
Towards High Fidelity
Network Emulation

Lianjie Cao, Xiangyu Bu, Sonia Fahmy, Siyuan Cao

Department of Computer Science

This work has been sponsored in part by NSF grant CNS-1319924

How to experimentally evaluate an idea?

Network Testbed

Network Emulator

Network Simulator

Partition 3

Partition 2
Partition 1

How to map a networked app onto infrastructure?

Emulated
hosts

Emulate
network devices

Containers,
virtual machines,

……

Open vSwich,
Indigo Virtual Switch,

……

Problem

• In a distributed network emulator running on heterogeneous PMs,
how we can profile the physical resources and map a network
experiment onto the PMs with high performance fidelity?

• Challenges
o How to quantify the physical resources in heterogeneous cluster?
o How to partition a network experiment to achieve high performance fidelity?
o How to allow resource multiplexing on the same cluster?

• Design principles
o Integrity and fidelity
o Best effort
o Judicious use of resources

Design

Model the relationship
between resource usage
and packet processing
capability

Convert network
topology to weighted
graph

Partition and map
experiment to
heterogeneous PMs

Network
Experiment

PM
Cluster

Resource
Quantification

Experiment
Preprocess

Experiment
Mapping

Experiment
Execution

Resource Quantification

𝑃2𝑐𝑜𝑟𝑒@1.20𝐺𝐻𝑧(𝑢) = 0.0168𝑢2 + 192.944𝑢 – 286.828
𝑃2𝑐𝑜𝑟𝑒@2.39𝐺𝐻𝑧 𝑢 = 0.425𝑢2 + 285.166𝑢 – 2709.699
𝑃4𝑐𝑜𝑟𝑒@1.20𝐺𝐻𝑧(𝑢) = 0.359𝑢2 + 112.275𝑢 + 4061.292
𝑃4𝑐𝑜𝑟𝑒@2.39𝐺𝐻𝑧(𝑢) = 0.279𝑢2 + 316.796𝑢 + 948.393

Traffic Generation
(packet sizes, software

switches, topology sizes, etc.)

Resource Usage Collection
(CPU, memory, network)

Model Fitting
(Polynomial regression)

Topology Abstraction

S2 s11

s6

s9

s10

s1 s8

s3

s4 s5

s7

100

200

200

200

200

200

200 200

100 100

100

100
200 500

600

200 200

800

500
400

300 200

200

Mininet Topology Graph G=(V, E)

• Collapse end hosts to adjacent switches
• Edge weight 𝑤((𝑎, 𝑏)) = link bandwidth
• Vertex weight 𝑤(𝑣) = 𝑤(𝑎, 𝑏), where a=v or b=v

Partitioning and Mapping

• Objectives
• Avoid PM overload  performance fidelity

• Maximize PM utilization  resource multiplexing

• Minimize edge cut  traffic localization

• Input
• Weighted graph G = (V, E)

• Host resource requirements (e.g., CPU)

• Information of 𝑘 PMs (e.g., PM capacity functions and CPU shares)

• Output
• Subgraphs 𝑆1, 𝑆2,……, 𝑆𝑘′ , where 𝑘′ < 𝑘

Mapping Algorithm

Initialize

Partition

Evaluate

Update

Input

Output

1. Compute packet processing capacity
2. Select minimal # of PMs
3. Normalize host CPU and capacity of

selected PMs

Invoke METIS with normalized input

1. Compute host CPU and capacity used on
each selected PM

2. Convert capacity value to CPU for switches
3. Store and rank this result in a hash set

based on i) # of PM, ii) overutilization and
underutilization and iii) edge cut

4. Create new exploration branch if new PM
needed

1. Decrease PM target CPU share if overloaded
2. Increase PM target CPU share to compensate

for deductions from overloaded PMs

1. No new branches
2. Termination counter exhausted

for all branches
3. Select best result as output

Round 0

Round 1

Round 2

Round 3

Waterfall Algorithm

Evaluation

• Simulation
• Evaluate Waterfall with various network topologies and cluster configurations

• DDoS experiments
• Evaluate Waterfall with testbed experiments

• Comparison
• Equal  Equal-sized partitioning using METIS

• 𝑈𝑖
 Use max CPU shares of PMs for METIS

• 𝜃𝑖 × 𝑈𝑖
 Use adjusted max CPU shares of PMs for METIS

• 𝐶𝑖(0.9) Use 90% of max packet processing capacity for METIS

• SwitchBin  Default choice of Mininet cluster mode

Simulation

• Network topologies
• RocketFuel, Jellyfish and Fat-tree
• 41 ~ 670 nodes and 96 ~ 6072 edges

• Simulated clusters
• Large clusters: 21 PMs (sufficient resources)
• Medium clusters: one cluster per topology (just enough resources)
• Small clusters: one cluster for each topology (insufficient resources)

• Metrics

• Degree of overutilization:
 𝑢𝑖−𝑈𝑖

𝑈𝑖

• Degree of underutilization:
𝑈𝑖− 𝑢𝑖

𝑈𝑖 for large and medium clusters

• Standard error of overutilization for small clusters
• Edge cut

Simulation Results

Select fewer PMs

Integrity and fidelity

Balance overutilization on
heterogeneous PMs

Large Cluster Medium Cluster Small Cluster

Low overutilization and underutilization

Judicious use of resources Best effort

RocketFuel Example

Equal 𝑈𝑖 𝜃𝑖 × 𝑈𝑖

𝐶𝑖(0.9) Waterfall

DDoS Experiments

• Network topologies
• Small-scale topology: RocketFuel with 11 switches and 5 hosts
• Medium-scale topology: RocketFuel with 36 switches and 12 hosts

• Network traffic
• Background traffic: UDP traffic on all links
• HTTP traffic: HTTP traffic between victim clients and HTTP server
• Attack traffic: UDP traffic between attack senders and receivers
• HTTP traffic and attack traffic share certain bottleneck links

• Metrics
• CPU utilization of PMs
• Link utilization of experimental topology
• Completed HTTP requests

Small-scale DDoS

Bottleneck link

Victim client
Victim client

HTTP server

Attack sender

Attack receiver

Medium-scale DDoS

Victim client

HTTP server

Attack sender

Attack receiver

Victim client

Victim client

Victim client

Attack sender

Attack sender

Attack sender

Attack receiver
Attack receiver

Results for Small-scale DDoS

< 90% CPU usage on selected PMs

No PM overload

> 90% link utilization

High performance fidelity

HTTP throughput drop

CPU Utilization Link Utilization HTTP Throughput

Results for Medium-scale DDoS
Performance fidelity loss

due to PM overload

Waterfall
• Selects fewer PMs
• Achieves more balanced resource usage
• Allocates desired resources to hosts and switches
• Maintains high performance fidelity

Insufficient CPU
allocation to end hosts

Related Work
• Graph partitioning

• Kernighan-Lin (KL) algorithm: Kernighan@BSTJAN'70.
• Spectral algorithms: Pothen@SIMAX'90, Hendrickson@SISC'95.
• Multilevel algorithms/software: Barnard@PPSC'93, Hendrickson@SC'95, METIS,

Chaco.

• Network embedding and virtualization
• VM placement: Jiang@INFOCOM'12, Kuo@INFOCOM'14.
• Virtual network embedding: Chowdhury@ToN'12 (ViNEYard), Yu@CCR'08.

• Testbed mapping
• Ricci@CCR'03 (Emulab assign), Mirkovic@IMC'12 (DETER assign+), Yao@CNS'13

(EasyScale), Yan@SOSR'15 (VT-Mininet).

Conclusions

• Proposed a framework for mapping a distributed task (or emulation
experiment) onto a cluster of possibly heterogeneous machines

• Quantified packet processing capability

• Designed waterfall algorithm to map and partition a network
experiment

• Evaluated our framework via simulations and DDoS experiments

Thank you!
Questions?

