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Abstract

Self-supervised learning in computer vision trains on
unlabeled data, such as images or (image, text) pairs, to
obtain an image encoder that learns high-quality embed-
dings for input data. Emerging backdoor attacks towards
encoders expose crucial vulnerabilities of self-supervised
learning, since downstream classifiers (even further trained
on clean data) may inherit backdoor behaviors from en-
coders. Existing backdoor detection methods mainly fo-
cus on supervised learning settings and cannot handle pre-
trained encoders especially when input labels are not avail-
able. In this paper, we propose DECREE, the first back-
door detection approach for pre-trained encoders, requir-
ing neither classifier headers nor input labels. We eval-
uate DECREE on over 400 encoders trojaned under 3
paradigms. We show the effectiveness of our method on im-
age encoders pre-trained on ImageNet and OpenAI’s CLIP
400 million image-text pairs. Our method consistently has
a high detection accuracy even if we have only limited or
no access to the pre-training dataset. Code is available at
https://github.com/GiantSeaweed/DECREE.

1. Introduction

Self-supervised learning (SSL), specifically contrastive
learning [5, 10, 15], is becoming increasingly popular as it
does not require labeling training data that entails substantial
manual efforts [12] and yet can provide close to the state-
of-the-art performance. It has a wide range of application
scenarios, e.g., similarity-based search [18], linear probe [1],
and zero-shot classification [4, 24, 25]. Similarity-based
search queries data based on their semantic similarity. Linear
probe utilizes an encoder trained by contrastive learning to
project inputs to an embedding space, and then trains a
linear classifier on top of the encoder to map embeddings
to downstream classification labels. Zero-shot classification
trains an image encoder and a text encoder (by contrastive
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Figure 1. Illustration of Backdoor Attack on Self-Supervised Learn-
ing (SSL). The adversary first injects backdoor into a clean encoder
and launches attack when the backdoored encoder is leveraged to
train downstream tasks. The backdoored encoder produces similar
embeddings for the attack target and any input image with trigger,
causing misbehaviors in downstream applications.

learning) that map images and texts to the same embedding
space. The similarity of the two embeddings from an image
and a piece of text is used for prediction.

The performance of SSL heavily relies on the large
amount of unlabeled data, which indicates high computa-
tional cost. Regular users hence tend to employ pre-trained
encoders published online by third parties. Such a produc-
tion chain provides opportunities for adversaries to implant
malicious behaviors. Particularly, backdoor attack or trojan
attack [8, 13, 32] injects backdoors in machine learning
models, which can only be activated (causing targeted
misclassification) by stamping a specific pattern, called
trigger, to an input sample. It is highly stealthy as the back-
doored/trojaned model functions normally on clean inputs.

While existing backdoor attacks mostly focus on classi-
fiers in the supervised learning setting, where the attacker in-
duces the model to predict the target label for inputs stamped
with the trigger, recent studies demonstrate the feasibility
of conducting backdoor attacks in SSL scenarios [3, 20, 46].
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Figure 1 illustrates a typical backdoor attack on image en-
coders in SSL. The adversary chooses an attack target so
that the backdoored encoder produces similar embeddings
for any input image with trigger and the attack target. The
attack target can be an image (chosen from some dataset
or downloaded from the Internet), or text captions. Text
captions are compositions of a label text and prompts, where
the label text usually denotes “{class name}”, like “truck”,
“ship”, “bird”, etc. For example, in Figure 1, the adversary
could choose a “truck” image or a text caption “a photo
of truck” as the attack target. After encoder poisoning and
downstream classifier training, the classifier tends to predict
the label of the attack target when the trigger is present. As
shown in Figure 1, when the attack target is a truck image
and the encoder is used for linear probe, the classifier inher-
its the backdoor behavior from the encoder. As a result, a
clean ship image can be correctly predicted by the classifier
whereas a ship image stamped with the trigger is classified
as “truck”. If the attack target is “a photo of truck” and the
encoder is used in zero-shot prediction, a clean ship image
shares a similar embedding with the text caption “a photo of
ship”, causing correct prediction. In contrast, the embedding
of a ship image stamped with the trigger is more similar to
the embedding of “a photo of truck”, causing misprediction.

These vulnerabilities hinder the real world applications of
pre-trained encoders. Existing backdoor detection methods
are insufficient to defend such attacks. A possible defense
method is to leverage existing backdoor detection methods
focusing on supervised learning to scan downstream classi-
fiers. Apart from its limited detection performance (as we
will discuss later in Section 3), it cannot work properly under
the setting of zero-shot classification, where there exists no
concrete classifier. This calls for new defense techniques that
directly detect backdoored encoders without downstream
classifiers. More details regarding the limitations of existing
methods can be found in Section 3.

In this paper, we propose DECREE, the first backdoor de-
tection approach for pre-trained encoders in SSL. To address
the insufficiency of existing detection methods, DECREE
directly scans encoders. Specifically, for a subject encoder,
DECREE first searches for a minimal trigger pattern such
that any inputs stamped with the trigger share similar em-
beddings. The identified trigger is then utilized to decide
whether the given encoder is benign or trojaned. We evaluate
DECREE on 444 encoders and it significantly outperforms
existing backdoor detection techniques. We also show the
effectiveness of DECREE on large size image encoders pre-
trained on ImageNet [12] and OpenAI’s CLIP [40] image
encoders pre-trained on 400 million uncurated (image, text)
pairs. DECREE consistently achieves high detection accu-
racy even when it only has limited access or no access to the
pre-training dataset.

Threat Model. Our threat model is consistent with the liter-

ature [3, 20]. We only consider backdoor attacks on vision
encoders. We assume the attacker has the capabilities of
injecting a small portion of samples into the training set of
encoders. Once the encoder is trojaned, the attacker has no
control over downstream applications. Given an encoder, the
defender has limited or no access to the pre-training dataset
and needs to determine whether the encoder is trojaned or
not. She does not have any knowledge about the attack target
either. We consider injected backdoors that are static (e.g.
patch backdoors) and universal (i.e. all the classes except for
the target class are the victim).

2. Background and Related Work
2.1. Backdoor Attack and Defense

Backdoor attack poses severe security threats to ma-
chine learning models. It aims to induce target misbe-
haviors, e.g., misclassification in an image classifier, via
specialized perturbations on the input. These perturba-
tions (i.e., triggers) generally fall into two categories, patch-
like triggers [13, 32, 37, 42, 44, 55] and pervasive trig-
gers [8, 9, 28, 29, 33, 38]. Existing defensive efforts mainly
focus on detecting backdoored models or eliminating in-
jected backdoors in trojaned models. To distinguish back-
doored models from benign ones, existing techniques in-
vert trigger patterns for a given model and make decisions
based on the characteristic of inverted triggers (e.g., trig-
ger size) [14, 31, 34, 45, 49–51]. Another line of work
leverages a meta-classifier to determine whether a model
is backdoored based on feature representations extracted
from the model [21, 54]. Unfortunately, existing solutions
can hardly detect backdoors in pre-trained encoders as they
were designed for supervised learning that require clas-
sification labels (discussed in Section 3). Backdoor re-
moval techniques harden models through adversarial train-
ing [52, 59], knowledge distillation [27], and class-distance
enlargement [48]. They usually require a set of labeled train-
ing data. Backdoor defense techniques also include backdoor
mitigation [2, 27, 30, 56, 58] and certified robustness against
backdoors [19, 35, 53].

2.2. Self-supervised Learning

SSL aims to train an image encoder from a large number
of uncurated data. Different from supervised learning
that requires manually labeled data, SSL extracts useful
information from the data itself.

Among many approaches to training image encoders from
unlabeled data, contrastive learning achieves the state-of-
the-art performance, e.g., MoCo [15], SimCLR [5], Sim-
CLRv2 [6] and CLIP [40]. It constructs a function f : X →
E, that maps an input sample (i.e., an image or a text caption)
to an embedding space where semantically “similar” samples
have close embeddings and “dissmilar” samples have embed-
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dings far away from each other under certain metrics. Con-
trastive learning is commonly used in two settings: single-
modal [7, 47] that trains an encoder in a single domain like
image; and multi-modal [18,40] that trains multiple encoders
in different domains simultaneously like image and text.

2.3. Backdoor Attack on Self-supervised Learning

Existing backdoor attacks on SSL mainly fall into four
categories. In this paper, we focus on the first three.
1) Image-on-Image: These attacks [20, 43] are conducted on
single-modal image encoders and the attack target is image.
2) Image-on-Pair: This attack [20] also targets on multi-
modal contrastive learning encoders, i.e., trained on (image,
text) pairs, and the attack target is image.
3) Text-on-Pair: This type of attack [3] is conducted on
multi-modal contrastive learning encoders, i.e., trained on
(image, text) pairs, and the attack target is text.
4) Text-on-Text: These attacks [23, 46] are conducted on
single-modal text encoders and the attack target is text.

3. Limitations of Existing Backdoor Scanners
To identify whether an encoder is trojaned or not, the de-

fender can leverage existing backdoor scanners (e.g., Neural
Cleanse (NC) [50] and ABS [31]) to check downstream clas-
sifiers that utilize the encoder, without the need to directly
scan the encoder. However, this strategy has its limitations
as later shown in the section. Another type of backdoor
scanners such as MNTD [54] leverage a meta-classifier to
distinguish benign and backdoored models. They first train
thousands of benign and backdoored models and then train a
meta-classifier on the extracted signatures of these models.
Such a design in SSL setting may not be that practical due
to its high cost. For example, creating a backdoored encoder
by contrastive learning takes 48 hours [3]. MNTD requires
constructing 2048 benign and 2048 trojaned encoders.

To explain the limitations of scanning downstream clas-
sifiers, we consider two application scenarios: linear probe
and zero-shot prediction.
Scenario I: Linear Probe. We construct a backdoored en-
coder pre-trained on CIFAR10 [22] and take an image of
label one in dataset SVHN [36] as the attack target. The
encoder is also used to train another two downstream clas-
sifiers on STL-10 [11] and GTSRB [17], respectively. We
apply NC and ABS on the three downstream classifiers and
the results are shown in Table 1. Since the attack target is in
SVHN chosen by the attacker (when trojaning the encoder),
the ASR is 100% on SVHN.

In this case, existing backdoor scanners can successfully
detect the trojaned classifier and hence the backdoored en-
coder, with the Anomaly Index 2.18 > 2 in NC and the
REASR 1.00 > 0.88 in ABS. However, when the down-
stream classifiers’ training datasets (STL-10 and GTSRB)
do not contain the attack target, both NC and ABS fail to

detect the backdoor in the encoder as shown in the last two
rows. This has two implications for existing backdoor scan-
ners: (1) they have to possess the knowledge of the attack
target and the corresponding downstream task, which is not
easy to acquire as there exist a large number of different
downstream tasks (for an encoder). (2) They have to ob-
tain the original training dataset of the downstream task to
construct the classifier for detection, which may be private.

Scenario II: Zero-shot prediction. To predict the caption for
an input image, zero-shot classifier directly computes simi-
larities between the image’s embedding and every text em-
bedding of candidate captions, and selects the caption that
shares the most similar embedding with the input image. In
this scenario, it is evident that existing backdoor scanners
are not applicable as there is no classifier to scan, as shown
in Figure. 1. This calls for a backdoor detection method that
can handle attacks in the embedding space.

4. Design of DECREE

As discussed in Section 3, existing backdoor scanners
either require the knowledge of the attack target or are not
applicable to directly scanning encoders. A backdoor de-
tection method for pre-trained encoders ought to meet the
following design goals: (1) no knowledge of downstream
tasks (including data samples or labels); (2) no knowledge of
the attack target; and (3) directly scanning encoders without
training a downstream application classifier.

In this section, we first make a few observations on back-
door attacks in SSL (Section 4.1) and explain the intuitions
of our design. We then present the technical details for self-
supervised trigger inversion (Section 4.2.1) and backdoor
identification (Section 4.2.2).

4.1. Observations and Intuitions

Observation I: Although SSL does not require labels during
pre-training, the embeddings of samples with the same label
(by the trained encoder) tend to cluster together whereas
those of different labels tend to scatter, as visualized in
Figure. 2a. As shown in Table 2, clean samples (of various
classes) have an average cosine similarity of only 0.2193 on
a clean encoder.
Observation II: A trojaned encoder produces highly similar
embeddings for samples with trigger while a clean encoder
does not. Table 2 shows that, in a clean encoder, the trigger
can increase the cosine similarity of samples from 0.2193
to 0.2922 (in the first row). The increase is limited and
insignificant. As shown in Figure. 2b, the clean encoder can
still correctly separate inputs with the trigger. In contrast,
as the backdoor attack forces the samples with trigger to
be close to the attack target, it creates a dense area (shown
in Figure. 2d) in a backdoored encoder where embeddings
share a high similarity (0.9904).
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Table 1. Limitations of Existing Backdoor Scanners When Scanning Encoders. The encoder is pre-trained on CIFAR-10. The downstream
classifiers (SVHN, STL-10, and GTSRB) are trained for 500 epochs. The attack target is an image of label one from SVHN. NC Anomaly
Index > 2.0 and ABS REASR > 0.88 indicate the classifier is considered trojaned.

Downsteam
Task

Classifier Performance Neural Cleanse ABS

Accuracy ASR Training Time (m) Anomaly Index Detection Time (m) REASR Detection Time (m)

SVHN 0.69 1.00 60.41 2.18 5.36 1.00 2.96
STL-10 0.76 - 14.61 1.23 4.54 0.44 2.89
GTSRB 0.82 - 37.07 1.49 16.09 0.36 3.13

Table 2. Cosine similarity within 1024 random CIFAR10 images.
Both clean and backdoored encoders are pretrained on CIFAR10.

Samples w/o Trigger Samples w/ Trigger

Clean Encoder 0.2193 0.2922
Backdoored Encoder 0.2442 0.9904

(a) Clean Encoder + Clean Input (b) Clean Encoder + Trojaned Input

(c) Trojaned Encoder + Clean Input (d) Trojaned Encoder + Trojaned In-
put

Figure 2. Embedding Space Distributions. Subfigures (a) and (b)
are for a clean encoder and (c), (d) for a trojaned encoder; colors
denote class labels; faded colors in (b) and (d) denote embeddings
of clean samples. For the clean encoder, even if the inputs are
stamped with the ground truth trigger, the embeddings are well
separable in (b). However in (d), a trojaned encoder produces
similar embeddings for trojaned inputs.

Observation III: Compared to clean encoders, backdoored
encoders need much smaller perturbations to cause samples
to fall into the dense area. Figure. 2d illustrates that the
dense area (of a trojaned encoder) is surrounded by and
close to clusters of clean samples. However, in the clean
encoder, larger perturbations are required to induce highly

similar embeddings for input samples, as the clean encoder
produces more scattered embeddings.

Intuitions. The dense area is where the attack target lies.
This is analogous to the target label of backdoor attacks
in supervised learning. The key difference is that, in the
supervised learning setting, backdoor scanners can scan each
label and then identify the most suspicious label as the target.
However in SSL, there are no labels for scanners to iterate
over. As such, existing backdoor scanners cannot be applied
to determine whether a model is backdoored in SSL.

To overcome the challenge, our design aims to decide
whether there exists a central dense area in the encoder’s
embedding space (surrounded by the embeddings of clean
samples). Intuitively, a backdoored encoder with a central
dense area only needs a small perturbation to push clean sam-
ples to the dense region. A clean encoder, on the other hand,
does not have such a dense area, meaning that high similarity
among embeddings cannot be easily achieved by stamping
a small trigger on samples. Our technique hence detects
backdoors at the encoder level, without the need of a target
label. We elaborate design details in the rest of the section.

4.2. Methodology

Trigger inversion is one of widely used techniques in
backdoor scanning [14,31,45,50,51]. It works by optimizing
a trigger pattern, which can induce the targeted misclassi-
fication while having a small trigger size. Existing trigger
inversion was originally designed for supervised learning
scenarios, where there are explicit labels. The size of trigger
can be used as a metric to quantify the distance between the
target label and other non-target labels. In SSL, however, no
explicit label exists. Existing trigger inversion is not able to
optimize or update the pattern towards some intended objec-
tive (a target label). Inspired by the above observations, we
propose to find the aforementioned dense area with only a
small trigger. It can be formulated as a constrained optimiza-
tion problem. With the constraint that samples stamped with
the same trigger must have similar embeddings, the trigger
size shall be optimized to the minimal.

Figure. 3 shows the overview of our technique. A ran-
domly initialized trigger and a shadow dataset (e.g., a subset
of pre-training dataset) are fed into the subject encoder to
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compute embeddings. The cosine similarity of these embed-
dings guides the optimization of trigger. With the constraint
that samples stamped with the same trigger must have sim-
ilar embeddings, the trigger size is iteratively optimized to
the minimal. The optimized trigger is used for calculating a
metric that gauges the normalized trigger size. The metric is
then used to determine if the encoder is trojaned.

In Section 4.2.1, we explain the details of our self-
supervised trigger inversion. In Section 4.2.2, we demon-
strate how to use inverted triggers to conduct encoder-level
backdoor detection.

4.2.1 Self-supervised Trigger Inversion

To generate a trigger that can induce intended backdoor
behavior in an encoder, we use two trainable variables, a
mask and a pattern, to denote the trigger pattern. Specifically,
the mask is utilized to indicate how much a pixel on the
input image is replaced by the pattern. We use the following
equation to formalize the trigger injection:

F(x,m, t) = x′, (1)

x′
i,j,c = mi,j ·xi,j,c+(1−mi,j)·ti,j,c, ∀i ∈ H, j ∈ W, c ∈ C.

(2)
F denotes a function that stamps trigger pattern t onto

an input image x and outputs an backdooored image x′; m
is a mask indicates how much the original pixel values are
retained. It has continuous values ranging from 0 to 1. The
input image has three dimensions, namely, height H , width
W , and channel C; xi,j,c refers to the pixel value of image
x at height i, width j, and channel c. Note that mi,j only
has two dimensions as the mask is applied on a pixel in a

way ranging from replacing it (mi,j = 0) to retaining it
(mi,j = 1), regardless of the color channels.

The goal of self-supervised trigger inversion is to
optimize a trigger such that clean samples stamped with
the trigger have highly similar embeddings. In SSL, the
cosine similarity is commonly used as a metric to denote
the distance between a pair of inputs [5, 6, 40]. We leverage
the same metric to measure how close the embeddings of
trigger-stamped samples are. Formally, given two inputs xp

and xq from a dataset D = {x1, · · · ,xN}, we have:

Lp,q(E,m, t) = −cos
(
E
(
F(xp,m, t)

)
, E

(
F(xq,m, t)

))
.

(3)
E is the subject encoder, and m and t are the trigger

variables discussed in Eq. 1 and Eq. 2. The two inputs xp

and xq are transformed by function F in Eq. 1 to stamp
the trigger. To achieve high similarities among samples that
approximate the search for the dense area in the embedding
space of encoder, DECREE samples a batch of inputs to sta-
bilize the search process. The average of pair-wise similarity
within a batch is computed as follows:

L =
1

N2

N∑
p=1

N∑
q=1

Lp,q(E,m, t), (4)

where N is the batch size; L is used as the constraint during
optimization, assuring that the samples stamped with the
optimized trigger are in the dense area in embedding space.

We then leverage Observation III in Section 4.1 and min-
imize the size of the trigger. We use the L1 norm to quantify
the mask size. Self-supervised trigger inversion is formu-
lated as the following constrained optimization problem.

min∥m∥1, s.t. L < β. (5)

β is a threshold assuring the average similarity is high.
During trigger inversion, a set of clean samples are needed

for the optimization. As we do not assume the knowledge
of any downstream tasks like what existing backdoor scan-
ners do, we leverage the pre-training dataset that is used for
constructing the encoder. It is impractical to have the whole
pre-training dataset as one can directly train a new clean
encoder on it without the need of scanning the given encoder.
We hence only assume a small subset of the pre-training
dataset (< 10%) for trigger inversion. In extreme cases, the
pre-training dataset of the given encoder may not be publicly
available. We resort to leveraging an external dataset, called
shadow dataset, for trigger inversion and backdoor scanning.
Since the pre-training set and downstream datasets do not
share the same set of samples or are even from different
data distributions, the attack effectiveness solely depends
on building a strong connection between the injected trigger
and the target embedding. It hence does not matter what
data are used for trigger inversion. Our results in Section 5.5
demonstrate that DECREE can indeed effectively detect
backdoored encoders using a shadow dataset.
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4.2.2 Backdoor Identification

Recall that a challenge of detecting backdoors in SSL is that
there are no labels. Therefore existing backdoor scanners
cannot identify the potential target label, which is the key to
determining whether a model is backdoored in supervised
learning. To overcome this challenge, DECREE introduces
a new metric PLn:

PLn(E) =
∥m̃∥n
∥x̂∥n

. (6)

∥ · ∥n denotes the Ln norm of a vector; m̃ denotes the
trigger inverted from a given encoder E; and x̂ denotes the
input sample that has the maximum Ln norm in the input
space of that encoder. PLn(E), denoting the Proportionate-
Ln Norm of an encoder E, is thus defined as the ratio of the
inverted trigger’s Ln norm to the maximum Ln norm of the
encoder’s input space. Note that PLn is an encoder-level
metric, approximating the distance from clean samples to the
dense area. In this way, DECREE does not need to identify
the target label.

As discussed in Section 4.1, triggers inverted from back-
doored encoders shall be smaller than those from clean en-
coders. Thus for a backdoored encoder, DECREE has a
better chance to invert a small trigger that can induce the
encoder to output two similar embeddings for two dissimilar
inputs. Based on the proposed PLn and the above intuition,
DECREE uses the following formula to identify backdoors
in encoders.

P̃ (E) = B
(
PL1(E), τ

)
. (7)

P̃ (E) is the estimated probability that a given encoder E
contains a backdoor. B is a binary step function that returns
1 if its first parameter is less than a given threshold τ and
0 otherwise. Essentially, if the inverted trigger of a given
encoder only occupies a small part of the input data sample,
we consider the encoder is very likely a trojaned encoder.

5. Evaluation
We use the following research questions (RQs) to evaluate

DECREE:
RQ1: How effective is our method?
RQ2: How efficient is our method?
RQ3: How robust is our method against adaptive attack?
RQ4: How effective is our method if the defender has no

access to the pre-training dataset?

5.1. Experiment Setup

We employ five commonly used datasets, CIFAR10 [22],
GTSRB [17], SVHN [36], STL-10 [11], and ImageNet [41],
for pre-training encoders and training downstream classifiers.
We use three well-known model architectures, ResNet18,
ResNet34, and ResNet50 [16]. As the CLIP dataset [40]

is not publicly available, we downloaded a pre-trained en-
coder from [39] and use ImageNet to finetune the encoder
by applying SimCLR [5] algorithm.

For backdoor attacks, we consider three categories in the
SSL setting, namely Image-on-Image, Image-on-Pair, and
Text-on-Pair, as discussed in Section 2.3. Note that there are
only a limited number of public backdoored encoders, we
hence use the official implementation [20] or implement the
attacks strictly following the original paper [3] to construct
backdoored encoders. For Image-on-Image and Image-on-
Pair attacks, we choose a “priority” image from GTSRB, a
“one” image from SVHN, and a “truck” image from STL-10
as attack targets. We only consider backdoored encoders
that achieve at least 99% attack success rate in the targeted
downstream classifiers. For Text-on-Pair attack, we choose
the label text “priority” for GTSRB, “one” for SVHN, and
“truck” for STL-10 to fill in a prompt list (shown in Table 6
in Appendix B) and use these text captions as attack targets.
The z-score introduced in [3] quantifies to what extent the
subject encoder is trojaned. We only consider backdoored
encoders with a z-score greater than 2.5 for evaluation. We
set β = −0.99 and τ = 0.1 during the detection. We use
444 encoders (111 benign and 333 backdoored) to evaluate
DECREE. Details are shown in Appendix A.

5.2. RQ1: Effectiveness of Our Method

We evaluate the performance of DECREE by using
common metrics (e.g., detection accuracy, ROC-AUC). We
also show the distributions of inverted triggers for clean
and backdoored encoders and study how the two sets are
separated by DECREE.

The detection results of DECREE are shown in Table 3.
We evaluate on three attack categories, namely Image-on-
Image, Image-on-Pair, and Text-on-Pair. For each attack cat-
egory, we choose three attack targets, from GTSRB, SVHN
and STL-10 respectively.

Observe that DECREE can effectively detect almost all
the backdoored encoders with more than 95% accuracy in
most cases. Particularly, for 14 out of 18 scenarios, DE-
CREE has 100% detection accuracy. For Text-on-Pair on
SVHN, the detection accuracy is slightly lower (87.5%).
This is because the attack targets for this case are natural
language sentences, and they usually have multiple target
instances. For example, a trigger with the label text “truck”
can use both “a picture of truck” and “a nice photo of truck”
as attack targets, making the triggers less centralized than
those attacks on images. Note that we use the same thresh-
old for all the application/attack settings. That said, with
the knowledge of the particular application scenario (Text-
on-Pair), DECREE can still effectively distinguish back-
doored encoders from clean encoders by slightly increasing
the threshold, as depicted in Figure 4f. The last row in Ta-
ble 3 show the summarized performance. We can see that
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Table 3. Detection Performance. The first three columns list the attack category, the dataset used for pre-training encoders, and the model
architecture. RN18, RN34, and RN50 denote model architecture ResNet18, ResNet34, and ResNet50, respectively. The following three
column blocks present the results for which dataset the attack target comes from, i.e., GTSRB, SVHN, and STL-10. Columns in each block
show the number of true positives (TP), false positives (FP), false negatives (FN), true negatives (TN) when we use DECREE to detect
backdoored encoders. Acc denotes the overall detection accuracy.

Attack
Category

Pre-training
Dataset

Model
Arch

GTSRB atk SVHN atk STL-10 atk

TP FP FN TN Acc TP FP FN TN Acc TP FP FN TN Acc

Img-on-Img
CIFAR10

RN18 30 2 0 28 96.7 30 2 0 28 96.7 30 2 0 28 96.7
RN34 30 0 0 30 100 30 0 0 30 100 30 0 0 30 100
RN50 15 0 0 15 100 15 0 0 15 100 15 0 0 15 100

ImageNet RN50 12 0 0 12 100 12 0 0 12 100 12 0 0 12 100

Img-on-Pair CLIP RN50 12 0 0 12 100 12 0 0 12 100 12 0 0 12 100

Text-on-Pair CLIP RN50 12 0 0 12 100 9 0 3 12 87.5 12 0 0 12 100

Summary - - 111 2 0 109 99.1 108 2 3 109 97.7 111 2 0 109 99.1
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(f) CLIP-Text-ResNet50

Figure 4. Distribution of Inverted Triggers. Each sub-figure
corresponds to one setting (one line in Table 3) and depicts the
results for that setting. The x-axis denotes different models and the
y-axis denotes the PL1-Norm value. The green markers denote
inverted triggers for clean encoders while other color markers
(i.e., brown, orange, and red markers) denote inverted triggers for
backdoored encoders with attack targets coming from GTSRB,
STL-10 and SVHN, respectively.

DECREE achieves a detection accuracy of near 100% in all
cases on average, delineating its effectiveness. We also use
the ROC (Receiver Operating Characteristic) curve to study
the relation between true positive rate and false positive rate
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Figure 5. Time Efficiency

Models0.00

0.05

0.10

0.15

0.20

0.25

1  
N

or
m

clean
gtsrb
svhn

Figure 6. Performance without
Access to Pre-training Dataset

as shown in Figure 8 in Appendix D.
We study the distributions of inverted triggers for clean

and backdoored encoders, which are shown in Figure 4.
Each sub-figure corresponds to one setting (one line in Ta-
ble 3) and depicts the results for that setting. Observe that
in all scenarios, inverted triggers for backdoored encoders
have smaller PL1-Norm than those for clean encoders. The
triggers for backdoored encoders tend to cluster in small
PL1-Norm values (< 0.1). This demonstrates the reason
why DECREE is able to effectively detect backdoored en-
coders with a same threshold. We also visually show that
the inverted triggers for backdoored encoders have much
fewer perturbed pixels compared to those for clean encoders.
Please see detailed results and discussion in Appendix C.

5.3. RQ2: Efficiency of Our Method

In this section, we evaluate the efficiency of DECREE in
comparison with two SOTA backdoor scanning techniques,
i.e., Neural Cleanse (NC) [50] and ABS [31]. Recall in
Section 3, we observe that existing detection methods need
the knowledge of downstream tasks. In addition, they also
require samples from the downstream dataset for detection.
For a fair comparison, we assume existing detectors have full
access to the downstream dataset, with which they can train
a corresponding downstream classifier and perform the de-
tection based on the classifier and downstream task samples.
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We conduct experiments on 10 backdoored encoders
trained on CIFAR-10 with ResNet18 and ResNet34
architectures. The attack target is a “one” image from the
SVHN dataset. Figure 5 shows the results. As existing
techniques need to train downstream classifiers, we also
show the training time of classifiers in the first two columns.

Observe that training a classifier takes a large amount of
time, more than 1 hour. The runtime of existing techniques
is around 2-10 minutes. DECREE, on the other hand, only
takes 15-20 seconds. It is 6-30 times faster than baselines,
even without considering the training time for downstream
classifiers. This is because DECREE generates just one
trigger for each encoder and do not have to scan each label
like what existing methods do.

5.4. RQ3: Adaptive Attack

We consider a stronger attack that aims to evade the detec-
tion of DECREE with the full knowledge of our detection
pipeline. Assume the loss function used in the original at-
tack is Latk. The stronger attack also considers Lsim, the
same as L in Eq. 4. Lsim quantifies the similarity among
inputs stamped with the trigger. The attacker aims to enlarge
this loss to make those samples less similar. Therefore, the
objective of the adaptive attack is as follows.

argminLadapt = Latk − α · Lsim, α > 0 (8)

We conduct experiments on a ResNet18 encoder trained on
CIFAR10 and the attack target is a “one” image from the
SVHN dataset. We set α = 1. The adaptive attack can
produce a trojaned encoder that has an inverted trigger with
a PL1-Norm of 0.14 , evading DECREE’s detection. How-
ever, the ASR on downstream STL-10 degrades from 99.9%
to 69.9%. Intuitively, Ladapt forces the embeddings of in-
puts stamped with the trigger to have a similar embedding
with the attack target while trying to make them orthogonal
to each other. It hence is difficult for the attack to achieve
a high ASR and evade our detection (i.e. inputs stamped
with triggers share high cosine similarity) at the same time.
Please see more details in Appendix F.

5.5. RQ4: No Access to Pre-training Dataset

In previous experiments, we use a small subset of the
pre-training dataset for trigger inversion. In extreme cases,
the pre-training dataset may not be available, which signif-
icantly increases the difficulty of backdoor scanning. We
evaluate DECREE in this setting to show its robustness.
We use CIFAR10 as the pre-training dataset, GTSRB and
SVHN as origins of attack targets, and STL-10 as the shadow
dataset for detection. As shown in Figure 6, the distribution
of inverted triggers in this setting is similar to those in Fig-
ure 4. DECREE can clearly separate clean and backdoored
encoders based on PL1-Norm, delineating the generalizabil-
ity of DECREE. Note that CLIP pre-training dataset is not

public. Rows Image-on-Pair and Text-on-Pair in Table 3
also fall into this challenging threat model. Figure 4e and
Figure 4f show the detection results for these two.

One key factor contributing to the generalizability of
DECREE is that encoders pre-trained on unlabeled data via
contrastive learning do not easily overfit on a certain dataset.
In addition, PL1-Norm considers different input dimensions
so that DECREE is insensitive to different attack settings.

5.6. Other Experiments

Ablation Study. We conduct ablation studies to validate the
robustness of DECREE against various trigger configura-
tions (e.g., color, size, texture) and different attack strategies.
Details are shown in Appendix G.1. We also study the hyper-
parameters (shadow dataset size M and decision threshold
τ ) and show the performance is insensitive to different hyper-
parameters. Details can be found in Appendix G.2.
Advanced Attacks. We adapt 2 dynamic attacks [28, 38]
from supervised learning into our settings and find that such
attacks can hardly succeed in SSL setting. Details can be
found in Appendix H.
More SSL Attacks. We also study 3 emerging attacks [26,
43, 57]. We find that DECREE can detect acute attacks (i.e.,
high ASR) with patch-like triggers [57], but may fail on
attacks with pervasive triggers [26] or stealthy attacks [43].
Details can be found in Appendix I.

6. Conclusion

We propose the first backdoor detection method DE-
CREE for pre-trained encoders. Our method fills in the gap
where existing detection techniques only focus on supervised
learning scenarios. Our evaluation shows that DECREE can
effectively and efficiently separate benign and trojaned en-
coders. Our method is also robust against adaptive attacks
and generalizes to a more challenging threat model.
Limitation of Our Work. We currently do not handle text-
format trigger. Our method mainly focuses on three types
of attacks (Image-on-Image, Image-on-Pair, and Text-on-
Pair), the attack subject of which is an image encoder. For
Text-on-Text attack, it introduces extra challenges to invert
text-format triggers as the input in NLP is discrete (e.g.,
words), different from the pixel values in computer vision.
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Appendix

We provide a table of contents below for better navigation of
the appendix.
Appendix A provides details of evaluation setup.
Appendix B introduces the settings of backdoor attacks on
self-supervised learning that are adopted in our evaluation.
Appendix C studies the triggers inverted by DECREE.
Appendix D uses ROC curve to quantify the effectiveness
of DECREE.
Appendix E evaluates the efficiency of DECREE in com-
parison with two SOTA backdoor scanning techniques.
Appendix F designs an adaptive attack aiming to evade our
detection.
Appendix G.1 studies the effectiveness of DECREE against
different trigger patterns and sizes.
Appendix G.2 shows the effectiveness of threshold τ .
Appendix H explores the feasibility of adapting 2 exist-
ing advanced attacks from supervised learning into self-
supervised learning setting.
Appendix I discusses on 3 emerging SSL backdoor attacks.

A. Evaluation Setup

Table 4 shows the statistics of evaluated attacks, datasets,
and encoders. Column 1 denotes the attack category. Col-
umn 2 shows the pre-training datasets used for constructing
encoders. Columns 3-5 present the model architecture, input
image shape, and the number of (trainable) model param-
eters. Column 6 shows the number of clean encoders for
each setting. For backdoored encoders, we choose one label
from each attack datasets as attack target label. For example,
when attack dataset is GTSRB, we choose a “priority” image
as attack target in Image-on-Image and Image-on-Pair set-
tings and choose the word “priority” to fill in prompts in Text-
on-Pair setting. We introduce more details in Appendix B.
We evaluate on three attack datasets that are shown in
Columns 7-9. The numbers denote how many backdoored en-
coders are trained for the corresponding attack datasets. In to-
tal, we have 444 encoders (111 benign and 333 backdoored).

B. Attack Settings

B.1. Image-on-Image & Image-on-Pair

For Image-on-Image and Image-on-Pair attacks, we fol-
low the code released by BadEncoder [20] to construct back-
doored encoders. Specifically, the main idea is that, given a
clean encoder E, the attacker aims to get a trojaned encoder
E′ such that E and E′ satisfy the following 3 properties: (1)
For each clean input image x, E(x) and E′(x) should be
similar. (2) For the target image r, E(r) and E′(r) should
be similar. (3) For the clean image stamped with trigger e,
E′(x⊕ e) and E′(r) should be similar.

For each attack datasets, we use the same target images as
[20]. We select trojaned encoders that can train downstream
classifiers with ASR > 99% and accuracy > 70%.

B.2. Text-on-Pair

For Text-on-Pair attack, we follow the method introduced
in [3]. The main idea is to construct a malicious training
dataset P (size of which is a small fraction of pre-training
dataset size). P is defined as P = {(xi ⊕ e, c)}i, where xi

are clean images, e is trigger and c is attack target caption.
The caption is formed by filling in prompts (shown in Ta-
ble 6) with a word of interest from attack datasets(shown in
Table 5). We choose backdoored encoders with z-score [3]
higher than 2.5.

C. Triggers Inverted by DECREE

In Figure 7, we show the triggers inverted by DECREE.
The ground truth trigger is a white square located at the
right bottom of the image. For Figure 4a 4b 4c, the ground
truth trigger shape (height, width, channel) is (10, 10, 3).
For Figure 4d 4e 4f, the ground truth trigger shape (height,
width, channel) is (24, 24, 3).

For each setup, we show a trigger inverted from clean
encoder, and a trigger inverted from backdoored encoder.
We also report the value of PL1-Norm for each trigger in
the figure. Notice that (1) triggers inverted from backdoored
encoders exploit significantly less pixels than those inverted
from clean encoders, and thus their PL1-Norm are lower,
(2) triggers inverted from backdoored encoders tend to clus-
ter and shift towards the corner, while those inverted from
clean encoders are likely to evenly distribute throughout the
entire image. For example, in Figure 7a, the trigger from
clean encoder scatters over almost the whole image, while
the trigger from the backdoored encoder centralizes at the
lower right part of the image. One can still make similar
observations under Text-on-Pair attack. Take Figure 7f as an
example. The trigger from clean encoder evenly distributes
across the image, while the trigger from backdoored encoder
densely distributes in the lower right region.

D. ROC of DECREE on Different Datasets
We further use the ROC (Receiver Operating Character-

istic) to quantify the effectiveness of our detection method.
Given a set of encoders, DECREE inverts triggers from each
of them and computes PL1-Norm. After that, to distinguish
the backdoored encoders from the benign ones, one can set
a threshold for PL1-Norm. The ROC curves are shown in
Figure 8. These curves depict how the True Positive Rate
(TPR, marked by the vertical axis) and False Positive Rate
(FPR, marked by the horizontal axis) change when different
thresholds are selected. The green curve denotes the ROC
obtained on all the 444 encoders. That is, we set one univer-
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Table 4. Model Statistics

Attack
Category

Pre-training
Dataset

Model
Arch

Input
Size

#Params
Clean

Encoder
Attack Datasets

GTSRB SVHN STL-10

Image-on-Image
CIFAR10

ResNet18 32×32×3 11,168,832 30 30 30 30
ResNet34 32×32×3 21,276,992 30 30 30 30
ResNet50 32×32×3 23,500,352 15 15 15 15

ImageNet ResNet50 224×224×3 25,557,032 12 12 12 12

Image-on-Pair CLIP Dataset ResNet50 224×224×3 38,316,896 12 12 12 12

Text-on-Pair CLIP Dataset ResNet50 224×224×3 38,316,896 12 12 12 12

Cifar10-rn18

Ground Truth
L1-norm=300.0

Clean Encoder
PL-Norm=0.154
L1-Norm=472.7

Backdoored Encoder
PL-Norm=0.047
L1-norm=143.7

(a) CIFAR10-ResNet18

Cifar10-rn34

Ground Truth
L1-norm=300.0

Clean Encoder
PL-Norm=0.118
L1-norm=361.9

Backdoored Encoder
PL-Norm=0.045
L1-norm=141.0

(b) CIFAR10-ResNet34

Cifar10-rn50

Ground Truth
L1-norm=300.0

Clean Encoder
PL-Norm=0.191
L1-norm=585.5

Backdoored Encoder
PL-Norm=0.043
L1-norm=130.7

(c) CIFAR10-ResNet50

Imagenet-rn50

Ground Truth
L1-norm=1728.0

Clean Encoder
PL-Norm=0.111

L1-norm=16683.9

Backdoored Encoder
PL-Norm=0.053
L1-norm=7932.0

(d) ImageNet-ResNet50

Clip-img

Ground Truth
L1-norm=1728.0

Clean Encoder
PL-Norm=0.167

L1-norm=25205.1

Backdoored Encoder
PL-Norm=0.054
L1-norm=8060.1

(e) CLIP-Image

Clip-text

Ground Truth
L1-norm=1728.0

Clean Encoder
PL-Norm=0.167

L1-norm=25205.1

Backdoored Encoder
PL-Norm=0.054
L1-norm=8193.1

(f) CLIP-Text

Figure 7. Inverted Triggers. Subfigures 4a 4b 4c 4d are Image-on-Image attacks. Subfigure 4e is Image-on-Pair attack. Subfigure 4f is
Text-on-Pair attack. Note that our goal is to do detection and thus it is not that necessary to invert exactly the same trigger as the injected one.
DECREE is effective at detection since it quantitatively leverages the proposed metric PL1-Norm to decide whether the given encoder is
backdoored or not. Visually, triggers inverted from backdoored encoders share common features with ground truth triggers, as they tend to
cluster and shift towards the corner while those inverted from clean encoders are evenly distributed throughout the entire image.

Table 5. Attack Target Words in Text-on-Pair Attack

Attack Dataset Target Word

GTSRB “priority”
SVHN “one”
STL-10 “truck”

sal threshold for all the setups, regardless of the architectures
of encoders or the dimensions of data samples. We can see
that the TPR increases sharply with an almost zero FPR.
It achieves an AUC of 0.998, which indicates PL1-Norm
effectively distinguishes benign encoders from backdoored

Table 6. Prompt List in Text-on-Pair Attack

“a photo of a {}.” “a photo of the {}.”
“a blurry photo of a {}.” “a blurry photo of the {}.”
“a black and white photo of a {}.” “a black and white photo of the {}.”
“a low contrast photo of a {}.” “a low contrast photo of the {}.”
“a high contrast photo of a {}.” “a high contrast photo of the {}.”
“a bad photo of a {}.” “a bad photo of the {}.”
“a good photo of a {}.” “a good photo of the {}.”
“a photo of a small {}.” “a photo of the small {}.”
“a photo of a big {}.” “a photo of the big {}.”
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Table 7. Detection time consumed by existing backdoor scanners and our DECREE

Network Training Classifier Neural Cleanse ABS DECREE

ASR Time (m) FN Time (m) FN Time (m) FN Time (m)

ResNet18 1.0 64.66 ± 10.30 0 4.75 ± 0.45 0 2.80 ± 0.04 0 0.26 ± 0.01
ResNet34 1.0 63.99 ± 10.33 1 9.71 ± 1.44 0 5.52 ± 0.87 0 0.33 ± 0.01

Figure 8. ROC of Detection

encoders without any knowledge about specific setups. Thus
DECREE is generally effective on different encoders and
different datasets. Moreover, if we have the knowledge about
the pre-training dataset, which is a reasonable assumption in
the real-world scenario, the AUC further improves to 0.999
for CIFAR10 and 1.000 for ImageNet and CLIP. Their ROC
are depicted by brown, red, and orange curves, respectively.

E. Time Efficiency
We evaluate the efficiency of DECREE in comparison

with two SOTA backdoor scanning techniques, i.e., Neural
Cleanse (NC) [50] and ABS [31]. For both ResNet18 and
ResNet34 architectures, we conduct experiments on 10 back-
doored encoders pre-trained on CIFAR10. The attack target
is a “one” image from the attack dataset SVHN.

Note that DECREE is an order of magnitude faster than
the other two baselines, even without considering the training
time for downstream classifiers. This is because DECREE
generates just one trigger for each encoder and do not have
to scan each label like what NC and ABS do. In addition,
we find that NC have one False Negative during the experi-
ment, further validating the necessity and motivation of our
DECREE.

F. Adaptive Attack
In addition to existing attacks, We design an adaptive

attack, as explained in Section 5.4. α in Eq. 8 is a hyper-
parameter that controls the cosine similarity loss during
the attack. Intuitively, when α becomes larger, the images
stamped with trigger will share less similar embeddings.

Table 8. Encoders Adaptively Attacked by Eq. 8

Accuracy ASR L1-Norm PL1-Norm

α = 0 76.22 99.73 171.65 0.056
α = 0.5 72.95 93.60 258.57 0.084
α = 1.0 72.48 69.90 430.08 0.140
α = 2.0 72.08 31.00 847.45 0.276

When α is near to zero, the images with trigger tend to have
extremely similar embeddings, which also means they are
similar to the embedding of the attack target. For different
α values, we train 10 trojaned encoders and show their av-
erage metrics in Table 8. The encoders are pre-trained on
CIFAR10 with ResNet18 architecture and the attack target
is a “truck” image from the attack dataset STL-10.

According to Table 8, DECREE stays effective when
α = 0.5, as encoders with PL1-Norm < 0.1 are detected
as trojaned. When α further increases, the adaptive attack
evades our detection. However, the ASR drops a lot at the
same time, from over 90% to below 70%, even around 30%.
Therefore, it is quite difficult for the attackers to evade our
detection with a high ASR.

G. Ablation Study
This section studies the effectiveness of DECREE against

different trigger patterns and sizes. We also studies the
impact of hyper-parameters. The results show that DECREE
has a robust design.

G.1. Different Trigger Patterns and Sizes

Trigger Configurations. We test the effectiveness of DE-
CREE on triggers with different configurations. The exper-
imental results are shown in Table 9. Encoders with PL1-
Norm < 0.1 are detected as trojaned. The default trigger
pattern is a 10×10 white square located at lower-right corner.

We can see that DECREE effectively inverts relatively
small triggers for all encoders trojaned by triggers with dif-
ferent colors, positions, and textures. That means DECREE
can successfully detect trojaned encoders in different trig-
ger patterns. We also show the effectiveness of DECREE
against different trigger size in Table 10.

G.2. Hyper-parameters

Effect of shadow dataset size M . In our evaluation, we
use shadow dataset (containing 1000 images) to do trigger
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Table 9. Detection Results on Different Trigger Patterns. We alter
the configurations of triggers and conduct Image-on-Image attacks
with them. The 1-2 columns are the configurations we change. The
3-4 column are the L1-Norm and PL1-Norm of inverted triggers
generated by DECREE. For each row, we evaluate on 5 encoders
and compute the average. All the encoders are pre-trained on
CIFAR10 and the attack target is an image of label one from SVHN.

Config. Value L1-Norm PL1-Norm

Color
Green 250.43 0.082
Purple 248.48 0.081
White 113.99 0.037

Position
Lower-Right 113.99 0.037
Center 135.84 0.044
Upper-Left 123.72 0.040

Texture
Random 50.09 0.016
TrojanNN [32] 58.30 0.019
White 113.99 0.037

Table 10. Detection Results on Different Trigger Sizes. The input
image size of encoders is 32×32.

Trigger Size (Ratio) L1-Norm PL1-Norm

5×5 (2.4%) 36.44 0.012
7×7 (4.8%) 44.38 0.014
10×10 (9.8%) 113.99 0.037
12×12 (14.0%) 135.19 0.044
14×14 (19.1%) 150.76 0.049

inversion. We further evaluate on smaller shadow dataset to
show that DECREE is not sensitive to the shadow dataset
size M , as shown in the Table 11. Note that encoders with
PL1-Norm < 0.1 are detected as trojaned.

Table 11. Impact of Shadow Dataset Size M . Encoders are trained
on CIFAR10 and shadow dataset are randomly sampled from CI-
FAR10. We keep batch size N to be 128 during self-supervised
trigger inversion.

M 50 100 1000

L1-Norm 105.2 106.59 113.99
PL1-Norm 0.034 0.035 0.037

Effectiveness of threshold τ . We assign a pre-defined value
to τ = 0.1. We further clarify that τ = 0.1 is sufficient to do
effective detection.

As shown in the Table 10, we evaluate on 5 different
sizes of triggers, the ratio of which ranging from 2.5% to
20%. All of these triggers have a PL1-Norm < 0.1 because
the encoder just learns part of the trigger feature during
the trojaning procedure. Additionally, any trigger with a
larger ratio than 20% (occupying almost a quarter of the
whole image) is not a reasonable trigger since this violate
the principle of stealthiness for attackers. Therefore, τ = 0.1
is a reasonable upper-bound for trigger size ratios and thus

an effective threshold for DECREE.

H. Advanced Attacks
Existing backdoor attacks on self-supervised learning are

only effectively conducted when using patch-based sample-
agnostic triggers [20] [3].

To provide better understanding of backdoor attack
against self-supervised learning, we adapt 2 existing
“advanced attacks” (image-size and sample-specific at-
tacks) from supervised learning into our settings, namely
WaNet [38] and Invisible [28]. We follow the attack
procedure of BadEncoder [20], the Image-on-Image attack
we have adopted in our paper, and only change the trigger
pattern from patch-based triggers to image-size triggers
generated by WaNet and Invisible. Then we evaluate ASR
on the downstream classifier trained from the trojaned
encoder. The results is shown in Table 12.

Table 12. Advanced Attacks. ASR is evaluated on the downstream
classifiers trained on STL-10. The encoders are pre-trained on
CIFAR10 with ResNet18 architecture and the attack target is a
“truck” image from the attack dataset STL-10.

WaNet Invisible BadEncoder

ASR 10.23 10.02 99.73

From the experimental result, we can observe that image-
size and sample-specific backdoor attacks can hardly be
successful on self-supervised learning pre-trained encoders.
These attacks can be successful and stealthy in supervised
learning because there exist a concrete target label that
can enable a strong hint during attacking. However, self-
supervised learning only consider positive or negative pairs.
Without distinct and obvious features (like patch-based trig-
gers), such sample-specific triggers can hardly establish a
strong correlation between victim images and target images.

I. More SSL Attacks
We study on 3 emerging SSL attacks, namely SSLBack-

door [43], CorruptEncoder [57] and CTRL [26].
Our method successfully detected CorruptEncoder with

PL1-Norm of approximately 0.08 but failed to identify
SSLBackdoor and CTRL, both of which had PL1-Norm
around 0.23. The reason for our failure to detect SSLBack-
door was its low ASR (<10%), which falls outside of our
expected ASR range (>99%), as stated in our threat model.
Although SSLBackdoor had good false positive scores, its
stealthy nature made it difficult to detect. Our method also
failed to detect CTRL since it used a pervasive trigger that
was outside of our threat model (patch-like triggers).
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