph, and

Impr. means the improvement achieved by applying DiEmph to the model.

Programs
�)A0=B�� �)A0=B� �)A0=B�()A4G��)A4G�)A4G�(

Ori. DiEmph Impr. Ori. DiEmph Impr. Ori. DiEmph Impr. Ori. DiEmph Impr. Ori. DiEmph Impr. Ori. DiEmph Impr.

Curl 42.6 61.8 19.2 54.0 55.6 1.6 50.6 50.6 0.0 48.8 50.2 1.4 35.6 40.2 4.6 25.8 33.8 8.0
Binutils 37.6 53.2 15.6 49.8 54.4 4.6 36.4 40.4 4.0 37.6 44.0 6.4 33.8 34.8 1.0 21.4 27.0 5.6

Coreutils 31.4 42.6 11.2 37.4 41.8 4.4 32.6 34.0 1.4 33.4 40.2 6.8 28.0 31.6 3.6 22.4 28.2 5.8
ImageMagick 22.6 39.0 16.4 42.2 46.2 4.0 30.6 43.4 12.8 39.6 45.8 6.2 27.6 33.8 6.2 22.8 29.6 6.8

SQLite 42.8 60.0 17.2 51.4 56.8 5.4 42.4 56.0 13.6 65.6 66.8 1.2 44.0 48.2 4.2 32.6 40.2 7.6
OpenSSL 47.6 53.8 6.2 46.2 52.0 5.8 54.8 61.0 6.2 46.2 50.2 4.0 32.8 38.4 5.6 28.4 33.0 4.6

Putty 35.8 50.6 14.8 36.8 39.2 2.4 42.0 45.4 3.4 39.2 38.6 -0.6 34.4 37.2 2.8 27.0 33.8 6.8

Average 37.2 51.6 14.4 45.4 49.4 4.0 41.3 47.3 6.0 44.3 48.0 3.7 33.7 37.7 4.0 25.7 32.2 6.5

(#Model × #Program)
0

20

40

60

P
R
@
1 43.14

43.79

37.29

Original-In-Distribution

DiEmph-Out-of-Distribution

Original-Out-of-Distribution

Figure 6: DiEmph helps models alleviate performance degra-

dation. Each bar in the figure shows the performance of one

model on one test program. The ~ axis denotes PR@1. The

dashed lines show the average performance.

To normalize the effectiveness of DiEmph w.r.t. the differences

introduced by model architectures and training datasets, we ad-

ditionally run the baseline models on the in-distribution dataset.

This allows us to assess the extent to which DiEmph can mitigate

the performance degradation caused by the distribution shift be-

tween the test and training data (specifically, different compiler

configurations). The results are visualized in Fig. 6. On average,

we can see that the performance of the original models degrades

by 5.9% due to distribution shift. With the enhancement provided

DiEmph, models’ performance becomes comparable to the original

models’ performance on the in-distribution dataset. That indicates

that DiEmph facilitates better generalization of these models, mit-

igating the performance degradation caused by the distribution

shift.

Note that the performance of the models discussed in this section

refers to the checkpoints that achieved the highest performance

during the training processes. Additionally, we further analyze the

performance of each model at each checkpoint and observe that

DiEmph consistently enhances the generalizability of the model

across all checkpoints. Details are shown in Fig. 10 of the supple-

mentary material[66].

4.3 RQ2: Effectiveness with Different Pool Sizes

The performance of a binary similarity model may vary when the

size of candidate function pool is different [61]. Thus we validate

0.00

0.25

0.50

0.75

1.00
Binutils Coreutils Curl

0 200 400
.

0.00

0.25

0.50

0.75

1.00

.

ImageMagick

0 200 400

SQLite

DiEmph Original

0 200 400

OpenSSL

Function Pool Sizes

P
R
@
1

Figure 7: Effectiveness ofDiEmph (for �)A0=B��) with different

pool sizes. Each figure shows the performance of two models

on a program from the out-of-distribution dataset. The G-

axis denotes the sizes of candidate function pool. The ~-axis

denotes PR@1.

whether DiEmph can effectively improve model performance (on

the out-of-distribution dataset) with different pool sizes. For each

model, we test its performance on 7 function pools with different

sizes from 16 to 500. We show in Fig. 7 the test results for the JTrans

model trained on BinaryCorp-3M. The results for other models are

shown in Fig. 11 of the supplementary material[66]. We can see that

DiEmph can effectively improve the original model’s performance

on all different pool sizes. The improvement is more significant

when the pool size is larger than 100. That is because the task of

finding similar functions becomes harder when there are more can-

didate functions. It requires the model to more precisely distinguish

functions based on instructions with important semantics. Note

that we run each test for 10 times, and Fig. 7 shows the average

results.

4.4 RQ3: Effects on In-Distribution Data

In this section, we study how DiEmph affects the performance on

the in-distribution dataset. Following the setup of RQ1, we run

both the original model and the model improved by DiEmph on the

in-distribution dataset. The results show that DiEmph is also able

to slightly improve models’ performance (by around 3% on average)

on the in-distribution dataset. That is because DiEmph removes

from the training datasets instructions with high classification im-

portance but low semantics importance. This helps the models

1114

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

(a) Different algorithms

30.0

32.5

35.0

37.5

40.0

P
R
@
1

(b) Different random seeds
101 102 103

(c) #Sampled functions
3 5 7

(d) #Removed instructions

DiEmph No-Stack No-Sem. No-Class. Ori DiEmph

Figure 8: How the performance of DiEmph changes across different configurations

learn to represent a program based on the semantically important

features. Compared with the improvement DiEmph achieves on

the out-of-distribution data, the improvement on in-distribution

data is smaller. That is because the distribution of the test dataset

is similar to the training dataset. A baseline model may already

achieve relatively good performance even if it represents programs

based on semantically unimportant instructions. Details are shown

in Section C of the supplementary material[66].

4.5 RQ4: Run Time Efficiency

We useDiEmph to analyze the six models and test whether it is time

efficient. Specifically, for each model, DiEmph randomly samples

200 functions from the training data, computes the classification

importance for each instruction, uses KDE to select outliers, and

validates whether instructions with high classification importance

are semantically important. The results show that it takes 29 min-

utes for DiEmph to analyze one model. Time time consumption of

DiEmph is acceptable since it is a one-time effort. Details are in

Section D of the supplementary material[66].

4.6 RQ5: Ablation Study

To analyze the impact of each component on the performance of

DiEmph, we conduct four ablation studies. These studies include

varying the algorithm of DiEmph by disabling each component

individually, testing DiEmph with different random seeds, altering

the number of sampled functions, and altering the number of re-

moved instructions. For each study, we run DiEmph (with different

configurations) on the Trex model trained with the BinKit dataset,

resulting a set of improved models. We then test these models on

the out-of-distribution dataset. The results are shown in Fig. 8. The

dashed yellow line in Fig. 8 represents for the performance of the

original model.

Effects of each component.We construct three variants ofDiEmph

by disabling each component individually. Their performance is

shown in Fig. 8a. No-Stack denotes the variant that does not trace

the stack pointers and does not prune the dependencies introduced

by stack operations. No-Sem. and No-Class. denotes the variants

that do not analyze the semantics importance and do not analyze

the classification importance, respectively.

We can see that the No-Stack variant is still able to improve the

original model’s performance, while the improvements are less

significant than DiEmph. That is because without pruning the stack

dependencies, the variant is more conservative when computing the

semantics importance of instructions. That is, fewer semantically

unimportant (but classification-wise important) instructions are

removed from the dataset. Although the removal helps the model

learn to encode programs based on semantically important instruc-

tions, the resulting model may still learn some undesirable bias in

the training data. Thus it has worse generalization when tested on

the out-of-distribution data.

The No-Sem. variant slightly improves the baseline model’s per-

formance as well. Although the No-Sem. variant does not analyze

semantic importance of instructions, we observe that the set of

removed instructions, selected based on high classification impor-

tance, includes instructions with low semantics importance. Remov-

ing these instructions helps the model generate better embeddings

based on semantically important instructions. However, since the

No-Sem. variant is unaware of the semantics importance of instruc-

tions, it also removes instructions that carry important semantics.

This introduces noise to the training process, resulting in a less

significant improvement compared to DiEmph.

The No-Class. variant shows almost no improvement over the

original model. That is because the removed instructions, which

generally have low classification importance, do not significantly

affect the embeddings generated by the original model. Removing

these instructions thus will not significantly impact the behavior

of the original model.

Effects of random seeds.We run the sampling process in DiEmph

with 10 different random seeds. The results are shown in Fig. 8b. We

can see that DiEmph can consistently improve the baseline model

across different random seeds.

Effects of the number of sampled functions. We change the

number of functions sampled byDiEmph from 5 to 1000. The results

are shown in Fig. 8c. We can see that the effectiveness of DiEmph

is stable when the sample size is larger than 50. Thus the sample

size of 200 used in our system can be considered as sufficient.

Effects of the number of removed instructions. Note that after

finding the problematic instructions, DiEmph removes the top-

most frequently occurring problematic instructions. In this study,

we alter from 1 to 8. The results are shown in Fig. 8d. We can see

that DiEmph is most effective when is no larger than 6. That is

because removing too many instructions may result in extremely

short functions that do not contain enough semantics for the model

to encode. We thus use = 4 in our system, which effectively

improves models’ performance and meanwhile does not shorten

functions too much.

1115

Improving Binary Code Similarity Transformer Models by Semantics-Driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

4.7 Case Study

We conduct a case study with the JTrans model trained on the

BinaryCorp-3M dataset to demonstrate how DiEmph improves the

performance of the model on the out-of-distribution dataset.

By analyzing the model and the training dataset, DiEmph finds

that an instruction “or [rsp], 0” has exceptionally high classifica-

tion importance but low semantics importance in many functions.

This instruction performs a bitwise-or operation between the vari-

able stored in [rsp] and 0, and hence it does not modify the value of

the variable. The instruction is inserted by an optimizing compiler

to improve cache performance in modern processors.

We show in Fig. 9 an example in the test dataset that contains

this instruction. The instruction is highlighted with the blue shade

in Fig. 9b. In Fig. 9b, note that the variable stored in rsp at line

2 is not initialized (because the value of rsp is updated at line 1).

And the inserted instruction does not modify the variable either.

Thus the following instructions in the function are not likely to use

the definition [rsp]@2. That is, the instruction is not semantically

important in this function. Also note that this instruction is not in

the function compiled (from the same source code) with Clang -O0,

shown in Fig. 9a.

The original JTrans model generates a similarity score as low

as 0.45 for this pair of functions due to the difference of the high-

lighted instruction. After we remove it from the optimized function

(Fig. 9b), the similarity score increases to 0.52. On the other hand,

the JTrans model improved by DiEmph generates a similarity score

as high as 0.69 for this pair of functions. That indicates DiEmph

indeed helps the model better represent a program based on seman-

tically important instructions.

5 RELATED WORK

Binary Similarity Analysis. Binary similarity analysis has critical

security applications. Thus the community has made significant

efforts in this area [17, 45, 62], leveraging both the dynamic fea-

tures [17, 22, 62] and the static features [45] of programs. More-

over, recent advances in Deep Learning techniques have led to

unprecedented capabilities in many areas, including binary simi-

larity [14, 15, 27, 30, 35, 37, 38, 67]. Among them, two Transformer-

basedmethods [44, 61] have been proposed, demonstrating superior

performance compared to previous work, leveraging the recent suc-

cess of Transformers [8, 49, 50, 58] in the NLP domain. These tech-

niques represent notable advances in binary similarity analysis and

have the potential to aid in the identification and mitigation of secu-

rity threats. Our work is an enhancement to these approaches, aim-

ing to improve the generalizability of Transformer-based models.

Model Debugging. Although deep learning models achieve sig-

nificant success in various domains, their opaque nature poses

challenges in understanding the root cause of unexpected behav-

iors (e.g., low accuracy). As a result, many researchers focus on the

area of model debugging, which treat deep learning models as tradi-

tional software and develop approaches to analyzing and debugging

deep learning models [34, 41, 57]. However, these methods do not

address the challenges in improving Transformer models for binary

code analysis due to the complexity of the Transformer models and

the domain-specific constraints of binary programs. Our approach

focuses on such complex binary code models, leveraging domain

...
1:mov rbp, rsp
2:sub rsp, 0x20e0
...

(a) Instrs. Compiled with Clang O0

...
1:sub rsp, 0x1000
2:or [rsp], 0x0
...

(b) Instrs. Compiled with GCC O3

Figure 9: Instructions in head_lines() of Coreutils. The two

snippets of instructions are generated by Clang -O0 and GCC

-O3, respectively. The instruction highlighted in the blue box

is inserted by GCC. It is used to optimize the cache perfor-

mance in modern processors.

knowledge about binary similarity analysis and binary program

slicing. Our method can pinpoint the code patterns introducing

biases to models and help models focus on semantically important

instructions.

6 THREATS TO VALIDITY

Our prototype DiEmph focuses on Transformer-based models and

hence the reported results may not hold on other types of mod-

els such as GNN-based models. However, we believe our idea of

semantic-driven instruction deemphasis has the potential to gener-

alize to other model architectures. We leave the exploration as our

future work.

DiEmph relies on disassembling tools (IDA-Pro) to analyze binary

programs. The quality of disassembled code may affect DiEmph’s

performance, though SOTA disassembler achieves more than 95%

accuracy[39, 42, 43, 69] in most cases. The reported results are

achieved with the selected hyper-parameters, e.g., random selection

of 200 functions. We have conducted a substantial ablation study

to validate the stability of our results.

7 CONCLUSION

We develop a novel technique to improve the performance of Trans-

former based binary code similarity analysis models. The technique

detects instructions that have undesirably biased distributions in

the training dataset because of compiler conventions. It features

a (Deep Learning) model classification importance analysis that

determines if an instruction is important for model output and a

program analysis based semantics importance analysis that deter-

mines if an instruction denotes part of essential program semantics.

Instructions that have classification importance but not semantics

importance are removed from the dataset. Finetuning the model on

the updated dataset yields substantially better performance than

the original models.

8 DATA AVAILABILITY

Our experimental data and the source code are available at [65].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments

and suggestions. This research was supported, in part by DARPA

VSPELLS - HR001120S0058, IARPA TrojAI W911NF-19-S-0012, NSF

1901242 and 1910300, ONR N000141712045, N000141410468 and

N000141712947. Any opinions, findings, and conclusions in this

paper are those of the authors only and do not necessarily reflect

the views of our sponsors.

1116

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi, Z. Zhang, and X. Zhang

REFERENCES
[1] Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque Azam,

and Bilal Maqbool. 2019. A Systematic Review on Code Clone Detection. IEEE
Access 7 (2019), 86121–86144. https://doi.org/10.1109/ACCESS.2019.2918202

[2] Gogul Balakrishnan and Thomas Reps. 2004. Analyzing Memory Accesses in x86
Executables. In Compiler Construction, Evelyn Duesterwald (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 5–23.

[3] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. BYTEWEIGHT: Learning to recognize functions in binary code. In 23rd
USENIX Security Symposium (USENIX Security 14). 845–860.

[4] Oren Barkan, EdanHauon, Avi Caciularu, Ori Katz, ItzikMalkiel, Omri Armstrong,
and Noam Koenigstein. 2021. Grad-sam: Explaining transformers via gradient
self-attention maps. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. 2882–2887.

[5] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. 1998. Clone detection
using abstract syntax trees. In Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272). 368–377. https://doi.org/10.1109/ICSM.1998.
738528

[6] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and Christopher
Kruegel. 2012. Disclosure: detecting botnet command and control servers through
large-scale netflow analysis. In Proceedings of the 28th Annual Computer Security
Applications Conference. ACM.

[7] BinDiff 2022. zynamics BinDiff. https://www.zynamics.com/bindiff.html
[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[9] Dong-Kyu Chae, Jiwoon Ha, Sang-Wook Kim, BooJoong Kang, and Eul Gyu Im.
2013. Software plagiarism detection: a graph-based approach. In Proceedings of
the 22nd ACM international conference on Information & Knowledge Management.
1577–1580.

[10] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho,
and Hee Beng Kuan Tan. 2016. BinGo: Cross-Architecture Cross-OS Binary
Search (FSE 2016). Association for Computing Machinery, New York, NY, USA,
678–689. https://doi.org/10.1145/2950290.2950350

[11] Hila Chefer, Shir Gur, and Lior Wolf. 2021. Transformer interpretability beyond
attention visualization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 782–791.

[12] Coreutils 2022. Coreutils - GNU core utilities. https://www.gnu.org/software/
coreutils/

[13] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical Similarity
of Binaries. In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI
’16). Association for Computing Machinery, New York, NY, USA, 266–280.
https://doi.org/10.1145/2908080.2908126

[14] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. 2019. Asm2Vec:
Boosting Static Representation Robustness for Binary Clone Search against Code
Obfuscation and Compiler Optimization. In 2019 IEEE Symposium on Security
and Privacy (SP). 472–489. https://doi.org/10.1109/SP.2019.00003

[15] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020. DeepBinDiff:
Learning Program-Wide Code Representations for Binary Diffing. https://doi.
org/10.14722/ndss.2020.24311

[16] S. Ducasse, M. Rieger, and S. Demeyer. 1999. A language independent approach
for detecting duplicated code. In Proceedings IEEE International Conference on
SoftwareMaintenance - 1999 (ICSM’99). ’SoftwareMaintenance for Business Change’
(Cat. No.99CB36360). 109–118. https://doi.org/10.1109/ICSM.1999.792593

[17] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket
Execution: Dynamic Similarity Testing for Program Binaries and Components.
In Proceedings of the 23rd USENIX Conference on Security Symposium (San Diego,
CA) (SEC’14). USENIX Association, USA, 303–317.

[18] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. 2016. Triggerscope: Towards detecting logic
bombs in android applications. In 2016 IEEE symposium on security and privacy
(SP). IEEE.

[19] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: A
Semantic Learning Based Vulnerability Seeker for Cross-Platform Binary. As-
sociation for Computing Machinery, New York, NY, USA, 896–899. https:
//doi.org/10.1145/3238147.3240480

[20] GNU. 2022. gcc-9. Retrieved Feb 16, 2023 from https://gcc.gnu.org/gcc-9/
[21] Yikun Hu, Hui Wang, Yuanyuan Zhang, Bodong Li, and Dawu Gu. 2021. A

Semantics-Based Hybrid Approach on Binary Code Similarity Comparison. IEEE
Transactions on Software Engineering (TSE) 47, 6 (June 2021), 1241–1258. https:
//doi.org/10.1109/TSE.2019.2918326

[22] Y. Hu, Y. Zhang, J. Li, H. Wang, B. Li, and D. Gu. 2018. BinMatch: A Semantics-
BasedHybrid Approach on Binary Code CloneAnalysis. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE Computer
Society, Los Alamitos, CA, USA, 104–114. https://doi.org/10.1109/ICSME.2018.

00019
[23] IDA Pro 2022. A powerful disassembler and a versatile debugger. https://hex-

rays.com/ida-pro/
[24] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-

vanni Vigna, and Vern Paxson. 2014. Hulk: Elicitingmalicious behavior in browser
extensions. In 23rd USENIX Security Symposium (USENIX Security 14).

[25] Chariton Karamitas and Athanasios Kehagias. 2018. Efficient features for function
matching between binary executables. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 335–345. https:
//doi.org/10.1109/SANER.2018.8330221

[26] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin
Kirda. 2015. Cutting the gordian knot: A look under the hood of ransomware
attacks. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer.

[27] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim. 2022.
Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineer-
ing and Lessons Learned. IEEE Transactions on Software Engineering (2022), 1–23.
https://doi.org/10.1109/TSE.2022.3187689

[28] Raghavan Komondoor and Susan Horwitz. 2001. Using Slicing to Identify Dupli-
cation in Source Code. In Static Analysis, Patrick Cousot (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 40–56.

[29] J. Krinke. 2001. Identifying similar code with program dependence graphs. In
Proceedings Eighth Working Conference on Reverse Engineering. 301–309. https:
//doi.org/10.1109/WCRE.2001.957835

[30] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and
Wei Zou. 2018. aDiff: Cross-Version Binary Code Similarity Detection with DNN.
Association for Computing Machinery, New York, NY, USA, 667–678. https:
//doi.org/10.1145/3238147.3238199

[31] Shengzhong Liu, Franck Le, Supriyo Chakraborty, and Tarek Abdelzaher. 2021.
On exploring attention-based explanation for transformer models in text clas-
sification. In 2021 IEEE International Conference on Big Data (Big Data). IEEE,
1193–1203.

[32] LLVM. 2020. clang-10. Retrieved Feb 16, 2023 from https://releases.llvm.org/10.0.
0/

[33] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2017.
Semantics-Based Obfuscation-Resilient Binary Code Similarity Comparison with
Applications to Software and Algorithm Plagiarism Detection. IEEE Transactions
on Software Engineering 43, 12 (2017), 1157–1177. https://doi.org/10.1109/TSE.
2017.2655046

[34] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: Automated Neural Network Model Debugging via State Differential
Analysis and Input Selection. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association
for Computing Machinery, New York, NY, USA, 175–186. https://doi.org/10.
1145/3236024.3236082

[35] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio,
Mohamad Mansouri, and Davide Balzarotti. 2022. How machine learning is
solving the binary function similarity problem. In USENIX 2022, 31st USENIX
Security Symposium, 10-12 August 2022, Boston, MA, USA, Usenix (Ed.). Boston.

[36] Ehsan Mashhadi and Hadi Hemmati. 2021. Applying CodeBERT for Auto-
mated Program Repair of Java Simple Bugs. CoRR abs/2103.11626 (2021).
arXiv:2103.11626 https://arxiv.org/abs/2103.11626

[37] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Leonardo Querzoni,
and Roberto Baldoni. 2018. SAFE: Self-Attentive Function Embeddings for Binary
Similarity. https://doi.org/10.48550/ARXIV.1811.05296

[38] Tomás Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
CoRR abs/1310.4546 (2013). arXiv:1310.4546 http://arxiv.org/abs/1310.4546

[39] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and
Zhiqiang Lin. 2019. Probabilistic Disassembly. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE). 1187–1198. https://doi.org/
10.1109/ICSE.2019.00121

[40] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-
based Semantic Binary Diffing via System Call Sliced Segment Equivalence
Checking. In 26th USENIX Security Symposium (USENIX Security 17). USENIX
Association, Vancouver, BC, 253–270. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/ming

[41] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.
TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In Pro-
ceedings of the 36th International Conference on Machine Learning (Proceedings of
Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdi-
nov (Eds.). PMLR, 4901–4911. https://proceedings.mlr.press/v97/odena19a.html

[42] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios Portokalidis,
Bing Mao, and Jun Xu. 2021. Sok: All you ever wanted to know about x86/x64
binary disassembly but were afraid to ask. In SP. IEEE, 833–851.

[43] Kexin Pei, Jonas Guan, David Williams-King, Junfeng Yang, and Suman Jana.
2021. Xda: Accurate, robust disassembly with transfer learning. In NDSS. The

1117

https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1109/ICSM.1998.738528
https://www.zynamics.com/bindiff.html
https://doi.org/10.1145/2950290.2950350
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/
https://doi.org/10.1145/2908080.2908126
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.14722/ndss.2020.24311
https://doi.org/10.14722/ndss.2020.24311
https://doi.org/10.1109/ICSM.1999.792593
https://doi.org/10.1145/3238147.3240480
https://doi.org/10.1145/3238147.3240480
https://gcc.gnu.org/gcc-9/
https://doi.org/10.1109/TSE.2019.2918326
https://doi.org/10.1109/TSE.2019.2918326
https://doi.org/10.1109/ICSME.2018.00019
https://doi.org/10.1109/ICSME.2018.00019
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://doi.org/10.1109/SANER.2018.8330221
https://doi.org/10.1109/SANER.2018.8330221
https://doi.org/10.1109/TSE.2022.3187689
https://doi.org/10.1109/WCRE.2001.957835
https://doi.org/10.1109/WCRE.2001.957835
https://doi.org/10.1145/3238147.3238199
https://doi.org/10.1145/3238147.3238199
https://releases.llvm.org/10.0.0/
https://releases.llvm.org/10.0.0/
https://doi.org/10.1109/TSE.2017.2655046
https://doi.org/10.1109/TSE.2017.2655046
https://doi.org/10.1145/3236024.3236082
https://doi.org/10.1145/3236024.3236082
https://arxiv.org/abs/2103.11626
https://arxiv.org/abs/2103.11626
https://doi.org/10.48550/ARXIV.1811.05296
https://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
https://doi.org/10.1109/ICSE.2019.00121
https://doi.org/10.1109/ICSE.2019.00121
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming
https://proceedings.mlr.press/v97/odena19a.html

Improving Binary Code Similarity Transformer Models by Semantics-Driven Instruction Deemphasis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Internet Society.
[44] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2020.

Trex: Learning Execution Semantics from Micro-Traces for Binary Similarity.
https://doi.org/10.48550/ARXIV.2012.08680

[45] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-Architecture Bug Search in Binary Executables. In 2015 IEEE
Symposium on Security and Privacy. 709–724. https://doi.org/10.1109/SP.2015.49

[46] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and Christian
Rossow. 2014. Leveraging Semantic Signatures for Bug Search in Binary Programs.
In Proceedings of the 30th Annual Computer Security Applications Conference (New
Orleans, Louisiana, USA) (ACSAC ’14). Association for Computing Machinery,
New York, NY, USA, 406–415. https://doi.org/10.1145/2664243.2664269

[47] Nina Poerner, Hinrich Schütze, and Benjamin Roth. 2018. Evaluating neural
network explanation methods using hybrid documents and morphosyntactic
agreement. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). 340–350.

[48] PyTorch 2023. An open source machine learning framework that accelerates the
path from research prototyping to production deployment. https://pytorch.org

[49] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[50] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[51] rev.ng. 2023. Rethink Binary Analysis. Retrieved Feb 16, 2023 from https://rev.ng
[52] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.

Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-Code. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE). 1157–
1168. https://doi.org/10.1145/2884781.2884877

[53] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In Proceedings of the IEEE interna-
tional conference on computer vision. 618–626.

[54] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Security Analysis
of Processor Instruction Set Architecture for Enforcing Control-Flow Integrity.
In Proceedings of the 8th International Workshop on Hardware and Architectural
Support for Security and Privacy (Phoenix, AZ, USA) (HASP ’19). Association
for Computing Machinery, New York, NY, USA, Article 8, 11 pages. https:
//doi.org/10.1145/3337167.3337175

[55] Ridwan Salihin Shariffdeen, Shin Hwei Tan, Mingyuan Gao, and Abhik Roy-
choudhury. 2021. Automated Patch Transplantation. ACM Trans. Softw. Eng.
Methodol. 30, 1, Article 6 (dec 2021), 36 pages. https://doi.org/10.1145/3412376

[56] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
functions in binaries with neural networks. In 24th USENIX Security Symposium
(USENIX Security 15). 611–626.

[57] Guanhong Tao, Shiqing Ma, Yingqi Liu, Qiuling Xu, and Xiangyu Zhang. 2020.
TRADER: trace divergence analysis and embedding regulation for debugging
recurrent neural networks. In ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and
Doo-Hwan Bae (Eds.). ACM, 986–998. https://doi.org/10.1145/3377811.3380423

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/
1706.03762

[59] Jesse Vig. 2019. AMultiscale Visualization of Attention in the Transformer Model.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations. 37–42.

[60] Andrew Walker, Tomas Cerny, and Eungee Song. 2020. Open-Source Tools and
Benchmarks for Code-Clone Detection: Past, Present, and Future Trends. SIGAPP
Appl. Comput. Rev. 19, 4 (jan 2020), 28–39. https://doi.org/10.1145/3381307.
3381310

[61] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei
Zhuge, and Chao Zhang. 2022. JTrans: Jump-Aware Transformer for Binary
Code Similarity Detection. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022).
Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.
org/10.1145/3533767.3534367

[62] Shuai Wang and Dinghao Wu. 2017. In-Memory Fuzzing for Binary Code Simi-
larity Analysis. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE
Press, 319–330.

[63] Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An Abstract Stack Based
Approach to Verified Compositional Compilation to Machine Code. Proc. ACM
Program. Lang. 3, POPL, Article 62 (jan 2019), 30 pages. https://doi.org/10.1145/
3290375

[64] Yuting Wang, Xiangzhe Xu, Pierre Wilke, and Zhong Shao. 2020. CompCertELF:
Verified Separate Compilation of C Programs into ELF Object Files. Proc. ACM
Program. Lang. 4, OOPSLA, Article 197 (nov 2020), 28 pages. https://doi.org/10.
1145/3428265

[65] Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan Cheng,
Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang. 2023. Artifact for
DiEmph. https://doi.org/10.5281/zenodo.7978808

[66] Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan Cheng,
Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang. 2023. Sup-
plementary Material. Retrieved May 27, 2023 from https://github.com/XZ-
X/DiEmph/blob/master/suppl-material.pdf

[67] Xi Xu, Qinghua Zheng, Zheng Yan, Ming Fan, Ang Jia, and Ting Liu. 2021.
Interpretation-Enabled Software Reuse Detection Based on a Multi-level Birth-
mark Model. In 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering (ICSE). 873–884. https://doi.org/10.1109/ICSE43902.2021.00084

[68] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song.
2017. SPAIN: Security PatchAnalysis for Binaries towards Understanding the Pain
and Pills. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). 462–472. https://doi.org/10.1109/ICSE.2017.49

[69] Yapeng Ye, Zhuo Zhang, Qingkai Shi, Yousra Aafer, and Xiangyu Zhang. 2022.
D-ARM: Disassembling ARM Binaries by Lightweight Superset Instruction Inter-
pretation and Graph Modeling. In 2023 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, 728–745.

[70] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei Peng, Yu Shi, Carson
Harmon, and Xiangyu Zhang. 2020. PMP: Cost-effective Forced Execution with
Probabilistic Memory Pre-planning. In 2020 IEEE Symposium on Security and
Privacy (SP). 1121–1138. https://doi.org/10.1109/SP40000.2020.00035

[71] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order
Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection.
Proceedings of the AAAI Conference on Artificial Intelligence 34, 01 (Apr. 2020),
1145–1152. https://doi.org/10.1609/aaai.v34i01.5466

[72] Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xi-
angyu Zhang. 2019. BDA: Practical Dependence Analysis for Binary Executables
by Unbiased Whole-Program Path Sampling and per-Path Abstract Interpreta-
tion. Proc. ACM Program. Lang. 3, OOPSLA, Article 137 (oct 2019), 31 pages.
https://doi.org/10.1145/3360563

Received 2023-02-16; accepted 2023-05-03

1118

https://doi.org/10.48550/ARXIV.2012.08680
https://doi.org/10.1109/SP.2015.49
https://doi.org/10.1145/2664243.2664269
https://pytorch.org
https://rev.ng
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1145/3412376
https://doi.org/10.1145/3377811.3380423
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3533767.3534367
https://doi.org/10.1145/3533767.3534367
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3428265
https://doi.org/10.1145/3428265
https://doi.org/10.5281/zenodo.7978808
https://github.com/XZ-X/DiEmph/blob/master/suppl-material.pdf
https://github.com/XZ-X/DiEmph/blob/master/suppl-material.pdf
https://doi.org/10.1109/ICSE43902.2021.00084
https://doi.org/10.1109/ICSE.2017.49
https://doi.org/10.1109/SP40000.2020.00035
https://doi.org/10.1609/aaai.v34i01.5466
https://doi.org/10.1145/3360563

	Abstract
	1 Introduction
	2 Motivation
	2.1 Motivating Example
	2.2 Limitations in State-of-the-Art Models
	2.3 Our Technique

	3 Design
	3.1 Classification Importance Analysis
	3.2 Semantics Importance Analysis

	4 Evaluation
	4.1 Experiment Setup
	4.2 RQ1: Performance Improvement on the Out-of-Distribution Dataset
	4.3 RQ2: Effectiveness with Different Pool Sizes
	4.4 RQ3: Effects on In-Distribution Data
	4.5 RQ4: Run Time Efficiency
	4.6 RQ5: Ablation Study
	4.7 Case Study

	5 Related Work
	6 Threats to Validity
	7 Conclusion
	8 Data Availability
	Acknowledgments
	References

