A Framework for an On-Demand M easurement Service

Ethan Blanton, Sonia Fahmy, Sujata Banerjee*

Abstract

End-to-end network measurements such as delay, loss,
and available bandwidth are essential for optimizing and
managing network applications and services. Sharing
a network measurement service across multiple appli-
cations can significantly reduce measurement overhead,
increase accuracy, and remove the burden of perform-
ing network measurements from individual applications.
Network measurement data is most useful if measure-
ments can be requested on-demand by users at desired
times and frequencies. Clearly, in a federated environ-
ment, it is difficult to have the same level of trust in
all users making measurement requests. This paper de-
scribes a framework to provide network measurement in-
formation to untrusted users such that active measure-
ments can be taken in a safe manner. By safety, we mean
that users cannot trigger arbitrarily large measurement
probes that exceed a specified budget. We devise effi-
cient admission control and scheduling algorithms for re-
curring active measurements, such that the specified re-
source consumption budget of the service is best utilized.
We evaluate our approach in experiments under realistic
scenarios on the Emulab testbed.

1 Introduction

This paper explores network measurement as a service.
We consider how to serve measurement information to
untrusted hosts via a large-scale measurement infras-
tructure in a safe fashion. We define network measure-

*Ethan Blanton and Sonia Fahmy are with the Department of Com-
puter Science, Purdue University, West Lafayette, IN 47907-2107,
USA. E-mail: {eblanton, fahmy}@cs.purdue.edu. Sujata Banerjee is
with Hewlett-Packard Labs, 1501 Page Mill Rd., Palo Alto, CA 94304,
USA. E-mail: sujata.banerjee@hp.com.

TThis research is sponsored in part by a gift from Hewlett-Packard,
an Intel fellowship, and NSF CAREER grant 0238294. The authors
would also like to thank Puneet Sharma and Praveen Yalagandula (HP
Labs) and Ahmed Amin (Purdue University) for several helpful discus-
sions on this work.

ment information as a specific set of measurable network
characteristics (e.g., pairwise latency, available end-to-
end path bandwidth, traceroute-style path identification)
from which requesting hosts may choose a number of
characteristics to be measured at user-requested times
and frequencies. We consider a large-scale infrastruc-
ture to be one consisting of dozens to hundreds or more
cooperating measurement hosts serving arbitrary Internet
or intranet users. Finally, we define a safe measurement
service as one which honors administratively specified
bounds on network bandwidth and measurement host re-
source consumption.

The importance of a planned measurement infrastruc-
ture that can be shared among multiple network users
is well-recognized [19, 21, 29, 31]. End-host services
which benefit from an informed view of the network
are becoming more prevalent. These services include
bandwidth- and latency-sensitive multimedia conferenc-
ing or streaming systems such as end-system multi-
cast [3], latency- and loss-sensitive VoIP services such
as Skype, bandwidth-fair file sharing such as BitTorrent,
and server selection protocols, content distribution net-
works, and distributed storage systems. For example,
the Azureus BitTorrent client uses distributed network
measurement [17]. Another example is the Tor [5] over-
lay anonymity service, which cites widespread measure-
ment as one of the challenges to scalability [4]. Dis-
tributed and grid computing applications likewise ben-
efit from network health and behavior information [2]. A
shared measurement infrastructure allows network oper-
ators and managers with limited local resources to obtain
a better picture of the state of the Internet or an intranet,
or of their own connectivity to the Internet. This can be
useful for fault localization and network tuning. A safe
and independent measurement infrastructure can pro-
vide measurement data to these applications in a manner
which is “friendly”” to the network and controlled by its
administrators.

While several research studies have considered mea-

surement infrastructures [19, 21, 29, 31], our approach is
guided by the observation that the utility of a measure-
ment service is significantly increased by the extensibil-
ity of the queries it can answer, as well as its graceful
handling of heavy measurement request load. Previous
work either does not allow on-demand requests, or lets
each user independently invoke measurement tools and
places static filters on their traffic. In contrast to these
two extremes, we design a flexible yet safe service for
handling on-demand queries, and devise effective a pri-
ori admission control and scheduling strategies to ease
the burden of obtaining accurate and predictable mea-
surements for applications.

In this paper, we focus on the question of how to best
utilize a given budget of network resources that is al-
located to the measurement service. \We observe that
there are trade-offs among (i) the resources consumed by
measurement tools (e.g., bandwidth consumed by active
probes), (ii) the flexibility of the times at which measure-
ments are required, (iii) the required accuracy of the mea-
surements. These tradeoffs can be exploited to bound
the resource consumption of measurement tools, and to
reduce interference among them. For example, if the re-
quired measurement accuracy is not high, low cost mea-
surement methods can substitute for high cost ones to
reduce resource consumption. Another example is using
a single measurement invocation to satisfy two nearby
users requesting loss measurements to the same server
network at different times but with an indication that
measurement times are flexible within a certain range.
This reduces resource consumption and allows more re-
quests to be admitted.

We define a load invariant to ensure resource con-
sumption of measurement tools does not exceed the
given budget, and we show how this invariant can be pre-
served as new active measurement requests are submitted
to the system. The careful admission control of measure-
ment requests prevents the use of the measurement in-
frastructure as a denial of service tool, and allows the ad-
ministrators of measurement hosts to prioritize the mea-
surements they admit according to local policy. Flexibil-
ity in the requested measurement times and required ac-
curacy eliminates redundant measurements that can use
an undue share of network resources?®. Independent han-
dling of network measurement by each interested party
(as in today’s Internet and many of today’s measurement
infrastructures, e.g., [29]) causes the measurement load
on the network to be on the order of the number of prop-
erties measured times the number of processes interested
in each property. With a planned measurement infras-
tructure, we can reduce this to a single probe for each
property per pair of infrastructure hosts.

LplanetLab sees over 1 GB/day of outbound pi ng traffic alone [21],

due to redundant probing.

Our primary contributions in this work include: (i)
Definition of an architecture for a flexible yet safe mea-
surement service; (ii) Algorithms for admission control
and scheduling of recurring measurement requests; (iii)
Implementation of a prototype system, and (iv) Compar-
ison of simple admission control and scheduling tech-
niques for measurement requests using real experiments
on the Emulab testbed.

The remainder of this paper is organized as follows.
Section 2 describes the architecture of our network mea-
surement service. Section 3 gives our definitions and as-
sumptions, and discusses characterization of active mea-
surement tools. Sections 4 and 5 give our core algorithms
for scheduling and admission control. Section 6 gives
results from our experiments. Section 7 summarizes re-
lated work. Finally, section 8 includes a discussion of
our results and directions for future work.

2 System Architecture

We propose an open infrastructure in which users do
not require strong authentication or a priori enrollment.
This spurs our emphasis on honoring administratively-
defined load bounds on measurement hosts. A second
guiding principle is transparency. By transparency, we
mean that admission control decisions, known interfer-
ence among measurements, stale measurement informa-
tion, and other artifacts can be communicated to users
so that they may be accounted for. We also design to
be dynamic, by allowing any user to schedule measure-
ments on-demand rather than relying on fixed schedules
as in [19, 31], or serving least-common-denominator in-
formation. Finally, a primary concern in the user inter-
face is simplicity, such that applications can effectively
query network status without having to understand the
measurement tools or their operation.

Measurement requests can be made to any node that is
part of a measurement infrastructure, or to a special node
which communicates with the infrastructure on behalf of
the user, providing a standard interface, such as a web
server with request forms and output pages. The organi-
zation of measurement infrastructure nodes is decentral-
ized, so that any party having an available node to donate
may join the infrastructure to provide measurement ser-
vices. Measurement nodes locate each other by way of
a distributed naming system, such as a distributed hash
table (DHT) structure, e.g., [24], allowing nodes to join
and leave at arbitrary times without need for centralized
administrative action.

When a new measurement request is issued, its re-
source requirements are drawn from a measurement tool
database (discussed in section 3.3), and its two end points
are queried to determine whether they can support the ad-
ditional load. This load can include, for example, the

inbound and outbound access link bandwidth require-
ments, CPU load, and memory requirements. If all end
points can support this load, the measurement is admit-
ted and scheduled; otherwise, it is rejected and the re-
questing process is notified of this rejection. We utilize
TCP connections for sending measurement requests and
their responses. Successful measurement results may be
cached for a period of time and returned in case of similar
future requests.

The two end points of a measurement tool invoca-
tion are infrastructure nodes located in close proximity to
end users such that the measurements between them ad-
equately approximate measurements between end users.
Alternatively, the infrastructure nodes can process the
measurement results before returning them to the users,
to account for the network conditions between the infras-
tructure nodes and user machines. Such processing can
be informed by measurements performed between the
measurement host and the requesting end host. This al-
lows the infrastructure to scale well to the Internet scale,
in a similar vein as the Domain Name System (DNS).

3 Preliminaries

In this section, we define measurement requests and tools
more precisely, and give the assumptions we make in this
work.

3.1 Definitions

Consider a set of measurement hosts, hy,hy, ..., hn. As-
sume that an end-to-end active measurement request r
(defined below) is issued to host h; (sender), which will
perform its task by sending a stream of packets (typi-
cally referred to as probes) to h; (receiver). Each of h;
and h; will independently perform an admission control
(schedulability) test for request r, and if both end points
can admit r independently, then r will be admitted to the
system. For each admitted request, the hosts will com-
pute a measurement event e. Scheduling e will preserve
a specified load invariant that ensures load bounds are
maintained.

Definition 1 A measurement request r is represented as
a tuple (P, To, Tp, Tc), where P is the property being re-
quested (such as “latency” or “available bandwidth™),
To is the start time for the first measurement, Ty, is the pe-
riod (i.e., reciprocal of frequency) at which P should be
measured (e.g., every 30 minutes; Tp, is set to infinity for
one time only measurements), and T is the measurement
repetition count, which can be infinity if the measurement
should be periodically taken indefinitely into the future.
A measurement will be admitted if all repeating instances

ms |
mp 4l - _ _ _ _ _ _ _ _ _ _ _
my | o T
To
Mo
T —T7 %
t

Time

Figure 1: A set of scheduled measurement requests mg
through ms. Tg is the start time of a scheduled measure-
ment event; T is its period; and T is its repetition count.

of the measurement can be successfully admitted on all
hosts involved, without violating any load bounds.

A measurement event e is represented as a tuple
(M, To, Tp, Tc), where M is the name of the measurement
tool we wish to invoke (including any relevant configu-
ration information), and To, T, Tc are the same as in the
measurement request. The value of M could be, for ex-
ample, the standard pi ng utility [14], or a tool such as
Pathrate [7], pathChirp [25], or Tulip [20]. Fig. 1 depicts
a set of measurement requests, illustrating the To, Tp, and
T parameters.

3.2 Assumptions

We make the following assumptions in our work:

(1) Trust: We assume that a set of approved measure-
ment tools has been installed on the measurement infras-
tructure machines, which are assumed to be trusted and
to be running our software. This is a reasonable assump-
tion, since the infrastructure nodes will be under the ad-
ministrative control of system administrators, in the same
manner as local DNS servers, for example. A new mea-
surement tool must undergo a basic validation and vul-
nerability assessment process before installation on any
infrastructure node. Packet filters can then be installed
on the infrastructure node to enforce the expected behav-
ior computed during the validation process. Section 3.3
discusses the set of measurement tools we are utilizing
in our prototype.

In contrast to infrastructure nodes, users making mea-
surement requests are not assumed to be trusted; they
may submit unreasonable requests to attempt to overload
the service or launch denial of service attacks.

(2) Load bounds: For the purposes of admission con-
trol, we only consider load bounds on the sender and
receiver nodes of active measurement traffic, and their
access links to the Internet. An access link is typically

Table 1: A taxonomy of measurement tools.

| Tool | Property | Secondary | Resources | Duration
pi ng [14] latency jitter < 1 kbit per probe 1 RTT per probe
Pathrate [7] bottleneck band- | latency function of end-to-end | function of end-to-end delay; typi-
width bandwidth cally ~ 20 min.
pathChirp [25] | available band- | latency ~ 1 Mbps peak ~ 10 min.
width
Tulip [20] loss, reordering latency ~ 20 kbps peak linear function of end-to-end delay

one of the first 4 hops to/from that node. We believe this
to be a reasonable assumption because in today’s Inter-
net, backbones are mostly underutilized and experience
little queuing and loss [10, 11], while the access links
(sometimes referred to as the “last mile™) are typically
the bottleneck [12].2

(3) Time representation and clock skew: We encode
To, the start time of the first measurement in a repeating
sequence, as an absolute time in UTC. We do not account
for clock skew between the measurement infrastructure
nodes participating in a measurement in our current pro-
totype. Our system does not, however, require that ab-
solute system time is tightly synchronized between mea-
surement hosts. Mechanisms to deal with time offsets
can be engineered without difficulty, provided that clock
drift is not excessive.

(4) No preemption: We assume that scheduled mea-
surement events cannot be preempted. In other words, in-
coming requests are handled on a first-come first-served
basis, without giving any priority to any request over an-
other.

3.3 Measurement Tool Characterization

There is a plethora of tools to measure several aspects
of network characteristics, such as latency, jitter, path
bottleneck bandwidth, path available bandwidth, packet
loss, and packet reordering. For most such aspects, mul-
tiple tools provide measurements by differing methods
and of varying precision. In addition, some tools mea-
sure multiple aspects; in some cases, a tool measures one
property as a primary goal, but can also provide (possi-
bly low-precision) estimates of other properties. Hence,
we can perform several optimizations. For example, if a
measurement request for a property at a high precision
cannot be admitted, and a tool that produces a low pre-
cision estimate of that property is scheduled along the

2Techniques such as using BGP “atoms” as in iPlane [19] or using
correlation tests on packet delays as in [15, 32] can be employed to
identify a shared bottleneck that is not an access link but some other
link in the underlying network.

same path at the same times (or can be scheduled within
the load bounds), we can leverage the results from that
tool to satisfy the user request, indicating to the user that
the precision may be low.

We associate each measurement tool with a cost vec-
tor which approximates its resource requirements over
the duration of a single invocation of the tool at both the
sender and receiver. This includes inbound and outbound
bandwidth requirements, as well as other resource re-
quirements like CPU, memory, processes, and open TCP
connections (see [27] for end system resource require-
ments of measurement tools). We currently only con-
sider the inbound and outbound bandwidth requirements
at each node.

Table 1 summarizes information about the four pop-
ular tools we utilize in our prototype. These tools were
selected to be a representative set, both in terms of the
guantities they measure and the resources they consume.
We select only four tools for two reasons. First, many
measurement tools produced by the research community
are not currently suitable for usage in a measurement
infrastructure, due to invocation or resource contention
limitations. Modifying these tools to be used in such an
infrastructure is a time-consuming process. Second, we
are not attempting to quantify every possible measure-
ment tool behavior, because new measurement tools are
being produced every day. We simply select a represen-
tative set of tools for evaluation of the framework itself.
For each tool, we give the primary and secondary proper-
ties it measures, as well as its resource consumption and
how long it typically takes to produce an estimate.

Unfortunately, accurately formulating the resource re-
quirements of each tool as a function of the underlying
network conditions is challenging. For example, by ex-
amining the Tulip [20] source code, we determined that
its running time for loss detection on a lossless network
should be roughly the product of two run-time config-
urable constants: the number of probes sent and the de-
lay between these probes. However, in empirical mea-
surements on the Emulab testbed [8], Tulip required a
little more than twice this long to complete its measure-

ments. Further analysis revealed that the target of the
probes was only sending response packets to about one
third of the total number of probes, causing the sender to
pause for an extra period to wait for responses which may
simply be delayed in the network. Tulip was able to dis-
ambiguate these missing responses (perhaps stifled due
to ICMP rate limiting) from true loss, but their effect on
the running time is not reliably predictable from exami-
nation of the Tulip mechanisms. Section 6.6 further dis-
cusses such challenges, and experimentally explores the
sensitivity of the traffic injected by measurement tools to
cross traffic and end-to-end latency.

4 Recurring Measurement Requests

As discussed in Section 3, a measurement request may
indicate that a property should be periodically measured
a large number of times, or even indefinitely. We there-
fore devise an algorithm that, given a set of measurement
events, divides time into a series of discrete partitions for
which performing the admission control test over a spec-
ified duration, referred to as hyperperiod, of each com-
puted partition is equivalent to performing the test on the
entire continuous timeline. The hyperperiod represents
the least common multiple of the periods of individual
overlapping measurements. Sprunt [30] shows why hy-
perperiods are sufficient for schedulability tests.3

Fig. 2 gives our algorithm for computing the set of
partitions. In the pseudo-code, “append to output” in-
dicates that a tuple containing a list of events, start time,
end time, and hyperperiod is appended to the list of parti-
tions being generated as output. The function period(e)
returns the period of event e (i.e., its Tp; if Tp = o
(one-time-only measurement) we handle this as a special
case). Functions start(e) and finish(e) return the start
time and finish time of the first tool invocation and last
invocation in e, respectively. first(L) is a function re-
turning the first element of L, Icm(a,b) gives the least
common multiple of a and b, and removefirst(L) re-
moves the first element of L. The variable L stores the
list of events being added to the current partition, ps de-
notes the start time of the partition being computed, pe
denotes the end time, and hyper denotes its hyperperiod
duration.

The central intuition in this algorithm is that any long-
running measurement event, under the assumptions put
forth in Section 3, will be strongly periodic in exactly
the period Tp (defined in Section 3.1). Therefore, the
cost of any set of concurrent measurements is periodic

3Sprunt’s work extends Liu et al.’s rate-monotonic algorithm [18]
to handle aperiodic requests. Algorithms from the real-time scheduling
literature are not applicable to our problem, however, due to their dif-
fering underlying assumptions such as deadline-based scheduling and
preemptability.

let Es be initialized to the sequence of measurement events
ej scheduled on host h, sorted by start(e;).
let E¢ be initialized to the sequence of measurement events
ej scheduled on host h sorted by finish(e;)

let ps=pe =0.

letL=0.

while Eg # 0:
let pe = min(start(first(Es)), finish(first(E¢))).
let hyper = 1.

for each eventein L:
let hyper = Icm(hyper, period(e)).
if L # 0 append to output (L, ps, pe, hyper).
let ps = pe.
while Es # 0 and start(first(Es)) = ps:
let L=LU{first(Es)}.
let Es = removefirst(Es).
while finish(first(E;)) = ps:
letL=L—{first(Ef)}.
let Ef = removefirst(Ef).
while E # 0:
let pe = finish(first(E¢)).
append to output (L, ps, pe, hyper).
let ps = pe.
while E¢ £ 0 and start(first(E;)) = ps:
letL=L—{first(Ef)}.
let E; = removefirst(Ey).

Figure 2: Algorithm for partitioning time into segments
with hyperperiods of repeating history.

in the period of the least common multiple (Icm) of their
respective periods Tp, or their hyperperiod. For exam-
ple, assume there are three measurement requests, each
with their first occurrence at the same time ts, and their
final occurrence at the same time t¢, and T, values of 5,
10, and 25. For this, the hyperperiod will be lem(5, 10,
25), or 50. If we perform the admission control test over
any period of time of length 50 between ts and ts, it is
equivalent to having checked the entire time between tg
and t¢. Each partition output by our algorithm is a tuple
(L, tstart s tend, Ny per), where L is the set of events which
are scheduled during that partition, tgart and teng are the
starting and ending times of the partition, and hyper is
the duration of the hyperperiod within the partition that
is sufficient to test for admission control purposes.

The viability of a new measurement can be checked
by (i) tentatively adding it to the list of accepted mea-
surements, (ii) computing the set of partitions which are
created when this measurement is included by using the
algorithm in Fig. 2, and (iii) checking the first hyperpe-
riod within each partition for load invariance compliance,

as discussed in section 5.

4.1 Complexity

If E is a set of events scheduled at a particular host,
then the complexity of the algorithm in Fig. 2 is O(|E| x
Icmeceperiod(e)). To see this, note that the number
of partitions to be checked is bounded by 2|E|, as par-
tition boundaries fall only on the beginning or end of
events. Within each partition, the maximum computa-
tion required is bounded by the hyperperiod of the events
within that partition; this number is upper-bounded by
the hyperperiod of all events in the system.

4.2 Evaluation

Consider the scheduling of two concurrent measure-
ments between two hosts over a long period of time: a
latency probe once every minute and a loss measurement
once every ten minutes for three weeks, with the latency
probe being scheduled first. Suppose that the infrastruc-
ture chooses to satisfy the latency probe with a simple
pi ng, and the loss measurement with Tulip, configured
such that pi ng sends one packet for each probe and Tulip
sends an approximately 320 Kbps stream for a duration
of 300 seconds.

Using the period partitioning algorithm without any
further optimization, our infrastructure must examine
600 seconds (ten minutes) of history in order to make
an admission decision for the second measurement. Con-
trast this to the naive approach of simply checking the en-
tire footprint of each measurement, which would require
the computation and testing of three weeks, or 1,814,400
seconds, of traffic. Even examining only those time pe-
riods which contained an active measurement would re-
quire the computation and testing of more than half of
this period, due to the dense nature of the Tulip measure-
ments.

Using a simple simulator, we conducted a comparison
between the naive scheduling algorithm and our period
partitioning algorithm for this scenario. On a 2400 MHz
Pentium 4 PC, the difference between the run times for
the naive algorithm and period partitioning was more
than 145 seconds. The entire simulation run, including
simulator setup and the loading of the scenario from file,
took less than 800 ms with our period partitioning al-
gorithm. We do not claim that either implementation is
optimal; in particular, our choice of an interpreted im-
plementation language (Ruby) is likely to have inflated
these figures. However, the intuition stands, showing
that complete validation of inbound measurements for
load invariant compliance without optimization rapidly
becomes intractable.

Using the period partitioning algorithm, the maximum
running time of the admission control checks for a new
event being scheduled scales not by the length of time all
the repeating instances take times the number of sched-
uled measurements that overlap in time, but by the num-
ber of partitions it traverses, the length of their repeating
segments (their hyperperiods), and the number of mea-
surement events in each hyperperiod.

5 Admitting and Scheduling Measurement
Requests

As previously discussed, our current prototype only
considers inbound and outbound bandwidth constraints.
Subject to these bandwidth constraints and the no pre-
emption assumption, our goal is to maximize the number
of satisfied measurement requests, without violating load
bounds (i.e., while preserving the load invariant). We
employ two mechanisms to achieve this: (i) conflating
“similar” measurement requests, and (ii) estimating mea-
surement tool bandwidth requirements and comparing
their sum at any given time against the resource bounds.*
We discuss these two techniques in this section.

5.1 Redundant Requests

Consider a user that requests loss measurement between
a pair of hosts every 10 minutes, and another user that re-
quests loss measurement between the same pair of hosts
every 20 minutes starting at the same time. Clearly, we
can easily satisfy the lower frequency requester from the
information returned to the higher frequency requester.

In practice, the start times or periods of requests may
not be exactly identical. The more likely scenario is that
they are close to each other. Therefore, we allow each
measurement request to include a parameter pm (for plus
or minus), which denotes that a measurement event can
be scheduled with some flexibility. Specifically, a mea-
surement request for times To, To+ Tp, To+2Tp, ..., may
leverage one or more measurement events for the same
property, that are already scheduled at times To + pm,
To+Tpxpm, To+2Tp=£ pm, We adjust the definition
of r from Section 3.1 to include this parameter, making it
(P, To, Tp, Tc, pm). This allows us to conflate similar mea-
surements even when their start times are not identical or
their periods are not exact multiples of each other. For
example, a loss request with a 10-minute period and an-
other with a 15-minute period can be conflated if pm =5
minutes for the latter request.

4Observe that had we known all the requests a priori, had perfect
estimates of their bandwidth requirements, and had preprocessed them
to eliminate redundant requests, then maximizing the number of admit-
ted requests within load bounds at any given time becomes an instance
of the NP-complete Knapsack problem.

Figure 3: Two measurement schedules, mg and my, with
their combined schedule (labeled mg,1), and the com-
bined schedule with pm = Tp,/2, labeled mg.1. The hy-
perperiod is 15 in this example.

Note that if pm exceeds Tp/2, in the absence of other
restrictions, one measurement probe can be used to sat-
isfy two requested probe times. We restrict pm to Tp/2
for this reason. Fig. 3 depicts two requests for the same
property to the same end points, as well as their com-
bined schedule and a collapsed schedule which serves
both of these requests with one set of measurements, us-
ing pm=Ty/2.

The measurement conflation operation is performed
by analyzing the partitioned periods created by the al-
gorithm in Section 4. Only the hyperperiod of a partition
is examined to find all scheduled events within that par-
tition which can satisfy a new request, and, likewise, the
probes in a new request which are unsatisfied within that
partition.

Finally, we can utilize secondary properties estimated
by a tool (given in Section 3.3), when scheduling a tool
that measures a requested quantity as a primary property,
is infeasible.

5.2 Admission Control Tests

We investigate two approaches for our admission con-
trol test to ensure that the load invariants are preserved.
The first approach we devise simply uses the peak band-
width of each measurement tool over a fixed interval of
time. This peak bandwidth is calculated as the maxi-
mum number of bits transferred in any interval of the
specified length, divided by the interval length in sec-
onds. Therefore, if the specified interval is 1 second, the
result of this computation is simply the maximum num-
ber of bits transferred in any one second interval. Sepa-
rate figures are kept for inbound and outbound bandwidth
for every participating host. Admissible traffic bounds
are expressed as a simple inbound and outbound scalar.

A measurement is admissible if its bandwidth require-
ments (drawn from its cost vector in the tool database),
when added to the existing measurements scheduled at
the same time, do not exceed these admissible traffic
bounds.

To capture the high variability in instantaneous band-
width of many measurement tools, the second approach
uses the average bandwidth over a fixed interval of time.
The measurement tool execution duration is discretized
into windows of a specified interval of time, and the
amount of bandwidth utilized during each of these win-
dows is computed separately. This series of values is
summed and divided by the number of intervals, yield-
ing an average value. The averages for inbound and out-
bound traffic of the two end points are used to charac-
terize the tool. Similar to the previous scheme, traffic
bounds are expressed as a pair of values, and any mea-
surement which causes the sum of all scheduled mea-
surements at a given time to exceed this value, is rejected.

A possible variation on this second approach estimates
the average bandwidth utilization separately for each
“phase” of execution of a measurement tool. This ap-
plies to measurement tools that have distinct phases with
wildly different resource requirements in each phase,
such as Pathrate, and not to uniform tools like pi ng.
Fig. 4 depicts the resource requirement estimation for the
Pathrate tool using this method (measured on an Emu-
lab node). There are four phases and hence four aver-
age bandwidth estimates for Pathrate execution: one for
the initial spike, one of the ramp which follows, one for
the low-bandwidth middle section, and a final average of
the high-bandwidth phase at the end. Unfortunately, it is
non-trivial to identify the times at which one phase ends
and another begins, since these times can be sensitive on
the underlying network characteristics.

1200 ‘ ‘ | | |
Measured bandwidth
Global average -------
1000 1 Piecewise average 1
o
g 800 f |
=3
£ 600 | |
£ w0
M
200 é
¥ |

0 . i
0 200 400 600 800 1000 1200

Time (s)

Figure 4: Actual (outbound) bandwidth used by Pathrate
in a particular run, along with the single average band-
width computed over its entire runtime, and the average
bandwidth broken into phases.

It is important to note that admission control tests from
the connection admission control literature [9, 16, 23]
cannot be directly leveraged here due to four primary
reasons. First, the admission control literature does not
schedule flows to begin at arbitrary times in the fu-
ture. Therefore, it can utilize online measurement-based
techniques, whereas we cannot. Second, the resource
requirements of typical active measurement tools are
highly bursty during different intervals of the measure-
ment tool invocation. Third, in contrast to the admission
control literature which focused on loss and delay guar-
antees for individual flows, our requirements are defined
as aggregate resource constraints on nodes and links. Fi-
nally, we can exploit end system scheduling flexibility
with respect to the times of invocation of measurement
tools, whereas the admission control work does not.

6 Prototype and Experimental Evaluation

We have implemented a prototype of the mechanisms
discussed in the Sections 4 and 5. In this section, we
give the results from a representative set of experiments
with our prototype on the Emulab testbed [8]. We select
Emulab experiments (rather than Internet experiments,
e.g., using PlanetLab) for our initial prototype for three
primary reasons. First, we need the results with different
mechanisms to be easily comparable so we can under-
stand which ones work best in depth. Second, we need to
easily compare our results with a known “ground truth.”
Finally, we would like to systematically explore the im-
pact of varying underlying network properties, such as
link propagation delays and cross traffic, which cannot
be controlled on the Internet or PlanetLab.

The experiments in this section are designed to
demonstrate four major points. First, we quantify the
benefit of applying admission control to measurement
traffic under a variety of request workloads. Second, we
compare different admission control tests and timescales,
with and without methods for eliminating redundant re-
quests. Third, we show that simple estimates of resource
requirements of tools such as those described in Sec-
tion 5 adequately capture the behavior of network mea-
surement tools and allow us to well-utilize our resource
budget. Finally, we demonstrate that our admission con-
trol tests are sufficiently robust to reasonable variations
in network behavior, such as latency and the presence of
cross-traffic.

6.1 Experimental Scenario

Fig. 5 gives the topology we use in our experiments. The
link connecting the core ring to the leaf subnetworks is
what we consider to be the bottleneck access link. We

choose values to represent a modem user, DSL user, ca-
ble modem user, T1 link, and T3 link. Each edge router
has a cluster of three hosts connected to it, similar to
those depicted on the DSL and T3 networks in the di-
agram. Unless otherwise specified, the links connecting
these hosts are 100 Mbps Ethernet with an artificial de-
lay of 2 ms, 2 ms, and 3 ms on the DSL cluster, and
4 ms—15 ms for the remaining hosts, increasing by 1 ms
per host, clockwise around the ring as shown. The mea-
surement host in each cluster is the “center” of these val-
ues. For convenience, we will number the hosts as host 1
through host 15, again clockwise starting with the first
DSL non-measurement host. The queue depth is 50 for
all queues, and all queues are drop-tail.

host4

T3
3Mbps 5ms
N G,
5ms P
10M® /a\ 5ms
Core

Modem 56kbpg’ 1.5Mbps_T1
.. D

Figure 5: Experimental topology on Emulab. The links
in the core network are unmodified 100 Mbps Ethernet
links.

Unless otherwise specified, we configure the hosts to
use either peak or average bandwidth for admission, and
submit a fixed set of randomly-selected measurement re-
quests to the system. The tool to be run, source host, and
destination host of each request are uniformly and ran-
domly selected from the four tools and five measurement
hosts described above; measurements which would use
the same host for source and destination are discarded.
The parameters To, Tp, and T¢ are also randomly selected,
such that each request starts and ends within a 45-minute
window. Except where otherwise stated, we set pm to
zero, so that we can easily isolate the impact of each
mechanism and interpret the results. Further, we do not
utilize secondary properties measured by a tool in these
experiments (for the same reason). Each host sets its in-
bound and outbound bandwidth upper-bounds to 20% of
the bandwidth of its access link over the entire experi-
mental duration. Unless otherwise stated, we use 1 sec-
ond for the duration of the time interval for the peak and
average admission control methods.

To estimate measurement tool resource requirements
for these experiments, we ran each tool used in these ex-
periments between all pairs of measurement hosts on our
experimental network. We found that the behavior of
some measurement tools (notably Pathrate) is sensitive

to bottleneck link bandwidth (see Table 1). Therefore,
we use the appropriate estimates from this data set for
each measurement host, to accommodate the large dis-
crepancies in link bandwidth in our experimental topol-
ogy (specifically, the modem link versus the T3 link).
In practice, each infrastructure node would select from a
small set of resource requirement estimates based on the
range in which its access bandwidth falls.

In several of the following scenarios, the modem host
suffers a significantly larger number of resource bound
violations than the other hosts. This is due to the extreme
constraint imposed by the modem’s bandwidth capabil-
ity, causing even minor estimation errors to potentially
lead to oversubscription of the modem link bandwidth.

6.2 The Case for Admission Control

We first compare the peak and average methods with
the case when no admission control is employed. The
measurement request workload used here is created by
taking 10, 25, or 50 random measurement requests, and
scheduling them across the DSL, modem, cable, and T3
measurement hosts. Each experiment runs for approx-
imately 45 minutes, or 2700 seconds. We measure the
traffic created by measurement tools under this scenario,
and compute violations of the specified bounds versus
measurements admitted.

Table 2, 3, and 4 give the results of these experi-
ments for 10, 25, and 50 measurement requests, respec-
tively. All bandwidth values (bwi, and bwgy) are in
kbps, and represent the average bandwidth utilized at a
measurement node over the course of the entire exper-
iment (rounded up to the nearest integer). The “req’d”
(requested) and “failed” columns represent the absolute
number of measurement requests involving a given host,
and the number of those which were unsatisfied, respec-
tively. The Vi, and Vo columns represent the number
of seconds (rounded up) when the inbound or outbound
load bounds, respectively, were violated. Within each ta-
ble, the same set of random workloads was repeated for
each admission control method (no admission control,
average bandwidth, and peak bandwidth usage).

Note that the average bandwidth usage and number of
load bound violations increases steadily with the work-
load for the scenarios using no admission control. With
the average and peak admission control methods, how-
ever, the average bandwidth usage peaks very close to the
25-measurement workload, and violations likewise level
off. The average bandwidth estimation scheme, by its
very nature, allows some violations to occur. However,
these violations represent only a relatively small portion
of the 2700 second duration of the experiment. Hence,
the average method trades off strict adherence to the re-
source budget, for admitting additional measurement re-

Table 2: Statistics from an average of ten 10-
measurement workloads.

| Host | req’d | failed | bwin [bWou | Vin | Vou |
No Admission Control
T3 5.3 0| 158 109 0 0
DSL 4 0 52 123 | 45| 228
Modem 4.9 0 10 13 | 311 | 704
Cable 5.8 0| 102 67 0 0
Average Admission Control
T3 5.3 0.3 84 112 0 0
DSL 4 0.7 54 52 1| 10
Modem 4.9 2 2 3| 48| 64
Cable 5.8 1 92 62 0 0
Peak Admission Control
T3 5.3 0.9 72 85 0 0
DSL 4 1.3 9 38 0 0
Modem 4.9 25 2 2| 3| 39
Cable 5.8 1.3 94 51 0 0

quests, especially as the request workload increases.

6.3 Redundant Requests and pm

Table 5 illustrates the potential savings of measurement
tool invocations when pm > 0. Each row of the table rep-
resents an average of four workloads of a given number
of measurement requests from section 6.2. The number
of measurement tool invocations in the measurement re-
quests is shown, along with the number of actual invoca-
tions which were required to fulfill the requests, for both
the case of pm = 0 (i.e., exact match required to con-
flate) and pm = Tp/2. It is important to note that many
of the additional measurements which are admitted in
the scenarios with a larger number of measurement re-
quests are inexpensive, afforded by the larger number of
potential requests available to the system. Therefore, the
gains in the “Saved” columns represent both additional
scheduling freedom afforded by conflation of expensive
measurements, as well as potentially large numbers of in-
expensive measurements admitted at little or no cost into
that additional room. In summary, we find that we can
effectively admit additional measurements when there is
scheduling flexibility.

6.4 Estimation Accuracy for a Typical
Workload

The goal of the next series of experiments is to investi-
gate the accuracy of using peak, average, and piecewise
average bandwidth as discussed in Section 5 in more
depth, using a typical request workload.

Table 5: Number of requested tool invocations versus actual tool invocations with pm = 0 and pm = Tp/2, with the
percentage of requested invocations saved.

pm=0 pm="T,/2
Workload | Req’d Invocations | Invoked | Saved || Req’d Invocations | Invoked | Saved
10 1760 1714 2% 1760 1619 8%
25 3130 3014 3% 3131 2389 23%
50 5307 4842 8% 5660 3431 39%
100 8411 6686 20% 10668 4793 55%

To formulate a typical measurement request workload,
Table 3: Statistics from an average of ten 25- we create three “roles” for the end points, requiring them

measurement workloads. to probe various network characteristics. The hosts are
| Host [req’d | failed | bwin | bwow [Vin | Vou | divided among those interested in participating in an end-
No Admission Control system multicast video stream, online gaming, and an
T3 13.2 0| 441 359 0 0 | end-to-end network capacity probe (possibly a system
DSL 11.7 0| 199 451 | 345 | 838 | administrator). Within each group, pairwise probes are
Modem | 11.8 0 15 20 | 602 | 1151 | initiated (i.e., n? mesh). Direction-sensitive measure-
Cable 13.3 0| 446 209 0 0 | ments are requested in both directions over each path,
Average Admission Control while pi ng, our only direction-insensitive measurement,
T3 130 31 778 595 0 0 is reduced by the ?nfrastructure to one probe per end-
DSL 117 21129 547 1 130 | 415 t_o-end path_. The first group of hosts, end—s_ystem mul-
Modem | 118 66 Z 7 T3 1 204 ticast, requires latency and available bandwidth probes,

provided by pi ng and pathChirp, respectively. Latency

Cable 133 36| 81 154 0 0 probes are run every 10 seconds, and available bandwidth

Peak Admission Control every 15 minutes. These hosts are located on the T3, T1,
T3 132 51 113 211| O 0 | and cable networks. The second group, online gamers,
DSL 11.7 57| 31 57 0 0 | areinterested in end-to-end loss and latency. To satisfy
Modem | 11.8 7.8 3 3| 78| 56 | theserequests, latency probes are scheduled via pi ng ev-
Cable 13.3 5| 217 91 0 0 | ery 10 seconds, and loss probes using tulip every 5 min-

utes. These probes are invoked between measurement
hosts on the modem and T1 networks. Network capacity

Table 4: Statistics from an average of ten 50- is measured using Pathrate, which is invoked once be-
measurement workloads. tween the T3 and DSL networks. All probes are sched-
| Host | req’d | failed [bwin | bWow | Vin | Vou | uled from the measurement hosts starting at time 0, and,
No Admission Control as before, complete all repetitions within 45 minutes.
T3 25 0| 435 | 414 0 0
DSL 243 0 | 248 351 | 1104 | 713 Fig. 6 depicts the measured outbound traffic on the
Modem | 25.6 0 56 57 1 1504 | 2022 | Measurement host behind the T3 line, named “host5” in
Cable 551 01 330 366 26 6 Fig. 5. The plot also shows our estimates of the traffic on
— this node using the overall average bandwidth scheme.
Average Admission Control For the peak scheme, we find that the estimated band-
T3 24.8 9.7 | 250 315 0 0 width usage is much higher than the actual bandwidth
bSL 234 98 | 144 165 | 190 | 251 | qeen. This trend is visible in the other experiments that
Modem | 264 | 17.2 6 7| 535 | 593 | \ve have conducted. The peak scheme pessimistically as-
Cable 254 75| 334 226 15 1 | sumes that the moment of maximum utilization of each
Peak Admission Control overlapping measurement will occur at the same time,
T3 25| 118 | 186 154 0 0 | yielding a peak bandwidth utilization which seldom oc-
DSL 243 | 115 56 67 0 0 | cursin actual usage. Based upon these results, it appears
Modem | 25.6 | 17.9 5 5| 345 | 298 | that the average bandwidth estimate is better suited for
Cable 25.1 10 | 161 179 0 0 | a measurement service that schedules events at arbitrary

times in the future.

10

2500

M easured
Average
200+ i Peak —
2
e}
< 1500
<
B
£ 1000
& ;
m
500
0 ‘
0 500 1000 1500 2000 2500
Time (s)

Figure 6: Outbound traffic seen emanating from host5,
as well as the estimates using the average and peak band-
width schemes.

In Fig. 7, we replace the Pathrate estimated bandwidth
requirements from Fig. 6 with the requirements using
the method that divides traffic into phases and estimates
the average for each phase separately (piecewise aver-
ages). Clearly, the estimates are much more accurate in
this case, demonstrating that using separate estimates for
individual phases can have a significant impact for mea-
surement tools which exhibit such wildly differing peri-
ods of behavior during a single invocation.

1600 |

3 Measured -
1400 | Estimated —— |
& 1200 |
g
£ 1000
5 800
3 600
&
@ 400
200
O ! ! !
0 500 1000 1500 2000 2500
Time (s)

Figure 7: Outbound traffic from host5, with the estimate
for Pathrate traffic using an estimator which provides dif-
ferent average bandwidths for each of the “phases” of
execution of Pathrate.

6.5 Single-Tool Estimation Accuracy

We ran a series of experimental scenarios which per-
formed random workloads as in the previous section,
but where all measurements were restricted to a sin-
gle property, and thus a single tool. By restricting the
schedule in this manner, we minimize intra-tool interac-

11

Table 6: Statistics from an average of ten 25-
measurement tulip workloads.

| Host [req’d | failed [bwin [bwow | Vin | Vou
No Admission Control
T3 11.3 0 14 12 0 0
DSL 8.9 0 9 10 0 0
Modem | 10.9 0 12 12 | 1230 | 1239
Cable 10.2 0 11 12 0 0
Average Admission Control
T3 11.3 1.6 12 10 0 0
DSL 8.9 15 8 8 0 0
Modem | 10.9 5.6 7 7| 561 | 609
Cable 10.2 1.2 10 11 0 0
Peak Admission Control
T3 11.3 2.9 10 9 0 0
DSL 8.9 2.7 7 6 0 0
Modem | 10.9 | 10.9 0 0 0 0
Cable 10.2 3.2 8 9 0 0

tions and can eliminate inconsistencies caused by tools
which exhibit undesirable or difficult to quantify behav-
iors (e.g., the various “phases” of Pathrate). The results
of these scenarios for the tulip and pathchirp tools in 25-
measurement workloads are shown in Table 6 and Ta-
ble 7, respectively.

Once again, we see that the average bandwidth esti-
mate admits some measurements where the peak band-
width estimate does not, and consequently generates a
larger number of violations. However, in several scenar-
ios (particularly the pathchirp scenarios), it is able to ad-
mit more measurement requests than the peak bandwidth
estimate without causing any violations at all. Note also
that, in some instances, the conservatism of the peak
bandwidth estimate mechanism precludes it from admit-
ting any measurements at all on some hosts.

6.6 The Impact of Changing Network Con-
ditions

Our next series of experiments aims to validate that mea-
surement admission control can be performed even under
some degree of changing network conditions or underly-
ing characteristics. We will first examine measurement
tool behavioral changes in the presence of cross traffic,
and then the impact of differing end-to-end delays.
Cross Traffic. In this set of experiments, three types
of cross traffic were generated, sourced and sinked at
the various non-measurement hosts. These types were:
HTTP sessions generated by WebStone 2.5, back-to-
back bulk TCP transfers of 2048 writes of length 8192
(sourced and sinked with the “ttcp” tool), and variable bit

Table 7: Statistics from an average of ten 25-
measurement pathchirp workloads.

| Host [req’d | failed | bwin [bwouw | Vin | Vou]
No Admission Control
T3 11.3 0| 259 328 0 0
DSL 11.2 0| 297 248 | 409 | 305
Modem 8.9 0 47 14 | 336 | 556
Cable 10 0| 273 199 0 0
Average Admission Control
T3 11.3 43| 195 257 0 0
DSL 11.2 7.2 | 156 132 | 72| 35
Modem 8.9 8.9 0 0 0 0
Cable 10 4| 201 147 0 0
Peak Admission Control
T3 11.3 7.4 | 158 206 0 0
DSL 11.2 9.1 95 105 0 0
Modem 8.9 8.9 0 0 0 0
Cable 10 6.3 | 157 120 0 0

rate “Ogg Vorbis” streams of average bandwidth ranging
between 120 and 125 kbps. Each WebStone session was
configured to behave as a single browsing client, fetch-
ing files ranging in size from 0.5 kB to 5 MB. Table 8
summarizes the traffic mix used in these experiments. In
the table, “server” and “client” are used in the traditional
sense for streaming audio and web traffic, and to indi-
cate the TCP sender and receiver, respectively, for ttcp
bulk transfers.

Fig. 8 repeats the same experiment with results de-
picted in Fig. 6, but with the difference that we inject
cross traffic as given in Table 8. We use the average
method for the estimate shown in the plot. It can be seen
that there is little difference between the measured traf-
fic in Fig. 8 and 6. The largest discrepancy between the
measured and estimated values in Fig. 8 is during the fi-
nal burst period of Pathrate: the burst period is delayed
from about time 650 seconds to around 800-900 seconds,
and is shorter in overall duration. This demonstrates that
admission control methods are still applicable even when
the cross traffic conditions when invoking the measure-
ment tools are different from the conditions used for de-
riving their bandwidth requirements. Overall, we find
that the admission control methods are quite robust to
changes in cross traffic.

End-to-end Delay. In order to quantify the effects
of end-to-end latency on admission control tests, we
conducted a series of experiments with 100 randomly-
selected requests, using the average estimator. We varied
the delay on each of the “arms” of the star topology (the
link between the central ring of routers and the router
heading each cluster of hosts) in 5 ms increments from

12

Table 8: List of transfers used to create cross-traffic for
the evaluation of measurement tool characterization in
the presence of competing flows.

| Traffic type | Client | Server |
Bulk transfer host4 | host7
Bulk transfer host13 | hostl
Streaming audio | host13 | host4
Streaming audio | hostl | host4
Streaming audio | host3 | host4
Streaming audio | hostl3 | hostl
Web host10 | hostl
Web host6 | host9
Web host6 | host3
Web hostl | host6
Web host15 | host6
Web host7 | hostl3
Web host9 | host3

5 ms to 100 ms, for total end-to-end one-way delays of
up to 200+ ms. We investigated any correlations between
these expanding delays and systematic changes in load
bound violations, but found none. Again, “violations”
means the number of seconds during the scenario where
the measured rate exceeds the allowable rate. The reason
for violations is that the measurement tool resource re-
quirements were characterized in a different environment
than that in which the measurement tool is now being in-
voked.

Fig. 9 depicts the violations at each delay value for the
modem and DSL hosts. As discussed in Section 6.2, the
other hosts exhibit very few violations. These findings
show that, while the violations differ from scenario to
scenario due to differences in the measurement schedule,
there is no strong trend related to network delay.

6.7 Estimation Timescales

In this section, we evaluate the impact of the timescale
over which measurement tools are characterized and
admission control tests are conducted. We consider
both the average and peak bandwidth admission meth-
ods, where the bandwidth is calculated over intervals of
100 ms, 1, 2, and 4 seconds. Table 9 shows the percent-
age of measurements which were satisfied for the various
timescales. We utilize a workload of 50 randomly gener-
ated requests (the same requests as in Section 6.2), with
the results being the average of ten such workloads.
This table illustrates that the average admission con-
trol method, as expected, is quite robust to the timescale
over which estimations are made. Load bound viola-
tions are also consistent across these runs, with varia-

1800

Measured
1600 Estimated ——
1400
[7)
g 1200
=
= 1000
2 800
T 600
m

400
200

4 i

1000 1500 2000

Time (s)

500 2500

Figure 8: Outbound traffic seen on host5 for the same
measurement set as Fig. 6, but with cross traffic in the
network. The figure shows that average traffic tool es-
timates taken from a network with no cross traffic still

apply.

700
600 |
500 |
400 |
300 |
200 | |
100 |

10 20 30 40 50 60 70 80

Arm Delay (ms)

I
Modem

Violations

o

90 100

— ~

Figure 9: Star “arm” delay versus observed violations at
various measurement hosts for increasing one-way de-
lays.

tions between estimation timescales being smaller on av-
erage than variations between experiment runs. The peak
method varies in its acceptance rate, with the shorter in-
tervals admitting fewer measurements. Violations under
the peak method vary correspondingly, with longer in-
tervals displaying more violations than short intervals.
The difference among the two methods can be attributed
to the highly bursty nature of measurement tool traf-
fic. The average bandwidth admission method admits
a larger number of more expensive measurements (e.g.,
using Pathrate) early on, rejecting later measurements
of perhaps lower bandwidth requirements. In contrast,
the peak bandwidth admission method “fills in” gaps
in its schedule with inexpensive and non-conflicting re-
quests. For example, in one particular measurement
schedule, the average bandwidth admission controller ac-

13

Table 9: Measurement request success rates for vary-
ing estimation timescales for the average and peak band-
width admission methods. All figures are averaged over
10 runs of random workloads.

| Timescale | Average | Peak |

100 ms 59.6% | 38.8%
ls 60.2% | 47.2%
2s 60.2% | 46.6%
4s 60% 51%

cepts 8 Pathrate invocations, while the peak bandwidth
admission controller admits only 1. This leaves room in
the peak bandwidth admission controller schedule to ad-
mit 8 more of the less expensive Tulip requests than the
average admission controller, which had filled its sched-
ule with Pathrate requests.

7 Related Work

An early measurement infrastructure is the National In-
ternet Measurement Infrastructure (NIMI) mesh [22].
Many of the goals of the NIMI project are similar to
this work; however, we focus on a more open architec-
ture, with little or no need for central authentication of
individual users, and we endeavor to provide scheduling
guarantees which NIMI does not address. Furthermore,
NIMI nodes are intended to take only one measurement
at a time.

Another early work from Kalidindi et al., Sur-
veyor [13], uses dedicated infrastructure machines to
take continuous unidirectional measurements of a few
key network properties. Surveyor differs significantly
from this work in that it does not provide a broad set
of network measurements, and does not allow for them
to be scheduled on demand.

Nakao et al. propose a “Routing Underlay” archi-
tecture [21] which provides typical overlay link perfor-
mance metrics to applications on an overlay network. In
contrast to this routing underlay, our work is intended to
expose a wider variety of network measurement informa-
tion to hosts both within and without the actual measure-
ment mesh, as well as allow requests for specific mea-
surements at stated intervals.

Spring et al. propose a public measurement facility,
Scriptroute [29], which allows individual users, network
managers, or researchers to conduct network measure-
ments on a shared measurement mesh, controlled by se-
curity and rate-limiting filters. Scriptroute accepts ar-
bitrary measurements at arbitrary times and blindly en-
forces administrative bandwidth and security filters, po-

tentially invalidating measurements, before the probes
even leave the measurement host. Scriptroute lets indi-
vidual users select, configure, invoke, and use the mea-
surement tools. Our framework eases some of this bur-
den on users, and carefully schedules its measurements
such that every accepted measurement is guaranteed to
be allowed by the bandwidth and security filters in place
on the measurement infrastructure. In addition, our ser-
vice can better utilize its resource budget since it parses
and maintains all requests and exploits any similarities
among them.

The Scalable Sensing Service (S%) [31] is a sensing in-
frastructure for large-scale distributed and federated sys-
tems. It provides data from a number of measurement
tools which are run continuously on the PlanetLab infras-
tructure. Unlike our framework, measurement requests
cannot be scheduled by arbitrary users on-demand in S3.

iPlane [19] also performs scalable continuous mea-
surements over a set of Internet paths. As with S2, iPlane
performs no measurements on-demand. Hence, it is un-
suitable for troubleshooting transient faults in progress or
other tasks which require real-time results. Additionally,
we provide more fine-grained administrative control over
the load placed on individual measurement hosts and net-
works.

Calyam et al. present a scheduling algorithm sub-
stantially similar to that in Section 4, for many of the
same reasons [1]. The behavior of their algorithm is dif-
ferent from ours in the event that a measurement can-
not be scheduled as requested, as they treat the schedule
as a flexible deadline-driven real-time schedule, rather
than our more restrictive notion of pm. The authors also
present a measurement scheduling service which consid-
ers administratively defined load bounds in [2]. Their
work concentrates on the effects of the scheduler on re-
quest fulfillment and delay, whereas we focus on the is-
sues surrounding the administrative bound and its viola-
tions and maintenance.

A number of recent studies have considered specific
subproblems that arise in network measurement. The re-
dundant measurement problem has been considered in
the context of traceroute in [6]. Their work exploits the
tree-like structure of routes, and starts probing a path
near its midpoint. ProgME [33] defines “flowsets” as
arbitrary sets of flows that can be specified for mon-
itoring and queries, such as heavy-hitter identification.
Sommers et al. [26] design a unified measurement tool,
SLAM, that measures delay distribution, jitter, and loss
of a path. These studies are complementary to our work
and can be integrated within our framework.

14

8 Discussion and Future Work

In this paper, we have defined a novel framework for
admitting and scheduling recurring active measurement
requests. Our framework can enable shared measure-
ment infrastructures to schedule requests safely and on-
demand. The framework exploits the tradeoffs along
the measurement time flexibility, required accuracy, and
measurement tool resource requirements dimensions, in
order to maximize satisfied measurement requests with-
out violating a load invariant. We also presented an algo-
rithm for determining the periods of time (hyperperiods)
for which it is sufficient to perform the admission control
tests. We find that our techniques are effective and robust
through experiments on Emulab.

We find that the characterization of measurement tool
resource requirements is important to this work. Due
to the extremely bursty nature of measurement traffic,
peak bandwidth utilization is an over-conservative metric
for characterization. We have demonstrated that average
bandwidth utilization is a more accurate metric, but that
even this may require refinement in some circumstances,
to account for greatly varying utilization during differ-
ent phases of tool execution. A characterization scheme
which captures the essence of this burstiness in a more
explicit manner may allow better admission decisions to
be made.

Our future work directions include both short-term
and long-term goals. In the short-term, we plan to ex-
plore methods of aggregating traffic envelopes in a sim-
ilar manner to [23] to accurately predict future measure-
ment loads. We will evaluate these envelope methods
for accuracy on-the-wire with real measurement loads.
We will also expand our current experiments to include
RocketFuel topologies [28] for a more diverse network
environment. Finally, we plan to integrate our system
with the S service [31] on the PlanetLab platform.

In the long term, we plan to (i) harness the power of
inference mechanisms for estimating quantities when di-
rectly measuring them would introduce excessive load,
and (ii) investigate how to exploit scheduling flexibility
to mitigate interference among measurements. We de-
scribe this second future work direction in some detail
below.

Active network measurements, by the very traffic they
use to perform their duties, perturb the network which
they are measuring. Therefore, the presence of one mea-
surement tool can influence the result of another. In order
to quantify interference among measurements, we must
first define what it means for two measurements to inter-
fere. As a conservative definition, we say that a mea-
surements My interferes with a measurement M, if at
least one packet from measurement M4 and at least one
packet from measurement M, occupy the same queue

at the same time, with a packet from measurement M;
preceding a packet from measurement M, in the queue.
For the purpose of this definition, we consider network
links to be the final entry in a queue. While we believe
that this definition captures the essence of interference,
it does have limitations which another model might ad-
dress. For example, it cannot represent the indirect in-
terference caused by two measurements simultaneously
traversing the same, overloaded physical router through
completely independent links and queues.

This model provides us with a working definition of
interference, but is impractical. In the absence of a “net-
work oracle” which can provide the precise disposition
of arbitrary queues along a network path at arbitrary
points in time, an approximation of this metric is re-
quired. For example, we can prove that two measure-
ments are interference-free if we know the maximum
amount of time that an active measurement packet can
“survive” in the network (call this tyay), and the measure-
ments are scheduled such that the last packet transmitted
by My is transmitted followed by a period of tyx in du-
ration before M, begins. Rather than determining pre-
cisely where and how measurements are going to inter-
fere in the network, measurements could also be sched-
uled (when allowed by the pm parameter) to minimize
the expected overall packet rate of the completed mea-
surement event schedule at any given time. We plan to
investigate this approach in greater depth.

References

[1] CALYAM, P., LEE, C., ARAVA, P. K., AND KRYMSKIY, D.
Enhanced EDF scheduling algorithms for orchestrating network-
wide active measurements. In Proceedings of the 2005 |EEE
Real-Time Systems Symposium (RTSS) (2005).

CALYAM, P., LEE, C., EKIcI, E., HAFFNER, M., AND HOWES,
N. Orchestration of network-wide active measurements for sup-
porting distributed computing applications. |EEE Transactions
on Computers (TOC) 56, 12 (Dec 2007).

CHU, Y., RAO, S. G., AND ZHANG, H. A case for end system
multicast. In Proceedings of ACM SGMETRICS (June 2000).

DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Chal-
lenges in employing low-latency anonymity. Public draft at
http://www.torproject.org/.

DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
the second-generation onion router. In Proceedings of the 13th
USENIX Security Symposium (2004).

DONNET, B., RAOULT, P., FRIEDMAN, T., AND CROVELLA,
M. Deployment of an algorithm for large-scale topology discov-
ery. |EEE journal on selected areas in communications 24, 12
(December 2006), 2210-2220.

DovRroLis, C., AND RAMANATHAN, P. Packet dispersion tech-
niques and capacity estimation. |EEE/ACM Transactions on Net-
working (December 2004).

EMULAB/NETBED. http://www.emulab.net.

FERRARI, D., AND VERMA, D. C. A scheme for real-time chan-
nel establishment in wide-area networks. IEEE Journal on Se-
lected Areasin Communications 8 (Apr. 1990).

[2]

[3]

[4]

[5]

[6]

[71

(8]
[]

15

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

FRALEIGH, C., MOON, S., LYLES, B., COTTON, C., KHAN,
M., MoLL, D., ROoCKELL, R., SEELY, T., AND DioT, C.
Packet-level traffic measurements from the Sprint IP backbone.
|IEEE/ACM Transactions on Networking 17, 6 (December 2003),
6-16.

HOHN, N., VEITCH, D., PAPAGIANNAKI, K., AND DioOT, C.
Bridging router performance and queueing theory. In Proc. of
SIGMETRICS (June 2004), pp. 355-366.

Hu, N., AND STEENKISTE, P. Exploiting Internet route sharing
for large scale available bandwidth estimation. In Proceedings of
ACM IMC (2005).

KALIDINDI, S., AND ZEKAUSKAS, M. J. Surveyor: An infras-
tructure for Internet performance measurements. In Proceedings
of 1ISOC INET (1999).

KESSLER, G., AND SHEPARD, S. A primer on Internet and
TCP/IP tools and utilities. Internet RFC 2151, June 1997.
ftp://ftp.rfc-editor.org/in-notes/rfc2151.txt.

Kim, M. S., Kim, T., SHIN, Y. J., LAM, S. S., AND POWERS,
E. J. A wavelet-based approach to detect shared congestion. In
Proceedings of ACM SGCOMM (2004).

KNIGHTLY, E. W., AND SHROFF, N. B. Admission control for
statistical QoS: Theory and practice. IEEE Network 13 (Mar.
1999).

LEDLIE, J., PIETZUCH, P., MITZENMACHER, M., AND
SELTZER, M. Network coordinates in the wild. In Proceedings
of NSDI 2007 (Apr. 2007).

Liu, C., AND LAYLAND, J. W. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the
ACM (JACM) 20 (Jan. 1973), 46-61.

MADHYASTHA, H. V., ISDAL, T., PIATEK, M., DIXON, C.,
ANDERSON, T., KRISHNAMURTHY, A., AND VENKATARA-
MANI, A. iPlane: An information plane for distributed services.
In Proceedings of the 7th USENIX Symposium on Operating Sys-
tems Design and Implementation (Nov. 2006), pp. 367-380.

MAHAJAN, R., SPRING, N., WETHERALL, D., AND ANDER-
SON, T. User-level Internet path diagnosis. In Proceedings of
ACM Symposium on Operating Systems Principles (SOSP) (Oct.
2003).

NAKAO, A., PETERSON, L., AND BAVIER, A. A routing un-
derlay for overlay networks. In Proceedings of ACM SGCOMM
(2003), pp. 11-18.

PAXSON, V., MAHDAVI, J., ADAMS, A., AND MATHIS, M. An
architecture for large-scale Internet measurement. |EEE Commu-
nications Magazine 36 (Aug. 1998), 48-54.

Q1u, J., AND KNIGHTLY, E. W. Measurement-based admission
control with aggregate traffic envelopes. IEEE/ACM Transactions
on Networking 9, 2 (Apr. 2001).

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND
SHENKER, S. A scalable content-addressable network. In Pro-
ceedings of ACM SGCOMM (Aug. 2001).

RIBIERO, V. J., REIDI, R. H., BARANIUK, R. G., NAVRATIL,
J., AND COTTRELL, L. pathchirp: Efficient available bandwidth
estimation for network paths. In Proceedings of the Passive and
Active Measurement (PAM) Workshop (2003).

SOMMERS, J., BARFORD, P., DUFFIELD, N., AND RON, A. Ef-
ficient network-wide SLA compliance monitoring. In Proceed-
ings of SGCOMM (2007).

SONG, H., AND YALAGANDULA, P. Real-time end-to-end net-
work monitoring in large distributed systems. In Proceedings of
|IEEE COMSWARE (2007).

[28]

[29]

[30]

(31]

[32]

[33]

SPRING, N., MAHAJAN, R., AND WETHERALL, D. Measuring
ISP topologies with Rocketfuel. In Proceedings of ACM S G-
COMM (Aug. 2002).

SPRING, N., WETHERALL, D., AND ANDERSON, T. Scrip-
troute: A public internet measurement facility. In Proceedings
of the 4th USENIX Symposium on Internet Technologies and Sys-
tems (USITS) (2002).

SPRUNT, B. Aperiodic Task Scheduling for Real-Time Systems.
PhD thesis, Carnegie Mellon University, Aug. 1990.

YALAGANDULA, P., SHARMA, P., BANERJEE, S., BASU, S.,
AND LEE, S.-J. s%: A scalable sensing service for monitoring
large networked systems. In Proceedings of the ACM S GCOMM
Wbrkshop on Internet Network Management (INM) (Sept. 2006).

YOuNIs, O., AND FAHMY, S. Flowmate: Scalable on-line flow
clustering. |EEE/ACM Transactions on Networking 13, 2 (April
2005).

YUAN, L., CHUAH, C.-N., AND MOHAPATRA, P. ProgME:
Towards programmable network measurement. In Proceedings
of SGCOMM (2007).

16

