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How to experimentally evaluate an idea?

Network Simulator Network Testbed
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How to map a networked app onto infrastructure?
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Problem

* In a distributed network emulator running on heterogeneous PMs,
how we can profile the physical resources and map a network
experiment onto the PMs with high performance fidelity?

* Challenges
o How to quantify the physical resources in heterogeneous cluster?
- How to partition a network experiment to achieve high performance fidelity?
o How to allow resource multiplexing on the same cluster?

* Design principles
o Integrity and fidelity
o Best effort
o Judicious use of resources
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Resource Quantification

Traffic Generation

(packet sizes, software
switches, topology sizes, etc.)

Resource Usage Collection
(CPU, memory, network)

Model Fitting

(Polynomial regression)
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Topology Abstraction

Mininet Topology Graph G=(V, E)
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* Collapse end hosts to adjacent switches
* Edge weight w((a, b)) = link bandwidth
» Vertex weight w(v) = ),w(a, b), where a=v or b=v



Partitioning and Mapping

* Objectives
* Avoid PM overload = performance fidelity
* Maximize PM utilization = resource multiplexing
* Minimize edge cut 2 traffic localization

* Input

* Weighted graph G = (V, E)

* Host resource requirements (e.g., CPU)

* Information of k PMs (e.g., PM capacity functions and CPU shares)
* Output

* Subgraphs Sy, S,,......, Si,r , where k' < k



Mapping Algorithm

Compute packet processing capacity pr—
Select minimal # of PMs

Normalize host CPU and capacity of D D D D
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Evaluation

e Simulation
* Evaluate Waterfall with various network topologies and cluster configurations

* DDoS experiments
* Evaluate Waterfall with testbed experiments

* Comparison
* Equal & Equal-sized partitioning using METIS
« U! 5 Use max CPU shares of PMs for METIS
« ' x U' 5 Use adjusted max CPU shares of PMs for METIS

. Ci(0.9) 2> Use 90% of max packet processing capacity for METIS
e SwitchBin & Default choice of Mininet cluster mode



Simulation

* Network topologies

* RocketFuel, Jellyfish and Fat-tree
41 ~ 670 nodes and 96 ~ 6072 edges

* Simulated clusters
* Large clusters: 21 PMs (sufficient resources)
* Medium clusters: one cluster per topology (just enough resources)
* Small clusters: one cluster for each topology (insufficient resources)
* Metrics
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* Degree of underutilization: for large and medium clusters

Ui
e Standard error of overutilization for small clusters
* Edge cut



Over-utilization

Under-utilization

Simulation Results

Large Cluster

Medium Cluster
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RocketFuel Example
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DDoS Experiments

* Network topologies
* Small-scale topology: RocketFuel with 11 switches and 5 hosts
* Medium-scale topology: RocketFuel with 36 switches and 12 hosts

* Network traffic
* Background traffic: UDP traffic on all links
 HTTP traffic: HTTP traffic between victim clients and HTTP server
e Attack traffic: UDP traffic between attack senders and receivers
e HTTP traffic and attack traffic share certain bottleneck links

* Metrics
e CPU utilization of PMs
* Link utilization of experimental topology
 Completed HTTP requests



Small-scale DDoS




Medium-scale DDoS
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CPU Utilization

Results for Small-scale DDoS

CPU Utilization
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Results for Medium-scale DDoS

Performance fidelity loss Insufficient CPU
due to PM overload allocation to end hosts
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Related Work

* Graph partitioning
e Kernighan-Lin (KL) algorithm: Kernighan@BSTJAN'70.
e Spectral algorithms: Pothen@SIMAX'90, Hendrickson@SISC'95.

* Multilevel algorithms/software: Barnard@PPSC'93, Hendrickson@SC'95, METIS,
Chaco.

* Network embedding and virtualization
* VM placement: Jiang@INFOCOM'12, Kuo@INFOCOM'14.
 Virtual network embedding: Chowdhury@ToN'12 (ViNEYard), Yu@CCR'0S8.

* Testbed mapping
e Ricci@CCR'03 (Emulab assign), Mirkovic@IMC'12 (DETER assign+), Yao@CNS'13
(EasyScale), Yan@SOSR'15 (VT-Mininet).



Conclusions

* Proposed a framework for mapping a distributed task (or emulation
experiment) onto a cluster of possibly heterogeneous machines

* Quantified packet processing capability

* Designed waterfall algorithm to map and partition a network
experiment

e Evaluated our framework via simulations and DDoS experiments



Thank you!

Questions?



