Towards High Fidelity
Network Emulation

Lianjie Cao, Xiangyu Bu, Sonia Fahmy, Siyuan Cao

Department of Computer Science

PURDUE

UNIVERSITY

This work has been sponsored in part by NSF grant CNS-1319924

How to experimentally evaluate an idea?

Network Simulator Network Testbed

n S - 2 - ..: : go‘lﬂt&ir!:gstbbed

NETWORK SIMULATOR

[r— —uuu.." -

.. >
* e g
=

ne-—= D-/ The DETER Project gen.

Explo g N V\.cr

NETWORK SIMULATOR

OPNET) ruanenas
E An open platform for developing, deploying, and accessing planetary-scale services

Network Emulator

» - controllers
F g
> sudo mn » A .. switches e
... hosts Distributed OpenFlow Testbed

How to map a networked app onto infrastructure?

Partition 2
Partition 1

Partition 3

Emulated
hosts

I

Containers,
virtual machines,

Emulate
network devices

Open vSwich,

Indigo Virtual Switch,

Problem

* In a distributed network emulator running on heterogeneous PMs,
how we can profile the physical resources and map a network
experiment onto the PMs with high performance fidelity?

* Challenges
o How to quantify the physical resources in heterogeneous cluster?
- How to partition a network experiment to achieve high performance fidelity?
o How to allow resource multiplexing on the same cluster?

* Design principles
o Integrity and fidelity
o Best effort
o Judicious use of resources

Design

Network
Experiment

1 Convert network

PM
Cluster
Experiment topology to weighted

Model the relationship

between resource usage Quantification Preprocess graph
and packet processing
capability

Experiment 1 Partition and map
Mapping experiment to
l heterogeneous PMs

Experiment
Execution

Resource Quantification

Traffic Generation

(packet sizes, software
switches, topology sizes, etc.)

Resource Usage Collection
(CPU, memory, network)

Model Fitting

(Polynomial regression)

2.0 le5

2core@1.20GHz
2core@2.39GHz
dcore@1.20GHz 3 3 :
4core@2.39GHz| =
5-switch
10-switch
15-switch
20-switch

=
wu
T

O > % 0O
o B> % 0O

o
Ul

Total Throughput (pps)
=
o

0 50 100 150 200 250 300 350 400
CPU Usage (%)

Pycore@izocuz(W) = 0.0168u? + 192.944u - 286.828
Pycore@2.3901z(W) = 0.425u? + 285.166u - 2709.699
Pycore@izociz(W) = 0.359u? + 112.275u + 4061.292
0.279u? + 316.796u + 948.393

P4core@2.39GHz(u)

Topology Abstraction

Mininet Topology Graph G=(V, E)
200
="

100Mbps |
_jij =6 et AJEJ
2001bps
\ AOOMbNOOI\prS 1000 bps |

0 2001dbps <4 1001dbps 55

100Mbps ()
hs

200 200

* Collapse end hosts to adjacent switches
* Edge weight w((a, b)) = link bandwidth
» Vertex weight w(v) =),w(a, b), where a=v or b=v

Partitioning and Mapping

* Objectives
* Avoid PM overload = performance fidelity
* Maximize PM utilization = resource multiplexing
* Minimize edge cut 2 traffic localization

* Input

* Weighted graph G = (V, E)

* Host resource requirements (e.g., CPU)

* Information of k PMs (e.g., PM capacity functions and CPU shares)
* Output

* Subgraphs Sy, S,,......, Si,r , where k' < k

Mapping Algorithm

Compute packet processing capacity pr—
Select minimal # of PMs

Normalize host CPU and capacity of D D D D
Initialize
Partition E
Evaluate
—

selected PMs
1. Decrease PM target CPU share if overloaded Update
2. Increase PM target CPU share to compensate ._/

for deductions from overloaded PMs
. No new branches E
. Termination counter exhausted

Invoke METIS with normalized input

Compute host CPU and capacity used on
each selected PM

%y

Convert capacity value to CPU for switches
Store and rank this result in a hash set
based on i) # of PM, ii) overutilization and
underutilization and iii) edge cut

Create new exploration branch if new PM
needed

/

for all branches
Select best result as output

Evaluation

e Simulation
* Evaluate Waterfall with various network topologies and cluster configurations

* DDoS experiments
* Evaluate Waterfall with testbed experiments

* Comparison
* Equal & Equal-sized partitioning using METIS
« U! 5 Use max CPU shares of PMs for METIS
« ' x U' 5 Use adjusted max CPU shares of PMs for METIS

. Ci(0.9) 2> Use 90% of max packet processing capacity for METIS
e SwitchBin & Default choice of Mininet cluster mode

Simulation

* Network topologies

* RocketFuel, Jellyfish and Fat-tree
41 ~ 670 nodes and 96 ~ 6072 edges

* Simulated clusters
* Large clusters: 21 PMs (sufficient resources)
* Medium clusters: one cluster per topology (just enough resources)
* Small clusters: one cluster for each topology (insufficient resources)
* Metrics

o . u
* Degree of overutilization: —

Ul

i_qi

. ..U :
* Degree of underutilization: for large and medium clusters

Ui
e Standard error of overutilization for small clusters
* Edge cut

Over-utilization

Under-utilization

Simulation Results

Large Cluster

Medium Cluster

0.4F B Fque W U B Waterfall |
o3L mm C(0.9) 3 0 x<U’ B

Of N Fguo EEE U
__________ ¢ (09) ot i

o~
o o
T

B Waterfall |

0.2

0.8

Qver-utilization

COLOoOLOCO0O000000C0
PwivFRORNWRULO N®
T

Under-utilization

o
8}

Fat-tree

Fat-ltree Jellylffish

Jellyfish RocketFuel

Select fewer PMs Low overutilization and underutilization

Judicious use of resources

4

RocketFuel

Integrity and fidelity

r

Standard Erro

o
w

o
o™

c o ©
[, I =) BN |

o
~

© ©
[N

o
=)

Small Cluster

BN Fpuod B U B Waterfall

mm O (0.9) @ 0 xU

Fat-tree Jellyfish RocketFuel

Balance overutilization on
heterogeneous PMs

Best effort

RocketFuel Example

o
10!
S0

/AH_.\.

Waterfall

/

DDoS Experiments

* Network topologies
* Small-scale topology: RocketFuel with 11 switches and 5 hosts
* Medium-scale topology: RocketFuel with 36 switches and 12 hosts

* Network traffic
* Background traffic: UDP traffic on all links
 HTTP traffic: HTTP traffic between victim clients and HTTP server
e Attack traffic: UDP traffic between attack senders and receivers
e HTTP traffic and attack traffic share certain bottleneck links

* Metrics
e CPU utilization of PMs
* Link utilization of experimental topology
 Completed HTTP requests

Small-scale DDoS

Medium-scale DDoS

Attack receiver

Victim client e

m—C
s36
c.
535

Victim client [l

| = C
mme | \ﬂ \ I o

/ c : E ‘ 531
Attack nder E] 16 i
Attack sender E

HTTP server

CPU Utilization

Results for Small-scale DDoS

CPU Utilization

1.4 .
| BN PM]1 BN PM3 B PM5 5

guitch B U g U Bquet 09) Water falt

< 90% CPU usage on selected PMs

No PM overload

Link Utilization

L2 Link Utilization HTTP Throughput
BN PM1 EEE PM3 BN PM5| LAt — guitehBin — 0' xU' — €' (0.9)
L2 b BN PM2 0 PM4 BB PM6 |- —_ ! Equal —— Waterfall
' : ; : ; : 1.2F ,
S 10/
<
o
o 0.8
£
a 0.6
E
T

=
B

o
()

0 20 40 60 80 100
Time (second)

> 90% link utilization HTTP throughput drop
High performance fidelity

120

Results for Medium-scale DDoS

Performance fidelity loss Insufficient CPU
due to PM overload allocation to end hosts

1-4 T T T T T T T T T
EEN PM1 EEE PM3 EEE PM5| 5 NN PM1 EEE PM3 BEE PM5| Lar | — SwitchBin — ' xU" — C'(0.9) []
1.2 ---------- B PMZ2] PM4 B PM - """""" 1.2k NG BN PM2 [0 PM4 BEER PM6| - 1o _— — Hqual —— Water fall
1.0} T ARl MASRISIRIIEREE Rl SIS LR USRI S _______________ T o ‘ | | | |
5 = 1.0 E_ 1.0t SRR U UUUO SRR
2 o
© 0.8 [N B B SR B B L B O e = o
N SOBHm - R I =ROR:] (] TR R TATHA o\ JTELL ot 1 A SO R
= = c
S5 = <
k] B I E 2 EEE B BN 5. 35 =
S — O-CfET{ = S [e 0 0.6 N]
z £ =
-
Ry SR B HEE R EE B B B EE BN REEEE 0.4 - s TogNy Y° LRy]
0.2 0.2 0.2f
0.0 _ : 0.0 ! i : i i
BT U U gl (09) o erfal 00 Br U w0 gt 109) fal 0 20 40 60 80 100 120
St 0 C wa Guitch 0"~ Eq ¢t 02 rater Time (second)

W sl
Selects fewer PMs

Achieves more balanced resource usage
Allocates desired resources to hosts and switches
Maintains high performance fidelity

Related Work

* Graph partitioning
e Kernighan-Lin (KL) algorithm: Kernighan@BSTJAN'70.
e Spectral algorithms: Pothen@SIMAX'90, Hendrickson@SISC'95.

* Multilevel algorithms/software: Barnard@PPSC'93, Hendrickson@SC'95, METIS,
Chaco.

* Network embedding and virtualization
* VM placement: Jiang@INFOCOM'12, Kuo@INFOCOM'14.
 Virtual network embedding: Chowdhury@ToN'12 (ViNEYard), Yu@CCR'0S8.

* Testbed mapping
e Ricci@CCR'03 (Emulab assign), Mirkovic@IMC'12 (DETER assign+), Yao@CNS'13
(EasyScale), Yan@SOSR'15 (VT-Mininet).

Conclusions

* Proposed a framework for mapping a distributed task (or emulation
experiment) onto a cluster of possibly heterogeneous machines

* Quantified packet processing capability

* Designed waterfall algorithm to map and partition a network
experiment

e Evaluated our framework via simulations and DDoS experiments

Thank you!

Questions?

