#### Partitioning Network Testbed Experiments

#### Wei-Min Yao, Sonia Fahmy Purdue University

# June 21, 2011

This work is funded in part by Northrop Grumman Information Systems, and by NSF grant CNS-0831353.



### Where to run our large-scale experiments?

- Where can researchers and operators conduct large-scale network experiments?
  - Building models for large systems in the current Internet is challenging.
  - Unlikely to conduct experiments on the production network.
- > The necessity of large-scale and high fidelity experimental environment.
  - Many large-scale attacks have second-order effects, e.g., worm or DoS causes excessive ARP traffic or BGP session resets
- Today's testbeds have 100~1000 nodes but we need to conduct accurate Internet-scale experiments



## **Experimentation Methods**

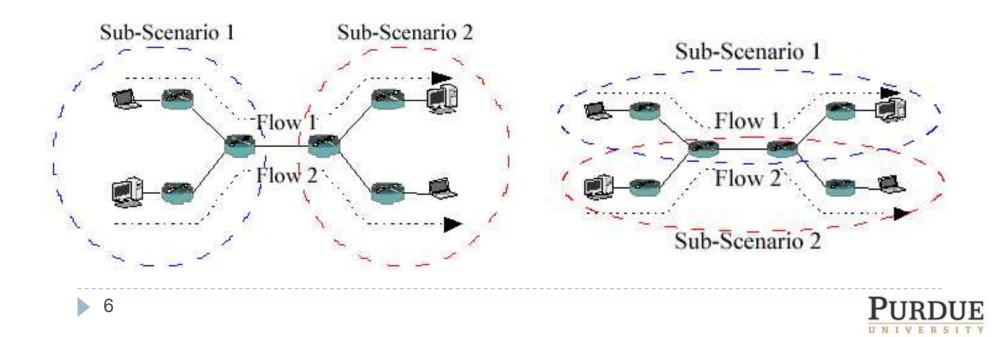
| Method                   | Scalability       | Fidelity                                    | Configuration                                          | Limitations                                                  |
|--------------------------|-------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|
| Simulation               | Medium -<br>Large | Problematic                                 | Easy for existing models                               | How to test new protocols or boxes?                          |
| Emulation                | Small - Large     | Good, but emulated parts can be problematic | Requires expertise                                     | Expensive to build and maintain.                             |
| Global-scale<br>testbeds | Medium+           | Higher                                      | Requires expertise                                     | Results are not<br>reproducible.<br>Not an isolated testbed. |
| Small testbeds           | Small             | Higher                                      | Easy for the target<br>scenario, but hard to<br>modify | Full implementation can be expensive.                        |



# The Question of Scale...

- Approaches to scale network experiments
  - Network Simulation
    - Parallelization
      - D PDNS [Riley et al, TOMACS'04], SSF [Ogielski et al, www.ssfnet.org]
    - Reduce simulation events
      - □ SHRiNK [Pan et al, TON'05], TranSim [Kim et al, INFOCOM'06]
  - Network Emulation
    - Intelligent resource allocation
      - □ Virtualization on Emulab [Hibler et al, USENIX'08]
    - Emulation with time virtualization
      - DieCast [Gupta et al, NSDI'08], SliceTime [Weingärtner et al, NSDI'11]
    - Simplify input topology
      - □ Path emulation [Sanaga et al, NSDI'09]
- There is no complete solution yet
  - No single approach is capable of scaling to Internet-scale.




# Partitioning network experiments?

- If an experiment is too large for a testbed, can we run a sequence of experiments on a testbed?
  - Not all flows in an experiment are directly related.
    - Identify "unrelated" flows and study them independently.
  - Fine-grained metrics are not always required for all the flows
    - Some loss of fidelity is acceptable, especially for background flows.

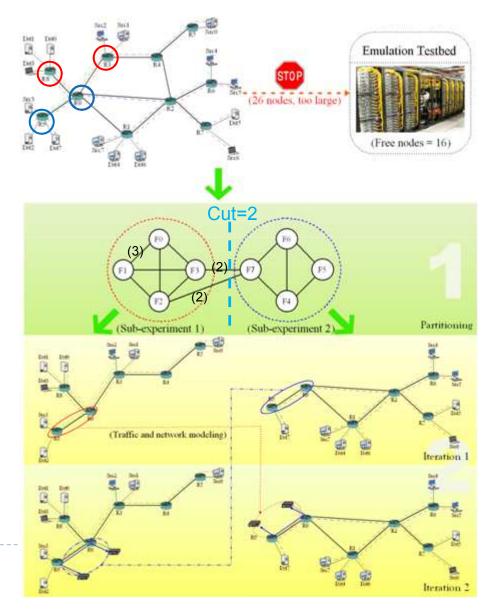


# Flow-based Scenario Partitioning (FSP)

- Partition network scenario into sub-scenarios based on flows
  - Partition a scenario (topology, flows) into sub-scenarios, given a constraint (maxNodes) on the number of machines in the testbed



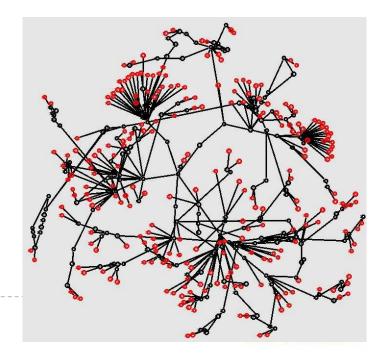
# Overview of FSP


Phase I:

 Construct a Flow Dependency Graph (FDG)

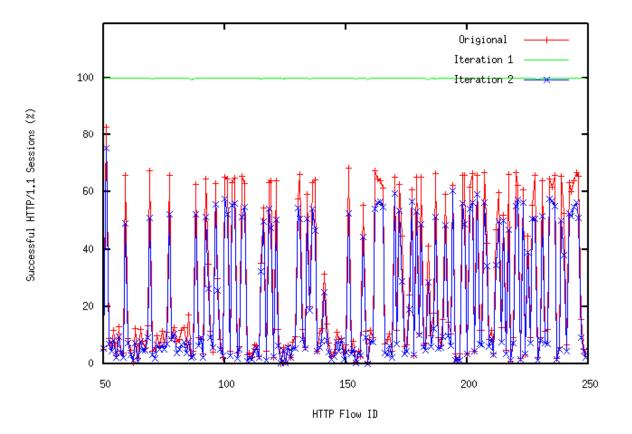
Phase 2:

7


- Conduct sub-scenario experiments independently and iteratively
- Collect traces for dependent flows, if any
- Extract from these traces: application traffic models and network conditions on nonshared links
- Conduct experiments



#### Botnet Experiment

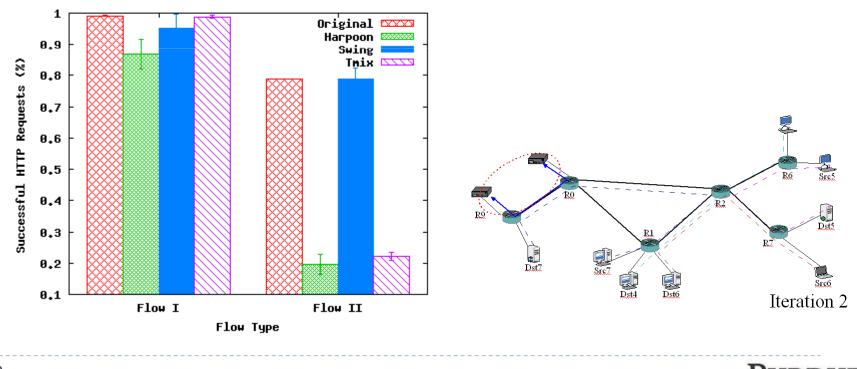

#### Experiment Setup

- Legitimate users from 200 subnets (/24)
  - Requests generated according to logs in a production web server
  - Cover 70% of the service providers of all visitors in 2009
- Attackers from 50 subnets (/24)
  - Selected from public black list (Dshield.org)
  - UDP flood attack
- Use traceroute to generate the topology
  - 438 nodes required (1232 routers initially)



Botnet Experiment

 Results from the 2<sup>nd</sup> iteration can be used to predict the original scenario (the success rate of HTTP 1.1 flows)






#### Traffic modeling tools

#### Tradeoff between fidelity and resources

- 0.8 M Packets (12 K connections)
  - Trace Size: 74 MB (pcap) vs 1.2 Mb (NetFlow)
  - Processing Time: I sec / 40 sec / 35 sec (Harpoon/Swing/Tmix)



# Conclusions

- FSP is a platform-independent mechanism to partition a large network experiment into smaller experiments.
  - Smaller experiments can be executed sequentially on a limited number of testbed machines.
  - No modification required on the testbed.
  - Can be integrated with existing virtualization and parallelization techniques.
  - Provides good prediction of coarse-grained metrics.
- We validated FSP in ns-2 and DETER testbed experiments
  - Evaluate the selection of weights when partitioning a FDG
  - Comparison between FSP and the TranSim downscaling technique
  - Comparison among different modeling tools in phase 2 (Tmix, Harpoon and Swing)





# Thank You



